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We construct a biparametric family of fourth-order iterative methods to compute multiple roots of nonlinear equations. This
method is verified to be optimally convergent. Various nonlinear equations confirm our proposed method with order of

convergence of four and show that the computed asymptotic error constant agrees with the theoretical one.

1. Introduction

It is not surprising that modified Newton’s method [1] in the
simple form

)
")

is most widely used to find the approximate multiple root
a of known multiplicity m for a given nonlinear equation
f(x) = 0. Recall that numerical scheme (1) is a one-point
optimal method with quadratic convergence. In order to find
numerical solution for multiple roots of nonlinear equations
more accurately, many researchers have made enormous
efforts in developing higher-order methods with improved
convergence.

In this paper, we extend modified Newton’s method
and propose two-point optimal fourth-order multiple-root
finders by evaluating two derivatives and one function per
iteration. The optimality will be pursued based on Kung-
Traub’s conjecture [2] in which the convergence order of any
multipoint method [3] without memory can reach at most
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2! for k evaluations of functions or derivatives.

The contents of this paper consist of what follows.
Described in Section 2 are previous studies on multiple-
root finders. Section 3 proposes a new biparametric family
of two-point optimal fourth-order multiple-root finders. It

fully treats method development and convergence analysis.
Derivation of the error equations for the proposed schemes
is an important task for ensuring convergence behavior. In
Section 4, a variety of numerical examples are presented
for a wide selection of test functions. It is important to
compare the convergence behavior of the proposed schemes
with that of existing methods. We confirm that the proposed
methods well show the convergence behavior predicted by
the developed theory.

2. Preliminary Review of Previous Studies

A number of interesting fourth-order multiple-root finders
can be found in papers [4-16]. Among these, we espe-
cially introduce five studies as follows. Shengguo et al. [14]
introduced the following fourth-order method which needs
evaluations of one function and two derivatives per iteration
for x, chosen in a neighborhood of the sought zero « of f(x)
with known multiplicity m > 1:

B () +of () f (%)
f, (xn)+6f, (yﬂ) f, (xn)’

n=0,1,2,...,
)

Xn+1 = Xy

where y, = x, — 2m/(m + 2))(f(xn)/f'(xn)), B = -m?/2,
¢ = (1/2)(m(m-2)/(m/(m+2))"),and § = —(m/(m+2))"".
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J. R. Sharma and R. Sharma [12] constructed the following
fourth-order scheme with A = (1/8)m(m® — 4m + 8), B =
~(1/4)ym(m - 1)(m + 2)*(m/(m +2))*, C = (1/8)m(m +
2)*(m/(m +2))*",and y, = x,—(2m/(m+2))(f(x,)/ f' (x,)):
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Li et al. [15] presented the fourth-order method with y, =
X, = (2m/(m + 2)(f(x,)/ f'(x,)):

C o F

- mf (x,)
_f’ (xn) + (m/(m + 2))7mf/ (yn)

Zhou et al. [16] proposed the following fourth-order iterative
scheme with y, = x, — 2m/(m + 2))(f(x,)/ f' (x,)):

_om[ arma2yn(F) Y
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Kanwar et al. [8] developed the fourth-order optimal multi-
point iterative method for multiple zeros:

= x, — (mf (x,) (m? Gm -2 {f' ()}
Cof () f ) + G (x)}))
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w(mf o) () me 8 £ (1))
(6)
where y, x, — @m/(m + 2)(f(x,)/f (x,), C; = m

(m/(m+2))"(6m* + 17m — 14), and C, =
+2))*"(3m> + 19m° + 16m + 16).

(m/(m

3. Method Development and
Convergence Analysis

We first suppose that a function f : C — C has a multiple
root « with integer multiplicity m > 1 and is analytic in a
small neighborhood of &. Then a new iteration method free of
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second derivatives is proposed below to find an approximate
root « of multiplicity m, given an initial guess x, sufficiently
close to a:

Fls) | fG) FO)
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n=0,1,2,...,
where
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A () S ()
F = f(x,) -, —x,) —F——7~,
(yn) f( n) (yn n) f, (xn)+Pf, (yn)

with a, ¢, d, y, A, and p are parameters to be chosen
for maximal order of convergence [17, 18]. We establish a
main theorem describing the convergence analysis regarding
proposed scheme (7) and find out how to select parameters a,
¢, and d for optimal fourth-order convergence.

Definition 1 (error equation, asymptotic error constant,
and order of convergence). Let x,x;,%,,...,X,,... be a
sequence converging to o and let e, = x,, —« be the nth iterate
error. If there exist real numbers p € R and b € R — {0} such
that the following error equation holds

en = bel +O (eﬁ“) , 9)

then b or |b] is called the asymptotic error constant and p is
called the order of convergence [17, 18].

Theorem 2. Let f : C — C have a zero « with integer
multiplicity m > 1 and be analytic in a small neighborhood
of . Let k = (m/(m +2))" and 0; = F ) () ()
for j € N. Let x, be an initial guess chosen in a sufficiently
small neighborhood of «. Let A, p € R be two free constant
parameters. Let a = m3(—4xp+m(m+2)(l +xp))/8(m+2)kp,
c=(m+2){—m + mm + 2)x(=3m + 2(m + 2)kA)p + m(m +
2)% K3 (=3+2kp) p* —(m+2)’i p°}[16KAp, d = (2+m)(m+(2+
m)Kp)3/l6x/\p, and y = 2m/[(2 + m). Then iterative methods
(7) are optimal and of order four and possess the following error
equation:

€ni1 = 1//46:1; +0 (eZ) ’ (10)

where v, = (m* +4m® + 6m*> + 2m + 8 — (24xp/(m + (m +
2)kp))/3m*(m+1)* (m+2))6; — (1/m(m+1)*(m+2))0,0, +
(m/(m +2)°(m + 1)(m + 3))8;.

Proof. The optimality on convergence order of proposed
scheme (7) is clear in the sense of Kung-Traub due to three
functional evaluations. Hence, it suffices to determine the
constant parameters for fourth-order convergence.
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Applying the Taylor’s series expansion about «, we get the
following relations:

f (%)
@) , . .
T m En [1+Ale”+Azen+A3en+A4en+o(6n)]’
(1)
' (x,)
(m)
= (J:n _(f‘))' en ™' [1+ Bye, + By, + Byel, + Bye, + O(e))]

(12)

where A, = (m!/(m+ k)10, B, = (m - 1)!/(m+ k- 1)1)0,,
and 6, = ") (a)/ £ () for k € N.
Dividing (11) by (12), we have

flx) 1
f(x,) m

e, - Kie; - Kyel - Kye, + O(e5)] . (13)

where K; = -A, + B;, K, = -A, + A\B, - B + B,, K; =
~A;+A,B, - A\B + B} + A\B, - 2B, B, + B,.

For algebraic convenience, we introduce a parameter ¢
defined by y = m(1 —t); that is, t = 1 — y/m to obtain

I ACY
TG,

ACH
G

=e

=oc+te+K1(1—f)ef,+K2(1_t)efl -

+K;(1-1)e,+0(e)).

Evaluating f(y,) from (11) with e, being replaced by y, — «
in (14), we find

~ f(m) () e

f(yn) - m!
"+ " (A Kym(1-1))e,
+ % ("2 (KT (m = 1)y m(t - 1)°
—2A,K, (m+1)(t-1)t

+2t (A, + Kym(1-1)))) e

3
2 (< Kim (2= 3mea ) (- 1)
+3A,Kim(m+1) (t - 1)°t
—6K, (t- 1)t
x (A, (m+2)F°
+Kym(m—1)(1—t)+6t°
x (Kym (1-1)
+t(A Ky (m+1)(t-1)
c4:0)))€) +0(el)}-
(15)

Substituting (11)-(15) into (7), we obtain the error equation:

€yl = Vn — &~ Kf =ve, t WZefl + 1//3631 + l[/4€i + O(@fl) >
(16)

where Ky = a(f(x,)/f'(x,)) + c(f(x,)/ f' () + d(F(y,)
1)) vy = —(@a/m) + t(1 = ((c + d)t™"/m) - (d(t -
A/t + t"p))), and coeflicients y;, (i = 2,3,4) depend on
the parameters t, g, ¢, d, A, and p and the function f(x).
Solving y; = 0, y, = 0 for a and ¢, respectively, we get

azmt(l— (c+d)yt™ B d(t—l)A)

m t+t"p

c= —(m"(t+t"p) +d(t-1) (L +m(t-1)+1) W)

x(E+2"p+ 2 p(m(t - 1) A+ p)))

X ((t “DA+m(t-1)+6)(t+ tmp)z)_l~

We substitute a, ¢ into y; and put y; = 3,67 +3,0,. Solving
y; = 0independently of 0, and 0,, that is, solving 5, = 3, =
0 for d and t, we obtain

d= (""" @+ +m - +2(t-1)1)

+m (1-3t+48)) (¢ +1"p)’)

x (2t =1’ A +mE-1)+ 6 Ap) 1
P >
m
t= .
m+2
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TaBLE 1: Typical methods with interesting parameters (A, p) and constants (a, ¢, d).
Method (A, p) (a,c,d)
m’{=40k + m(m + 2)(10x + 1)} g (m+2)(m+100m +2)x)°

1 (-10,10) N 80(m + 2)x ’ B 1600%

e (m + 2){m> + 30m* (m + 2)x + 500m(m + 2)*x* + 1000(m + 2)*(3m + 2)x°}

B 1600x
v (_1 _ m(m+2) ) (0 _m{m(m+4)° = (m+2°(m* +2m—4)x}  m’(m+4)’ )
T (—4+2m+mPk ’ 2(m? + 2m — 4)? 2(m? + 2m — 4)*
3 (_ m(m + 4)° B m(m + 2) > 0.0 m(m + 2)°x
(m+2°m? +2m — A’ (m? +2m — 4)x T 2(m? 4+ 2m—4)
xp)’ 3 —2) -
e ( (n + (m + Drp) ,_l> mmm+2)(=2) =4) o L 2V +2)
2m(m +2)k*p(1+kp) 2 8(m +2)k 16

Substituting t = m/(m+2) into (17) and (18) with x = (m/(2+
m))", we get the following relations:

_m’ (—4xp+m(m+2) (1+xp))
4= 8(m+2)xkp ’

c= ((m+2){—m3 +mm+2)k(-3m+2(m+2)xd)p
+m(m+2)°6* (=3 + 2xp) p°
- (m+ 2)3K3p3})

x (16xAp) ",

2+m)(m+(2+m) Kp)3
d= .
16xAp
(19)

By the aid of symbolic computation of Mathematica [19], we
arrive at the relation below:

€ni1 = 1/’4‘3?1 +0 (efi) ] (20)

where v, = ((m* + 4m® + 6m®> + 2m + 8 — (24kp/(m +
(m + 2)xp)))/3m*(m + 1)*(m + 2))07 — (1/m(m + 1)*(m +
2))0,0, + (m/(m+ 2 (m+1)(m+ 3))0;. As a result, the proof
is completed. O

Remark 3. We observe that error equation (20) contains only
one free parameter p, being independent of A. Table 1 shows
typically chosen parameters A and p and defines various
methods Yy, (k = 1,2,3,4).

4. Numerical Examples and Conclusion

We have performed a variety of numerical experiments
with Mathematica Version 5 [19] to confirm the theory
developed in Section 3. In these experiments, we assign 300,
via Mathematica command $MinPrecision = 300, as the
minimum number of precision digits to achieve the specified
sufficient accuracy. It is crucial to compute e, = x, — «
with high accuracy for desired numerical results. When zero
« is not exactly known, it is replaced by a highly accurate
value & which has larger number of significant digits than the

assigned minimum number of precision digits. To deal with
numerical results more effectively, we first define

— ,
x =19 _
«,

To properly display numerical results, we need to define the
nth computational error e, = x, —a forn = 0,1,2.... We
need further terminologies as defined below.

if « is exactly known, 1)
if « is not exactly known.

Definition 4 (computational asymptotic error constant and
computational convergence order). Assume that theoretical
asymptotic error constant # = lim,_, le,l/le,;|? and
convergence order p > 1 are known (usually via main
theorem). Define g, = [e,l/le,_;|” as the computational
asymptotic error constant and p, = logle,/nl/logle,_|
as the computational convergence order. Then we find that
lim,, _, g, is equal or close to #, while lim is equal or
close to p.

If & has the same accuracy of $MinPrecision as that of x,,,
thene, = x,, — &@ would be nearly zero and hence computing
le,.,/2,*| would unfavorably break down. Computed values
of x,, are accurate up to 300 significant digits. For current
experiments & is found to be accurate enough about up to
400 significant digits. To supply such &, a set of following
Mathematica commands are used:

naoopn

sol = FindRoot [ f [x],{x, x,} , PrecisionGoal — 100
+ $MinPrecision,
WorkingPrecision — 2
*$MinPrecision] ;

& =sol[[1,2]].
(22)

Although the number of significant digits of x,, and & is 300
and 400, respectively, the limited paper space allows us to list
both of them only up to 15 significant digits. We set the error
bound ¢ to 107 for |x, —al < e.

As a first example, we select a function f(x) = (x +
7)%cscx log(x2 + 8) having a multiple zero o = —/7i with
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TaBLE 2: Convergence behavior with f(x) = (> + 7)2cscxlog(x2 +8). (m, A, p) = (3,1/2,-1), «

—\/7i = —2.64i.

n Xn Lf (x,)l |x, — af 1 /24| n log(e, /n)/log(e, ,)
0 -2.71i 0.00667483 0.0642487 0.2482221894
1 —2.64575363508446i 2.65244 x 107¢ 232402 x 107° 0.1363900716 4.21814
2 —2.64575131106459i 8.02272 x 107 7.24101 x 107 0.2482218636 4.00000
3 ~2.64575131106459i 6.71488 x 107> 6.82399 x 10~ 0.2482221894 4.00000
4 ~2.64575131106459i 0.x 10%” 0.x 107>
TaBLE 3: Convergence behavior with f(x) = (% +4x - 1)'e ™. (m, A, p) = (4,-10,10), a = -2 — /5 = —4.23607.
n Xn Lf ()l |x, — |61/, n log(e,/n)/log(e,,)
0 —4.35000000000000 5.77466 0.113932 0.2202805193
1 —4.23609825091956 232291 x 107 0.0000302734 0.1796711117 4.09332
2 —4.23606797749979 3.24005 x 107" 1.85011 x 107" 0.2202681897 4.00001
3 —4.23606797749979 1.22696 x 107> 2.58087 x 1077 0.2202805193 4.00000
4 ~4.23606797749979 2.52311 x 107% 0.x 107>
2
TaBLE 4: Convergence behavior with f(x) = (¢* 7 = 1)°(x* + 3x + 7)°. (m, A, p) = (8,1/7,-3), & = (=3 — V19i)/2.
n X, |f ()l |, — @l le,.1 /2, Ul log(e,/n)/ log(e,_,)
0 -1.46000000000000 — 2.09000000000000i 0.00250952 0.0979858 2.458883957
1 -1.49981340826556 — 2.17945296114250i 1.91755x 107 0.000186624 2.024494357 4.08382
2 —1.50000000000000 — 2.17944947177033i  8.16451 x 107! 298273 x 107" 2.458901785 4.00000
3 —1.50000000000000 — 2.17944947177034i  2.68276 x 10~* 1.94624 x 107°®  2.458883957 4.00000
4 -1.50000000000000 — 2.17944947177034i ~ 3.12745x 107'%°  3.52795x 107" 2.458883957 4.00000
5 —1.50000000000000 — 2.17944947177034i 0. x 1073888 0.x107%°
i = V~1. We choose x, = —2.71i as an initial guess. We a=-5 m=3, x;=-5
take another function f(x) = (x? + 4x — 1)*e™ with a root 7\4
o = =2 — /5. We select x, = —4.35 as an initial value. The fi(x) = <x - —) ,
order of convergence and the asymptotic error constant are *
clearly shown in Tables 2 and 3 revealing a good agreement «=V7, m=4, x,=277,
with the theory in Section 3. Taking another function f(x) =
(@ 7 Z 15(x® + 3x + 7)° with a root & = (=3 — V/19i)/2 fs(x) =log’ (x* = 1) (x* - 2)2,
with multiplicity m = 8, we select x, = —1.46 — 2.09i as an
initial value. In this example, we also find that the order of a=-V2, m=5, x, = —1.38,
convergence is four and the computational asymptotic error
constant [e,,/e}| well approaches the theoretical value 7. fo(x) = (x2 + 3)4(log (x4 +xt - 5))2,
The computational convergence order and the computational
asymptotic error constant are certainly shown in Tables 2-4 a=13i=173, m=6, x,=168i

reaching a good agreement with the theory. It is certain that
these methods need one evaluation of the function f and two
evaluations of the first derivative f'.

Additional test functions below are used to display the
convergence behavior of proposed scheme (7):

fi(x) = (—1 +3x + x2) log (3 + xz),

« =0.302775637731995, m =1, x,=0.29,
f(x) = (x2 - 5) log (xz - 4) ,
a=-V5 m=2, x,=-2.19,

f3(x) = (xz - 25)2exz+lcscx log (xz +3x - 9) ,

£, (x) = log (xz _ 8) (ex2+7x—30 B 1)3(x _ 3)3’

a=3, m=7, x,=2.88.

(23)

In Table 5, we compare numerical errors |x, — «| of pro-
posed methods Y1-Y4 with those of existing optimal fourth-
order multiple-root finders. Abbreviations S, J, L, Z, and K
denote optimal fourth-order multiple-root finders obtained
by Shengguo et al., Sharma et al., Li et al., Zhou et al., and
Kanwar et al., respectively.

The least errors within the prescribed error bound are
highlighted in boldface. Method Y2 shows best convergence
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for f,, f3, f> while method Y4 does show for f,, f,, fs, f7-
It must be kept in mind that such favorable performance is
shown only in the current numerical experiments with the
particular choice of test functions. For a different choice of
test functions and initial values, it is hardly expected that each
oflisted methods would always give rise to better convergence
behavior. One should be aware that no numerical method
exhibits better performance for all the test functions as
compared with other numerical methods. With the same
order of convergence, one should notice that the speed of
local convergence is dependent on the function f(x), an
initial value x,, and a multiple zero « itself.

For efficiency check of multipoint iterative methods, we
need to calculate the efficiency index [17] defined by EI =
p'/% where pis the order of convergence and d is the number
of distinct functional or derivative evaluations per iteration.
The proposed iterative methods (7) have EI = 4'/° ~ 1.587
describing the optimality, which is the same as that of any
other listed method. This paper confirms optimal fourth-
order convergence and derives the correct error equation for
proposed iterative methods, using the weighted harmonic
mean of two derivatives to find approximate multiple zeros of
nonlinear equations. Proposed optimal fourth-order schemes
efficiently solve given problems without any difficulty, with a
wide selection of free parameters A and p. In future work, we
will pursue higher-order optimal methods by extending the
methods developed here.
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