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We consider a perturbed 𝑝-Laplacian equation with critical nonlinearity in R𝑁. By using variational method, we show that it has
at least one positive solution under the proper conditions.

1. Introduction and Main Results

In this paper, we are concerned with the existence of non-
trivial solutions for the following nonlinear perturbed 𝑝-
Laplacian equation with critical nonlinearity:

− 𝜀
𝑝
Δ
𝑝
𝑢 + 𝑉 (𝑥) |𝑢|

𝑝−2
𝑢

= 𝐾 (𝑥) |𝑢|
𝑝
∗

−2
𝑢 + 𝑓 (𝑥, 𝑢) , 𝑥 ∈ R

𝑁
,

𝑢 (𝑥) > 0,

𝑢 (𝑥) 󳨀→ 0 as |𝑥| 󳨀→ ∞,

(1)

where Δ
𝑝
𝑢 = div(|∇𝑢|𝑝−2∇𝑢) is the 𝑝-Laplacian operator

with 1 < 𝑝 < 𝑁,𝑁 ≥ 3,𝑝∗ = 𝑁𝑝/(𝑁−𝑝) denotes the Sobolev
critical exponent, 𝑉(𝑥) is a nonnegative potential, 𝐾(𝑥) is a
bounded positive function, and 𝑓(𝑥, 𝑢) is a superlinear but
subcritical function.

For 𝑝 = 2, (1) turns into the following Schrödinger
equation of the form

−𝜀
2
Δ𝑢 + 𝑉 (𝑥) 𝑢 = 𝐾 (𝑥) |𝑢|

2
∗

−2
𝑢 + 𝑓 (𝑥, 𝑢) , 𝑥 ∈ R𝑁.

(2)

The equation (2) has been studied extensively under vari-
ous hypotheses on the potential and nonlinearity by many
authors including Ambrosetti and Rabinowitz [1], Bartsch

and Wang [2], Brézis and Lieb [3], Brėzis and Nirenberg
[4], and Del Pino and Felmer [5] in bounded domains.
Meanwhile, we recall some works in unbounded domains
which contain Cingolani and Lazzo [6], Clapp and Ding
[7], Ding and Lin [8], Floer and Weinstein [9], Grossi [10],
Jeanjean and Tanaka [11], Kang andWei [12], Oh [13], Pistoia
[14], Rabinowitz [15], and Tang [16].

For general 𝑝 > 1, most of the work (see [17–19] and the
reference therein) dealt with (1) with 𝜀 = 1, 𝐾(𝑥) ≡ 0 and
a certain sign potential 𝑉(𝑥). Liu and Zheng [20] considered
the above mentioned problem with sign-changing potential
and subcritical 𝑝-superlinear nonlinearity. Cao et al. [21] also
studied the similar problem.However, to our best knowledge,
it seems that there is almost no work on the existence of
semi-classical solutions to the equation in R𝑁 with critical
nonlinearities. This paper will study the critical nonlinearity
case in whole space.

Throughout the paper, we make the following assump-
tion:

(𝐻
1
) 𝑉 ∈ 𝐶(R𝑁), 𝑉(0) = inf

𝑥∈R𝑁𝑉(𝑥) = 0 and there exists
𝑏 > 0 such that the set ]𝑏 := {𝑥 ∈ R𝑁 : 𝑉(𝑥) < 𝑏} has
finite Lebesgue measure;

(𝐻
2
) 𝐾(𝑥) ∈ 𝐶(R𝑁,R+), 0 < inf 𝐾 ≤ sup𝐾 < ∞;

(𝐻
3
) 𝑓 ∈ 𝐶(R𝑁 × R,R) and 𝑓(𝑥, 𝑡) = 𝑜(|𝑡|

𝑝−2
𝑡) uniformly

in 𝑥 as 𝑡 → 0;
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(𝐻
4
) there are 𝑎

0
> 0 and 𝑝 < 𝑞 < 𝑝

∗ such that |𝑓(𝑥, 𝑡)| ≤
𝑎
0
(1 + |𝑡|

𝑞−1
) for all (𝑥, 𝑡);

(𝐻
5
) there exist 𝑏

0
> 0, 𝛼 > 𝑝 and 𝜇 ∈ (𝑝, 𝑝

∗
) such that

𝐹(𝑥, 𝑡) ≥ 𝑏
0
|𝑡|
𝛼 and 𝜇𝐹(𝑥, 𝑡) ≤ 𝑓(𝑥, 𝑡)𝑡 for all (𝑥, 𝑡),

where 𝐹(𝑥, 𝑡) = ∫
𝑡

0
𝑓(𝑥, 𝑠)𝑑𝑠.

Our main result reads as follows.

Theorem 1. Assume that (𝐻
1
)–(𝐻
5
) hold. Then for any 𝜎 > 0,

there exists 𝜀
𝜎
> 0 such that if 𝜀 ≤ 𝜀

𝜎
, (1) has at least one

positive solution 𝑢
𝜀
of least energy which satisfied the following

estimate:
𝜇 − 𝑝

𝑝𝜇
∫
R𝑁

(𝜀
𝑝󵄨󵄨󵄨󵄨∇𝑢𝜀

󵄨󵄨󵄨󵄨

𝑝
+ 𝑉 (𝑥)

󵄨󵄨󵄨󵄨𝑢𝜀
󵄨󵄨󵄨󵄨

𝑝
) ≤ 𝜎𝜀

𝑁
. (3)

The main tool used in the proof of Theorem 1 is variational
method which was mainly developed in [8].Themain difficulty
in the case is to overcome the loss of the compactness of the
energy functional related to (1) because of unbounded domain
R𝑁 and critical nonlinearity. Although the energy functional
does not satisfy the (𝑃𝑆) condition, we can prove that it
possesses (𝑃𝑆)

𝑐
condition at some energy level 𝑐.

This outline of the paper is organized as follows. In
Section 2, we give the variational settings and preliminary
results. In Section 3, we show that the corresponding energy
functional satisfies (PS)

𝑐
condition at the levels less than

𝛼
0
𝜆
1−𝑁/𝑝 with some 𝛼

0
> 0 independent of 𝜆. Furthermore,

it possesses the mountain geometry structure. Section 4 is
devoted to the proof of the main result.

2. Preliminaries

Let 𝜆 = 𝜀
−𝑝 in (1). The equation (1) reads as

− Δ
𝑝
𝑢 + 𝜆𝑉 (𝑥) |𝑢|

𝑝−2
𝑢

= 𝜆𝐾 (𝑥) |𝑢|
𝑝
∗

−2
𝑢 + 𝜆𝑓 (𝑥, 𝑢) , 𝑥 ∈ R

𝑁
,

𝑢 (𝑥) > 0,

𝑢 (𝑥) 󳨀→ 0, as |𝑥| 󳨀→ ∞.

(4)

In order to prove Theorem 1, we are going to prove the
following result.

Theorem 2. Assume that (𝐻
1
)–(𝐻
5
) is satisfied. Then for any

𝜎 > 0, there exists 𝜆
𝜎
> 0 such that if 𝜆 > 𝜆

𝜎
, (4) has at least

one positive solution 𝑢
𝜆
satisfying the following estimate:

𝜇 − 𝑝

𝑝𝜇
∫
R𝑁

(
󵄨󵄨󵄨󵄨∇𝑢𝜆

󵄨󵄨󵄨󵄨

𝑝
+ 𝜆𝑉 (𝑥)

󵄨󵄨󵄨󵄨𝑢𝜆
󵄨󵄨󵄨󵄨

𝑝
) ≤ 𝜎𝜆

1−𝑁/𝑝
. (5)

Next, we introduce the space

𝐸
𝜆
(R𝑁, 𝑉)

= {𝑢 ∈ 𝑊
1,𝑝

(R𝑁) : ∫
R𝑁

𝜆𝑉 (𝑥) |𝑢|
𝑝
< ∞, 𝜆 > 0}

(6)

equipped with the norm

‖𝑢‖𝐸
𝜆

= (∫
R𝑁

(|∇𝑢|
𝑝
+ 𝜆𝑉 (𝑥) |𝑢|

𝑝
))

1/𝑝

. (7)

Note that the norm ‖ ⋅ ‖
𝐸
1

is equivalent to the one ‖ ⋅ ‖
𝐸
𝜆

for
any 𝜆 > 0. It follows from (𝐻

1
) that 𝐸

𝜆
(R𝑁, 𝑉) continuously

is embedded in𝑊1,𝑝(R𝑁). To proveTheorem2, one considers
the 𝐶1 functional 𝐼 : 𝑊1,𝑝(R𝑁) → R defined by

𝐼
𝜆 (𝑢) =

1

𝑝
∫
R𝑁

(|∇𝑢|
𝑝
+ 𝜆𝑉 (𝑥) |𝑢|

𝑝
)

−
𝜆

𝑝∗
∫
R𝑁

𝐾 (𝑥) |𝑢|
𝑝
∗

− 𝜆∫
R𝑁

𝐹 (𝑥, 𝑢)

=
1

𝑝
‖𝑢‖
𝑝

𝐸
𝜆

− 𝜆∫
R𝑁

𝐺 (𝑥, 𝑢) ,

(8)

where 𝐺(𝑥, 𝑢) = (1/𝑝
∗
)𝐾(𝑥)|𝑢|

𝑝
∗

+ 𝐹(𝑥, 𝑢).
Under the assumptions of Theorem 2, standard argu-

ments [22] show that 𝐼
𝜆
∈ 𝐶
1
(𝐸
𝜆
,R) and its critical points

are weak solutions of (4).

3. Necessary Lemmas

This section will show some lemmas which are important for
the proof of the main result.

Lemma 3. Assume that (𝐻
1
)–(𝐻
5
) is satisfied. For the (𝑃𝑆)

𝑐

sequence {𝑢
𝑛
} ⊂ 𝐸

𝜆
for 𝐼
𝜆
, we get that 𝑐 ≥ 0 and {𝑢

𝑛
} is

bounded in the space 𝐸
𝜆
.

Proof. By direct computation and the assumptions (𝐻
2
) and

(𝐻
5
), one has

𝐼
𝜆
(𝑢
𝑛
) −

1

𝜇
𝐼
󸀠

𝜆
(𝑢
𝑛
) 𝑢
𝑛

= (
1

𝑝
−
1

𝜇
)
󵄩󵄩󵄩󵄩𝑢𝑛

󵄩󵄩󵄩󵄩

𝑝

𝐸
𝜆

+ (
1

𝜇
−

1

𝑝∗
)𝜆∫

R𝑁
𝐾 (𝑥)

󵄨󵄨󵄨󵄨𝑢𝑛
󵄨󵄨󵄨󵄨

𝑝
∗

+ 𝜆∫
R𝑁

(
1

𝜇
𝑓 (𝑥, 𝑢) 𝑢 − 𝐹 (𝑥, 𝑢)) .

(9)

Together with 𝐼
𝜆
(𝑢
𝑛
) → 𝑐 and 𝐼󸀠

𝜆
(𝑢
𝑛
) → 0 as 𝑛 → ∞, we

easily get that the (PS)
𝑐
sequence is bounded in 𝐸

𝜆
and the

energy level 𝑐 ≥ 0.

By Lemma 3, there is 𝑢 ∈ 𝐸
𝜆
such that 𝑢

𝑛
⇀ 𝑢 in 𝐸

𝜆
.

Furthermore, passing to a subsequence, we have 𝑢
𝑛
→ 𝑢 in

𝐿
𝑏

loc(R
𝑁
) for any 𝑏 ∈ [𝑝, 𝑝∗) and 𝑢

𝑛
→ 𝑢 𝑎.𝑒. in R𝑁.

Lemma 4. For any 𝑠 ∈ [𝑝, 𝑝
∗
), there is a subsequence {𝑢

𝑛
𝑖

}

such that, for any 𝜀 > 0, there exists 𝑟
𝜀
> 0 with

lim
𝑖→∞

sup∫
𝐵
𝑖
\𝐵
𝑟

󵄨󵄨󵄨󵄨󵄨
𝑢
𝑛
𝑖

󵄨󵄨󵄨󵄨󵄨

𝑠

≤ 𝜀 for any 𝑟 ≥ 𝑟
𝜀
, (10)

where 𝐵
𝑟
:= {𝑥 ∈ R𝑁 : |𝑥| ≤ 𝑟}.



Abstract and Applied Analysis 3

Proof. From 𝑢
𝑛
→ 𝑢 in 𝐿𝑠loc(R

𝑁
), we have

∫
𝐵
𝑖

󵄨󵄨󵄨󵄨𝑢𝑛
󵄨󵄨󵄨󵄨

𝑠
󳨀→ ∫
𝐵
𝑖

|𝑢|
𝑠 as 𝑛 󳨀→ ∞. (11)

Thus, there exists 𝑛
𝑖
∈ N such that

∫
𝐵
𝑖

(
󵄨󵄨󵄨󵄨𝑢𝑛

󵄨󵄨󵄨󵄨

𝑠
− |𝑢|
𝑠
) <

1

𝑖
, ∀𝑛 = 𝑛

𝑖
+ 𝑗, 𝑗 = 1, 2, . . . . (12)

In particular, for 𝑛
𝑖
= 𝑛
𝑖
+ 𝑖, we have

∫
𝐵
𝑖

(
󵄨󵄨󵄨󵄨󵄨
𝑢
𝑛
𝑖

󵄨󵄨󵄨󵄨󵄨

𝑠

− |𝑢|
𝑠
) <

1

𝑖
. (13)

Note that there exists 𝑟
𝜀
> 0 satisfying

∫
R𝑁\𝐵

𝑟

(|𝑢|
𝑠
) < 𝜀 ∀𝑟 ≥ 𝑟

𝜀
. (14)

Then

∫
𝐵
𝑖
\𝐵
𝑟

󵄨󵄨󵄨󵄨󵄨
𝑢
𝑛
𝑖

󵄨󵄨󵄨󵄨󵄨

𝑠

= ∫
𝐵
𝑖
\𝐵
𝑟

(
󵄨󵄨󵄨󵄨󵄨
𝑢
𝑛
𝑖

󵄨󵄨󵄨󵄨󵄨

𝑠

− |𝑢|
𝑠
) + ∫
𝐵
𝑖
\𝐵
𝑟

|𝑢|
𝑠

= ∫
𝐵
𝑖

(
󵄨󵄨󵄨󵄨󵄨
𝑢
𝑛
𝑖

󵄨󵄨󵄨󵄨󵄨

𝑠

− |𝑢|
𝑠
) + ∫
𝐵
𝑟

(|𝑢|
𝑠
−
󵄨󵄨󵄨󵄨󵄨
𝑢
𝑛
𝑖

󵄨󵄨󵄨󵄨󵄨

𝑠

)

+ ∫
𝐵
𝑖
\𝐵
𝑟

|𝑢|
𝑠

≤
1

𝑖
+ ∫

R𝑁\𝐵
𝑟

|𝑢|
𝑠
+ ∫
𝐵
𝑟

(|𝑢|
𝑠
−
󵄨󵄨󵄨󵄨󵄨
𝑢
𝑛
𝑖

󵄨󵄨󵄨󵄨󵄨

𝑠

)

≤ 𝜀, as 𝑖 󳨀→ ∞.

(15)

This completes the proof of Lemma 4.

Let 𝜂 ∈ 𝐶
∞
(R+) be a smooth function satisfying 0 ≤

𝜂(𝑡) ≤ 1, 𝜂(𝑡) = 1 if 𝑡 ≤ 1 and 𝜂(𝑡) = 0 if 𝑡 ≥ 2. Define
𝑢̃
𝑖
(𝑥) = 𝜂(2|𝑥|/𝑖)𝑢(𝑥). It is clear that

󵄩󵄩󵄩󵄩𝑢 − 𝑢̃𝑖
󵄩󵄩󵄩󵄩𝐸
𝜆

󳨀→ 0 as 𝑖 󳨀→ ∞. (16)

Lemma 5. One has

lim
𝑖→∞

sup
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
R𝑁

(𝑓 (𝑥, 𝑢
𝑛
𝑖

) − 𝑓 (𝑥, 𝑢
𝑛
𝑖

− 𝑢̃
𝑖
) − 𝑓 (𝑥, 𝑢̃

𝑖
)) 𝜑

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
= 0

(17)

uniformly in 𝜑 ∈ 𝐸
𝜆
with ‖𝜑‖

𝐸
𝜆

≤ 1.

Proof. From (16) and the local compactness of Sobolev
embedding, for any 𝑟 ≥ 0, we have

lim
𝑖→∞

sup
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫
𝐵
𝑟

(𝑓 (𝑥, 𝑢
𝑛
𝑖

) − 𝑓 (𝑥, 𝑢
𝑛
𝑖

− 𝑢̃
𝑖
) − 𝑓 (𝑥, 𝑢̃

𝑖
)) 𝜑

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= 0

(18)

uniformly in ‖𝜑‖
𝐸
𝜆

≤ 1. For any 𝜀 > 0, it follows from (14)
that

lim
𝑖→∞

sup∫
𝐵
𝑖
\𝐵
𝑟

󵄨󵄨󵄨󵄨𝑢̃𝑖
󵄨󵄨󵄨󵄨

𝑠
≤ ∫

R𝑁\𝐵
𝑟

|𝑢|
𝑠
≤ 𝜀 (19)

for all 𝑟 ≥ 𝑟
𝜀
. By Lemma 4 and (𝐻

3
)-(𝐻
4
), we obtain

lim
𝑖→∞

sup
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
R𝑁

(𝑓 (𝑥, 𝑢
𝑛
𝑖

) − 𝑓 (𝑥, 𝑢
𝑛
𝑖

− 𝑢̃
𝑖
) − 𝑓 (𝑥, 𝑢̃

𝑖
)) 𝜑

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= lim
𝑖→∞

sup
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫
𝐵
𝑖
\𝐵
𝑟

(𝑓 (𝑥, 𝑢
𝑛
𝑖

) − 𝑓 (𝑥, 𝑢
𝑛
𝑖

− 𝑢̃
𝑖
)

− 𝑓 (𝑥, 𝑢̃
𝑖
)) 𝜑

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝑎
1
lim
𝑖→∞

sup∫
𝐵
𝑖
\𝐵
𝑟

(
󵄨󵄨󵄨󵄨󵄨
𝑢
𝑛
𝑖

󵄨󵄨󵄨󵄨󵄨

𝑝−1

+
󵄨󵄨󵄨󵄨𝑢̃𝑖
󵄨󵄨󵄨󵄨

𝑝−1
)
󵄨󵄨󵄨󵄨𝜑
󵄨󵄨󵄨󵄨

+ 𝑎
2
lim
𝑖→∞

sup∫
𝐵
𝑖
\𝐵
𝑟

(
󵄨󵄨󵄨󵄨󵄨
𝑢
𝑛
𝑖

󵄨󵄨󵄨󵄨󵄨

𝑞−1

+
󵄨󵄨󵄨󵄨𝑢̃𝑖
󵄨󵄨󵄨󵄨

𝑞−1
)
󵄨󵄨󵄨󵄨𝜑
󵄨󵄨󵄨󵄨

≤ 𝑎
1
lim
𝑖→∞

sup(󵄩󵄩󵄩󵄩󵄩𝑢𝑛𝑖
󵄩󵄩󵄩󵄩󵄩

𝑝−1

𝐿
𝑝(𝐵𝑖\𝐵𝑟)

+
󵄩󵄩󵄩󵄩𝑢̃𝑖

󵄩󵄩󵄩󵄩

𝑝−1

𝐿
𝑝(𝐵𝑖\𝐵𝑟)

)
󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩𝐿
𝑝
(𝐵
𝑖
\𝐵
𝑟
)

+ 𝑎
2
lim
𝑖→∞

sup(󵄩󵄩󵄩󵄩󵄩𝑢𝑛𝑖
󵄩󵄩󵄩󵄩󵄩

𝑞−1

𝐿
𝑞(𝐵𝑖\𝐵𝑟)

+
󵄩󵄩󵄩󵄩𝑢̃𝑖

󵄩󵄩󵄩󵄩

𝑞−1

𝐿
𝑞(𝐵𝑖\𝐵𝑟)

)

×
󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩𝐿
𝑞
(𝐵
𝑖
\𝐵
𝑟
)

≤ 𝑎
3
𝜀
(𝑝−1)/𝑝

+ 𝑎
4
𝜀
(𝑞−1)/𝑞

.

(20)

This shows that the desired conclusion holds.

Lemma 6. One has along a subsequence

𝐼
𝜆
(𝑢
𝑛
− 𝑢̃
𝑛
) 󳨀→ 𝑐 − 𝐼

𝜆 (𝑢) ,

𝐼
󸀠

𝜆
(𝑢
𝑛
− 𝑢̃
𝑛
) 󳨀→ 0 in 𝐸

−1

𝜆
(the dual space of 𝐸

𝜆
) .

(21)

Proof. By Lemma 2.1 of [23] and the arguments of [24], we
have

𝐼
𝜆
(𝑢
𝑛
− 𝑢̃
𝑛
)

=
1

𝑝
∫
R𝑁

(
󵄨󵄨󵄨󵄨∇𝑢𝑛 − ∇𝑢̃𝑛

󵄨󵄨󵄨󵄨

𝑝
+ 𝜆𝑉 (𝑥)

󵄨󵄨󵄨󵄨𝑢𝑛 − 𝑢̃𝑛
󵄨󵄨󵄨󵄨

𝑝
)

−
𝜆

𝑝∗
∫
R𝑁

𝐾 (𝑥)
󵄨󵄨󵄨󵄨𝑢𝑛 − 𝑢̃𝑛

󵄨󵄨󵄨󵄨

𝑝
∗

− 𝜆∫
R𝑁

𝐹 (𝑥, 𝑢
𝑛
− 𝑢̃
𝑛
)

= 𝐼
𝜆
(𝑢
𝑛
) − 𝐼
𝜆
(𝑢̃
𝑛
)

+
𝜆

𝑝∗
∫
R𝑁

𝐾 (𝑥) (
󵄨󵄨󵄨󵄨𝑢𝑛

󵄨󵄨󵄨󵄨

𝑝
∗

−
󵄨󵄨󵄨󵄨𝑢𝑛 − 𝑢̃𝑛

󵄨󵄨󵄨󵄨

𝑝
∗

−
󵄨󵄨󵄨󵄨𝑢̃𝑛

󵄨󵄨󵄨󵄨

𝑝
∗

)

+ 𝜆∫
R𝑁

(𝐹 (𝑥, 𝑢
𝑛
) − 𝐹 (𝑥, 𝑢

𝑛
− 𝑢̃
𝑛
) − 𝐹 (𝑥, 𝑢̃

𝑛
))

+ 𝑜 (1) .

(22)
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By (16) and the similar idea of proving the Brézis-Lieb Lemma
[3], we easily get

lim
𝑛→∞

∫
R𝑁

𝐾 (𝑥) (
󵄨󵄨󵄨󵄨𝑢𝑛

󵄨󵄨󵄨󵄨

𝑝
∗

−
󵄨󵄨󵄨󵄨𝑢𝑛 − 𝑢̃𝑛

󵄨󵄨󵄨󵄨

𝑝
∗

−
󵄨󵄨󵄨󵄨𝑢̃𝑛

󵄨󵄨󵄨󵄨

𝑝
∗

) = 0,

lim
𝑛→∞

∫
R𝑁

(𝐹 (𝑥, 𝑢
𝑛
) − 𝐹 (𝑥, 𝑢

𝑛
− 𝑢̃
𝑛
) − 𝐹 (𝑥, 𝑢̃

𝑛
)) = 0.

(23)

Together with the fact 𝐼
𝜆
(𝑢
𝑛
) → 𝑐 and 𝐼

𝜆
(𝑢̃
𝑛
) → 𝐼

𝜆
(𝑢), one

has

𝐼
𝜆
(𝑢
𝑛
− 𝑢̃
𝑛
) 󳨀→ 𝑐 − 𝐼

𝜆 (𝑢) . (24)

Next, we will check the fact 𝐼󸀠
𝜆
(𝑢
𝑛
− 𝑢̃
𝑛
) → 0 in 𝐸

−1

𝜆
. For any

𝜑 ∈ 𝐸
𝜆
, we have

𝐼
󸀠

𝜆
(𝑢
𝑛
− 𝑢̃
𝑛
) 𝜑

= 𝐼
󸀠

𝜆
(𝑢
𝑛
) 𝜑 − 𝐼

󸀠

𝜆
(𝑢̃
𝑛
) 𝜑

+ 𝜆∫
R𝑁

𝐾 (𝑥) (
󵄨󵄨󵄨󵄨𝑢𝑛

󵄨󵄨󵄨󵄨

𝑝
∗

−2
𝑢
𝑛
−
󵄨󵄨󵄨󵄨𝑢𝑛 − 𝑢̃𝑛

󵄨󵄨󵄨󵄨

𝑝
∗

−2
(𝑢
𝑛
− 𝑢̃
𝑛
)

−
󵄨󵄨󵄨󵄨𝑢̃𝑛

󵄨󵄨󵄨󵄨

𝑝
∗

−2
𝑢̃
𝑛
) 𝜑

+ 𝜆∫
R𝑁

(𝑓 (𝑥, 𝑢
𝑛
) − 𝑓 (𝑥, 𝑢

𝑛
− 𝑢̃
𝑛
) − 𝑓 (𝑥, 𝑢̃

𝑛
)) 𝜑

+ 𝑜 (1) .

(25)

By the standard argument, it follows that

lim
𝑛→∞

∫
R𝑁

𝐾 (𝑥) (
󵄨󵄨󵄨󵄨𝑢𝑛

󵄨󵄨󵄨󵄨

𝑝
∗

−2
𝑢
𝑛
−
󵄨󵄨󵄨󵄨𝑢𝑛 − 𝑢̃𝑛

󵄨󵄨󵄨󵄨

𝑝
∗

−2
(𝑢
𝑛
− 𝑢̃
𝑛
)

−
󵄨󵄨󵄨󵄨𝑢̃𝑛

󵄨󵄨󵄨󵄨

𝑝
∗

−2
𝑢̃
𝑛
) 𝜑 = 0

(26)

uniformly in ‖𝜑‖
𝐸
𝜆

≤ 1. Together with Lemma 5, we get the
desired conclusion.

Set 𝑢1
𝑛
= 𝑢
𝑛
− 𝑢̃
𝑛
; then, 𝑢

𝑛
− 𝑢 = 𝑢

1

𝑛
+ (𝑢̃
𝑛
− 𝑢). From (16),

it shows that 𝑢
𝑛
→ 𝑢 in 𝐸

𝜆
if and only if 𝑢1

𝑛
→ 0 in 𝐸

𝜆
.

Furthermore, we have

𝐼
𝜆
(𝑢
1

𝑛
) −

1

𝑝
𝐼
󸀠

𝜆
(𝑢
1

𝑛
) 𝑢
1

𝑛

= (
1

𝑝
−

1

𝑝∗
)𝜆∫

R𝑁
𝐾 (𝑥)

󵄨󵄨󵄨󵄨󵄨
𝑢
1

𝑛

󵄨󵄨󵄨󵄨󵄨

𝑝
∗

+ 𝜆∫
R𝑁

(
1

𝑝
𝑢
1

𝑛
𝑓 (𝑥, 𝑢

1

𝑛
) − 𝐹 (𝑥, 𝑢

1

𝑛
))

≥
𝜆

𝑁
∫
R𝑁

𝐾 (𝑥)
󵄨󵄨󵄨󵄨󵄨
𝑢
1

𝑛

󵄨󵄨󵄨󵄨󵄨

𝑝
∗

≥
𝜆

𝑁
𝐾min

󵄩󵄩󵄩󵄩󵄩
𝑢
1

𝑛

󵄩󵄩󵄩󵄩󵄩

𝑝
∗

𝑝
∗
,

(27)

where𝐾min = inf
𝑥∈R𝑁𝐾(𝑥) > 0.

By the facts that 𝐼
𝜆
(𝑢
1

𝑛
) → 𝑐 − 𝐼

𝜆
(𝑢) and 𝐼

󸀠

𝜆
(𝑢
1

𝑛
) →

0 in 𝐸
−1

𝜆
, one has

󵄩󵄩󵄩󵄩󵄩
𝑢
1

𝑛

󵄩󵄩󵄩󵄩󵄩

𝑝
∗

𝑝
∗
≤
𝑁 (𝑐 − 𝐼

𝜆 (𝑢))

𝜆𝐾min
+ 𝑜 (1) . (28)

Let𝑉
𝑏
(𝑥) := max{𝑉(𝑥), 𝑏}, where 𝑏 is the positive constant in

the assumption (𝐻
1
). Since the set ]

𝑏
has finite measure and

𝑢
1

𝑛
→ 0 in 𝐿𝑝loc(R

𝑁
), we get

∫
R𝑁

𝑉 (𝑥)
󵄨󵄨󵄨󵄨󵄨
𝑢
1

𝑛

󵄨󵄨󵄨󵄨󵄨

𝑝

= ∫
R𝑁

𝑉
𝑏 (𝑥)

󵄨󵄨󵄨󵄨󵄨
𝑢
1

𝑛

󵄨󵄨󵄨󵄨󵄨

𝑝

+ 𝑜 (1) . (29)

From (𝐻
2
)–(𝐻
5
) and Young inequality, there exists 𝐶

𝑏
> 0

such that

∫
R𝑁

(𝐾 (𝑥)
󵄨󵄨󵄨󵄨󵄨
𝑢
1

𝑛

󵄨󵄨󵄨󵄨󵄨

𝑝
∗

+ 𝑢
1

𝑛
𝑓 (𝑥, 𝑢

1

𝑛
)) ≤ 𝑏

󵄩󵄩󵄩󵄩󵄩
𝑢
1

𝑛

󵄩󵄩󵄩󵄩󵄩

𝑝

𝑝
+ 𝐶
𝑏

󵄩󵄩󵄩󵄩󵄩
𝑢
1

𝑛

󵄩󵄩󵄩󵄩󵄩

𝑝
∗

𝑝
∗
.

(30)

Next, we consider the energy level of the functional 𝐼
𝜆
below

which the (PS)
𝑐
condition held.

Lemma 7. Assume that the assumptions of Theorem 2 are
satisfied. There exists 𝛼

0
> 0 (independent of 𝜆) such that,

for any (𝑃𝑆)
𝑐
sequence {𝑢

𝑛
} ⊂ 𝐸

𝜆
for 𝐼
𝜆
with 𝑢

𝑛
⇀ 𝑢, either

𝑢
𝑛
→ 𝑢 in 𝐸

𝜆
or 𝑐 − 𝐼

𝜆
(𝑢) ≥ 𝛼

0
𝜆
1−(𝑁/𝑝).

Proof. Assume that 𝑢
𝑛
󴀀󴀂󴀠 𝑢; then,

lim inf
𝑛→∞

󵄩󵄩󵄩󵄩󵄩
𝑢
1

𝑛

󵄩󵄩󵄩󵄩󵄩𝐸
𝜆

> 0,

𝑐 − 𝐼
𝜆 (𝑢) > 0.

(31)

By the Sobolev inequality, (29), and (30), we get

𝑆
󵄩󵄩󵄩󵄩󵄩
𝑢
1

𝑛

󵄩󵄩󵄩󵄩󵄩

𝑝

𝑝
∗

≤ ∫
R𝑁

󵄨󵄨󵄨󵄨󵄨
∇𝑢
1

𝑛

󵄨󵄨󵄨󵄨󵄨

𝑝

= ∫
R𝑁

(
󵄨󵄨󵄨󵄨󵄨
∇𝑢
1

𝑛

󵄨󵄨󵄨󵄨󵄨

𝑝

+ 𝜆𝑉 (𝑥)
󵄨󵄨󵄨󵄨󵄨
𝑢
1

𝑛

󵄨󵄨󵄨󵄨󵄨

𝑝

) − 𝜆∫
R𝑁

𝑉 (𝑥)
󵄨󵄨󵄨󵄨󵄨
𝑢
1

𝑛

󵄨󵄨󵄨󵄨󵄨

𝑝

= 𝜆∫
R𝑁

𝐾 (𝑥)
󵄨󵄨󵄨󵄨󵄨
𝑢
1

𝑛

󵄨󵄨󵄨󵄨󵄨

𝑝
∗

+ 𝑢
1

𝑛
𝑓 (𝑥, 𝑢

1

𝑛
) − 𝜆

× ∫
R𝑁

𝑉
𝑏 (𝑥)

󵄨󵄨󵄨󵄨󵄨
𝑢
1

𝑛

󵄨󵄨󵄨󵄨󵄨

𝑝

+ 𝑜 (1)

≤ 𝜆𝑏
󵄩󵄩󵄩󵄩󵄩
𝑢
1

𝑛

󵄩󵄩󵄩󵄩󵄩

𝑝

𝑝
+ 𝜆𝐶
𝑏

󵄩󵄩󵄩󵄩󵄩
𝑢
1

𝑛

󵄩󵄩󵄩󵄩󵄩

𝑝
∗

𝑝
∗
− 𝜆𝑏

󵄩󵄩󵄩󵄩󵄩
𝑢
1

𝑛

󵄩󵄩󵄩󵄩󵄩

𝑝

𝑝
+ 𝑜 (1)

= 𝜆𝐶
𝑏

󵄩󵄩󵄩󵄩󵄩
𝑢
1

𝑛

󵄩󵄩󵄩󵄩󵄩

𝑝
∗

𝑝
∗
+ 𝑜 (1) ,

(32)

where 𝑆 is the best Sobolev constant of the immersion

𝑆‖𝑢‖
𝑝

𝑝
∗ ≤ ∫

R𝑁
|∇𝑢|
𝑝

∀𝑢 ∈ 𝑊
1,𝑝

(R
𝑁
) . (33)
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This gives

𝑆 ≤ 𝜆𝐶
𝑏

󵄩󵄩󵄩󵄩󵄩
𝑢
1

𝑛

󵄩󵄩󵄩󵄩󵄩

𝑝
∗

−𝑝

𝑝
∗

+ 𝑜 (1)

≤ 𝜆𝐶
𝑏
(
𝑁(𝑐 − 𝐼

𝜆
(𝑢))

𝜆𝐾min
)

𝑝/𝑁

+ 𝑜 (1)

= 𝜆
1−𝑝/𝑁

𝐶
𝑏
(

𝑁

𝐾min
)

𝑝/𝑁

(𝑐 − 𝐼
𝜆
(𝑢))
𝑝/𝑁

+ 𝑜 (1) .

(34)

Set 𝛼
0
= 𝑆
𝑁/𝑝

𝐶
−𝑁/𝑝

𝑏
𝑁
−1
𝐾min; then,

𝛼
0
𝜆
1−𝑁/𝑝

≤ 𝑐 − 𝐼
𝜆 (𝑢) + 𝑜 (1) . (35)

This proof is completed.

FromLemma7,wewill show that 𝐼
𝜆
satisfies the following

local (PS)
𝑐
condition.

Lemma 8. Assume that (𝐻
1
)–(𝐻
5
) is satisfied. There exists

a constant 𝛼
0
> 0 (independent of 𝜆) such that, if a (𝑃𝑆)

𝑐

sequence {𝑢
𝑛
} ⊂ 𝐸
𝜆
for 𝐼
𝜆
satisfies 𝑐 ≤ 𝛼

0
𝜆
1−𝑁/𝑝, the sequence

{𝑢
𝑛
} has a strongly convergent subsequence in 𝐸

𝜆
.

Proof. By Lemma 7, we easily obtain the required conclusion.

Now, we consider 𝜆 ≥ 1. The following standard
arguments show that the energy functional 𝐼

𝜆
possesses the

mountain-pass structure.

Lemma 9. Under the assumptions of Theorem 2, there exist
𝛼
𝜆
, 𝜌
𝜆
> 0 such that

𝐼
𝜆 (𝑢) > 0 if 0 < ‖𝑢‖𝐸

𝜆

< 𝜌
𝜆
,

𝐼
𝜆 (𝑢) ≥ 𝛼

𝜆
if ‖𝑢‖𝐸

𝜆

= 𝜌
𝜆
.

(36)

Proof. By (30) and (𝐻
5
), for any 𝛿 > 0, there is 𝐶

𝛿
> 0 such

that

∫
R𝑁

𝐺 (𝑥, 𝑢) ≤ 𝛿‖𝑢‖
𝑝

𝑝
+ 𝐶
𝛿‖𝑢‖
𝑝
∗

𝑝
∗ . (37)

Thus

𝐼
𝜆 (𝑢) =

1

𝑝
‖𝑢‖
𝑝

𝐸
𝜆

− 𝜆∫
R𝑁

𝐺 (𝑥, 𝑢)

≥
1

𝑝
‖𝑢‖
𝑝

𝐸
𝜆

− 𝜆𝛿‖𝑢‖
𝑝

𝑝
− 𝜆𝐶
𝛿‖𝑢‖
𝑝
∗

𝑝
∗ .

(38)

Observe that ‖𝑢‖𝑝
𝑝
≤ 𝑎
5
‖𝑢‖
𝑝

𝐸
𝜆

. Choosing 𝛿 ≤ (2𝑝𝜆𝑎
5
)
−1,

𝐼
𝜆 (𝑢) ≥

1

2𝑝
‖𝑢‖
𝑝

𝐸
𝜆

− 𝜆𝐶
𝛿‖𝑢‖
𝑝
∗

𝑝
∗ . (39)

The fact 𝑝∗ > 𝑝 implies the desired conclusion.

Lemma 10. For any finite dimensional subspace 𝐹 ⊂ 𝐸
𝜆
, we

have

𝐼
𝜆 (𝑢) 󳨀→ −∞, 𝑢 ∈ 𝐸

𝜆
as ‖𝑢‖𝐸

𝜆

󳨀→ ∞. (40)

Proof. By the assumption (𝐻
5
), one has

𝐼
𝜆 (𝑢) ≤

1

𝑝
‖𝑢‖
𝑝

𝛼
− 𝜆𝑏
0‖𝑢‖
𝛼

𝛼
∀𝑢 ∈ 𝐸

𝜆
. (41)

Since all norms in a finite-dimensional space are equivalent
and 𝛼 > 𝑝, this implies the desired conclusion.

Lemma 8 shows that 𝐼
𝜆
satisfies (PS)

𝑐
𝜆

condition for 𝜆
large enough and 𝑐

𝜆
small sufficiently. In the following, we

will find special finite-dimensional subspaces by which we
establish sufficiently small minimax levels.

Define the functional

Φ
𝜆 (𝑢) =

1

𝑝
∫
R𝑁

(|∇𝑢|
𝑝
+ 𝜆𝑉 (𝑥) |𝑢|

𝑝
) − 𝜆𝑏

0
∫
R𝑁

|𝑢|
𝛼
. (42)

It is apparent that Φ
𝜆
∈ 𝐶
1
(𝐸
𝜆
) and 𝐼

𝜆
(𝑢) ≤ Φ

𝜆
(𝑢) for all

𝑢 ∈ 𝐸
𝜆
.

Note that

inf {∫
R𝑁

󵄨󵄨󵄨󵄨∇𝜙
󵄨󵄨󵄨󵄨

𝑝
: 𝜙 ∈ 𝐶

∞

0
(R
𝑁
,R) ,

󵄩󵄩󵄩󵄩𝜙
󵄩󵄩󵄩󵄩𝐿𝛼(R𝑁)

= 1} = 0.

(43)

For any 𝛿 > 0, there is 𝜙
𝛿
∈ 𝐶
∞

0
(R𝑁,R) with ‖𝜙

𝛿
‖
𝐿
𝛼
(R𝑁) =

1 and supp𝜙
𝛿
⊂ 𝐵
𝑟
𝛿

(0) such that ‖∇𝜙
𝛿
‖
𝑝

𝑝
< 𝛿. Let 𝑒

𝜆
(𝑥) =

𝜙
𝛿
(
𝑝

√𝜆𝑥), then supp 𝑒
𝜆
⊂ 𝐵
𝜆
−1/𝑝
𝑟
𝛿

(0). For any 𝑡 ≥ 0, we have

Φ
𝜆
(𝑡𝑒
𝜆
) =

𝑡
𝑝

𝑝

󵄩󵄩󵄩󵄩𝑒𝜆
󵄩󵄩󵄩󵄩

𝑝

𝐸
𝜆

− 𝑏
0
𝜆𝑡
𝛼
∫
R𝑁

󵄨󵄨󵄨󵄨󵄨
𝜙
𝛿
(
𝑝

√𝜆𝑥)
󵄨󵄨󵄨󵄨󵄨

𝛼

= 𝜆
1−𝑁/𝑝

𝐽
𝜆
(𝑡𝜙
𝛿
) ,

(44)

where

𝐽
𝜆 (𝑢) =

1

𝑝
∫
R𝑁

(|∇𝑢|
𝑝
+ 𝑉 (𝜆

−(1/𝑝)
𝑥) |𝑢|
𝑝
) − 𝑏
0
∫
R𝑁

|𝑢|
𝛼
.

(45)

By direct computation, we easily get

max
𝑡≥0

𝐽
𝜆
(𝑡𝜙
𝛿
)

≤
𝛼 − 𝑝

𝑝𝛼(𝛼𝑏
0
)
𝑝/(𝛼−𝑝)

(∫
R𝑁

(
󵄨󵄨󵄨󵄨∇𝜙𝛿

󵄨󵄨󵄨󵄨

𝑝

+𝑉 (𝜆
−1/𝑝

𝑥)
󵄨󵄨󵄨󵄨𝜙𝛿

󵄨󵄨󵄨󵄨

𝑝
) )

𝛼/(𝛼−𝑝)

.

(46)

In connection with 𝑉(0) = 0 and ‖∇𝜙
𝛿
‖
𝑝

𝑝
< 𝛿, it shows that

there exists Λ
𝛿
> 0 such that for all 𝜆 ≥ Λ

𝛿
, we have

max
𝑡≥0

𝐼
𝜆
(𝑡𝜙
𝛿
) ≤ (

𝛼 − 𝑝

𝑝𝛼(𝛼𝑏
0
)
𝑝/(𝛼−𝑝)

(2𝛿)
𝛼/(𝛼−𝑝)

)𝜆
1−𝑁/𝑝

. (47)

It follows from (47) that
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Lemma 11. Assume that (𝐻
1
)–(𝐻
5
) is satisfied. For any 𝜎 > 0,

there is Λ
𝜎
> 0 such that 𝜆 ≥ Λ

𝜎
; there exists 𝑒

𝜆
∈ 𝐸
𝜆
with

‖𝑒
𝜆
‖
𝐸
𝜆

> 𝜌
𝜆
; we have 𝐼

𝜆
(𝑒
𝜆
) ≤ 0 and

max
𝑡≥0

𝐼
𝜆
(𝑡𝑒
𝜆
) ≤ 𝜎𝜆

1−𝑁/𝑝
, (48)

where 𝜌
𝜆
is defined in Lemma 9.

Proof. This proof is similar to the one of Lemma 4.3 in [8], so
we omit it.

4. Proof of Theorem 2

In the following, we will give the proof of Theorem 2.

Proof. By Lemma 11, for any 𝜎 > 0 with 0 < 𝜎 < 𝛼
0
, there is

Λ
𝜎
> 0 such that for 𝜆 ≥ Λ

𝜎
, we obtain

𝑐
𝜆
= inf
𝛾∈Γ
𝜆

max
𝑡∈[0,1]

𝐼
𝜆
(𝛾 (𝑡)) ≤ 𝜎𝜆

1−𝑁/𝑝
, (49)

where Γ
𝜆
= {𝛾 ∈ 𝐶([0, 1], 𝐸

𝜆
) : 𝛾(0) = 0, 𝛾(1) = 𝑒

𝜆
}.

It follows from Lemma 8 that 𝐼
𝜆
satisfies (𝑃𝑆)

𝑐
𝜆

condition.
Hence, by the mountain-pass theorem, there exists 𝑢

𝜆
∈ 𝐸
𝜆

which satisfies 𝐼
𝜆
(𝑢
𝜆
) = 𝑐
𝜆
and 𝐼󸀠
𝜆
(𝑢
𝜆
) = 0. Actually, 𝑢

𝜆
is a

weak solution of (4). Similar to the argument in [8], we also
get that 𝑢

𝜆
is a positive least energy solution.

In the end, we show that the solution 𝑢
𝜆
satisfies the

estimate (5). We easily get

𝐼
𝜆
(𝑢
𝜆
) = 𝐼
𝜆
(𝑢
𝜆
) −

1

𝜇
𝐼
󸀠

𝜆
(𝑢
𝜆
) (𝑢
𝜆
)

= (
1

𝑝
−
1

𝜇
)
󵄩󵄩󵄩󵄩𝑢𝜆

󵄩󵄩󵄩󵄩

𝑝

𝐸
𝜆

+ (
1

𝜇
−

1

𝑝∗
)𝜆∫

R𝑁
𝐾 (𝑥)

󵄨󵄨󵄨󵄨𝑢𝜆
󵄨󵄨󵄨󵄨

𝑝
∗

+ 𝜆∫
R𝑁

(
1

𝜇
𝑢
𝜆
𝑓 (𝑥, 𝑢

𝜆
) − 𝐹 (𝑥, 𝑢

𝜆
))

≥ (
1

𝑝
−
1

𝜇
)
󵄩󵄩󵄩󵄩𝑢𝜆

󵄩󵄩󵄩󵄩

𝑝

𝐸
𝜆

.

(50)

Note that 𝐼
𝜆
(𝑢
𝜆
) = 𝑐
𝜆
and 𝑐
𝜆
≤ 𝜎𝜆
1−𝑁/𝑝 and it implies the

required conclusion. The proof is complete.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

The authors would like to appreciate the referees for their
precious comments and suggestions about the original
manuscript.This researchwas supported by the Fundamental
Research Funds for the Central Universities (2013XK03)
and the National Training Programs of Innovation and
Entrepreneurship for Undergraduates (201310290049).

References

[1] A. Ambrosetti and P. H. Rabinowitz, “Dual variational methods
in critical point theory and applications,” Journal of Functional
Analysis, vol. 14, no. 4, pp. 349–381, 1973.

[2] T. Bartsch and Z. Q. Wang, “Existence and multiplicity results
for some superlinear elliptic problems onR𝑁,”Communications
in Partial Differential Equations, vol. 20, no. 9-10, pp. 1725–1741,
1995.
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