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Weprove that if𝑇 is an𝑚-isometry on aHilbert space and𝑄 an 𝑛-nilpotent operator commutingwith𝑇, then𝑇+𝑄 is a (2𝑛 + 𝑚 − 2)-
isometry. Moreover, we show that a similar result for (𝑚, 𝑞)-isometries on Banach spaces is not true.

1. Introduction

The notion of 𝑚-isometric operators on Hilbert spaces was
introduced by Agler [1]. See also [2–5]. Recently Sid Ahmed
[6] has defined 𝑚-isometries on Banach spaces, Bayart [7]
introduced (𝑚, 𝑞)-isometries on Banach spaces, and (𝑚, 𝑞)-
isometries onmetric spaceswere considered in [8].Moreover,
Hoffman et al. [9] have studied the role of the second
parameter 𝑞. Recall the main definitions.

A map 𝑇 : 𝐸 → 𝐸 (𝑚 ≥ 1 integer and 𝑞 > 0 real),
defined on a metric space 𝐸 with distance 𝑑, is called an
(𝑚, 𝑞)-isometry if, for all 𝑥, 𝑦 ∈ 𝐸,

𝑚

∑

𝑘=0

(−1)
𝑚−𝑘

(
𝑚

𝑘
)𝑑(𝑇

𝑘

𝑥, 𝑇
𝑘

𝑦)
𝑞

= 0. (1)

We say that 𝑇 is a strict (𝑚, 𝑞)-isometry if either 𝑚 = 1 or 𝑇
is an (𝑚, 𝑞)-isometry with 𝑚 > 1 but is not an (𝑚 − 1, 𝑞)-
isometry. Note that (1, 𝑞)-isometries are isometries.

The above notion of an (𝑚, 𝑞)-isometry can be adapted
to Banach spaces in the following way: a bounded linear
operator 𝑇 : 𝑋 → 𝑋, where 𝑋 is a Banach space with norm
‖⋅‖, is an (𝑚, 𝑞)-isometry if and only if, for all 𝑥 ∈ 𝑋,
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= 0. (2)

In the setting of Hilbert spaces, the case 𝑞 = 2 can
be expressed in a special way. Agler [1] gives the following

definition: a linear bounded operator 𝑇 : 𝐻 → 𝐻 acting on
a Hilbert space𝐻 is an (𝑚, 2)-isometry if

𝑚

∑

𝑘=0

(−1)
𝑚−𝑘

(
𝑚

𝑘
)𝑇
∗𝑘

𝑇
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= 0. (3)

(𝑚, 2)-isometries onHilbert spaces will be called for short𝑚-
isometries.

The paper is organized as follows. In the next section
we collect some results about applications of arithmetic
progressions to𝑚-isometric operators.

In Section 3we prove that, in the setting ofHilbert spaces,
if 𝑇 is an 𝑚-isometry, 𝑄 is an 𝑛-nilpotent operator, and they
commute, and then 𝑇+𝑄 is a (2𝑛 +𝑚−2)-isometry.This is a
partial generalization of the following result obtained in [10,
Theorem 2.2]: if𝑇 is an isometry and𝑄 is a nilpotent operator
of order 𝑛 commuting with 𝑇, then 𝑇 + 𝑄 is a strict (2𝑛 − 1)-
isometry.

In the last section we give some examples of operators on
Banach spaces which are of the form identity plus nilpotent,
but they are not (𝑚, 𝑞)-isometries, for any positive integer 𝑚
and any positive real number 𝑞.

Notation. Throughout this paper 𝐻 denotes a Hilbert space
and 𝐵(𝐻) the algebra of all linear bounded operators on 𝐻.
Given 𝑇 ∈ 𝐵(𝐻), 𝑇∗ denotes its adjoint. Moreover, 𝑚 ≥ 1 is
an integer and 𝑞 > 0 a real number.
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2. Preliminaries: Arithmetic Progressions and
(𝑚,𝑞)-Isometries

In this section we give some basic properties of𝑚-isometries.
We need some preliminaries about arithmetic progressions
and their applications to 𝑚-isometries. In [11], some results
about this topic are recollected.

Let𝐺 be a commutative group and denote its operation by
+. Given a sequence 𝑎 = (𝑎

𝑛
)
𝑛≥0

in𝐺, the difference sequence
𝐷𝑎 = (𝐷𝑎)

𝑛≥0
is defined by (𝐷𝑎)

𝑛
:= 𝑎
𝑛+1

−𝑎
𝑛
. The powers of

𝐷 are defined recursively by 𝐷0𝑎 := 𝑎, 𝐷𝑘+1𝑎 = 𝐷(𝐷
𝑘

𝑎). It is
easy to show that

(𝐷
𝑘

𝑎)
𝑛

=

𝑘

∑

𝑖=0

(−1)
𝑘−𝑖

(
𝑘

𝑖
) 𝑎
𝑖+𝑛
, (4)

for all 𝑘 ≥ 0 and 𝑛 ≥ 0 integers.
A sequence 𝑎 in a group 𝐺 is called an arithmetic

progression of order ℎ = 0, 1, 2 . . ., if𝐷ℎ+1𝑎 = 0. Equivalently,

ℎ+1
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𝑖
) 𝑎
𝑖+𝑗

= 0 (5)

for 𝑗 = 0, 1, 2, . . .. It is well known that the sequence 𝑎 in 𝐺

is an arithmetic progression of order ℎ if and only if there
exists a polynomial 𝑝(𝑛) in 𝑛, with coefficients in 𝐺 and of
degree less than or equal to ℎ, such that 𝑝(𝑛) = 𝑎

𝑛
, for every

𝑛 = 0, 1, 2 . . .; that is, there are 𝛾
ℎ
, 𝛾
ℎ−1

, . . . , 𝛾
1
, 𝛾
0
∈ 𝐺, which

depend only on 𝑎, such that, for every 𝑛 = 0, 1, 2, . . .,
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= 𝑝 (𝑛) =
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. (6)

We say that the sequence 𝑎 is an arithmetic progression of strict
order ℎ = 0, 1, 2 . . ., if ℎ = 0 or if it is of order ℎ > 0 but is not
of order ℎ − 1; that is, the polynomial 𝑝 of (6) has degree ℎ.

Moreover, a sequence 𝑎 in a group 𝐺 is an arithmetic
progression of order ℎ if and only if, for all 𝑛 ≥ 0,
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that is,
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Now we give a basic result about𝑚-isometries.

Theorem 1. Let 𝐻 be a Hilbert space. An operator 𝑇 ∈

𝐵(𝐻) is a strict 𝑚-isometry if and only if there are
𝐴
𝑚−1

̸= 0, 𝐴
𝑚−2

, . . . , 𝐴
1
, 𝐴
0
in 𝐵(𝐻), which depend only on 𝑇,

such that, for every 𝑛 = 0, 1, 2 . . .,
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; (9)

that is, the sequence (𝑇∗𝑛𝑇𝑛)
𝑛≥0

is an arithmetic progression of
strict order𝑚 − 1 in 𝐵(𝐻).

Proof. If 𝑇 ∈ 𝐵(𝐻) is a strict𝑚-isometry, then it satisfies (3).
Hence, for each integer 𝑖 ≥ 0,
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but
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̸= 0. (11)

By (5), the operator sequence (𝑇
∗𝑛

𝑇
𝑛

)
𝑛≥0

is an arithmetic
progression of strict order𝑚−1.Therefore, from (6)we obtain
that there is a polynomial 𝑝(𝑛) of degree 𝑚 − 1 in 𝑛, with
coefficients in 𝐵(𝐻) satisfying 𝑝(𝑛) = 𝑇

∗𝑛

𝑇
𝑛; that is, there

are operators 𝐴
𝑚−1
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1
, 𝐴
0
in 𝐵(𝐻), such that,

for every 𝑛 = 0, 1, 2 . . .,

𝑇
∗𝑛

𝑇
𝑛
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Conversely, if (𝑇∗𝑛𝑇𝑛)
𝑛≥0

is an arithmetic progression of
strict order 𝑚 − 1, then (10) and (11) hold. Taking 𝑖 = 0 we
obtain (3), so 𝑇 is a strict𝑚-isometry.

Now we recall an elementary property of (𝑚, 𝑞)-
isometries on metric spaces which will be used in the next
sections.

Proposition 2 (see [8, Proposition 3.11]). Let 𝐸 be a metric
space and let 𝑇 : 𝐸 → 𝐸 be an (𝑚, 𝑞)-isometry. If 𝑇 is an
invertible strict (𝑚, 𝑞)-isometry, then𝑚 is odd.

3. 𝑚-Isometry Plus 𝑛-Nilpotent

Recall that an operator𝑄 ∈ 𝐵(𝐻) is nilpotent of order 𝑛 (𝑛 ≥ 1

integer), or 𝑛-nilpotent, if 𝑄𝑛 = 0 and 𝑄𝑛−1 ̸= 0.
In any finite dimensional Hilbert space 𝐻, strict 𝑚-

isometries can be characterized in a very simple way: a linear
operator 𝑇 ∈ 𝐵(𝐻) is a strict 𝑚-isometry if and only if 𝑚 is
odd and 𝑇 = 𝐴+𝑄, where𝐴 and𝑄 are commuting operators
on 𝐻 and 𝐴 is unitary and 𝑄 a nilpotent operator of order
(𝑚 + 1) /2 ([12, page 134] and [10, Theorem 2.7]).

It was proved in [10, Theorem 2.2] that if 𝐴 ∈ 𝐵(𝐻) is
an isometry and 𝑄 ∈ 𝐵(𝐻) is an 𝑛-nilpotent operator such
that 𝑇𝑄 = 𝑄𝑇, then 𝑇 + 𝑄 is a strict (2𝑛 − 1)-isometry. Now
we obtain a partial generalization of this result: if 𝑇 ∈ 𝐵(𝐻)

is an 𝑚-isometry and 𝑄 ∈ 𝐵(𝐻) is an 𝑛-nilpotent operator
commuting with 𝑇, then 𝑇 + 𝑄 is a (2𝑛 + 𝑚 − 2)-isometry.
However, 𝑇 + 𝑄 is not necessarily a strict (2𝑛 + 𝑚 − 2)-
isometry. For example, if 𝑇 is an isometry and 𝑄 any 𝑛-
nilpotent operator (𝑛 > 1) such that 𝑇𝑄 = 𝑄𝑇, then 𝑇 =

𝑇 + 𝑄 + (−𝑄) is not a strict (4𝑛 − 3)-isometry.

Theorem 3. Let𝐻 be a Hilbert space. Let 𝑇 ∈ 𝐵(𝐻) be an𝑚-
isometry and𝑄 ∈ 𝐵(𝐻) an 𝑛-nilpotent operator (𝑛 ≥ 1 integer)
such that 𝑇𝑄 = 𝑄𝑇. Then 𝑇 + 𝑄 is (2𝑛 + 𝑚 − 2)-isometry.
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Proof. Fix an integer 𝑘 ≥ 0 and denote ℎ := min{𝑘, 𝑛 − 1}.
Then we have
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(13)

From (9) we obtain, for certain 𝐴
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, . . . , 𝐴
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𝐶
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𝑞
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𝑘
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𝑘
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𝑟
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𝑝
𝑟,𝑖,𝑗

:= (
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𝑗
) (𝑘 − 𝑖)

𝑟

.

(15)

Note that ( 𝑘
𝑖
) and ( 𝑘

𝑗
) are real polynomials in 𝑘 of degree less

than or equal to ℎ ≤ 𝑛−1, and (𝑘−𝑗)𝑟 and (𝑘−𝑖)𝑟 have degree
𝑟 ≤ 𝑚−1. Hence 𝑞

𝑟,𝑖,𝑗
and 𝑝

𝑟,𝑖,𝑗
are real polynomials of degree

less than or equal to𝑚−1+2(𝑛−1) = 2𝑛+𝑚−3. Consequently
we can write

(𝑇 + 𝑄)
∗𝑘

(𝑇 + 𝑄)
𝑘

=

𝑚−1

∑

𝑟=0

∑

0≤𝑖<𝑗≤ℎ

𝐵
𝑟,𝑖,𝑗

𝑞
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+

𝑚−1

∑

𝑟=0

∑

0≤𝑗≤𝑖≤ℎ

𝐶
𝑟,𝑖,𝑗

𝑝
𝑟,𝑖,𝑗

,

(16)

which is a polynomial in 𝑘, of degree less than or equal to 2𝑛+
𝑚 − 3 with coefficients in 𝐵(𝐻). By Theorem 1, the operator
𝑇 + 𝑄 is an (2𝑛 + 𝑚 − 2)-isometry.

For isometries it is possible to saymore [10,Theorem 2.2].

Theorem 4. Let 𝐻 be a Hilbert space. Let 𝑇 ∈ 𝐵(𝐻) be an
isometry and let 𝑄 ∈ 𝐵(𝐻) be an 𝑛-nilpotent operator (𝑛 ≥ 1

integer) such that 𝑇𝑄 = 𝑄𝑇. Then 𝑇 + 𝑄 is a strict (2𝑛 − 1)-
isometry.

Proof. By Theorem 3 we obtain that 𝑇 + 𝑄 is a (2𝑛 − 1)-
isometry; that is, ((𝑇 + 𝑄)

∗𝑘

(𝑇 + 𝑄)
𝑘

)
𝑘≥0

is an arithmetic
progression of order less than or equal to 2𝑛−2. Nowwe prove
that it is an arithmetic progression of strict order 2𝑛 − 2, or
equivalently the polynomial (9) has degree 2𝑛−2. Note that as
𝑇 is an isometry we have𝑇∗𝑘𝑇𝑘 = 𝐼, for every positive integer
𝑘.

As in the proof of Theorem 3, for any integer 𝑘 ≥ 0, we
have that

(𝑇 + 𝑄)
∗𝑘

(𝑇 + 𝑄)
𝑘

=

ℎ

∑

𝑖,𝑗=0

(
𝑘

𝑖
)(

𝑘

𝑗
)𝑄
∗𝑖

𝑇
∗𝑘−𝑖

𝑇
𝑘−𝑗

𝑄
𝑗

= ∑

0≤𝑖<𝑗≤ℎ

(
𝑘

𝑖
)(

𝑘

𝑗
)𝑄
∗𝑖

𝑇
∗𝑗−𝑖

𝑄
𝑗

+ ∑

0≤𝑗≤𝑖≤ℎ

(
𝑘

𝑖
)(

𝑘

𝑗
)𝑄
∗𝑖

𝑇
𝑖−𝑗

𝑄
𝑗

,

(17)

where ℎ := min{𝑘, 𝑛 − 1}.
The coefficient of 𝑘2𝑛−2 in the polynomial (𝑇 + 𝑄)

∗𝑘

(𝑇 +

𝑄)
𝑘 is

(
1

(𝑛 − 1)!
)

2

𝑄
∗𝑛−1

𝑄
𝑛−1

, (18)

which is null if and only if 𝑄∗𝑛−1𝑄𝑛−1 = 0, that is, if and only
if 𝑄𝑛−1 = 0. Therefore, if 𝑄 is nilpotent of order 𝑛, then (𝑇 +

𝑄)
∗𝑘

(𝑇 + 𝑄)
𝑘 can be written as a polynomial in 𝑘, of degree

2𝑛−2 and coefficients in 𝐵(𝐻). Consequently 𝑇+𝑄 is a strict
(2𝑛 − 1)-isometry.

Now we obtain the following corollary of Theorem 4.

Corollary 5. Let𝐻 be a Hilbert space. Let 𝑄 ∈ 𝐵(𝐻) be an 𝑛-
nilpotent operator (𝑛 ≥ 1 integer).Then 𝐼+𝑄 is a strict (2𝑛−1)-
isometry.

Recall that an operator 𝑇 ∈ 𝐵(𝐻) is𝑁-supercyclic (𝑁 ≥ 1

integer) if there exists a subspace 𝐹 ⊂ 𝐻 of dimension𝑁 such
that its orbit {𝑇𝑛𝑥 : 𝑛 ≥ 0, 𝑥 ∈ 𝐹} is dense in𝐻. Moreover, 𝑇
is called supercyclic if it is 1-supercyclic. See [13, 14].

Bayart [7, Theorem 3.3] proved that on an infinite
dimensional Banach space an (𝑚, 𝑞)-isometry is never 𝑁-
supercyclic, for any 𝑁 ≥ 1. In the setting of Banach spaces,
Yarmahmoodi et al. [15, Theorem 2.2] showed that any sum
of an isometry and a commuting nilpotent operator is never
supercyclic. For Hilbert space operators we extend the result
[15, Theorem 2.2] to𝑚-isometries plus commuting nilpotent
operators.

Corollary 6. Let 𝐻 be an infinite dimensional Hilbert space.
If 𝑇 ∈ 𝐵(𝐻) is an 𝑚-isometry that commutes with a nilpotent
operator 𝑄, then 𝑇 + 𝑄 is never𝑁-supercyclic for any𝑁.
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4. Some Examples in the Setting of
Banach Spaces

Theorem 4 is not true for finite-dimensional Banach spaces
even for𝑚 = 1.

Denote ℓ𝑑
𝑝
:= (C𝑑, ‖⋅‖

𝑝
).

Example 1. Let𝑄 : C2 → C2 be defined by𝑄(𝑥, 𝑦) := (𝑦, 0);
hence 𝑄 is a 2-nilpotent operator. The following assertions
hold:

(1) 𝐼+𝑄 is not a (3, 𝑝)-isometry on ℓ2
𝑝
for any 1 ≤ 𝑝 < ∞

and 𝑝 ̸= 2;

(2) 𝐼 + 𝑄 is not a (3, 𝑝)-isometry on ℓ
2

∞
for any 𝑝 > 0;

(3) 𝐼 +𝑄 is a strict (2𝑘+ 1, 2𝑘)-isometry on (C2, ‖⋅‖
2𝑘
) for

any 𝑘 = 1, 2, 3, . . ..

Proof. For (𝑥, 𝑦) ∈ C2 we have

(𝐼 + 𝑄) (𝑥, 𝑦) = (𝑥 + 𝑦, 𝑦) ,

(𝐼 + 𝑄)
2

(𝑥, 𝑦) = (𝑥 + 2𝑦, 𝑦) ,

(𝐼 + 𝑄)
3

(𝑥, 𝑦) = (𝑥 + 3𝑦, 𝑦) .

(19)

Write

𝐴 (𝑥, 𝑦; 𝑝, 𝑞) :=
󵄩󵄩󵄩󵄩󵄩
(𝐼 + 𝑄)

3

(𝑥, 𝑦)
󵄩󵄩󵄩󵄩󵄩

𝑞

𝑝

− 3
󵄩󵄩󵄩󵄩󵄩
(𝐼 + 𝑄)

2

(𝑥, 𝑦)
󵄩󵄩󵄩󵄩󵄩

𝑞

𝑝

+ 3
󵄩󵄩󵄩󵄩(𝐼 + 𝑄) (𝑥, 𝑦)

󵄩󵄩󵄩󵄩

𝑞

𝑝
−
󵄩󵄩󵄩󵄩(𝑥, 𝑦)

󵄩󵄩󵄩󵄩

𝑞

𝑝
.

(20)

(1) We consider two cases: 1 < 𝑝 < ∞ and 𝑝 = 1.

(a) Case 1 < 𝑝 < ∞. For 𝑥 = 0, 𝑦 = 1, and 𝑞 = 𝑝, we
have

𝐴 (0, 1; 𝑝, 𝑝) = 3
𝑝

+ 1 − 3 ⋅ 2
𝑝

− 3 + 6 − 1

= 3
𝑝

− 3 ⋅ 2
𝑝

+ 3.

(21)

So𝐴(0, 1; 𝑝, 𝑝) = 0 if and only if 3𝑝−1 + 1 = 2
𝑝, which

is true only when 𝑝 = 2 or 𝑝 = 1 since the function
𝑓(𝑡) = 3

𝑡−1

+ 1 − 2
𝑡 is null only for 𝑡 = 1 and 𝑡 = 2.

Consequently 𝐼 + 𝑄 is not a (3, 𝑝)-isometry on ℓ
2

𝑝
if

𝑝 ̸= 2 and 1 < 𝑝 < ∞.
(b) Case 𝑝 = 1. In order to prove that 𝐼+𝑄 is not a (3, 1)-

isometry on ℓ
2

1
, we take the vector (1, −1) and obtain

that

𝐴 (1, −1; 1, 1) =
󵄩󵄩󵄩󵄩󵄩
(𝐼 + 𝑄)

3

(1, −1)
󵄩󵄩󵄩󵄩󵄩1

− 3
󵄩󵄩󵄩󵄩󵄩
(𝐼 + 𝑄)

2

(1, −1)
󵄩󵄩󵄩󵄩󵄩1
+ 3‖(𝐼 + 𝑄) (1, −1)‖

1

− ‖(1, −1)‖
1

̸= 0.

(22)

(2) For (𝑥, 𝑦) ∈ C2 we have

𝐴 (𝑥, 𝑦;∞, 𝑝) :=
󵄩󵄩󵄩󵄩󵄩
(𝐼 + 𝑄)

3

(𝑥, 𝑦)
󵄩󵄩󵄩󵄩󵄩

𝑝

∞

− 3
󵄩󵄩󵄩󵄩󵄩
(𝐼 + 𝑄)

2

(𝑥, 𝑦)
󵄩󵄩󵄩󵄩󵄩

𝑝

∞

+ 3
󵄩󵄩󵄩󵄩(𝐼 + 𝑄) (𝑥, 𝑦)

󵄩󵄩󵄩󵄩

𝑝

∞

−
󵄩󵄩󵄩󵄩(𝑥, 𝑦)

󵄩󵄩󵄩󵄩

𝑝

∞

=max {󵄨󵄨󵄨󵄨𝑥 + 3𝑦
󵄨󵄨󵄨󵄨 ,
󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨}
𝑝

−3max {󵄨󵄨󵄨󵄨𝑥 + 2𝑦
󵄨󵄨󵄨󵄨 ,
󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨}
𝑝

+ 3max {󵄨󵄨󵄨󵄨𝑥 + 𝑦
󵄨󵄨󵄨󵄨 ,
󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨}
𝑝

−max {|𝑥| , 󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨}
𝑝

.

(23)

In particular, for 𝑥 := 1 and 𝑦 := −1,

𝐴 (1, −1;∞, 𝑝) = 2
𝑝

− 1 ̸= 0. (24)

Therefore 𝐼 + 𝑄 is not a (3, 𝑝)-isometry on ℓ
2

∞
for any 𝑝 > 0.

(3) First we prove by induction on 𝑘 that 𝐼 + 𝑄 is a (2𝑘 +
1, 2𝑘)-isometry on ℓ

2

2𝑘
for any 𝑘 = 1, 2, 3 . . .. Note that, for

(𝑥, 𝑦) ∈ C2,

(𝐼 + 𝑄)
𝑠

(𝑥, 𝑦) = (𝑥 + 𝑠𝑦, 𝑦) , (𝑠 = 0, 1, 2 . . .) . (25)

By Corollary 5, the operator 𝐼 + 𝑄 is a strict (3, 2)-isometry
on ℓ
2

2
. Hence 𝐼 + 𝑄 is a strict (2𝑘 + 1, 2𝑘)-isometry on ℓ

2

2
for

all 𝑘 = 1, 2, 3 . . . [9, Corollary 4.6]. Thus for (𝑥, 𝑦) ∈ C2,

2𝑘+1

∑

𝑠=0

(−1)
2𝑘+1−𝑠

(
2𝑘 + 1

𝑠
) (

󵄨󵄨󵄨󵄨𝑥 + 𝑠𝑦
󵄨󵄨󵄨󵄨

2

+
󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨

2

)
𝑘

= 0. (26)

Suppose that 𝐼+𝑄 is a (2𝑖−1, 2𝑖−2)-isometry on ℓ2
2𝑖−2

for every
𝑖 = 2, 3, . . . , 𝑘. Hence 𝐼 + 𝑄 is also a (2𝑘 + 1, 2𝑖 − 2)-isometry
on ℓ
2

2𝑖−2
. Then, for (𝑥, 𝑦) ∈ C2,

2𝑘+1

∑

𝑠=0

(−1)
2𝑘+1−𝑠

(
2𝑘 + 1

𝑠
) (

󵄨󵄨󵄨󵄨𝑥 + 𝑠𝑦
󵄨󵄨󵄨󵄨

2𝑖−2

+
󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨

2𝑖−2

) = 0,

(2 ≤ 𝑖 ≤ 𝑘) .

(27)

Therefore,

2𝑘+1

∑

𝑠=0

(−1)
2𝑘+1−𝑠

(
2𝑘 + 1

𝑠
)
󵄨󵄨󵄨󵄨𝑥 + 𝑠𝑦

󵄨󵄨󵄨󵄨

2𝑖−2

= 0,

(2 ≤ 𝑖 ≤ 𝑘) .

(28)

Taking into account equality (28) we can write (26) in the
following way:

0 =

2𝑘+1

∑

𝑠=0

(−1)
2𝑘+1−𝑠

(
2𝑘 + 1

𝑠
)

𝑘

∑

𝑖=0

(
𝑘

𝑖
)
󵄨󵄨󵄨󵄨𝑥 + 𝑠𝑦

󵄨󵄨󵄨󵄨

2𝑖󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨

2(𝑘−𝑖)

=

𝑘−1

∑

𝑖=0

(
𝑘

𝑖
)
󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨

2(𝑘−𝑖)

2𝑘+1

∑

𝑠=0

(−1)
2𝑘+1−𝑠

(
2𝑘 + 1

𝑠
)
󵄨󵄨󵄨󵄨𝑥 + 𝑠𝑦

󵄨󵄨󵄨󵄨

2𝑖
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+

2𝑘+1

∑

𝑠=0

(−1)
2𝑘+1−𝑠

(
2𝑘 + 1

𝑠
)
󵄨󵄨󵄨󵄨𝑥 + 𝑠𝑦

󵄨󵄨󵄨󵄨

2𝑘

=

2𝑘+1

∑

𝑠=0

(−1)
2𝑘+1−𝑠

(
2𝑘 + 1

𝑠
) (

󵄨󵄨󵄨󵄨𝑥 + 𝑠𝑦
󵄨󵄨󵄨󵄨

2𝑘

+
󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨

2𝑘

) .

(29)

Therefore 𝐼 + 𝑄 is a (2𝑘 + 1, 2𝑘)-isometry on ℓ
2

2𝑘
.

Nowwe prove that 𝐼+𝑄 is a strict (2𝑘+1, 2𝑘)-isometry on
ℓ
2

2𝑘
. Suppose on the contrary that 𝐼 + 𝑄 is a (2𝑘, 2𝑘)-isometry

on ℓ
2

2𝑘
. Then,

2𝑘−1

∑

𝑠=0

(−1)
2𝑘−1−𝑠

(
2𝑘 − 1

𝑠
) (

󵄨󵄨󵄨󵄨𝑥 + 𝑠𝑦
󵄨󵄨󵄨󵄨

2𝑘

+
󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨

2𝑘

) = 0 (30)

for all (𝑥, 𝑦) ∈ C2. So

2𝑘−1

∑

𝑠=0

(−1)
2𝑘−1−𝑠

(
2𝑘 − 1

𝑠
)
󵄨󵄨󵄨󵄨𝑥 + 𝑠𝑦

󵄨󵄨󵄨󵄨

2𝑘

= 0 (31)

for all (𝑥, 𝑦) ∈ C2. In particular, for 𝑦 = 1 and 𝑥 = 0, 1, 2, . . .,
we have

2𝑘−1

∑

𝑠=0

(−1)
2𝑘−1−𝑠

(
2𝑘 − 1

𝑠
) (𝑥 + 𝑠)

2𝑘

= 0. (32)

So (𝑠2𝑘)∞
𝑠=0

is an arithmetic progression of order 2𝑘−2, which
is a contradiction with (6).

Remark 7. Notice that, in any Hilbert space of dimension 𝑛,
there are strict𝑚-isometries only for any𝑚 ≤ 2𝑛−1. However,
as the above example shows, there are strict (2𝑘 + 1, 2𝑘)-
isometries for any integer 𝑘 in a Banach space of dimension
2.

The following example gives an operator of the form 𝐼+𝑄

with 𝑄 a nilpotent operator such that 𝐼 + 𝑄 is not an (𝑚, 𝑞)-
isometry for any integer𝑚 and any 𝑞 > 0.

Example 2. Let 𝑋 be the Banach space of all real continuous
functions 𝑓 on [0, 1] such that 𝑓(1) = 0 endowed with the
supremun norm. Define 𝑄 : 𝑋 → 𝑋 by

(𝑄𝑓) (𝑡) :=

{{

{{

{

𝑓(𝑡 +
1

2
) , if 0 ≤ 𝑡 ≤

1

2
,

0, if 1
2
< 𝑡 ≤ 1.

(33)

Then𝑄 ∈ 𝐵(𝑋) is 2-nilpotent operator. Moreover, 𝐼+𝑄 is not
an (𝑚, 𝑞)-isometry for any𝑚 = 1, 2, 3, . . . and any 𝑞 > 0.

Proof. It is clear that 𝐼+𝑄 is not an isometry since the function
𝑓 ∈ 𝑋 given by

𝑓 (𝑡) :=

{{

{{

{

1, if 0 ≤ 𝑡 ≤
1

2
,

−2𝑡 + 2, if 1
2
< 𝑡 ≤ 1

(34)

satisfies 󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩 = 1 and 󵄩󵄩󵄩󵄩(𝐼 + 𝑄)𝑓

󵄩󵄩󵄩󵄩 = 2.

0

0.5

1

1

m = 3

m = 5

m = 7

1/4 1/2 3/4

Figure 1: Graphics of functions 𝑓
3
, 𝑓
5
, and 𝑓

7
.

For 𝑚 = 2, 3, 4, . . . consider the function 𝑓
𝑚
∈ 𝑋 defined

by

𝑓
𝑚
(𝑡) :=

{{{{{{{{{{{{

{{{{{{{{{{{{

{

−4𝑡 + 1, if 0 ≤ 𝑡 ≤
1

4
,

0, if 1
4
< 𝑡 ≤

1

2
,

−4

𝑚 − 1
𝑡 +

2

𝑚 − 1
, if 1

2
< 𝑡 ≤

3

4
,

4

𝑚 − 1
𝑡 −

4

𝑚 − 1
, if 3

4
< 𝑡 ≤ 1.

(35)

Note that 𝑓
𝑚
(3/4) = 1/ (1 − 𝑚) = min

0≤𝑡≤1
𝑓
𝑚
(𝑡)

(Figure 1).

Fix 𝑞 > 0. For 𝑘 = 0, 1, 2, . . ., we have

󵄩󵄩󵄩󵄩󵄩
(𝐼 + 𝑄)

𝑘

𝑓
𝑚

󵄩󵄩󵄩󵄩󵄩

𝑞

=
󵄩󵄩󵄩󵄩(𝐼 + 𝑘𝑄)𝑓

𝑚

󵄩󵄩󵄩󵄩

𝑞

= sup
0≤𝑡≤1

󵄨󵄨󵄨󵄨𝑓𝑚 (𝑡) + 𝑘 (𝑄𝑓
𝑚
) (𝑡)

󵄨󵄨󵄨󵄨

𝑞

.

(36)

If 0 ≤ 𝑘 ≤ 𝑚 − 1, then

󵄩󵄩󵄩󵄩󵄩
(𝐼 + 𝑄)

𝑘

𝑓
𝑚

󵄩󵄩󵄩󵄩󵄩

𝑞

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑓
𝑚
(0) + 𝑘𝑓

𝑚
(
1

2
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑞

= 1, (37)

since 𝑘 (1/ (𝑚 − 1)) ≤ 1. But as𝑚(1/ (𝑚 − 1)) > 1 we obtain

󵄩󵄩󵄩󵄩(𝐼 + 𝑄)
𝑚

𝑓
𝑚

󵄩󵄩󵄩󵄩

𝑞

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑓
𝑚
(
1

4
) + 𝑚𝑓

𝑚
(
3

4
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑞

= (
𝑚

𝑚 − 1
)

𝑞

> 1.

(38)
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Consequently,
𝑚

∑

𝑘=0

(−1)
𝑚−𝑘

(
𝑚

𝑘
)
󵄩󵄩󵄩󵄩󵄩
(𝐼 + 𝑄)

𝑘

𝑓
𝑚

󵄩󵄩󵄩󵄩󵄩

𝑞

=

𝑚−1

∑

𝑘=0

(−1)
𝑚−ℓ

(
𝑚

𝑘
) +

󵄩󵄩󵄩󵄩(𝐼 + 𝑄)
𝑚

𝑓
𝑚

󵄩󵄩󵄩󵄩

𝑞

= −1 + (
𝑚

𝑚 − 1
)

𝑞

̸= 0.

(39)

Therefore 𝐼+𝑄 is not an (𝑚, 𝑞)-isometry for any𝑚 = 1, 2, 3 . . .

and any 𝑞 > 0.
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