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An ecoepidemiological predator-preymodel with stage structure for the predator and time delay due to the gestation of the predator
is investigated. The effects of a prey refuge with disease in the prey population are concerned. By analyzing the corresponding
characteristic equations, the local stability of each of the feasible equilibria of the model is discussed. Further, it is proved that
the model undergoes a Hopf bifurcation at the positive equilibrium. By means of appropriate Lyapunov functions and LaSalle’s
invariance principle, sufficient conditions are obtained for the global stability of the semitrivial boundary equilibria. By using an
iteration technique, sufficient conditions are derived for the global attractiveness of the positive equilibrium.

1. Introduction

In the natural world, species does not exist alone. While
species spreads the disease, it also competes with the other
species for space or food, or it is predated by other species.
The construction and study of models for the population
dynamics of predator-prey systems have been an important
topic in theoretical ecology. Following Anderso and May [1],
who were the first to propose an ecoepidemiological model
bymerging the ecological predator-preymodel introduced by
Lotka and Volterra, the effect of disease in ecological system
is an important issue frommathematical and ecological point
of view. Ecoepidemiology which is a relatively new branch of
study in theoretical biology tackles such situations by dealing
with both ecological and epidemiological issues.

The research of the hiding behaviour of preys has been
incorporated as a new ingredient of predator-prey models.
In nature, prey populations often have access to areas where
they are safe from their predators. Such refugia are usually
playing two significant roles, serving both to reduce the
chance of extinction due to predation and to damp predator-
prey oscillations. It is well known that many more attentions
have been paid on the effects of a prey refuge for predator-
prey model. In [2], Wang considered an ecoepidemiological

model incorporating a prey refuge with disease in the prey
population

𝑑𝑆

𝑑𝑡
= 𝑟𝑆 (𝑡) (1 −

𝑆 (𝑡) + 𝐼 (𝑡)

𝐾
) − 𝛽𝑆 (𝑡) 𝐼 (𝑡)

− 𝑏
1
(1 − 𝑚) 𝑆 (𝑡) 𝑌 (𝑡) ,

𝑑𝐼

𝑑𝑡
= 𝛽𝑆 (𝑡) 𝐼 (𝑡) − 𝑏

2
(1 − 𝑚) 𝐼 (𝑡) 𝑌 (𝑡) − 𝑑𝐼 (𝑡) ,

𝑑𝑌

𝑑𝑡
= 𝑝𝑏
1
(1 − 𝑚) 𝑆 (𝑡) 𝑌 (𝑡)

+ 𝑝𝑏
2
(1 − 𝑚) 𝐼 (𝑡) 𝑌 (𝑡) − 𝑐𝑌 (𝑡) ,

(1)

where 𝑆(𝑡) and 𝐼(𝑡) represent the densities of susceptible
and infected prey population at time 𝑡, respectively, and 𝑌(𝑡)
represents the density of the predator population at time 𝑡.
The parameters 𝑟,𝐾,𝛽, 𝑏

1
, 𝑏
2
, 𝑐,𝑑, and𝑝 are positive constants

in which 𝑟 and𝐾 represent the prey intrinsic growth rate and
the carrying capacity, respectively. 𝛽 is the transmission rate
of the susceptible prey into the infected prey. 𝑏

1
and 𝑏
2
are

the capturing rates of the susceptible prey and the infected
prey, respectively. 𝑝 describes the efficiency of the predator
in converting consumed prey into predator offspring. The
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constant proportion infected prey refuge is (1 − 𝑚)𝐼, where
𝑚 ∈ [0, 1) is a constant. By means of appropriate Lyapunov
functions and limit theory, sufficient conditions are obtained
for the global stability of the semitrivial boundary equilibria
of model (1).

We note that it is assumed in system (1) that each
individual predator admits the same ability to feed on prey.
This assumption seems to be not realistic formany animals. In
the natural world, there are many species whose individuals
pass through an immature stage during which they are raised
by their parents, and the rate at which they attack prey can be
ignored. Moreover, it can be assumed that their reproductive
rate during this stage is zero. Stage structure is a natural
phenomenon and represents, for example, the division of
a population into immature and mature individuals. Stage-
structured models have received great attention in recent
years (see, e.g., [3–5]).

Time delays of one type or another have been incor-
porated into biological models by many researchers (see,
e.g., [5–7]). In general, delay differential equations exhibit
much more complicated dynamics than ordinary differential
equations since a time delay could cause the population to
fluctuate. Time delay due to gestation is a common example,
because generally the consumption of prey by the predator
throughout its past history governs the present birth rate of
the predator. Therefore, more realistic models of population
interactions should take into account the effect of time delays.

Based on the above discussions, in this paper, we incor-
porate a stage structure for the predator and time delay due
to the gestation of predator into themodel (1). To this end, we
study the following differential equations:

𝑑𝑆

𝑑𝑡
= 𝑟𝑆 (𝑡) (1 −

𝑆 (𝑡) + 𝐼 (𝑡)

𝐾
) − 𝛽𝑆 (𝑡) 𝐼 (𝑡) ,

𝑑𝐼

𝑑𝑡
= 𝛽𝑆 (𝑡) 𝐼 (𝑡) − 𝑑𝐼 (𝑡) − 𝑏 (1 − 𝑚) 𝐼 (𝑡) 𝑌

2
(𝑡) ,

𝑑𝑌
1

𝑑𝑡
= 𝑝𝑏 (1 − 𝑚) 𝐼 (𝑡 − 𝜏) 𝑌

2
(𝑡 − 𝜏) − (𝑟

1
+ 𝑑
1
) 𝑌
1
(𝑡) ,

𝑑𝑌
2

𝑑𝑡
= 𝑟
1
𝑌
1
(𝑡) − 𝑑

2
𝑌
2
(𝑡) − 𝑎𝑌

2

2
(𝑡) ,

(2)

where 𝑌
1
(𝑡) and 𝑌

2
(𝑡) represent the densities of the immature

and the mature predator population at time 𝑡, respectively.
The parameters 𝑑

1
, 𝑑
2
, and 𝑟

1
are positive constants in which

𝑑
1
and 𝑑

2
are the death rates of the immature and the

mature predator, respectively. 𝑟
1
denotes the rate of immature

predator becoming mature predator. 𝜏 ≥ 0 is a constant delay
due to the gestation of the predator.

The initial conditions for system (2) take the form

𝑆 (𝜃) = 𝜙
1
(𝜃) ≥ 0, 𝐼 (𝜃) = 𝜙

2
(𝜃) ≥ 0,

𝑌
1
(𝜃) = 𝜑

1
(𝜃) ≥ 0, 𝑌

2
(𝜃) = 𝜑

2
(𝜃) ≥ 0,

𝜃 ∈ [−𝜏, 0) , 𝜙
1
(0) > 0, 𝜙

2
(0) > 0,

𝜑
1
(0) > 0, 𝜑

2
(0) > 0,

(𝜙
1
(𝜃) , 𝜙

2
(𝜃) , 𝜑

1
(𝜃) , 𝜑

2
(𝜃)) ∈ 𝐶 ([−𝜏, 0] , 𝑅

4

+0
) ,

(3)

where 𝑅4
+0
= {(𝑥
1
, 𝑥
2
, 𝑥
3
, 𝑥
4
) : 𝑥
𝑖
≥ 0, 𝑖 = 1, 2, 3, 4}.

It is well known by the fundamental theory of functional
differential equations [8] thatmodel (2) has a unique solution
(𝑆(𝑡), 𝐼(𝑡), 𝑌

1
(𝑡), 𝑌
2
(𝑡)) satisfying initial conditions (3).

The organization of this paper is as follows. In the next
section, we show the positivity and the boundedness of
solutions ofmodel (2) with initial conditions (3). In Section 3,
we investigate the stability of the semitrivial equilibria of
the model (2). In Section 4, we discuss the stability of the
positive equilibrium of the model (2). Further, we study the
existence of Hopf bifurcation at the positive equilibrium. A
brief discussion is given in Section 5 to conclude this work.

2. Preliminaries

In this section, we show the positivity and the boundedness
of solutions of model (2) with initial conditions (3).

Theorem 1. Solutions of model (2) with initial conditions (3)
are positive for all 𝑡 ≥ 0.

Proof. Let (𝑆(𝑡), 𝐼(𝑡), 𝑌
1
(𝑡), 𝑌
2
(𝑡)) be a solution of model (2)

with initial conditions (3). It follows from the first and the
second equations of model (2) that

𝑆 (𝑡) = 𝑆 (0) exp{∫
𝑡

0

[𝑟 −
𝑟

𝐾
𝑆 (𝑠) − (

𝑟

𝐾
+ 𝛽) 𝐼 (𝑠)] 𝑑𝑠} > 0,

𝐼 (𝑡) = 𝐼 (0) exp{∫
𝑡

0

[𝛽𝑆 (𝑠) − 𝑑 − 𝑏 (1 − 𝑚)𝑌
2
(𝑠)] 𝑑𝑠} > 0.

(4)

Let us consider𝑌
1
(𝑡) and𝑌

2
(𝑡) for 𝑡 ∈ [0, 𝜏]. Since 𝜙

2
(𝜃) ≥

0, 𝜑
2
(𝜃) ≥ 0, for 𝜃 ∈ [−𝜏, 0], we derive from the third equation

of model (2) that

𝑑𝑌
1

𝑑𝑡
≥ − (𝑟

1
+ 𝑑
1
) 𝑌
1
(𝑡) . (5)

Since 𝜑
1
(0) > 0, a standard comparison argument shows that

𝑌
1
(𝑡) ≥ 𝑌

1
(0) 𝑒
−(𝑟
1
+𝑑
1
)𝑡
> 0; (6)

that is, 𝑌
1
(𝑡) > 0, for 𝑡 ∈ [0, 𝜏]. For 𝑡 ∈ [0, 𝜏], it follows from

the fourth equation of (2) that

𝑑𝑌
2

𝑑𝑡
≥ −𝑑
2
𝑌
2
(𝑡) − 𝑎𝑌

2

2
(𝑡) . (7)

Since 𝜑
2
(0) > 0, a standard comparison argument shows that

𝑌
2
(𝑡) ≥ 𝑌

2
(0) exp{∫

𝑡

0

(−𝑑
2
− 𝑎𝑌
2
(𝑠)) 𝑑𝑠} > 0; (8)

that is, 𝑌
2
(𝑡) > 0, for 𝑡 ∈ [0, 𝜏]. In a similar way, we treat

the intervals [𝜏, 2𝜏], . . . , [𝑛𝜏, (𝑛 + 1)𝜏], 𝑛 ∈ 𝑁. Thus, 𝑆(𝑡) >
0, 𝐼(𝑡) > 0, 𝑌

1
(𝑡) > 0, and 𝑌

2
(𝑡) > 0 for all 𝑡 ≥ 0. This

completes the proof.

Theorem 2. Positive solutions of model (2) with initial condi-
tions (3) are ultimately bounded.
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Proof. Let (𝑆(𝑡), 𝐼(𝑡), 𝑌
1
(𝑡), 𝑌
2
(𝑡)) be a positive solution

of model (2) with initial conditions (3). Denote 𝑑 =

min{𝑑, 𝑑
1
, 𝑑
2
}. Define

𝑊(𝑡) = 𝑝𝑆 (𝑡 − 𝜏) + 𝑝𝐼 (𝑡 − 𝜏) + 𝑌
1
(𝑡) + 𝑌

2
(𝑡) . (9)

Calculating the derivative of𝑊(𝑡) along the positive solutions
of (2), it follows that

𝑑𝑊

𝑑𝑡
= 𝑝𝑟𝑆 (𝑡 − 𝜏) − 𝑝

𝑟

𝐾
𝑆
2
(𝑡 − 𝜏) − 𝑝

𝑟

𝐾
𝑆 (𝑡 − 𝜏) 𝐼 (𝑡 − 𝜏)

− 𝑝𝑑𝐼 (𝑡 − 𝜏) − 𝑑
1
𝑌
1
(𝑡) − 𝑑

2
𝑌
2
(𝑡) − 𝑎𝑌

2

2
(𝑡)

≤ −𝑑𝑊 (𝑡) + 𝑝 (𝑟 + 𝑑) 𝑆 (𝑡 − 𝜏) − 𝑝
𝑟

𝐾
𝑆
2
(𝑡 − 𝜏)

− 𝑝
𝑟

𝐾
𝑆 (𝑡 − 𝜏) 𝐼 (𝑡 − 𝜏)

≤ −𝑑𝑊 (𝑡) − 𝑝
𝑟

𝐾
[𝑆 (𝑡 − 𝜏) −

𝐾 (𝑟 + 𝑑)

2𝑟
]

2

+
𝑝𝐾(𝑟 + 𝑑)

2

4𝑟

≤ −𝑑𝑊 (𝑡) +
𝑝𝐾(𝑟 + 𝑑)

2

4𝑟
,

(10)

which yields

lim sup
𝑡→∞

𝑊(𝑡) ≤
𝑝𝐾(𝑟 + 𝑑)

2

4𝑟𝑑
. (11)

If we choose 𝑀
1
= 𝐾(𝑟 + 𝑑)

2

/4𝑟𝑑, 𝑀
2
= 𝑝𝐾(𝑟 + 𝑑)

2

/4𝑟𝑑,
then

lim sup
𝑡→∞

𝑆 (𝑡) ≤ 𝑀
1
, lim sup

𝑡→∞

𝐼 (𝑡) ≤ 𝑀
1
,

lim sup
𝑡→∞

𝑌
𝑖
(𝑡) ≤ 𝑀

2
, (𝑖 = 1, 2) .

(12)

This completes the proof.

3. Boundary Equilibria and Their Stability

In this section, we discuss the stability of the boundary
equilibria of model (2).

Model (2) always has two boundary equilibria, namely,
the trivial equilibrium 𝐸

0
(0, 0, 0, 0) and the axial equilibrium

𝐸
𝐾
(𝐾, 0, 0, 0). It is easy to show that if 𝐾𝛽 > 𝑑, model

(2) admits a predator-extinction equilibrium 𝐸
1
(𝑆
1
, 𝐼
1
, 0, 0),

where

𝑆
1
=
𝑑

𝛽
, 𝐼

1
=
𝑟 (𝐾𝛽 − 𝑑)

𝛽 (𝐾𝛽 + 𝑟)
. (13)

The characteristic equation of model (2) at the equilib-
rium 𝐸

0
(0, 0, 0, 0) is of the form

(𝜆 − 𝑟) (𝜆 + 𝑑) (𝜆 + 𝑟
1
+ 𝑑
1
) (𝜆 + 𝑑

2
) = 0. (14)

Clearly (14) has a positive real root. Accordingly, the equilib-
rium 𝐸

0
is unstable.

The characteristic equation of model (2) at the equilib-
rium 𝐸

𝐾
(𝐾, 0, 0, 0) takes the form

(𝜆 + 𝑟) (𝜆 + 𝑑
2
) (𝜆 + 𝑟

1
+ 𝑑
1
) [𝜆 − (𝐾𝛽 − 𝑑)] = 0. (15)

Hence, if 𝐾𝛽 < 𝑑, (15) has no positive real root. Accordingly,
the equilibrium 𝐸

𝐾
is locally asymptotically stable. If𝐾𝛽 > 𝑑,

(15) has a positive real root. Accordingly, the equilibrium 𝐸
𝐾

is unstable.

Theorem 3. If 𝐾𝛽 < 𝑑, then the semitrivial equilibrium 𝐸
𝐾
is

globally stable.

Proof. Based on the above discussions, we only prove the
global attractivity of the equilibrium 𝐸

𝐾
. Let

𝑉
𝐾
(𝑡) = 𝑐

1
[𝑆 (𝑡) − 𝐾 − 𝐾 ln 𝑆 (𝑡)

𝐾
] + 𝐼 (𝑡) +

1

𝑝
𝑌
1
(𝑡)

+
1

𝑝
𝑌
2
(𝑡) + 𝑏 (1 − 𝑚)∫

𝑡

𝑡−𝜏

𝐼 (𝑠) 𝑌
2
(𝑠) 𝑑𝑠,

(16)

where 𝑐
1
= 𝐾𝛽/(𝐾𝛽 + 𝑟). Calculating the derivative of 𝑉

𝐾
(𝑡)

along the positive solutions of model (2), it follows that

𝑑

𝑑𝑡
𝑉
𝐾
(𝑡) = 𝑐

1

𝑆 (𝑡) − 𝐾

𝑆 (𝑡)

̇𝑆 (𝑡) + ̇𝐼 (𝑡) +
1

𝑝
𝑌̇
1
(𝑡) +

1

𝑝
𝑌̇
2
(𝑡)

+ 𝑏 (1 − 𝑚) 𝐼 (𝑡) 𝑌
2
(𝑡)

− 𝑏 (1 − 𝑚) 𝐼 (𝑡 − 𝜏) 𝑌
2
(𝑡 − 𝜏) .

= −
𝛽𝑟

𝐾𝛽 + 𝑟
[𝑆 (𝑡) − 𝐾]

2
−(𝑑−𝐾𝛽) 𝐼 (𝑡)−

1

𝑝
𝑑
1
𝑌
1
(𝑡)

−
1

𝑝
𝑑
2
𝑌
2
(𝑡) −

𝑎

𝑝
𝑌
2

2
(𝑡) .

(17)

If 𝐾𝛽 < 𝑑, then it follows from (17) that 𝑉̇
𝐾
(𝑡) ≤ 0. By

Theorem 5.3.1, in [8], solutions are limited to𝑀, the largest
invariant subset of {𝑉̇

𝐾
(𝑡) = 0}. Clearly, we see from (17)

that 𝑉̇
𝐾
(𝑡) = 0 if and only if 𝑆(𝑡) = 𝐾, 𝐼(𝑡) = 0, 𝑌

1
(𝑡) =

0, 𝑌
2
(𝑡) = 0. Accordingly, the global asymptotic stability of

𝐸
𝐾
follows from LaSalle’s invariant principle. This completes

the proof.

The characteristic equation of model (2) at the equilib-
rium 𝐸

1
is of the form

(𝜆
2
+
𝑟

𝐾
𝑆
1
𝜆 +

𝛽 (𝐾𝛽 + 𝑟)

𝐾
𝑆
1
𝐼
1
)

× (𝜆
2
+ 𝑔
1
𝜆 + 𝑔
0
+ 𝑓
0
𝑒
−𝜆𝜏
) = 0,

(18)

where 𝑔
1
= 𝑟
1
+ 𝑑
1
+ 𝑑
2
, 𝑔
0
= 𝑑
2
(𝑟
1
+ 𝑑
1
), 𝑓
0
= −𝑝𝑏𝑟

1
(1 −

𝑚)𝐼
1
. Clearly, the roots of equation 𝜆2 + (𝑟/𝐾)𝑆

1
𝜆 + (𝛽(𝐾𝛽 +

𝑟)/𝐾)𝑆
1
𝐼
1
= 0 have negative real part. When 𝜏 = 0, if

𝑝𝑏𝑟𝑟
1
(1 − 𝑚)(𝐾𝛽 − 𝑑) < 𝛽𝑑

2
(𝑟
1
+ 𝑑
1
)(𝐾𝛽 + 𝑟), then the
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roots of (18) have negative real part. Accordingly, 𝐸
1
is locally

asymptotically stable. If 𝑝𝑏𝑟𝑟
1
(1 − 𝑚)(𝐾𝛽 − 𝑑) > 𝛽𝑑

2
(𝑟
1
+

𝑑
1
)(𝐾𝛽 + 𝑟), then 𝐸

1
is unstable. It is easily seen that

𝑔
2

1
− 2𝑔
0
= (𝑟
1
+ 𝑑
1
)
2

+ 𝑑
2

2
> 0, 𝑔

2

0
− 𝑓
2

0
> 0. (19)

Hence, if 0 < 𝑝𝑏𝑟𝑟
1
(1−𝑚)(𝐾𝛽−𝑑) < 𝛽𝑑

2
(𝑟
1
+𝑑
1
)(𝐾𝛽+𝑟),

by LemmaB in [7], it follows that the equilibrium𝐸
1
is locally

asymptotically stable for all 𝜏 ≥ 0. If 𝑝𝑏𝑟𝑟
1
(1 − 𝑚)(𝐾𝛽 − 𝑑) >

𝛽𝑑
2
(𝑟
1
+ 𝑑
1
)(𝐾𝛽 + 𝑟), then 𝐸

1
is unstable for all 𝜏 ≥ 0.

Theorem 4. Let 𝐾𝛽 > 𝑑 hold; the predator-extinction
equilibrium 𝐸

1
of model (2) is globally stable provided that

𝑝𝑏𝑟𝑟
1
(1 − 𝑚) (𝐾𝛽 − 𝑑) < 𝛽𝑑

2
(𝑟
1
+ 𝑑
1
) (𝐾𝛽 + 𝑟) . (20)

Proof. Based on the above discussions, we only prove the
global attractivity of the equilibrium 𝐸

1
. Define

𝑉
11
(𝑡) = 𝑐

1
(𝑆 (𝑡) − 𝑆

1
− 𝑆
1
ln 𝑆 (𝑡)

𝑆
1

) + 𝐼 (𝑡) − 𝐼
1

− 𝐼
1
ln 𝐼 (𝑡)

𝐼
1

+ 𝑘
1
𝑌
1
(𝑡) + 𝑘

2
𝑌
2
(𝑡) ,

(21)

where 𝑐
1
= 𝐾𝛽/(𝐾𝛽 + 𝑟) and 𝑘

1
= 1/𝑝, 𝑘

2
= (𝑟
1
+

𝑑
1
)/(𝑝𝑟
1
). Calculating the derivative of 𝑉

11
(𝑡) along the

positive solutions of (2), it follows that

𝑉̇
11
(𝑡) = 𝑐

1

𝑆 (𝑡) − 𝑆
1

𝑆 (𝑡)

̇𝑆 (𝑡)+
𝐼 (𝑡) − 𝐼

1

𝐼 (𝑡)

̇𝐼 (𝑡)+𝑘
1
𝑌̇
1
(𝑡) + 𝑘

2
𝑌̇
2
(𝑡)

= −
𝛽𝑟

𝐾𝛽 + 𝑟
[𝑆 (𝑡) − 𝑆

1
]
2

− 𝑏 (1 − 𝑚) 𝐼 (𝑡) 𝑌
2
(𝑡)

+ 𝑏 (1 − 𝑚) 𝐼 (𝑡 − 𝜏) 𝑌
2
(𝑡 − 𝜏)

− [
𝑑
2
(𝑟
1
+ 𝑑
1
)

𝑝𝑟
1

− 𝑏 (1 − 𝑚) 𝐼
1
]𝑌
2
(𝑡)

−
𝑎 (𝑟
1
+ 𝑑
1
)

𝑝𝑟
1

𝑌
2

2
(𝑡) .

(22)

Define

𝑉
1
(𝑡) = 𝑉

11
(𝑡) + 𝑏 (1 − 𝑚)∫

𝑡

𝑡−𝜏

𝐼 (𝑠) 𝑌
2
(𝑠) 𝑑𝑠. (23)

We derive from (22) and (23) that

𝑉̇
1
(𝑡) = −

𝛽𝑟

𝐾𝛽 + 𝑟
[𝑆 (𝑡) − 𝑆

1
]
2

− [
𝑑
2
(𝑟
1
+ 𝑑
1
)

𝑝𝑟
1

− 𝑏 (1 − 𝑚) 𝐼
1
]𝑌
2
(𝑡)

−
𝑎 (𝑟
1
+ 𝑑
1
)

𝑝𝑟
1

𝑌
2

2
(𝑡) .

(24)

If 0 < 𝑝𝑏𝑟𝑟
1
(1 − 𝑚)(𝐾𝛽 − 𝑑) < 𝛽𝑑

2
(𝑟
1
+ 𝑑
1
)(𝐾𝛽 + 𝑟), it

then follows from (24) that 𝑉̇
1
(𝑡) ≤ 0. By Theorem 5.3.1, in

[8], solutions are limited to 𝑀, the largest invariant subset
of {𝑉̇
1
(𝑡) = 0}. Clearly, we see from (24) that 𝑉̇

1
(𝑡) = 0, if

and only if 𝑆(𝑡) = 𝑆
1
, 𝑌
2
(𝑡) = 0. It follows from the first and

fourth equations of (2) that 0 = ̇𝑆(𝑡) = 𝑟 − (𝑟/𝐾)𝑆
1
− ((𝐾𝛽 +

𝑟)/𝐾)𝐼(𝑡), 0 = 𝑌̇
2
(𝑡) = 𝑟

1
𝑌
1
(𝑡), which yields 𝐼(𝑡) = 𝐼

1
, 𝑌
1
(𝑡) =

0. Using LaSalle’s invariant principle, the global asymptotic
stability of 𝐸

1
follows. This completes the proof.

4. Stability of Positive Equilibrium

In this section, we are concerned with the stability of the pos-
itive equilibrium 𝐸

∗ and the existence of Hopf bifurcations at
the positive equilibrium 𝐸

∗ of model (2).
If the following holds,

(H1) 𝑝𝑏𝑟𝑟
1
(1 − 𝑚)(𝐾𝛽 − 𝑑) > 𝛽𝑑

2
(𝑟
1
+ 𝑑
1
)(𝐾𝛽 + 𝑟),

then model (2) has a unique positive equilibrium
𝐸
∗
(𝑆
∗
, 𝐼
∗
, 𝑌
∗

1
, 𝑌
∗

2
), where

𝑆
∗
= (𝐾𝑝𝑟𝑟

1
𝑏
2
(1 − 𝑚)

2
+ 𝑎𝑑 (𝑟

1
+ 𝑑
1
) (𝐾𝛽 + 𝑟)

−𝑏 (1 − 𝑚) 𝑑
2
(𝑟
1
+ 𝑑
1
) (𝐾𝛽 + 𝑟) )

× (𝑝𝑟𝑟
1
𝑏
2
(1 − 𝑚)

2
+ 𝛽𝑎 (𝑟

1
+ 𝑑
1
) (𝐾𝛽 + 𝑟))

−1

,

𝐼
∗
=
𝑟 (𝐾 − 𝑆

∗
)

𝐾𝛽 + 𝑟
, 𝑌

∗

1
=
𝑑
2
+ 𝑎𝑌
∗

2

𝑟
1

𝑌
∗

2
,

𝑌
∗

2
=
𝛽𝑆
∗
− 𝑑

𝑏 (1 − 𝑚)
.

(25)

The characteristic equation of model (2) at the equilib-
rium 𝐸

∗ takes the form
𝜆
4
+ 𝑝
3
𝜆
3
+ 𝑝
2
𝜆
2
+ 𝑝
1
𝜆 + 𝑝
0
+ (𝑞
2
𝜆
2
+ 𝑞
1
𝜆 + 𝑞
0
) 𝑒
−𝜆𝜏

= 0,

(26)
where

𝑝
3
= 𝑟
1
+ 𝑑
1
+ 𝑑
2
+ 2𝑎𝑌

∗

2
+
𝑟

𝐾
𝑆
∗
,

𝑝
2
= (𝑟
1
+ 𝑑
1
) (𝑑
2
+ 2𝑎𝑌

∗

2
) +

𝑟

𝐾
𝑆
∗
(𝑟
1
+ 𝑑
1
+ 𝑑
2
+ 2𝑎𝑌

∗

2
)

+
𝐾𝛽 + 𝑟

𝐾
𝛽𝑆
∗
𝐼
∗
,

𝑝
1
=
𝐾𝛽 + 𝑟

𝐾
𝛽𝑆
∗
𝐼
∗
(𝑟
1
+ 𝑑
1
+ 𝑑
2
+ 2𝑎𝑌

∗

2
)

+
𝑟

𝐾
𝑆
∗
(𝑟
1
+ 𝑑
1
) (𝑑
2
+ 2𝑎𝑌

∗

2
) ,

𝑝
0
=
𝐾𝛽 + 𝑟

𝐾
𝛽𝑆
∗
𝐼
∗
(𝑟
1
+ 𝑑
1
) (𝑑
2
+ 2𝑎𝑌

∗

2
) ,

𝑞
2
= − 𝑝𝑏𝑟

1
(1 − 𝑚) 𝐼

∗
,

𝑞
1
= 𝑝𝑏𝑟

1
(1 − 𝑚) 𝐼

∗
[𝑏 (1 − 𝑚)𝑌

∗

2
−
𝑟

𝐾
𝑆
∗
] ,

𝑞
0
= 𝑝𝑏𝑟

1
(1 − 𝑚) 𝑆

∗
𝐼
∗
[𝑏 (1 − 𝑚)

𝑟

𝐾
𝑌
∗

2
−
𝐾𝛽 + 𝑟

𝐾
𝛽𝐼
∗
] .

(27)
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It is easy to show that

𝑝
3
> 0, 𝑝

0
+ 𝑞
0
> 0, 𝑝

1
+ 𝑞
1
> 0, 𝑝

2
+ 𝑞
2
> 0.

(28)

When 𝜏 = 0, (26) becomes

𝜆
4
+ 𝑝
3
𝜆
3
+ (𝑝
2
+ 𝑞
2
) 𝜆
2
+ (𝑝
1
+ 𝑞
1
) 𝜆 + 𝑝

0
+ 𝑞
0
= 0. (29)

If the following holds,

(H2) (𝑝
1
+ 𝑞
1
)[𝑝
3
(𝑝
2
+ 𝑞
2
) − (𝑝

0
+ 𝑞
0
)] > 𝑝

2

3
(𝑝
0
+ 𝑞
0
),

then by the Routh-Hurwitz theorem, when 𝜏 = 0,
the coexistence equilibrium 𝐸

∗ of model (2) is locally
asymptotically stable and 𝐸

∗ is unstable if (𝑝
1
+

𝑞
1
)[𝑝
3
(𝑝
2
+ 𝑞
2
) − (𝑝

0
+ 𝑞
0
)] < 𝑝

2

3
(𝑝
0
+ 𝑞
0
).

If 𝑖𝜔(𝜔 > 0) is a solution of (26), separating real and
imaginary parts, we have

(𝑞
2
𝜔
2
− 𝑞
0
) sin𝜔𝜏 + 𝑞

1
𝜔 cos𝜔𝜏 = 𝑝

3
𝜔
3
− 𝑝
1
𝜔,

(𝑞
2
𝜔
2
− 𝑞
0
) cos𝜔𝜏 − 𝑞

1
𝜔 sin𝜔𝜏 = 𝜔4 − 𝑝

2
𝜔
2
+ 𝑝
0
.

(30)

Squaring and adding the two equations of (30), it follows that

𝜔
8
+ ℎ
3
𝜔
6
+ ℎ
2
𝜔
4
+ ℎ
1
𝜔
2
+ ℎ
0
= 0, (31)

where

ℎ
3
= 𝑝
2

3
− 2𝑝
2
, ℎ

2
= 𝑝
2

2
+ 2𝑝
0
− 2𝑝
1
𝑝
3
− 𝑞
2

2
,

ℎ
1
= 𝑝
2

1
− 2𝑝
0
𝑝
2
+ 2𝑞
0
𝑞
2
− 𝑞
2

1
, ℎ

0
= 𝑝
2

0
− 𝑞
2

0
.

(32)

Assume that the following holds:

(H3) ℎ
3
> 0, ℎ

2
> 0, ℎ

1
> 0.

If ℎ
0
> 0, by the general theory on characteristic equations

of delay differential equations from [9] (Theorem 4.1), 𝐸∗
remains stable for all 𝜏 > 0. If ℎ

0
< 0, then (31) has a unique

positive root𝜔
0
; that is, (26) admits a pair of purely imaginary

roots of the form ±𝑖𝜔
0
. From (30), we see that

𝜏
𝑛
=
2𝑛𝜋

𝜔
0

+
1

𝜔
0

arccos ((𝑞
2
𝜔
2

0
− 𝑞
0
) (𝜔
4

0
− 𝑝
2
𝜔
2

0
+ 𝑝
0
)

+𝑞
1
𝜔
0
(𝑝
3
𝜔
3

0
− 𝑝
1
𝜔
0
))

× ((𝑞
1
𝜔
0
)
2

+ (𝑞
2
𝜔
2

0
− 𝑞
0
)
2

)
−1

, 𝑛 = 0, 1, 2, . . . .

(33)

By Theorem 3.4.1, in [9], we see that 𝐸∗ remains stable for
𝜏 < 𝜏
0
.

In the following, we claim that

𝑑 (Re (𝜆))
𝑑𝜏

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜏=𝜏
0

> 0. (34)

This will show that there exists at least one eigenvalue with
a positive real part for 𝜏 > 𝜏

0
. Moreover, the conditions for

the existence of a Hopf bifurcation (Theorem 2.9.1 in [9])

are then satisfied yielding a periodic solution. To this end,
differentiating equation (26) with respect to 𝜏, it follows that

(
𝑑𝜆

𝑑𝜏
)

−1

=
4𝜆
3
+ 3𝑝
3
𝜆
2
+ 2𝑝
2
𝜆 + 𝑝
1

−𝜆 (𝜆4 + 𝑝
3
𝜆3 + 𝑝

2
𝜆2 + 𝑝

1
𝜆 + 𝑝
0
)

+
2𝑞
2
𝜆 + 𝑞
1

𝜆 (𝑞
2
𝜆2 + 𝑞

1
𝜆 + 𝑞
0
)
−
𝜏

𝜆
.

(35)

Hence, a direct calculation shows that

sgn{𝑑(Re 𝜆)
𝑑𝜏

}

𝜆=𝑖𝜔
0

= sgn{Re(𝑑𝜆
𝑑𝜏
)

−1

}

𝜆=𝑖𝜔
0

= sgn { ((3𝑝
3
𝜔
2

0
− 𝑝
1
) (𝑝
3
𝜔
2

0
− 𝑝
1
) + 2 (2𝜔

2

0
− 𝑝
2
)

× (𝜔
4

0
− 𝑝
2
𝜔
2

0
+ 𝑝
0
))

× (𝜔
2

0
(𝑝
1
− 𝑝
3
𝜔
2

0
)
2

+ (𝜔
4

0
− 𝑝
2
𝜔
2

0
+ 𝑝
0
)
2

)
−1

+ (−𝑞
2

1
+ 2𝑞
2
(𝑞
0
− 𝑞
2
𝜔
2

0
))

× ((𝑞
1
𝜔
0
)
2

+ (𝑞
2
𝜔
2

0
− 𝑞
0
)
2

)
−1

} .

(36)

We derive from (30) that

𝜔
2

0
(𝑝
1
− 𝑝
3
𝜔
2

0
)
2

+ (𝜔
4

0
− 𝑝
2
𝜔
2

0
+ 𝑝
0
)
2

= (𝑞
1
𝜔
0
)
2

+ (𝑞
2
𝜔
2

0
− 𝑞
0
)
2

.

(37)

Hence, it follows that

sgn{𝑑(Re 𝜆)
𝑑𝜏

}

𝜆=𝑖𝜔
0

= sgn{
4𝜔
6

0
+ 3ℎ
3
𝜔
4

0
+ 2ℎ
2
𝜔
2

0
+ ℎ
1

(𝑞
1
𝜔
0
)
2

+ (𝑞
2
𝜔2
0
− 𝑞
0
)
2
} > 0.

(38)

Therefore, if (H3) holds, then the transversal condition holds
and a Hopf bifurcation occurs at 𝜔 = 𝜔

0
, 𝜏 = 𝜏

0
.

In conclusion, we have the following results.

Theorem 5. For model (2), let (𝐻1) hold, and we have the
following.

(i) If (𝐻2) and (𝐻3) hold, ℎ
0
> 0, then the positive

equilibrium 𝐸
∗ is locally asymptotically stable for all

𝜏 ≥ 0.
(ii) If (𝐻2) and (𝐻3) hold, ℎ

0
< 0, then there exists a

positive number 𝜏
0
, such that the positive equilibrium

𝐸
∗ is locally asymptotically stable if 0 ≤ 𝜏 < 𝜏

0
and is

unstable if 𝜏 > 𝜏
0
. Further, model (2) undergoes a Hopf

bifurcation at 𝐸∗ when 𝜏 = 𝜏
0
.
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(iii) If (𝑝
1
+𝑞
1
)[𝑝
3
(𝑝
2
+𝑞
2
)− (𝑝
1
+𝑞
1
)] < 𝑝

2

3
(𝑝
0
+𝑞
0
), then

the positive equilibrium 𝐸
∗ is unstable for all 𝜏 ≥ 0.

Now, we are concerned with the global attractiveness of
the positive equilibrium 𝐸

∗.

Theorem 6. Let (𝐻1) hold, and then the positive equilibrium
𝐸
∗
(𝑆
∗
, 𝐼
∗
, 𝑌
∗

1
, 𝑌
∗

2
) of model (2) is globally attractive provided

that

𝑎𝛽 (𝑟
1
+ 𝑑
1
) (𝐾𝛽 + 𝑟) ̸= 𝑝𝑟𝑟

1
𝑏
2
(1 − 𝑚)

2
. (39)

Proof. Let (𝑆(𝑡), 𝐼(𝑡), 𝑌
1
(𝑡), 𝑌
2
(𝑡)) be any positive solution of

model (2) with initial conditions (3). Let
𝑀
𝑆
= lim sup
𝑡→+∞

𝑆 (𝑡) , 𝑚
𝑆
= lim inf
𝑡→+∞

𝑆 (𝑡) ,

𝑀
𝐼
= lim sup
𝑡→+∞

𝐼 (𝑡) ,

𝑚
𝐼
= lim inf
𝑡→+∞

𝐼 (𝑡) ,

𝑀
𝑌
𝑖

= lim sup
𝑡→+∞

𝑌
𝑖
(𝑡) , 𝑚

𝑌
𝑖

= lim inf
𝑡→+∞

𝑌
𝑖
(𝑡) , (𝑖 = 1, 2) .

(40)

We now claim that 𝑀
𝑆
= 𝑚
𝑆
= 𝑆
∗
,𝑀
𝐼
= 𝑚
𝐼
= 𝐼
∗
,𝑀
𝑌
𝑖

=

𝑚
𝑌
𝑖

= 𝑌
∗

𝑖
(𝑖 = 1, 2). The technique of proof is to use an

iteration method.
We derive from the first and the second equations of

model (2) that
𝑑𝑆

𝑑𝑡
= 𝑟𝑆 (1 −

𝑆 + 𝐼

𝐾
) − 𝛽𝑆𝐼,

𝑑𝐼

𝑑𝑡
≤ 𝛽𝑆𝐼 − 𝑑𝐼. (41)

Consider the following auxiliary equations:
𝑑𝑥
1

𝑑𝑡
= 𝑟𝑥
1
(1 −

𝑥
1
+ 𝑥
2

𝐾
) − 𝛽𝑥

1
𝑥
2
,

𝑑𝑥
2

𝑑𝑡
= 𝛽𝑥
1
𝑥
2
− 𝑑𝑥
2
.

(42)

If 𝐾𝛽 > 𝑑, then, by Theorem 3.1 in [2], it follows from (42)
that

lim
𝑡→+∞

𝑥
1
(𝑡) =

𝑑

𝛽
, lim

𝑡→+∞

𝑥
2
(𝑡) =

𝑟 (𝐾𝛽 − 𝑑)

𝛽 (𝐾𝛽 + 𝑟)
. (43)

By comparison, we obtain that

𝑀
𝑆
= lim sup
𝑡→+∞

𝑆 (𝑡) ≤
𝑑

𝛽
:= 𝑀
𝑆

1
,

𝑀
𝐼
= lim sup
𝑡→+∞

𝐼 (𝑡) ≤
𝑟 (𝐾𝛽 − 𝑑)

𝛽 (𝐾𝛽 + 𝑟)
:= 𝑀
𝐼

1
.

(44)

Hence, for 𝜀 > 0, sufficiently small, there is a 𝑇
1
> 0 such that

if 𝑡 > 𝑇
1
, then 𝐼(𝑡) ≤ 𝑀𝐼

1
+ 𝜀. We therefore derive from the

third and the fourth equations ofmodel (2) that, for 𝑡 > 𝑇
1
+𝜏,

𝑑𝑌
1

𝑑𝑡
≤ 𝑝𝑏 (1 − 𝑚) (𝑀

𝐼

1
+ 𝜀)𝑌

2
(𝑡 − 𝜏) − (𝑟

1
+ 𝑑
1
) 𝑌
1
(𝑡) ,

𝑑𝑌
2

𝑑𝑡
= 𝑟
1
𝑌
1
(𝑡) − 𝑑

2
𝑌
2
(𝑡) − 𝑎𝑌

2

2
(𝑡) .

(45)

Consider the following auxiliary equations:

𝑑𝑧
1

𝑑𝑡
= 𝑝𝑏 (1 − 𝑚) (𝑀

𝐼

1
+ 𝜀) 𝑧

2
(𝑡 − 𝜏) − (𝑟

1
+ 𝑑
1
) 𝑧
1
(𝑡) ,

𝑑𝑧
2

𝑑𝑡
= 𝑟
1
𝑧
1
(𝑡) − 𝑑

2
𝑧
2
(𝑡) − 𝑎𝑧

2

2
(𝑡) .

(46)

If (H1) holds, then, by Lemma 2.4 in [10], it follows from (46)
that

lim
𝑡→+∞

𝑧
1
(𝑡) = (𝑝𝑏 (1 − 𝑚) (𝑀

𝐼

1
+ 𝜀)

× [𝑝𝑏𝑟
1
(1 − 𝑚) (𝑀

𝐼

1
+ 𝜀) − 𝑑

2
(𝑟
1
+ 𝑑
1
)])

× (𝑎(𝑟
1
+ 𝑑
1
)
2

)
−1

,

lim
𝑡→+∞

𝑧
2
(𝑡) =

𝑝𝑏𝑟
1
(1 − 𝑚) (𝑀

𝐼

1
+ 𝜀) − 𝑑

2
(𝑟
1
+ 𝑑
1
)

𝑎 (𝑟
1
+ 𝑑
1
)

.

(47)

By comparison, for 𝜀 > 0, sufficiently small, we obtain that

𝑀
𝑌
1

= lim sup
𝑡→+∞

𝑌
1
(𝑡)

≤
𝑝𝑏 (1 − 𝑚)𝑀

𝐼

1
[𝑝𝑏𝑟
1
(1 − 𝑚)𝑀

𝐼

1
− 𝑑
2
(𝑟
1
+ 𝑑
1
)]

𝑎(𝑟
1
+ 𝑑
1
)
2

:= 𝑀
𝑌
1

1
,

𝑀
𝑌
2

= lim sup
𝑡→+∞

𝑌
2
(𝑡)

=
𝑝𝑏𝑟
1
(1 − 𝑚)𝑀

𝐼

1
− 𝑑
2
(𝑟
1
+ 𝑑
1
)

𝑎 (𝑟
1
+ 𝑑
1
)

:= 𝑀
𝑌
2

1
.

(48)

Hence, for 𝜀 > 0, sufficiently small, there is a 𝑇
2
≥ 𝑇
1
+𝜏 such

that if 𝑡 > 𝑇
2
, then 𝑌

2
(𝑡) ≤ 𝑀

𝑌
2

1
+ 𝜀.

For 𝜀 > 0, sufficiently small, we derive from the first and
the second equations of model (2) that, for 𝑡 > 𝑇

2
,

𝑑𝑆

𝑑𝑡
= 𝑟𝑆 (1 −

𝑆 + 𝐼

𝐾
) − 𝛽𝑆𝐼,

𝑑𝐼

𝑑𝑡
≥ 𝛽𝑆𝐼 − 𝑑𝐼 − 𝑏 (1 − 𝑚) (𝑀

𝑌
2

1
+ 𝜀) 𝐼.

(49)

Consider the following auxiliary equations:

𝑑𝑥
1

𝑑𝑡
= 𝑟𝑥
1
(1 −

𝑥
1
+ 𝑥
2

𝐾
) − 𝛽𝑥

1
𝑥
2
,

𝑑𝑥
2

𝑑𝑡
= 𝛽𝑥
1
𝑥
2
− 𝑑𝑥
2
− 𝑏 (1 − 𝑚) (𝑀

𝑌
2

1
+ 𝜀) 𝑥

2
.

(50)
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If (H1) holds, then, byTheorem 3.1 in [2], it follows from (50)
that

lim
𝑡→+∞

𝑥
1
(𝑡) =

𝑑 + 𝑏 (1 − 𝑚) (𝑀
𝑌
2

1
+ 𝜀)

𝛽
,

lim
𝑡→+∞

𝑥
2
(𝑡) =

𝑟

𝐾𝛽 + 𝑟

[

[

𝐾 −
𝑑 + 𝑏 (1 − 𝑚) (𝑀

𝑌
2

1
+ 𝜀)

𝛽

]

]

.

(51)

By comparison, for 𝜀 > 0, sufficiently small, we conclude that

𝑚
𝑆
= lim inf
𝑡→+∞

𝑆 (𝑡) ≥
𝑑 + 𝑏 (1 − 𝑚)𝑀

𝑌
2

1

𝛽
:= 𝑁
𝑆

1
,

𝑚
𝐼
= lim inf
𝑡→+∞

≥
𝑟

𝐾𝛽 + 𝑟
(𝐾 −

𝑑 + 𝑏 (1 − 𝑚)𝑀
𝑌
2

1

𝛽
) := 𝑁

𝐼

1
.

(52)

Hence, for 𝜀 > 0, sufficiently small, there is a 𝑇
3
≥ 𝑇
2
such

that if 𝑡 > 𝑇
3
, then 𝐼(𝑡) ≥ 𝑁𝐼

1
− 𝜀. For 𝜀 > 0, sufficiently small,

we derive from the third and the fourth equations of model
(2) that for 𝑡 > 𝑇

3
+ 𝜏

𝑑𝑌
1

𝑑𝑡
≥ 𝑝𝑏 (1 − 𝑚) (𝑁

𝐼

1
− 𝜀)𝑌

2
(𝑡 − 𝜏) − (𝑑

1
+ 𝑟
1
) 𝑌
1
(𝑡) ,

𝑑𝑌
2

𝑑𝑡
= 𝑟
1
𝑌
1
(𝑡) − 𝑑

2
𝑌
2
(𝑡) − 𝑎𝑌

2

2
(𝑡) .

(53)

Consider the following auxiliary equations:

𝑑𝑧
1

𝑑𝑡
= 𝑝𝑏 (1 − 𝑚) (𝑁

𝐼

1
− 𝜀) 𝑧

2
(𝑡 − 𝜏) − (𝑟

1
+ 𝑑
1
) 𝑧
1
(𝑡) ,

𝑑𝑧
2

𝑑𝑡
= 𝑟
1
𝑧
1
(𝑡) − 𝑑

2
𝑧
2
(𝑡) − 𝑎𝑧

2

2
(𝑡) .

(54)

Since (H1) holds, by Lemma 2.4 of [10], it follows from (54)
that

lim
𝑡→+∞

𝑧
1
(𝑡) = (𝑝𝑏 (1 − 𝑚) (𝑁

𝐼

1
− 𝜀)

× [𝑝𝑏𝑟
1
(1 − 𝑚) (𝑁

𝐼

1
− 𝜀) − 𝑑

2
(𝑟
1
+ 𝑑
1
)])

× (𝑎(𝑟
1
+ 𝑑
1
)
2

)
−1

,

lim
𝑡→+∞

𝑧
2
(𝑡) =

𝑝𝑏𝑟
1
(1 − 𝑚) (𝑁

𝐼

1
− 𝜀) − 𝑑

2
(𝑟
1
+ 𝑑
1
)

𝑎 (𝑟
1
+ 𝑑
1
)

.

(55)

By comparison, for 𝜀 > 0, sufficiently small, we obtain that

𝑚
𝑌
1

= lim inf
𝑡→+∞

𝑌
1
(𝑡)

≥
𝑝𝑏 (1 − 𝑚)𝑁

𝐼

1
[𝑝𝑏𝑟
1
(1 − 𝑚)𝑁

𝐼

1
− 𝑑
2
(𝑟
1
+ 𝑑
1
)]

𝑎(𝑟
1
+ 𝑑
1
)
2

:= 𝑁
𝑌
1

1
,

𝑚
𝑌
2

= lim inf
𝑡→+∞

𝑌
2
(𝑡)

≥
𝑝𝑏𝑟
1
(1 − 𝑚)𝑁

𝐼

1
− 𝑑
2
(𝑟
1
+ 𝑑
1
)

𝑎 (𝑟
1
+ 𝑑
1
)

:= 𝑁
𝑌
2

1
.

(56)

Hence, for 𝜀 > 0, sufficiently small, there is a𝑇
4
≥ 𝑇
3
+𝜏, such

that if 𝑡 > 𝑇
4
, 𝑌
2
(𝑡) ≥ 𝑁

𝑌
2

1
− 𝜀.

For 𝜀 > 0, sufficiently small, we derive from the first and
the second equations of model (2) that, for 𝑡 > 𝑇

4
,

𝑑𝑆

𝑑𝑡
= 𝑟𝑆 (1 −

𝑆 + 𝐼

𝐾
) − 𝛽𝑆𝐼,

𝑑𝐼

𝑑𝑡
≤ 𝛽𝑆𝐼 − 𝑑𝐼 − 𝑏 (1 − 𝑚) (𝑁

𝑌
2

1
− 𝜀) 𝐼.

(57)

Consider the following auxiliary equations:

𝑑𝑥
1

𝑑𝑡
= 𝑟𝑥
1
(1 −

𝑥
1
+ 𝑥
2

𝐾
) − 𝛽𝑥

1
𝑥
2
,

𝑑𝑥
2

𝑑𝑡
= 𝛽𝑥
1
𝑥
2
− 𝑑𝑥
2
− 𝑏 (1 − 𝑚) (𝑁

𝑌
2

1
− 𝜀) 𝑥

2
.

(58)

If (H1) holds, then, byTheorem 3.1 in [2], it follows from (58)
that

lim
𝑡→+∞

𝑥
1
(𝑡) =

𝑑 + 𝑏 (1 − 𝑚) (𝑁
𝑌
2

1
− 𝜀)

𝛽
,

lim
𝑡→+∞

𝑥
2
(𝑡) =

𝑟

𝐾𝛽 + 𝑟

[

[

𝐾 −
𝑑 + 𝑏 (1 − 𝑚) (𝑁

𝑌
2

1
− 𝜀)

𝛽

]

]

.

(59)

By comparison, for 𝜀 > 0, sufficiently small, we obtain that

𝑀
𝑆
= lim sup
𝑡→+∞

𝑆 (𝑡) ≤
𝑑 + 𝑏 (1 − 𝑚)𝑁

𝑌
2

1

𝛽
:= 𝑀
𝑆

2
,

𝑀
𝐼
= lim sup
𝑡→+∞

≤
𝑟

𝐾𝛽 + 𝑟
(𝐾 −

𝑑 + 𝑏 (1 − 𝑚)𝑁
𝑌
2

1

𝛽
) := 𝑀

𝐼

2
.

(60)

Therefore, for 𝜀 > 0, sufficiently small, there is a 𝑇
5
≥ 𝑇
4
such

that if 𝑡 > 𝑇
5
, 𝐼(𝑡) ≤ 𝑀𝐼

2
+ 𝜀.
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For 𝜀 > 0, sufficiently small, we derive from the third and
the fourth equations of model (2) that, for 𝑡 > 𝑇

5
+ 𝜏,

𝑑𝑌
1

𝑑𝑡
≤ 𝑝𝑏 (1 − 𝑚) (𝑀

𝐼

2
+ 𝜀)𝑌

2
(𝑡 − 𝜏) − (𝑑

1
+ 𝑟
1
) 𝑌
1
(𝑡) ,

𝑑𝑌
2

𝑑𝑡
= 𝑟
1
𝑌
1
(𝑡) − 𝑑

2
𝑌
2
(𝑡) − 𝑎𝑌

2

2
(𝑡) .

(61)

Consider the following auxiliary equations:

𝑑𝑧
1

𝑑𝑡
= 𝑝𝑏 (1 − 𝑚) (𝑀

𝐼

2
+ 𝜀) 𝑧

2
(𝑡 − 𝜏) − (𝑟

1
+ 𝑑
1
) 𝑧
1
(𝑡) ,

𝑑𝑧
2

𝑑𝑡
= 𝑟
1
𝑧
1
(𝑡) − 𝑑

2
𝑧
2
(𝑡) − 𝑎𝑧

2

2
(𝑡) .

(62)

Since (H1) holds, by Lemma 2.4 of [10], it follows from (62)
that

lim
𝑡→+∞

𝑧
1
(𝑡) = (𝑝𝑏 (1 − 𝑚) (𝑀

𝐼

2
+ 𝜀)

× [𝑝𝑏𝑟
1
(1 − 𝑚) (𝑀

𝐼

2
+ 𝜀) − 𝑑

2
(𝑟
1
+ 𝑑
1
)])

× (𝑎(𝑟
1
+ 𝑑
1
)
2

)
−1

,

lim
𝑡→+∞

𝑧
2
(𝑡) =

𝑝𝑏𝑟
1
(1 − 𝑚) (𝑀

𝐼

2
+ 𝜀) − 𝑑

2
(𝑟
1
+ 𝑑
1
)

𝑎 (𝑟
1
+ 𝑑
1
)

.

(63)

By comparison, for 𝜀 > 0, sufficiently small, we conclude that

𝑀
𝑌
1

= lim sup
𝑡→+∞

𝑌
1
(𝑡)

≥
𝑝𝑏 (1 − 𝑚)𝑀

𝐼

2
[𝑝𝑏𝑟
1
(1 − 𝑚)𝑀

𝐼

2
− 𝑑
2
(𝑟
1
+ 𝑑
1
)]

𝑎(𝑟
1
+ 𝑑
1
)
2

:= 𝑀
𝑌
1

2
,

𝑀
𝑌
2

= lim sup
𝑡→+∞

𝑌
2
(𝑡)

≥
𝑝𝑏𝑟
1
(1 − 𝑚)𝑀

𝐼

2
− 𝑑
2
(𝑟
1
+ 𝑑
1
)

𝑎 (𝑟
1
+ 𝑑
1
)

:= 𝑀
𝑌
2

2
.

(64)

Therefore, for 𝜀 > 0, sufficiently small, there is a 𝑇
6
≥ 𝑇
5
+ 𝜏

such that if 𝑡 > 𝑇
6
, 𝑦
2
(𝑡) ≤ 𝑀

𝑌
2

2
+ 𝜀.

For 𝜀 > 0, sufficiently small, it follows from the first and
the second equations of model (2) that for 𝑡 > 𝑇

6

𝑑𝑆

𝑑𝑡
= 𝑟𝑆 (1 −

𝑆 + 𝐼

𝐾
) − 𝛽𝑆𝐼,

𝑑𝐼

𝑑𝑡
≥ 𝛽𝑆𝐼 − 𝑑𝐼 − 𝑏 (1 − 𝑚) (𝑀

𝑌
2

2
+ 𝜀) 𝐼 (𝑡) .

(65)

Consider the following auxiliary equations:

𝑑𝑥
1

𝑑𝑡
= 𝑟𝑥
1
(1 −

𝑥
1
+ 𝑥
2

𝐾
) − 𝛽𝑥

1
𝑥
2
,

𝑑𝑥
2

𝑑𝑡
= 𝛽𝑥
1
𝑥
2
− 𝑑𝑥
2
− 𝑏 (1 − 𝑚) (𝑀

𝑌
2

2
+ 𝜀) 𝑥

2
.

(66)

If (H1) holds, then, byTheorem 3.1 in [2], it follows from (66)
that

lim
𝑡→+∞

𝑥
1
(𝑡) =

𝑑 + 𝑏 (1 − 𝑚) (𝑀
𝑌
2

2
+ 𝜀)

𝛽
,

lim
𝑡→+∞

𝑥
2
(𝑡) =

𝑟

𝐾𝛽 + 𝑟

[

[

𝐾 −
𝑑 + 𝑏 (1 − 𝑚) (𝑀

𝑌
2

2
+ 𝜀)

𝛽

]

]

.

(67)

By comparison, for 𝜀 > 0, sufficiently small, we obtain that

𝑚
𝑆
= lim inf
𝑡→+∞

𝑆 (𝑡) ≤
𝑑 + 𝑏 (1 − 𝑚)𝑀

𝑌
2

2

𝛽
:= 𝑁
𝑆

2
,

𝑚
𝐼
= lim inf
𝑡→+∞

≤
𝑟

𝐾𝛽 + 𝑟
(𝐾 −

𝑑 + 𝑏 (1 − 𝑚)𝑀
𝑌
2

2

𝛽
) := 𝑁

𝐼

2
.

(68)

Hence, for 𝜀 > 0, sufficiently small, there is a 𝑇
7
≥ 𝑇
6
such

that if 𝑡 > 𝑇
7
, 𝐼(𝑡) ≥ 𝑁

𝐼

2
− 𝜀. We therefore obtain from the

third and the fourth equations of model (2) that for 𝑡 > 𝑇
7
+𝜏

𝑑𝑌
1

𝑑𝑡
≥ 𝑝𝑏 (1 − 𝑚) (𝑁

𝐼

2
− 𝜀)𝑌

2
(𝑡 − 𝜏) − (𝑑

1
+ 𝑟
1
) 𝑌
1
(𝑡) ,

𝑑𝑌
2

𝑑𝑡
= 𝑟
1
𝑌
1
(𝑡) − 𝑑

2
𝑌
2
(𝑡) − 𝑎𝑌

2

2
(𝑡) .

(69)

Consider the following auxiliary equations:

𝑑𝑧
1

𝑑𝑡
= 𝑝𝑏 (1 − 𝑚) (𝑁

𝐼

2
− 𝜀) 𝑧

2
(𝑡 − 𝜏) − (𝑟

1
+ 𝑑
1
) 𝑧
1
(𝑡) ,

𝑑𝑧
2

𝑑𝑡
= 𝑟
1
𝑧
1
(𝑡) − 𝑑

2
𝑧
2
(𝑡) − 𝑎𝑧

2

2
(𝑡) .

(70)

Since (H1) holds, by Lemma 2.4 of [10], it follows from (70)
that

lim
𝑡→+∞

𝑧
1
(𝑡) = (𝑝𝑏 (1 − 𝑚) (𝑁

𝐼

2
− 𝜀)

× [𝑝𝑏𝑟
1
(1 − 𝑚) (𝑁

𝐼

2
− 𝜀) − 𝑑

2
(𝑟
1
+ 𝑑
1
)])

× (𝑎(𝑟
1
+ 𝑑
1
)
2

)
−1

,

lim
𝑡→+∞

𝑧
2
(𝑡) =

𝑝𝑏𝑟
1
(1 − 𝑚) (𝑁

𝐼

2
− 𝜀) − 𝑑

2
(𝑟
1
+ 𝑑
1
)

𝑎 (𝑟
1
+ 𝑑
1
)

.

(71)
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By comparison, for 𝜀 > 0, sufficiently small, we obtain that

𝑚
𝑌
1

= lim inf
𝑡→+∞

𝑌
1
(𝑡)

≥
𝑝𝑏 (1 − 𝑚)𝑁

𝐼

2
[𝑝𝑏𝑟
1
(1 − 𝑚)𝑁

𝐼

2
− 𝑑
2
(𝑟
1
+ 𝑑
1
)]

𝑎(𝑟
1
+ 𝑑
1
)
2

:= 𝑁
𝑌
1

2
,

𝑚
𝑌
2

= lim inf
𝑡→+∞

𝑌
2
(𝑡)

≥
𝑝𝑏𝑟
1
(1 − 𝑚)𝑁

𝐼

2
− 𝑑
2
(𝑟
1
+ 𝑑
1
)

𝑎 (𝑟
1
+ 𝑑
1
)

:= 𝑁
𝑌
2

2
.

(72)

Continuing this process, we derive eight sequences
𝑀
𝑆

𝑘
,𝑀
𝐼

𝑘
,𝑀
𝑌
1

𝑘
,𝑀
𝑌
2

𝑘
, 𝑁
𝑆

𝑘
, 𝑁
𝐼

𝑘
, 𝑁
𝑌
1

𝑘
, 𝑁
𝑌
2

𝑘
(𝑘 = 1, 2, . . .) such

that, for 𝑘 ≥ 2,

𝑀
𝑆

𝑘
=
𝑑 + 𝑏 (1 − 𝑚)𝑁

𝑌
2

𝑘−1

𝛽
,

𝑀
𝐼

𝑘
=

𝑟

𝑟 + 𝐾𝛽
(𝐾 −𝑀

𝑆

𝑘
) ,

𝑀
𝑌
1

𝑘
=
𝑝𝑏 (1 − 𝑚)𝑀

𝑌
2

𝑘
𝑀
𝐼

𝑘

𝑟
1
+ 𝑑
1

,

𝑀
𝑌
2

𝑘
=
𝑝𝑏𝑟
1
(1 − 𝑚)𝑀

𝐼

𝑘
− 𝑑
2
(𝑟
1
+ 𝑑
1
)

𝑎 (𝑟
1
+ 𝑑
1
)

,

𝑁
𝑆

𝑘
=
𝑑 + 𝑏 (1 − 𝑚)𝑀

𝑌
2

𝑘

𝛽
,

𝑁
𝐼

𝑘
=

𝑟

𝑟 + 𝐾𝛽
(𝐾 − 𝑁

𝑆

𝑘
) ,

𝑁
𝑌
1

𝑘
=
𝑝𝑏 (1 − 𝑚)𝑁

𝑌
2

𝑘
𝑁
𝐼

𝑘

𝑟
1
+ 𝑑
1

,

𝑁
𝑌
2

𝑘
=
𝑝𝑏𝑟
1
(1 − 𝑚)𝑁

𝐼

𝑘
− 𝑑
2
(𝑟
1
+ 𝑑
1
)

𝑎 (𝑟
1
+ 𝑑
1
)

.

(73)

It is readily seen that

𝑁
𝑆

𝑘
≤ 𝑚
𝑆
≤ 𝑀
𝑆
≤ 𝑀
𝑆

𝑘
, 𝑁

𝐼

𝑘
≤ 𝑚
𝐼
≤ 𝑀
𝐼
≤ 𝑀
𝐼

𝑘
,

𝑁
𝑌
𝑖

𝑘
≤ 𝑚
𝑌
𝑖

≤ 𝑀
𝑌
𝑖

≤ 𝑀
𝑌
𝑖

𝑘
(𝑖 = 1, 2) .

(74)

Note that the sequences 𝑀
𝑆

𝑘
,𝑀
𝐼

𝑘
,𝑀
𝑌
1

𝑘
,𝑀
𝑌
2

𝑘
are

nonincreasing and the sequences 𝑁
𝑆

𝑘
, 𝑁
𝐼

𝑘
, 𝑁
𝑌
1

𝑘
, 𝑁
𝑌
2

𝑘
are

nondecreasing. Hence, the limit of each sequence in
𝑀
𝑆

𝑘
,𝑀
𝐼

𝑘
,𝑀
𝑌
1

𝑘
, 𝑀
𝑌
2

𝑘
, 𝑁
𝑆

𝑘
, 𝑁
𝐼

𝑘
, 𝑁
𝑌
1

𝑘
, 𝑁
𝑌
2

𝑘
exists. Denote

lim
𝑘→+∞

𝑀
𝑆

𝑘
= 𝑆, lim

𝑘→+∞

𝑀
𝐼

𝑘
= 𝐼,

lim
𝑘→+∞

𝑀
𝑌
𝑖

𝑘
= 𝑌
𝑖
, (𝑖 = 1, 2) ,

lim
𝑘→+∞

𝑁
𝑆

𝑘
= 𝑆, lim

𝑘→+∞

𝑁
𝐼

𝑘
= 𝐼,

lim
𝑘→+∞

𝑁
𝑌
𝑖

𝑘
= 𝑌
𝑖
, (𝑖 = 1, 2) .

(75)

From (73), we can obtain

𝑆 =
1

𝛽
[𝑑 + 𝑏 (1 − 𝑚)𝑌

2
] ,

𝐼 =
𝑟

𝑟 + 𝐾𝛽
(𝐾 − 𝑆) ,

𝑌
1
=
𝑝𝑏 (1 − 𝑚)𝑌

2
𝐼

𝑟
1
+ 𝑑
1

,

𝑌
2
=
𝑝𝑏𝑟
1
(1 − 𝑚) 𝐼 − 𝑑

2
(𝑟
1
+ 𝑑
1
)

𝑎 (𝑟
1
+ 𝑑
1
)

,

𝑆 =
1

𝛽
[𝑑 + 𝑏 (1 − 𝑚)𝑌

2
] ,

𝐼 =
𝑟

𝑟 + 𝐾𝛽
(𝐾 − 𝑆) ,

𝑌
1
=

𝑝𝑏 (1 − 𝑚)𝑌
2
𝐼

𝑟
1
+ 𝑑
1

,

𝑌
2
=
𝑝𝑏𝑟
1
(1 − 𝑚) 𝐼 − 𝑑

2
(𝑟
1
+ 𝑑
1
)

𝑎 (𝑟
1
+ 𝑑
1
)

.

(76)

It follows from (76) that

𝛽 (𝐾𝛽 + 𝑟) 𝐼 = 𝑟 (𝐾𝛽 − 𝑑)

+
𝑏𝑟 (1 − 𝑚) 𝑑

2

𝑎
−
𝑝𝑟𝑟
1
𝑏
2
(1 − 𝑚)

2

𝑎 (𝑟
1
+ 𝑑
1
)

𝐼,

(77)

𝛽 (𝐾𝛽 + 𝑟) 𝐼 = 𝑟 (𝐾𝛽 − 𝑑)

+
𝑏𝑟 (1 − 𝑚) 𝑑

2

𝑎
−
𝑝𝑟𝑟
1
𝑏
2
(1 − 𝑚)

2

𝑎 (𝑟
1
+ 𝑑
1
)

𝐼,

(78)

and (77) minus (78) results in

[𝛽 (𝐾𝛽 + 𝑟) −
𝑝𝑟𝑟
1
𝑏
2
(1 − 𝑚)

2

𝑎 (𝑟
1
+ 𝑑
1
)

] (𝐼 − 𝐼) = 0. (79)

If 𝑎𝛽(𝑟
1
+ 𝑑
1
)(𝐾𝛽 + 𝑟) ̸= 𝑝𝑟𝑟

1
𝑏
2
(1 − 𝑚)

2, then we derive
from (79) that 𝐼 = 𝐼. It therefore follows from (76) that
𝑆 = 𝑆, 𝑌

1
= 𝑌
1
, 𝑌
2
= 𝑌
2
. We therefore conclude that 𝐸∗

is globally attractive. The proof is complete.
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5. Conclusion

In this paper, we have incorporated a prey refuge, stage struc-
ture for the predator, and time delay due to the gestation of the
predator into an ecoepidemiological predator-preymodel. By
using Lyapunov functions and the LaSalle invariant principle,
the global stability of each of the boundary equilibria of
the model is discussed. By using the iteration technique
and comparison arguments, sufficient conditions are derived
for the global attractivity of the positive equilibrium of the
model. ByTheorem 4, we see that the predator population go
to extinction if 0 < 𝑝𝑏𝑟𝑟

1
(1−𝑚)(𝐾𝛽−𝑑) < 𝛽𝑑

2
(𝑟
1
+𝑑
1
)(𝐾𝛽+

𝑟). By Theorem 6, we see that if 𝑝𝑏𝑟𝑟
1
(1 − 𝑚)(𝐾𝛽 − 𝑑) >

𝛽𝑑
2
(𝑟
1
+𝑑
1
)(𝐾𝛽+𝑟) and 𝑎𝛽(𝑟

1
+𝑑
1
)(𝐾𝛽+𝑟) ̸= 𝑝𝑟𝑟

1
𝑏
2
(1 − 𝑚)

2,
then both the prey and the predator species of model (2) are
permanent.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgment

This work was supported by the National Natural Science
Foundation of China (11101117).

References

[1] R. M. Anderso and R. M. May, Intections Disease of Humans
Dynamics and Control, Oxford University Press, Oxford, UK,
1991.

[2] S. Wang, The research of eco-epidemiological of models incorpo-
rating prey refuges [Ph.D. thesis], Lanzhou University, 2012.

[3] W. Wang and L. Chen, “A predator-prey system with stage-
structure for predator,” Computers & Mathematics with Appli-
cations, vol. 33, no. 8, pp. 83–91, 1997.

[4] Y. N. Xiao and L. S. Chen, “Global stability of a predator-prey
system with stage structure for the predator,”Acta Mathematica
Sinica, vol. 20, no. 1, pp. 63–70, 2004.

[5] R. Xu and Z. Ma, “Stability and Hopf bifurcation in a predator-
prey model with stage structure for the predator,” Nonlinear
Analysis: Real World Applications, vol. 9, no. 4, pp. 1444–1460,
2008.

[6] W. G. Aiello andH. I. Freedman, “A time-delay model of single-
species growth with stage structure,”Mathematical Biosciences,
vol. 101, no. 2, pp. 139–153, 1990.

[7] Y. Kuang and J.W. H. So, “Analysis of a delayed two-stage popu-
lation model with space-limited recruitment,” SIAM Journal on
Applied Mathematics, vol. 55, no. 6, pp. 1675–1696, 1995.

[8] J. Hale, Theory of Functional Differential Equations, Springer,
Heidelberg, Germany, 1977.

[9] Y. Kuang, Delay Differential Equation with Application in
Population Synamic, Academic Press, NewYork, NY,USA, 1993.

[10] R. Xu and Z. Ma, “Stability and Hopf bifurcation in a predator-
prey model with stage structure for the predator,” Nonlinear
Analysis. Real World Applications, vol. 9, no. 4, pp. 1444–1460,
2008.


