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For two kinds of nonlinear constrained optimization problems, we propose two simple penalty functions, respectively, by
augmenting the dimension of the primal problem with a variable that controls the weight of the penalty terms. Both of the penalty
functions enjoy improved smoothness. Under mild conditions, it can be proved that our penalty functions are both exact in the
sense that localminimizers of the associated penalty problem are precisely the localminimizers of the original constrained problem.

1. Introduction

Penalty function has always taken an important role in
solving many constrained optimization problems in the
fields such as industry design and management science. It
is traditionally constructed to solve nonlinear programs by
adding some penalty or barrier terms with respect to the con-
straints to the objective function or a corresponding Lagrange
function. Then it can be optimized by some unconstrained
or bounded constrained optimization software or sequential
quadratic programming (SQP) techniques. No matter what
kind of techniques are employed, the penalty function always
depends on a small parameter 𝜀 or large parameter 𝜌 =

𝜀
−1. As 𝜀 → 0; the minimizer of the penalty function,
such as a barrier function or the quadratic penalty function
[1], converges to a minimizer of the original problem. By
using some exact penalty function such as 𝑙

1

penalty function
(see [2–7]), the minimizer of the corresponding penalty
problem must be a minimizer of the original problem when
𝜀 is sufficiently small. There are some nonsmooth penalty
functions for nonsmooth optimization problems, such as
the exact penalty function using the distance function for
the nonsmooth variational inequality problem in Hilbert
spaces [8]. In [9], the convergence of lower-order exact
penalization for a constrained scalar set-valued optimization
problem is given under sufficient conditionswhich are easy to
verify.

The traditional exact penalty functions [3] are always
nonsmooth. When it is used as a merit function to accept
a new iterate in an SQP method, it may cause the Maratos
effect [10]. On the other hand, a traditional smooth penalty
function such as the quadratic penalty function cannot be an
exact one. So we must compute a sequence of minimization
subproblem as 𝜀 → 0. At that time, ill-conditioning may
occur when the penalty parameter is too large or small,
which also brings difficulty of computation. In [11, 12], some
kinds of augmented Lagrangian penalty functions have been
proposed with improved exactness under strong conditions.
In [13], exact penalty functions via regularized gap function
for variational inequalities have also been given. In [14],
the authors study exactness and algorithm of an objective
penalty function for inequality constrained optimization. All
these functions enjoy some smoothness, but at the very
beginning, to use this smoothness we need second-order or
third-order derivative information of the problem function
that is difficult to estimate in practice. Besides, all the above
kinds of penalty functions (see [11, 15–18] for summary) may
be unbounded below even when the constrained problem is
bounded, which may make it difficult to locate a minimizer.

Most results in the literature of exact penalization are
mainly concerned with finding conditions under which a
solution of the constrained optimization problem is a solution
of an unconstrained penalized optimization problem, and
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the reverse property is rarely studied. In [19], the author
studies the reverse property. In this paper, two modified
simple exact penalty functions are proposed for two kinds
of constrained nonlinear programming problem, where the
term simple means that the penalty function constructed in
the primal variable space only contains the original informa-
tion of the objective function and the constraint functions in
the constrained optimization problem but does not contain
the information of their differentials and multipliers. This
kind of traditional exact penalty function can be expressed
into the following form:

𝑝 (𝑥; 𝜀) = 𝑓 (𝑥) +

1

𝜀

𝑝 (𝑥) , (1)

where 𝑝(⋅) satisfies that 𝑝(𝑥) = 0, if 𝑥 is feasible, and 𝑝(𝑥) > 0
otherwise. A simple exact penalty function of this kind is the
𝑙
1

penalty function, and it is known that this penalty function
is nonsmooth. The penalty functions without the multipliers
have been given in [12, 17, 20, 21]. Under mild conditions,
these penalty functions have been proved exact and smooth;
however, since they include the information of differentials
of the objective function and the constraint functions in the
constrained optimization problem, they are not simple ones
by our definition. In [22], a new exact penalty function is c
onstructed by adding a new finite-dimensional or even one-
dimensional decision variable to control the penalty terms.
Under mild conditions, it is proved that for sufficiently large
penalty parameter 𝜎 > 0, every local minimizer (𝑥∗, 𝜀

∗

) of
the above penalty problem with finite penalty function value
𝑓
𝜎

(𝑥
∗

, 𝜀
∗

) has the form 𝜀
∗

= 0, where 𝑥∗ is a local minimizer
of the original problem.

Inspired by this idea, in this paper, by augmenting the
dimension of the program with a variable, we propose a sim-
ple exact penalty function for the equality constrained math-
ematical program and a simple exact barrier-penalty function
for the inequality constrainedmathematical program, respec-
tively. Our new penalty function for equality constrained
mathematical program is different from the one in [22]
since that in [22], as the variable 𝜀 is controlled by the
function 𝛽 that has the properties 𝛽(0) = 0, and 𝛽(0) ≥

𝛽
1

> 0, which are not needed for our function. In [22], to
construct the penalty function for the inequality constrained
mathematical program, the original optimization problem
must be converted to be an equality constrained problem.
For the inequality constrained mathematical program, we
propose a new simple exact log-type barrier-penalty function,
which is different from the classical log-barrier function and
has broader feasible region.

2. A Modified Simple Exact Penalty
Function for Equality Constrained
Optimization Problems

We are now ready to propose a simple exact penalty function
for equality constrained mathematical programs.

We consider the following problem:

(𝑃
1

)

min 𝑓 (𝑥)

s.t. 𝑥 ∈ 𝐷, 𝐹 (𝑥) = 0,

(2)

where 𝐷 is a bounded open set in the 𝑛-dimensional
Euclidean space R𝑛 and 𝑓 : 𝐷 → R and 𝐹 : 𝐷 → R𝑚

are all continuously differentiable in 𝐷. We assume that 𝑓 is
bounded below in𝐷.

We then consider a new penalty function as follows:

𝑓
𝜎

(𝑥, 𝜀)

=

{
{
{
{
{

{
{
{
{
{

{

𝑓 (𝑥) , if 𝜀 = 0, Δ (𝑥, 𝜀) = 0,

𝑓 (𝑥) +

1

2

𝜀
−𝛼

Δ (𝑥, 𝜀) + 𝜎𝜀
𝛽

, if 𝜀 ̸= 0,

+∞, otherwise (i.e., 𝜀 = 0,
Δ (𝑥, 𝜀) ̸= 0) ,

(3)

where 𝜀 is a new one-dimensional variable, Δ(𝑥, 𝜀) =

‖𝐹(𝑥) − 𝜀
𝛾

𝑤‖
2 is the constraint violation measure, 𝛾 > 𝛼 ≥

𝛽 ≥ 2 are three integers, 𝛼, 𝛽 are both even, and 𝜎 > 0

is a penalty parameter. In particular, we can set 𝛾 = 3, and
𝛼 = 𝛽 = 2. 𝑤 ∈ R𝑚 is a preset variable, for example, we can
set 𝑤 = (1, 1, . . . , 1). Compared with the paper [22, 23], here
we get rid of the restriction that 𝜀 is bounded and positive.

Based on the function (3), we establish the following
penalty problem:

(𝑃
𝜎

) min
(𝑥,𝜀)∈𝐷×R

𝑓
𝜎

(𝑥, 𝜀) . (4)

Let ∇
(𝑥,𝜀)

𝑓
𝜎

(𝑥, 𝜀) denote the gradient of 𝑓
𝜎

(𝑥, 𝜀) in (𝑥, 𝜀),
then we have

∇
(𝑥,𝜀)

𝑓
𝜎

(𝑥, 𝜀)

= (

𝜕

𝜕𝑥
1

𝑓
𝜎

(𝑥, 𝜀) , . . . ,

𝜕

𝜕𝑥
𝑛

𝑓
𝜎

(𝑥, 𝜀) ,

𝜕

𝜕𝜀

𝑓
𝜎

(𝑥, 𝜀))

𝑇

.

(5)

In the following we consider the smoothness of the
penalty function 𝑓

𝜎

.
For (𝑥, 𝜀) ∈ 𝐷 ×R, if 𝜀 = 0, Δ(𝑥, 𝜀) = 0, then

𝜕

𝜕𝑥
𝑖

𝑓
𝜎

(𝑥, 𝜀) =

𝜕

𝜕𝑥
𝑖

𝑓 (𝑥) , 𝑖 = 1, . . . , 𝑛,

𝜕

𝜕𝜀

𝑓
𝜎

(𝑥, 𝜀) =

𝜕

𝜕𝜀

𝑓 (𝑥) = 0;

(6)

if 𝜀 ̸= 0, then

𝜕

𝜕𝑥
𝑖

𝑓
𝜎

(𝑥, 𝜀) =

𝜕

𝜕𝑥
𝑖

𝑓 (𝑥) +

1

𝜀
𝛼

𝑚

∑

𝑗=1

(𝐹
𝑗

(𝑥) − 𝜀
𝛾

𝑤
𝑗

)

𝜕

𝜕𝑥
𝑖

𝐹
𝑗

(𝑥) ,

𝑖 = 1, . . . , 𝑛,
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𝜕

𝜕𝜀

𝑓
𝜎

(𝑥, 𝜀) = −

𝛼

2

𝜀
𝛼−1

𝑚

∑

𝑗=1

(𝐹
𝑗

(𝑥) − 𝜀
𝛾

𝑤
𝑗

)

2

− 𝜀
𝛾−𝛼−1

𝑚

∑

𝑗=1

(𝐹
𝑗

(𝑥) − 𝜀
𝛾

𝑤
𝑗

) + 𝛽𝜎𝜀
𝛽−1

.

(7)

Obviously, 𝑓
𝜎

(𝑥, 𝜀) is continuously differentiable in the set
𝐷 × {R \ {0}}.

We are now to discuss the exactness of the penalty
function 𝑓

𝜎

(𝑥, 𝜀).

Theorem 1. Suppose that {(𝑥𝑘, 𝜀
𝑘

, 𝜎
𝑘

)} satisfies that (𝑥𝑘, 𝜀
𝑘

) is
the local minimizer of the penalty problem (𝑃

𝜎𝑘
) with finite

𝑓
𝜎𝑘

(𝑥
𝑘

, 𝜀
𝑘

), for any 𝑘, 𝜀
𝑘

̸= 0, when 𝑘 → ∞, one has 𝜎
𝑘

→

+∞ and (𝑥𝑘, 𝜀
𝑘

) → (𝑥
∗

, 𝜀
∗

), then if ∇𝐹(𝑥∗) have full rank,
then 𝜀

∗

= 0, Δ(𝑥
∗

, 𝜀
∗

) = 0, 𝐹(𝑥∗) = 0.

Proof. Since for any 𝑘, (𝑥𝑘, 𝜀
𝑘

) is the local minimizer of (𝑃
𝜎𝑘
)

with finite 𝑓
𝜎

(𝑥
𝑘

, 𝜀
𝑘

), and (𝑥𝑘, 𝜀
𝑘

) ∈ 𝐷 × R, then we have
∇
(𝑥,𝜀)

𝑓
𝜎𝑘

(𝑥
𝑘

, 𝜀
𝑘

) = 0, that is,

𝜕

𝜕𝑥
𝑖

𝑓
𝜎𝑘

(𝑥
𝑘

, 𝜀
𝑘

) =

𝜕

𝜕𝑥
𝑖

𝑓 (𝑥
𝑘

)

+ 𝜀
−𝛼

𝑘

𝑚

∑

𝑗=1

(𝐹
𝑗

(𝑥
𝑘

) − 𝜀
𝛾

𝑘

𝑤
𝑗

)

𝜕

𝜕𝑥
𝑖

𝐹
𝑗

(𝑥
𝑘

) = 0,

𝑖 = 1, . . . , 𝑛,

(8)

𝜕

𝜕𝜀

𝑓
𝜎𝑘

(𝑥
𝑘

, 𝜀
𝑘

) = −𝛾𝜀
𝛾−𝛼−1

𝑘

𝑚

∑

𝑗=1

(𝐹
𝑗

(𝑥
𝑘

) − 𝜀
𝛾

𝑘

𝑤
𝑗

)𝑤
𝑗

−

1

2

𝛼𝜀
−𝛼−1

𝑘

𝑚

∑

𝑗=1

(𝐹
𝑗

(𝑥
𝑘

) − 𝜀
𝛾

𝑘

𝑤
𝑗

)

2

+ 𝛽𝜎
𝑘

𝜀
𝛽−1

𝑘

= 0.

(9)

Equation (9) is equivalent to

− 2𝛾𝜀
𝛾−𝛼−𝛽

𝑘

𝑚

∑

𝑗=1

(𝐹
𝑗

(𝑥
𝑘

) − 𝜀
𝛾

𝑘

𝑤
𝑗

)𝑤
𝑗

−

1

2

𝛼𝜀
−𝛼−𝛽

𝑘

𝑚

∑

𝑗=1

(𝐹
𝑗

(𝑥
𝑘

) − 𝜀
𝛾

𝑘

𝑤
𝑗

)

2

+ 𝛽𝜎
𝑘

= 0.

(10)

Let 𝑘 → ∞, from the assumption we know 𝑥
𝑘

→ 𝑥
∗

∈

𝐷, 𝜀
𝑘

→ 𝜀
∗

, if 𝜀
∗

̸= 0, then by the above equality, we know that
the first and second term on the left side are all finite value,
and the third term tends to +∞. This is impossible, so 𝜀

∗

= 0.
Moreover, by (8) we know that

𝜀
𝛼

𝑘

𝜕

𝜕𝑥
𝑖

𝑓 (𝑥
𝑘

) +

𝑚

∑

𝑗=1

(𝐹
𝑗

(𝑥
𝑘

) − 𝜀
𝛾

𝑘

𝑤
𝑗

)

𝜕

𝜕𝑥
𝑖

𝐹
𝑗

(𝑥
𝑘

) = 0,

𝑖 = 1, . . . , 𝑛.

(11)

Let 𝑘 → ∞, from 𝑥
𝑘

→ 𝑥
∗

∈ 𝐷 and 𝜀
𝑘

→ 𝜀
∗

= 0, it follows
that

∇𝐹(𝑥
∗

)
𝑇

𝐹 (𝑥
∗

) = 0. (12)

Since ∇𝐹(𝑥∗) has full rank, it follows that 𝐹(𝑥∗) = 0 and
Δ(𝑥
∗

, 𝜀
∗

) = 0; this completes the proof.

Theorem 2. Suppose that for (𝑃), if there exists a sequence
{(𝑥
𝑘

, 𝜀
𝑘

, 𝜎
𝑘

)} satisfying that (𝑥𝑘, 𝜀
𝑘

) ∈ 𝐿(𝑃
𝜎𝑘
), where 𝐿(𝑃

𝜎𝑘
)

is the set of local minimizers of the penalty problem (𝑃
𝜎𝑘
) and

∇𝐹(𝑥
𝑘

) have full rank, {𝜎
𝑘

} is a strictly increasing sequence and
𝑓
𝜎𝑘

(𝑥
𝑘

, 𝜀
𝑘

) is finite, then there exists 𝑘
0

> 0, such that when
𝑘 ≥ 𝑘
0

,

𝜀
𝑘

= 0, 𝑥
𝑘

∈ 𝐿 (𝑃) , (13)

where 𝐿(𝑃) is the set of local minimizers of (2).

Proof. We first show that there exists a sufficiently large 𝑘
0

>

0, such that when 𝑘 ≥ 𝑘
0

, 𝜀
𝑘

= 0. If it is not the case, then
there exists a subsequence of {(𝑥𝑘, 𝜀

𝑘

, 𝜎
𝑘

)}, which can be still
as {(𝑥𝑘, 𝜀

𝑘

, 𝜎
𝑘

)}without loss of generality, such that for each 𝑘,
(𝑥
𝑘

, 𝜀
𝑘

) is the local minimizer of (𝑃
𝜎𝑘
) with finite 𝑓

𝜎𝑘

(𝑥
𝑘

, 𝜀
𝑘

),
and 𝜀
𝑘

̸= 0, when 𝑘 → ∞, we have𝜎
𝑘

→ +∞ and (𝑥𝑘, 𝜀
𝑘

) →

(𝑥
∗

, 𝜀
∗

). By (9) we know that

𝜕

𝜕𝜀

𝑓
𝜎𝑘

(𝑥
𝑘

, 𝜀
𝑘

) = −𝛾𝜀
𝛾−𝛼−1

𝑘

𝑚

∑

𝑗=1

(𝐹
𝑗

(𝑥
𝑘

) − 𝜀
𝛾

𝑘

𝑤
𝑗

)𝑤
𝑗

−

1

2

𝛼𝜀
−𝛼−1

𝑘

Δ (𝑥
𝑘

, 𝜀
𝑘

) + 𝛽𝜎
𝑘

𝜀
𝛽−1

𝑘

= 0,

(14)

then we have that

1

2

𝛾𝜀
−𝛼−1

𝑘

𝑚

∑

𝑗=1

[(𝐹
𝑗

(𝑥
𝑘

) − 𝜀
𝛾

𝑘

𝑤
𝑗

)

2

− 𝐹
2

𝑗

(𝑥
𝑘

) − 𝜀
2𝛾

𝑘

𝑤
2

𝑗

]

−

1

2

𝛼𝜀
−𝛼−1

𝑘

Δ (𝑥
𝑘

, 𝜀
𝑘

) + 𝛽𝜎
𝑘

𝜀
𝛽−1

𝑘

= 0,

(15)

thus,

(𝛾 − 𝛼) Δ (𝑥
𝑘

, 𝜀
𝑘

) − 𝛾𝜀
2𝛾

𝑘

‖𝑤‖
2

+ 2𝛽𝜀
𝛼+𝛽

𝑘

𝜎
𝑘

= 𝛾






𝐹(𝑥
𝑘

)







2

,

(16)

then we can get that

(𝛾 − 𝛼) 𝜀
−2𝛼

𝑘

Δ (𝑥
𝑘

, 𝜀
𝑘

) − 𝛾𝜀
2(𝛾−𝛼)

𝑘

‖𝑤‖
2

+ 2𝛽𝜎
𝑘

𝜀
𝛽−𝛼

𝑘

= 𝛾𝜀
−2𝛼

𝑘






𝐹(𝑥
𝑘

)







2

.

(17)

By Theorem 1, we know that when 𝑘 → ∞, 𝜀
𝑘

→ 𝜀
∗

= 0,
Δ(𝑥
𝑘

, 𝜀
𝑘

) → Δ(𝑥
∗

, 𝜀
∗

) = 0. From the assumption that 𝛾 >

𝛼 ≥ 𝛽 ≥ 2, we know that the third term on the left side of (17)
tends to∞, and the second term tends to zero, thus we have

𝜀
−2𝛼

𝑘






𝐹(𝑥
𝑘

)







2

→ +∞. (18)
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Let 𝑦𝑘 = 𝐹(𝑥
𝑘

)/𝜀
𝛼

𝑘

, 𝑧𝑘 = 𝑦
𝑘

/‖𝑦
𝑘

‖, it is obvious that ‖𝑦𝑘‖ →

+∞, and ‖𝑧𝑘‖ = 1; without loss of generality, we suppose
𝑧
𝑘

→ 𝑧
∗, then ‖𝑧∗‖ = 1.

Besides, by (8) we know

𝑢
𝑘

𝑖

=

1





𝑦
𝑘






𝜕

𝜕𝑥
𝑖

𝑓 (𝑥
𝑘

) + (∇𝐹(𝑥
𝑘

)

𝑇

(𝐹 (𝑥
𝑘

) − 𝜀
𝛾−𝛼

𝑘

𝑤





𝑦
𝑘






))

𝑖

= 0, 𝑖 = 1, . . . , 𝑛.

(19)

Let 𝑘 → ∞, then by 𝜀
𝑘

→ 0, ‖𝑦𝑘‖ → +∞, and 𝑥𝑘 → 𝑥
∗

we obtain that

∇𝐹(𝑥
∗

)
𝑇

𝑧
∗

= 0. (20)

Since ∇𝐹(𝑥∗) is full-rank, then 𝑧
∗

= 0, and this leads a
contradiction with ‖𝑧∗‖ = 1, so there exists a 𝑘

0

, such that
when 𝑘 ≥ 𝑘

0

, 𝜀
𝑘

= 0. Since 𝑓
𝜎𝑘

(𝑥
𝑘

, 𝜀
𝑘

) is finite, then by the
definition of 𝑓

𝜎𝑘

we have

𝐹 (𝑥
𝑘

) = 0. (21)

Again by the definition of 𝑓
𝜎𝑘

, there exists a neighborhood
𝑁(𝑥
𝑘

, 𝑟) of 𝑥𝑘, with 𝑟 > 0 sufficiently small, such that for all
𝑥 in𝑁(𝑥𝑘, 𝑟) satisfying 𝐹(𝑥) = 0, we have

𝑓
𝜎𝑘

(𝑥
𝑘

, 0) = 𝑓 (𝑥
𝑘

) ≤ 𝑓
𝜎𝑘
(𝑥, 0) = 𝑓 (𝑥) , (22)

thus 𝑥𝑘 ∈ 𝐿(𝑃).

It is shown from Theorems 1 and 2 that under some
constraint qualification condition, the local minimizer of
the penalty problem corresponds to a local minimizer of
the original problem, thus our penalty function for equality
constrained mathematical program enjoys exactness.

3. A New Simple Exact Barrier-Penalty
Function for Inequality Constrained
Optimization Problem

We are now to construct a class of simple smooth exact
penalty function for inequality constrained optimization
problem:

min
𝑥∈F

𝑓 (𝑥) , (23)

where F = {𝑥 ∈ R𝑛 | 𝑔
𝑗

(𝑥) ≤ 0, 𝑗 = 1, . . . , 𝑚}, and 𝑓,
𝑔
𝑗

: R𝑛 → R are all continuously differentiable functions.
Throughout this section, we assume that F is a nonempty
and bounded set. In [22], the authors transform the inequality
constrained problem into a kind of equality constrained
optimization problem by adding some parameters to control
the constraints. In this section, we will give a new smooth and
exact barrier-penalty function.

For problem (23), the classical barrier function is

𝑝 (𝑥; 𝜀) = 𝑓 (𝑥) − 𝜀

𝑚

∑

𝑗=1

ln (−𝑔
𝑗

(𝑥)) , (24)

where 𝜀 > 0 is a parameter. The corresponding problem is

min
𝑥∈R

𝑝 (𝑥; 𝜀) . (25)

Because 𝑝(𝑥; 𝜀) constructs a barrier wall at the boundary
points which satisfy 𝑔

𝑗

(𝑥) = 0, the above problem is
equivalent to the following problem:

min 𝑝 (𝑥; 𝜀)

s.t. 𝑔
𝑗

(𝑥) < 0, 𝑗 = 1, 2, . . . , 𝑚.

(26)

So the operation set is the interiorF0 := {𝑥 ∈ R𝑛 | 𝑔
𝑗

(𝑥) <

0, 𝑗 = 1, . . . , 𝑚} of F, this implies that the interior point
method will need a strict interior point as an original point.

In this section, our penalty function is constructed by
augmenting a variable 𝜀. Problem (23) is equivalent to

min 𝑓 (𝑥)

s.t. 𝑔
𝑗

(𝑥) ≤ 𝜀, 𝑗 = 1, 2, . . . , 𝑚,

𝜀 = 0.

(27)

Consider the following penalty function:

𝑝
𝜎

(𝑥, 𝜀)

=

{
{
{
{

{
{
{
{

{

𝑓 (𝑥) , if 𝜀 = 0, 𝑥 ∈ F,

𝑓 (𝑥) − 𝜀

𝑚

∑

𝑗=1

ln (𝜀 − 𝑔
𝑗

(𝑥)) + 𝜎𝜀, if 𝜀 > 0, 𝑥 ∈ F
𝜀

,

+∞, otherwise,
(28)

where F
𝜀

= {𝑥 ∈ R𝑛 | 𝑔
𝑗

(𝑥) < 𝜀, 𝑗 = 1, . . . , 𝑚}, and 𝜎 > 0

is a penalty parameter. Penalty function 𝑝
𝜎

(𝑥, 𝜀) is a class of
logarithmic barrier-penalty function, and the operation set
can be enlarged as a set that contains the feasible region of
the original problem.

If 𝑥 ∈ F, 𝜀 = 0, then

𝜕

𝜕𝑥
𝑖

𝑝
𝜎

(𝑥, 𝜀) =

𝜕

𝜕𝑥
𝑖

𝑓 (𝑥) , 𝑖 = 1, . . . , 𝑛,

𝜕

𝜕𝜀

𝑝
𝜎

(𝑥, 𝜀) = 0;

(29)

if 𝑥 ∈ F
𝜀

, 𝜀 > 0, then

𝜕

𝜕𝑥
𝑖

𝑝
𝜎

(𝑥, 𝜀) =

𝜕

𝜕𝑥
𝑖

𝑓 (𝑥) +

𝑚

∑

𝑗=1

𝜀

𝜀 − 𝑔
𝑗

(𝑥)

𝜕

𝜕𝑥
𝑖

𝑔
𝑗

(𝑥) ,

𝑖 = 1, . . . , 𝑛,

𝜕

𝜕𝜀

𝑝
𝜎

(𝑥, 𝜀) = −

𝑚

∑

𝑗=1

(ln (𝜀 − 𝑔
𝑗

(𝑥)) +

𝜀

𝜀 − 𝑔
𝑗

(𝑥)

) + 𝜎.

(30)

Obviously 𝑝
𝜎

(𝑥, 𝜀) is continuously differentiable on the set
𝑆
𝜀

:= {(𝑥, 𝜀) ∈ R𝑛×(0, 𝜀] | 𝑥 ∈ F
𝜀

}, where 𝜀 > 0 is a constant.
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Consider the corresponding penalty function

(�̃�
𝜎

) min
𝑥∈R𝑛×[0,𝜀]

𝑝
𝜎

(𝑥, 𝜀) . (31)

Assume that F
𝜀

:= {𝑥 ∈ R𝑛 | 𝑔
𝑗

(𝑥) < 𝜀, 𝑗 = 1, . . . , 𝑚} is a
bounded set; problem (�̃�

𝜎

) is equivalent to

min 𝑝
𝜎

(𝑥, 𝜀)

s.t. 𝑔
𝑗

(𝑥) < 𝜀, 𝑗 = 1, . . . , 𝑚,

0 ≤ 𝜀 ≤ 𝜀.

(32)

In the following we discuss the exactness of penalty
function 𝑝

𝜎

(𝑥, 𝜀).

Theorem 3. If there exists a sequence {(𝑥𝑘, 𝜀
𝑘

, 𝜎
𝑘

)} satisfying:

(1) (𝑥𝑘, 𝜀
𝑘

) ∈ 𝐿(�̃�
𝜎𝑘
), and 𝑝

𝜎𝑘
(𝑥
𝑘

, 𝜀
𝑘

) is finite, where 𝐿(�̃�
𝜎𝑘
)

is a set of the local minimizers of (�̃�
𝜎𝑘
),

(2) 𝜀
𝑘

> 0, and when 𝑘 → ∞, (𝑥𝑘, 𝜀
𝑘

) → (𝑥
∗

, 𝜀
∗

), 𝜎
𝑘

→

+∞,
(3) EMFCQ condition (extended Mangasarian-Fromovitz

constraint qualification) is satisfied at 𝑥∗; that is, there
exists a vector 𝑧 ∈ R𝑛 such that

∇𝑔
𝑖

(𝑥
∗

)
𝑇

𝑧 < 0, ∀𝑖 ∈ 𝐼
0

(𝑥
∗

) ∪ 𝐼
+

(𝑥
∗

) ,

∇ℎ
𝑗

(𝑥
∗

)
𝑇

𝑧 = 0, ∀𝑗 = 1, . . . , 𝑙,

(33)

where

𝐼
0

(𝑥
∗

) := {𝑖 ∈ {1, . . . , 𝑚} | 𝑔
𝑖

(𝑥
∗

) = 0} ,

𝐼
+

(𝑥
∗

) := {𝑖 ∈ {1, . . . , 𝑚} | 𝑔
𝑖

(𝑥
∗

) > 0} .

(34)

Then we have 𝜀
∗

= 0, and 𝑥∗ ∈ F.

Proof. By the assumptions, we have

𝑔
𝑗

(𝑥
𝑘

) < 𝜀
𝑘

, 𝑗 = 1, . . . , 𝑚, 𝜀
𝑘

> 0. (35)

For any 𝑘, (𝑥𝑘, 𝜀
𝑘

) is a local optimizer of (�̃�
𝜎𝑘
), and 𝑝

𝜎𝑘
(𝑥
𝑘

, 𝜀
𝑘

)

is finite, then for any 𝑘, we have that

𝜕

𝜕𝑥
𝑖

𝑝
𝜎𝑘
(𝑥
𝑘

, 𝜀
𝑘

) =

𝜕

𝜕𝑥
𝑖

𝑓 (𝑥
𝑘

)

+

𝑚

∑

𝑗=1

𝜀
𝑘

𝜀
𝑘

− 𝑔
𝑗

(𝑥
𝑘

)

𝜕

𝜕𝑥
𝑖

𝑔
𝑗

(𝑥
𝑘

) = 0,

𝑖 = 1, . . . , 𝑛,

(36)

𝜕

𝜕𝜀

𝑝
𝜎𝑘
(𝑥
𝑘

, 𝜀
𝑘

) = 𝜎
𝑘

−

𝑚

∑

𝑗=1

(ln (𝜀
𝑘

− 𝑔
𝑗

(𝑥
𝑘

)) +

𝜀
𝑘

𝜀
𝑘

− 𝑔
𝑗

(𝑥
𝑘

)

)

≤ 0,

(37)

and (𝜕/𝜕𝜀)𝑝
𝜎𝑘
(𝑥
𝑘

, 𝜀
𝑘

) < 0 holds if and only if 𝜀
𝑘

= 𝜀.

Suppose that 𝜀
∗

> 0, then by (37) and the fact that when
𝑘 → ∞, 𝜎

𝑘

→ +∞, we have that

𝑚

∑

𝑗=1

(ln (𝜀
𝑘

− 𝑔
𝑗

(𝑥
𝑘

)) +

𝜀
𝑘

𝜀
𝑘

− 𝑔
𝑗

(𝑥
𝑘

)

) → +∞. (38)

Because {𝑥𝑘} is bounded, and 𝜀
𝑘

∈ [0, 𝜀], so {𝜀
𝑘

− 𝑔
𝑗

(𝑥
𝑘

)} is
bounded. Then when 𝑘 → ∞, we have

𝑚

∑

𝑗=1

𝜀
𝑘

𝜀
𝑘

− 𝑔
𝑗

(𝑥
𝑘

)

→ +∞. (39)

Since 𝜀
∗

> 0, there exists at least 𝑗
0

∈ {1, . . . , 𝑚} such that
when 𝑘 → ∞,

𝜀
𝑘

− 𝑔
𝑗0
(𝑥
𝑘

) → 0
+

, (40)

thus

𝑔
𝑗0
(𝑥
∗

) > 0. (41)

Let 𝐽
0

⊆ {1, . . . , 𝑚} be the set of such index 𝑗
0

. Then by (36)
and the boundedness of {𝑥𝑘}, we have for any 𝑗

0

∈ 𝐽
0

,

𝜕

𝜕𝑥
𝑖

𝑔
𝑗0
(𝑥
𝑘

) → 0, 𝑖 = 1, . . . , 𝑛, (42)

when 𝑘 → ∞; so

𝜕

𝜕𝑥
𝑖

𝑔
𝑗0
(𝑥
∗

) = 0, 𝑖 = 1, . . . , 𝑛. (43)

This contradicts the assumption that EMFCQ is satisfied at
𝑥
∗. Thus 𝜀

∗

= 0. By 𝑔
𝑗

(𝑥
𝑘

) < 𝜀
𝑘

, 𝑗 = 1, . . . , 𝑚, then we have

𝑔
𝑗

(𝑥
∗

) ≤ 0, 𝑗 = 1, . . . , 𝑚, (44)

that is, 𝑥∗ ∈ F.

Theorem 4. Assume thatF
𝜀

is a bounded set, and there exists
a sequence {(𝑥𝑘, 𝜀

𝑘

, 𝜎
𝑘

)} such that (𝑥𝑘, 𝜀
𝑘

) ∈ 𝐿(�̃�
𝜎𝑘
), where

𝐿(�̃�
𝜎𝑘
) is the set of local minimizers of (�̃�

𝜎𝑘
), EMFCQ is satisfied

at 𝑥𝑘, {𝜎
𝑘

} is an increasing sequence, and 𝑝
𝜎𝑘
(𝑥
𝑘

, 𝜀
𝑘

) is finite,
then there exists a sufficiently large 𝑘

0

> 0, such that when
𝑘 ≥ 𝑘
0

,

𝜀
𝑘

= 0, 𝑥
𝑘

∈ 𝐿 (𝑃) , (45)

where 𝐿(𝑃) is the set of local minimizers of (𝑃).

Proof. We first show that there exists a sufficiently large 𝑘
0

>

0 such that 𝑘 ≥ 𝑘
0

, 𝜀
𝑘

= 0. If it is not the case, then there
exists a subsequence of {(𝑥𝑘, 𝜀

𝑘

, 𝜎
𝑘

)}; here we assume without
loss of generality that {(𝑥𝑘, 𝜀

𝑘

, 𝜎
𝑘

)} is the subsequence, such
that (𝑥𝑘, 𝜀

𝑘

) ∈ 𝐿(�̃�
𝜎𝑘
), 𝜀
𝑘

> 0, 𝑝
𝜎𝑘
(𝑥
𝑘

, 𝜀
𝑘

) is finite, and when
𝑘 → ∞, 𝜎

𝑘

→ +∞. Then fromTheorem 3, it follows that

𝜀
𝑘

→ 𝜀
∗

= 0, 𝑥
𝑘

→ 𝑥
∗

∈ F. (46)
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By (37) we have,

𝑚

∑

𝑗=1

𝜀
𝑘

𝜀
𝑘

− 𝑔
𝑗

(𝑥
𝑘

)

→ +∞, 𝑘 → ∞. (47)

By the proof ofTheorem 3, the above results contradicts with
the assumption that EMFCQ condition is satisfied at 𝑥∗.Thus
there exists a sufficiently large 𝑘

0

> 0 such that 𝜀
𝑘

= 0, for
𝑘 ≥ 𝑘
0

.
Since for any 𝑘, 𝑝

𝜎𝑘
(𝑥
𝑘

, 𝜀
𝑘

) is finite, then by the definition
of 𝑝
𝜎𝑘
,

𝑥
𝑘

∈ F. (48)

Then by the definition of 𝑝
𝜎𝑘
, there exists a neighborhood

𝑁(𝑥
𝑘

, 𝑟) of 𝑥𝑘, where 𝑟 > 0 is sufficiently small, such that
for all 𝑥 ∈ 𝑁(𝑥𝑘, 𝑟) ∩F,

𝑝
𝜎𝑘
(𝑥
𝑘

, 0) = 𝑓 (𝑥
𝑘

) ≤ 𝑝
𝜎𝑘
(𝑥, 0) = 𝑓 (𝑥) , (49)

thus 𝑥𝑘 ∈ 𝐿(𝑃).

It is shown by Theorem 4 that under some constraint
qualification condition, a local minimizer corresponds a
local minimizer of the original problem when the penalty
parameter is sufficiently large, thus the penalty function (28)
is an exact penalty function. Since the penalty function (28)
is a penalty function with a barrier, thus for problem (23), we
can still apply the interior method. Note that we can use an
interior point (𝑥, 𝜀) ∈ F

𝜀

× (0, 𝜀


) as the original point, where
𝜀


∈ (0, 𝜀).
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