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Let 𝐾 be a nonempty closed convex subset of a real Banach space 𝐸, let 𝑆 : 𝐾 → 𝐾 be nonexpansive, and let 𝑇 : 𝐾 → 𝐾

be Lipschitz strongly pseudocontractive mappings such that 𝑝 ∈ 𝐹 (𝑆) ∩ 𝐹 (𝑇) = {𝑥 ∈ 𝐾 : 𝑆𝑥 = 𝑇𝑥 = 𝑥} and 𝑥 − 𝑆𝑦
 ≤

𝑆𝑥 − 𝑆𝑦
 and

𝑥 − 𝑇𝑦
 ≤

𝑇𝑥 − 𝑇𝑦
 for all 𝑥, 𝑦 ∈ 𝐾. Let {𝛽

𝑛
} be a sequence in [0, 1] satisfying (i) ∑

∞

𝑛=1
𝛽
𝑛

= ∞; (ii) lim
𝑛→∞

𝛽
𝑛

= 0.

For arbitrary 𝑥
0

∈ 𝐾, let {𝑥
𝑛
} be a sequence iteratively defined by 𝑥

𝑛
= 𝑆𝑦
𝑛
, 𝑦
𝑛

= (1 − 𝛽
𝑛
) 𝑥
𝑛−1

+ 𝛽
𝑛
𝑇𝑥
𝑛
, 𝑛 ≥ 1. Then the sequence

{𝑥
𝑛
} converges strongly to a common fixed point p of S and T.

1. Introduction and Preliminaries

Let 𝐸 be a real Banach space and let 𝐾 be a nonempty convex
subset of 𝐸. Let 𝐽 denote the normalized duality mapping
from 𝐸 to 2

𝐸
∗

defined by

𝐽 (𝑥) = {𝑓
∗

∈ 𝐸
∗

: ⟨𝑥, 𝑓
∗

⟩ = ‖𝑥‖
2

,
𝑓
∗ = ‖𝑥‖} , 𝑥 ∈ 𝐸,

(1)

where 𝐸
∗ denotes the dual space of 𝐸 and ⟨⋅, ⋅⟩ denotes the

generalized duality pairing. We will denote the single-valued
duality map by 𝑗.

Let 𝑇 : 𝐾 → 𝐾 be a mapping.

Definition 1. Themapping 𝑇 is said to be Lipschitzian if there
exists 𝐿 > 1 such that

𝑇𝑥 − 𝑇𝑦
 ≤ 𝐿

𝑥 − 𝑦
 (2)

for all 𝑥, 𝑦 ∈ 𝐾.

Definition 2. Themapping 𝑇 is said to be nonexpansive if
𝑇𝑥 − 𝑇𝑦

 ≤
𝑥 − 𝑦

 (3)

for all 𝑥, 𝑦 ∈ 𝐾.

Definition 3. Themapping 𝑇 is said to be pseudocontractive if
𝑥 − 𝑦

 ≤
𝑥 − 𝑦 + 𝑡 ((𝐼 − 𝑇) 𝑥 − (𝐼 − 𝑇) 𝑦)

 (4)

for all 𝑥, 𝑦 ∈ 𝐾 and 𝑡 > 0.

Remark 4. As a consequence of a result of Kato [1], it follows
from the inequality that 𝑇 is pseudocontractive if and only if
there exists 𝑗(𝑥 − 𝑦) ∈ 𝐽(𝑥 − 𝑦) such that

⟨𝑇𝑥 − 𝑇𝑦, 𝑗 (𝑥 − 𝑦)⟩ ≤
𝑥 − 𝑦



2 (5)

for all 𝑥, 𝑦 ∈ 𝐾.

Definition 5. Themapping 𝑇 is said to be strongly pseudocon-
tractive if there exists a constant 𝑡 > 1 such that

𝑥 − 𝑦
 ≤

(1 + 𝑟) (𝑥 − 𝑦) − 𝑟𝑡 (𝑇𝑥 − 𝑇𝑦)
 (6)

for all 𝑥, 𝑦 ∈ 𝐾 and 𝑟 > 0. Or equivalently (see [2]) one has
for 0 < 𝑘 < 1

⟨𝑇𝑥 − 𝑇𝑦, 𝑗 (𝑥 − 𝑦)⟩ ≤ 𝑘
𝑥 − 𝑦



2 (7)

for all 𝑥, 𝑦 ∈ 𝐾.
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For a nonempty convex subset 𝐾 of a normed space 𝐸,
𝑇 : 𝐾 → 𝐾 is a mapping.

(I) The sequence {𝑥
𝑛
}, defined by, for arbitrary 𝑥

1
∈ 𝐾,

𝑥
𝑛+1

= (1 − 𝑎
𝑛
) 𝑥
𝑛

+ 𝑎
𝑛
𝑇𝑦
𝑛
,

𝑦
𝑛

= (1 − 𝑏
𝑛
) 𝑥
𝑛

+ 𝑏
𝑛
𝑇𝑥
𝑛
, 𝑛 ≥ 1,

(8)

where {𝑎
𝑛
} and {𝑏

𝑛
} are sequences in [0, 1], is known as the

Ishikawa iteration process [3].
If 𝑏
𝑛

= 0 for 𝑛 ≥ 1, then the Ishikawa iteration scheme
becomes the Mann iteration process [4].

(S) The sequence {𝑥
𝑛
}, defined by, for arbitrary 𝑥

1
∈ 𝐾,

𝑥
𝑛+1

= 𝑇𝑦
𝑛
,

𝑦
𝑛

= (1 − 𝑏
𝑛
) 𝑥
𝑛

+ 𝑏
𝑛
𝑇𝑥
𝑛
, 𝑛 ≥ 1,

(9)

where {𝑏
𝑛
} is a sequence in [0, 1], is known as the 𝑆-iteration

process [5, 6].
In the last few years or so, numerous papers have been

published on the iterative approximation of fixed points
of Lipschitz strongly pseudocontractive mappings using the
Ishikawa iteration scheme (see, e.g., [3]). Results which had
been known only in Hilbert spaces and only for Lipschitz
mappings have been extended tomore general Banach spaces
(see, e.g., [7–13] and the references cited therein).

In 1974, Ishikawa [3] proved the following result.

Theorem 6. Let 𝐾 be a compact convex subset of a Hilbert
space 𝐻 and let 𝑇 : 𝐾 → 𝐾 be a Lipschitzian pseudocon-
tractive mapping. For arbitrary 𝑥

1
∈ 𝐾, let {𝑥

𝑛
} be a sequence

defined iteratively by

𝑥
𝑛+1

= (1 − 𝛼
𝑛
) 𝑥
𝑛

+ 𝛼
𝑛
𝑇𝑦
𝑛
,

𝑦
𝑛

= (1 − 𝛽
𝑛
) 𝑥
𝑛

+ 𝛽
𝑛
𝑇𝑥
𝑛
, 𝑛 ≥ 1,

(10)

where {𝛼
𝑛
} and {𝛽

𝑛
} are sequences satisfying

(i) 0 ≤ 𝛼
𝑛

≤ 𝛽
𝑛

< 1;

(ii) lim
𝑛→∞

𝛽
𝑛

= 0;

(iii) ∑
∞

𝑛=1
𝛼
𝑛
𝛽
𝑛

= ∞.

Then the sequence {𝑥
𝑛
} converges strongly to a fixed point of 𝑇.

In [7], Chidume extended the results of Schu [12] from
Hilbert spaces to the much more general class of real Banach
spaces and approximate the fixed points of pseudocontractive
mappings. Also, in [14], he investigated the approximation of
the fixed points of strongly pseudocontractive mappings.

In [15], Zhou and Jia gave the answer of the question
raised by Chidume [14] and proved the following.

If 𝑋 is a real Banach space with a uniformly convex dual
𝑋
∗, 𝐾 is a nonempty bounded closed convex subset of 𝑋, and

𝑇 : 𝐾 → 𝐾 is a continuous strongly pseudocontractive
mapping, then the Ishikawa iteration scheme converges
strongly to the unique fixed point of 𝑇.

In [16], Liu et al. introduced the following condition.

Remark 7. Let 𝑆, 𝑇 : 𝐾 → 𝐾 be twomappings.Themappings
𝑆 and 𝑇 are said to satisfy condition (𝐶1) if

𝑥 − 𝑇𝑦
 ≤

𝑆𝑥 − 𝑇𝑦
 (𝐶1)

for all 𝑥, 𝑦 ∈ 𝐾.

In 2012, Kang et al. [17] established the strong conver-
gence for the implicit 𝑆-iterative process associated with
Lipschitzian hemicontractive mappings in Hilbert spaces.

Theorem8. Let 𝐾 be a compact convex subset of a real Hilbert
space 𝐻 and let 𝑇 : 𝐾 → 𝐾 be a Lipschitzian hemicontractive
mapping satisfying

𝑥 − 𝑇𝑦
 ≤

𝑇𝑥 − 𝑇𝑦
 (𝐶2)

for all 𝑥, 𝑦 ∈ 𝐾. Let {𝛽
𝑛
} be a sequence in [0, 1] satisfying

(i) ∑
∞

𝑛=1
𝛽
𝑛

= ∞;
(ii) ∑

∞

𝑛=1
𝛽
2

𝑛
< ∞.

For arbitrary 𝑥
0

∈ 𝐾, let {𝑥
𝑛
} be a sequence iteratively defined

by

𝑥
𝑛

= 𝑇𝑦
𝑛
,

𝑦
𝑛

= (1 − 𝛽
𝑛
) 𝑥
𝑛−1

+ 𝛽
𝑛
𝑇𝑥
𝑛
, 𝑛 ≥ 1.

(11)

Then the sequence {𝑥
𝑛
} converges strongly to the fixed point 𝑥

∗

of 𝑇.

In 2013, Kang et al. [18] proved the following result.

Theorem9. Let𝐾 be a nonempty closed convex subset of a real
Banach space 𝐸, let 𝑆 : 𝐾 → 𝐾 be a nonexpansive mapping,
and let 𝑇 : 𝐾 → 𝐾 be a Lipschitz strongly pseudocontractive
mapping such that 𝑝 ∈ 𝐹(𝑆) ∩ 𝐹(𝑇) = {𝑥 ∈ 𝐾 : 𝑆𝑥 = 𝑇𝑥 = 𝑥}

and
𝑥 − 𝑆𝑦

 ≤
𝑆𝑥 − 𝑆𝑦

 ,
𝑥 − 𝑇𝑦

 ≤
𝑇𝑥 − 𝑇𝑦

 (𝐶3)

for all 𝑥, 𝑦 ∈ 𝐾. Let {𝛽
𝑛
} be a sequence in [0, 1] satisfying

(i) ∑
∞

𝑛=1
𝛽
𝑛

= ∞;
(ii) lim

𝑛→∞
𝛽
𝑛

= 0.

For arbitrary 𝑥
1

∈ 𝐾, let {𝑥
𝑛
} be a sequence iteratively

defined by

𝑥
𝑛+1

= 𝑆𝑦
𝑛
,

𝑦
𝑛

= (1 − 𝛽
𝑛
) 𝑥
𝑛

+ 𝛽
𝑛
𝑇𝑥
𝑛
, 𝑛 ≥ 1.

(12)

Then the sequence {𝑥
𝑛
} converges strongly to a common fixed

point 𝑝 of 𝑆 and 𝑇.

Keeping in view the importance of the implicit iteration
schemes (see [17]) in this paper we establish the strong
convergence theorem for the hybrid implicit 𝑆-iterative
scheme associated with nonexpansive and Lipschitz strongly
pseudocontractive mappings in real Banach spaces.
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2. Main Results

We will need the following results.

Lemma 10 (see [19, 20]). Let 𝐽 : 𝐸 → 2
𝐸
∗

be the normalized
duality mapping. Then for any 𝑥, 𝑦 ∈ 𝐸, one has

𝑥 + 𝑦


2

≤ ‖𝑥‖
2

+ 2 ⟨𝑦, 𝑗 (𝑥 + 𝑦)⟩ ,

∀𝑗 (𝑥 + 𝑦) ∈ 𝐽 (𝑥 + 𝑦) .

(13)

Lemma 11 (see [13]). Let {𝜌
𝑛
} and {𝜃

𝑛
} be nonnegative

sequences satisfying

𝜌
𝑛+1

≤ (1 − 𝜃
𝑛
) 𝜌
𝑛

+ 𝑏
𝑛
, (14)

where 𝜃
𝑛

∈ [0, 1), ∑
∞

𝑛=1
𝜃
𝑛

= ∞, and 𝑏
𝑛

= 𝑜(𝜃
𝑛
). Then

lim
𝑛→∞

𝜌
𝑛

= 0.

The following is our main result.

Theorem 12. Let 𝐾 be a nonempty closed convex subset of a
real Banach space 𝐸, let 𝑆 : 𝐾 → 𝐾 be a nonexpansive
mapping, and let 𝑇 : 𝐾 → 𝐾 be a Lipschitz strongly
pseudocontractive mapping such that 𝑝 ∈ 𝐹(𝑆) ∩ 𝐹(𝑇) = {𝑥 ∈

𝐾 : 𝑆𝑥 = 𝑇𝑥 = 𝑥} and condition (𝐶3).
Let {𝛽

𝑛
} be a sequence in [0, 1] satisfying

(i) ∑
∞

𝑛=1
𝛽
𝑛

= ∞;
(ii) lim

𝑛→∞
𝛽
𝑛

= 0.

For arbitrary 𝑥
0

∈ 𝐾, let {𝑥
𝑛
} be a sequence iteratively

defined by

𝑥
𝑛

= 𝑆𝑦
𝑛
,

𝑦
𝑛

= (1 − 𝛽
𝑛
) 𝑥
𝑛−1

+ 𝛽
𝑛
𝑇𝑥
𝑛
, 𝑛 ≥ 1.

(15)

Then the sequence {𝑥
𝑛
} converges strongly to a common fixed

point 𝑝 of 𝑆 and 𝑇.

Proof. For strongly pseudocontractive mappings, the exis-
tence of a fixed point follows from Deimling [21]. It is
shown in [15] that the set of fixed points for strongly
pseudocontractions is a singleton.

By (ii), since lim
𝑛→∞

𝛽
𝑛

= 0, there exists 𝑛
0

∈ N such that
∀𝑛 ≥ 𝑛

0
,

𝛽
𝑛

≤ min{
1

4𝑘
,

1 − 𝑘

2 (1 + 𝐿) (1 + 2𝐿)
} , (16)

where 𝑘 < 1/2 and 𝐿 is a Lipschitz constant of 𝑇. Consider
𝑥
𝑛

− 𝑝


2

= ⟨𝑥
𝑛

− 𝑝, 𝑗 (𝑥
𝑛

− 𝑝)⟩

= ⟨𝑆𝑦
𝑛

− 𝑝, 𝑗 (𝑥
𝑛

− 𝑝)⟩

= ⟨𝑇𝑥
𝑛

− 𝑝, 𝑗 (𝑥
𝑛

− 𝑝)⟩ + ⟨𝑆𝑦
𝑛

− 𝑇𝑥
𝑛
, 𝑗 (𝑥
𝑛

− 𝑝)⟩

≤ 𝑘
𝑥
𝑛

− 𝑝


2

+
𝑆𝑦
𝑛

− 𝑇𝑥
𝑛



𝑥
𝑛

− 𝑝
 ,

(17)

where
𝑆𝑦
𝑛

− 𝑇𝑥
𝑛



≤
𝑆𝑦
𝑛

− 𝑇𝑦
𝑛

 +
𝑇𝑦
𝑛

− 𝑇𝑥
𝑛



≤
𝑥
𝑛

− 𝑆𝑦
𝑛

 +
𝑥
𝑛

− 𝑇𝑦
𝑛

 +
𝑇𝑦
𝑛

− 𝑇𝑥
𝑛



≤
𝑆𝑥
𝑛

− 𝑆𝑦
𝑛

 +
𝑇𝑥
𝑛

− 𝑇𝑦
𝑛

 +
𝑇𝑦
𝑛

− 𝑇𝑥
𝑛



=
𝑆𝑥
𝑛

− 𝑆𝑦
𝑛

 + 2
𝑇𝑥
𝑛

− 𝑇𝑦
𝑛



≤ (1 + 2𝐿)
𝑥
𝑛

− 𝑦
𝑛

 ,

(18)
𝑥
𝑛

− 𝑦
𝑛

 ≤
𝑥
𝑛

− 𝑥
𝑛−1

 +
𝑥
𝑛−1

− 𝑦
𝑛



=
𝑆𝑦
𝑛

− 𝑥
𝑛−1

 +
𝑥
𝑛−1

− 𝑦
𝑛



≤
𝑆𝑥
𝑛−1

− 𝑆𝑦
𝑛

 +
𝑥
𝑛−1

− 𝑦
𝑛



≤ 2
𝑥
𝑛−1

− 𝑦
𝑛



= 2𝛽
𝑛

𝑥
𝑛−1

− 𝑇𝑥
𝑛



≤ 2𝛽
𝑛

(
𝑥
𝑛−1

− 𝑝
 +

𝑝 − 𝑇𝑥
𝑛

)

≤ 2𝛽
𝑛

(
𝑥
𝑛−1

− 𝑝
 + 𝐿

𝑥
𝑛

− 𝑝
) ,

(19)

and consequently from (18) and (19), we obtain

𝑆𝑦
𝑛

− 𝑇𝑥
𝑛

 ≤ 2 (1 + 2𝐿) 𝛽
𝑛

𝑥
𝑛−1

− 𝑝


+ 2𝐿 (1 + 2𝐿) 𝛽
𝑛

𝑥
𝑛

− 𝑝
 .

(20)

Substituting (20) in (17) and using (16), we get

𝑥
𝑛

− 𝑝
 ≤

2 (1 + 2𝐿) 𝛽
𝑛

1 − 𝑘 − 2𝐿 (1 + 2𝐿) 𝛽
𝑛

𝑥
𝑛−1

− 𝑝


≤
𝑥
𝑛−1

− 𝑝
 for 𝑛 ≥ 𝑛

0
.

(21)

So, from the above discussion, we can conclude that the
sequence {𝑥

𝑛
− 𝑝} is bounded. Since 𝑇 is Lipschitzian, so

{𝑇𝑥
𝑛

− 𝑝} is also bounded. Let 𝑀
1

= sup
𝑛≥1

‖𝑥
𝑛

− 𝑝‖ +

sup
𝑛≥1

‖𝑇𝑥
𝑛

− 𝑝‖. Also by (ii), we have

𝑥
𝑛−1

− 𝑦
𝑛

 = 𝛽
𝑛

𝑥
𝑛−1

− 𝑇𝑥
𝑛



≤ 𝑀
1
𝛽
𝑛

→ 0

(22)

as 𝑛 → ∞, which implies that {𝑥
𝑛−1

− 𝑦
𝑛
} is bounded, so let

𝑀
2

= sup
𝑛≥1

‖𝑥
𝑛−1

− 𝑦
𝑛
‖ + 𝑀

1
. Further

𝑦
𝑛

− 𝑝
 ≤

𝑦
𝑛

− 𝑥
𝑛−1

 +
𝑥
𝑛−1

− 𝑝


≤ 𝑀
2
,

(23)

which implies that {𝑦
𝑛

− 𝑝} is bounded. Therefore {𝑇𝑦
𝑛

− 𝑝}

is also bounded.
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Set

𝑀
3

= sup
𝑛≥1

𝑦
𝑛

− 𝑝
 + sup
𝑛≥1

𝑇𝑦
𝑛

− 𝑝
 . (24)

Denote 𝑀 = 𝑀
1

+ 𝑀
2

+ 𝑀
3
. Obviously 𝑀 < ∞.

Now, from (15), for all 𝑛 ≥ 1, we obtain
𝑥
𝑛

− 𝑝


2

=
𝑆𝑦
𝑛

− 𝑝


2

≤
𝑦
𝑛

− 𝑝


2

, (25)

and by Lemma 10,

𝑦
𝑛

− 𝑝


2

=
(1 − 𝛽

𝑛
) 𝑥
𝑛−1

+ 𝛽
𝑛
𝑇𝑥
𝑛

− 𝑝


2

=
(1 − 𝛽

𝑛
) (𝑥
𝑛−1

− 𝑝) + 𝛽
𝑛

(𝑇𝑥
𝑛

− 𝑝)


2

≤ (1 − 𝛽
𝑛
)
2𝑥
𝑛−1

− 𝑝


2

+ 2𝛽
𝑛

⟨𝑇𝑥
𝑛

− 𝑝, 𝑗 (𝑦
𝑛

− 𝑝)⟩

= (1 − 𝛽
𝑛
)
2𝑥
𝑛−1

− 𝑝


2

+ 2𝛽
𝑛

⟨𝑇𝑦
𝑛

− 𝑝, 𝑗 (𝑦
𝑛

− 𝑝)⟩

+ 2𝛽
𝑛

⟨𝑇𝑥
𝑛

− 𝑇𝑦
𝑛
, 𝑗 (𝑦
𝑛

− 𝑝)⟩

≤ (1 − 𝛽
𝑛
)
2𝑥
𝑛−1

− 𝑝


2

+ 2𝑘𝛽
𝑛

𝑦
𝑛

− 𝑝


2

+ 2𝛽
𝑛

𝑇𝑥
𝑛

− 𝑇𝑦
𝑛



𝑦
𝑛

− 𝑝


≤ (1 − 𝛽
𝑛
)
2𝑥
𝑛−1

− 𝑝


2

+ 2𝑘𝛽
𝑛

𝑦
𝑛

− 𝑝


2

+ 2𝑀𝐿𝛽
𝑛

𝑥
𝑛

− 𝑦
𝑛

 , ∀𝑗 (𝑦
𝑛

− 𝑝) ∈ 𝐽 (𝑦
𝑛

− 𝑝) ,

(26)

which implies that

𝑦
𝑛

− 𝑝


2

≤
(1 − 𝛽

𝑛
)
2

1 − 2𝑘𝛽
𝑛

𝑥
𝑛−1

− 𝑝


2

+
2𝑀𝐿𝛽

𝑛

1 − 2𝑘𝛽
𝑛

𝑥
𝑛

− 𝑦
𝑛



≤ (1 − 𝛽
𝑛
)

𝑥
𝑛−1

− 𝑝


2

+ 4𝑀𝐿𝛽
𝑛

𝑥
𝑛

− 𝑦
𝑛

 for 𝑛 ≥ 𝑛
0
.

(27)

Because of (16), we have (1 − 𝛽
𝑛
)/(1 − 2𝑘𝛽

𝑛
) ≤ 1 and 1/(1 −

2𝑘𝛽
𝑛
) ≤ 2. Also, by (ii) and (19), ‖𝑥

𝑛
−𝑦
𝑛
‖ ≤ 2𝑀(1+𝐿)𝛽

𝑛
→ 0

as 𝑛 → ∞.
Hence (25) and (27) give

𝑥
𝑛

− 𝑝


2

≤ (1 − 𝛽
𝑛
)

𝑥
𝑛−1

− 𝑝


2

+ 4𝑀𝐿𝛽
𝑛

𝑥
𝑛

− 𝑦
𝑛

 . (28)

For all 𝑛 ≥ 1, put

𝜌
𝑛

=
𝑥
𝑛−1

− 𝑝
 ,

𝜃
𝑛

= 𝛽
𝑛
,

𝑏
𝑛

= 4𝑀𝐿𝛽
𝑛

𝑥
𝑛

− 𝑦
𝑛

 ;

(29)

then according to Lemma 11, we obtain from (28) that

lim
𝑛→∞

𝑥
𝑛

− 𝑝
 = 0. (30)

This completes the proof.

Corollary 13. Let 𝐾 be a nonempty closed convex subset of
a real Hilbert space 𝐻, let 𝑆 : 𝐾 → 𝐾 be a nonexpansive
mapping, and let 𝑇 : 𝐾 → 𝐾 be a Lipschitz strongly
pseudocontractive mapping such that 𝑝 ∈ 𝐹(𝑆) ∩ 𝐹(𝑇) = {𝑥 ∈

𝐾 : 𝑆𝑥 = 𝑇𝑥 = 𝑥} and condition (𝐶3). Let {𝛽
𝑛
} be a sequence

in [0, 1] satisfying conditions (i) and (ii) in Theorem 12.
For arbitrary 𝑥

0
∈ 𝐾, let {𝑥

𝑛
} be a sequence iteratively

defined by (15). Then the sequence {𝑥
𝑛
} converges strongly to

a common fixed point 𝑝 of 𝑆 and 𝑇.

Example 14. As a particular case, wemay choose, for instance,
𝛽
𝑛

= 1/𝑛.

Remark 15. (1) Condition (𝐶2) is due to Kang et al. [17] and
condition (𝐶1) with 𝑆 = 𝑇 becomes condition (𝐶2).

(2) Condition (𝐶3) is due to Kang et al. [18] and condition
(𝐶3) with 𝑆 = 𝑇 becomes condition (𝐶2).
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