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Hadjidimos (1978) proposed a classical accelerated overrelaxation (AOR) iterative method to solve the system of linear equations,
and discussed its convergence under the conditions that the coefficient matrices are irreducible diagonal dominant, L-matrices, and
consistently orders matrices. In this paper, a new version of the AOR method is presented. Some convergence results are derived
when the coefficient matrices are irreducible diagonal dominant,H-matrices, symmetric positive definite matrices, and L-matrices.
A relational graph for the new AOR method and the original AOR method is presented. Finally, a numerical example is presented
to illustrate the efficiency of the proposed method.

1. Introduction

Consider the following linear system:

𝐴𝑥 = 𝑏, (1)

where 𝐴 ∈ R𝑛×𝑛, 𝑏 ∈ R𝑛 are given and 𝑥 ∈ R𝑛 is
unknown. System of form (1) appears in many applications
such as linear elasticity, fluid dynamics, and constrained
quadratic programming [1–4]. When the coefficient matrix
of the linear system (1) is large and sparse, iterative methods
are recommended against direct methods. In order to solve
(1) more effectively by using the iterative methods, usually,
efficient splittings of the coefficientmatrix𝐴 are required. For
example, the classical Jacobi and Gauss-Seidel iterations are
obtained by splitting the matrix 𝐴 into its diagonal and off-
diagonal parts.

For the numerical solution of (1), the accelerated over-
relaxation (AOR) method was introduced by Hadjidimos in
[5] and is a two-parameter generalization of the successive
overrelaxation (SOR) method. In certain cases the AOR
method has better convergence rate than Jacobi, JOR, Gauss-
Seidel, or SOR method [5, 6]. Sufficient conditions for the
convergence of the AOR method have been considered by
many authors including [6–14]. To improve the convergence

rate of the AOR method, the preconditioned AOR (PAOR)
method has been considered by many authors including
[15–21]. Although Krylov subspace methods [4, 22] are
considered as one kind of the important and efficient iterative
techniques for solving the large sparse linear systems because
these methods are cheap to be implemented and are able
to fully exploit the sparsity of the coefficient matrix, Krylov
subspacemethods are very slow or even fail to converge when
the coefficient matrix of (1) is often extremely ill-conditioned
and highly indefinite.

The purpose of this paper is to present a new version
of the accelerated overrelaxation (AOR) method for the
linear system (1), which is called the quasi accelerated
overrelaxation (QAOR) method. We discuss some sufficient
conditions for the convergence of the QAOR method when
the coefficient matrices are irreducible diagonal dominant,
𝐻-matrices, symmetric positive definite matrices, and 𝐿-
matrices.

The remainder of the paper is organized as follows. In
Section 2 the QAOR method is derived. In Section 3, some
convergence results are given for the QAOR method when
the coefficient matrices are irreducible diagonal dominant,
𝐻-matrices, symmetric positive definite matrices, and 𝐿-
matrices. A relational graph for QAOR and AOR is presented
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in Section 4. Finally, in Section 5 a numerical example is
presented to illustrate the efficiency of the proposed method.

2. The QAOR Method

To introduce the QAOR method, firstly, a brief review of the
classical AOR method is required.

For any splitting, 𝐴 = 𝑀 − 𝑁 with det(𝑀) ̸= 0, the basic
iterative method for solving (1) is

𝑥
(𝑖+1)

= 𝑀
−1

𝑁𝑥
(𝑖)

+ 𝑀
−1

𝑏, 𝑖 = 0, 1, . . . . (2)

Let

𝐴 = 𝐷 − 𝐴
𝐿
− 𝐴
𝑈
, (3)

where 𝐷 is a nonsingular diagonal matrix and 𝐴
𝐿
and 𝐴

𝑈

are strictly lower and upper triangular matrices, respectively.
Then the classical AOR method in [5] is defined:

(𝐷 − 𝑟𝐴
𝐿
) 𝑥
(𝑖+1)

= [(1 − 𝜔)𝐷 + (𝜔 − 𝑟)𝐴
𝐿
+ 𝜔𝐴
𝑈
] 𝑥
(𝑖)

+ 𝜔𝑏,

𝑖 = 1, 2, . . . ,

(4)

where 𝑟 is an acceleration parameter and 𝜔 is an overrelax-
ation parameter. Its iterative matrix is

𝐿
𝑟,𝜔

= (𝐷 − 𝑟𝐴
𝐿
)
−1

[(1 − 𝜔)𝐷 + (𝜔 − 𝑟)𝐴
𝐿
+ 𝜔𝐴
𝑈
]

= (𝐼 − 𝑟𝐿)
−1

[(1 − 𝜔) 𝐼 + (𝜔 − 𝑟) 𝐿 + 𝜔𝑈] ,

(5)

where 𝐿 = 𝐷
−1

𝐴
𝐿
and 𝑈 = 𝐷

−1

𝐴
𝑈
. Obviously, the iterative

matrix of the Jacobi method is 𝐿
0,1
, the iterative matrix of the

Gauss-Seidel method is 𝐿
1,1
, and the iterative matrix of the

successive overrelaxation (SOR) method is 𝐿
𝜔,𝜔

.
In fact, if we introduce matrices

𝑀
1
= 𝐷 − 𝑟𝐴

𝐿
,

𝑁
1
= (1 − 𝜔)𝐷 + (𝜔 − 𝑟)𝐴

𝐿
+ 𝜔𝐴
𝑈
,

(6)

then

𝐴 =
1

𝜔
(𝑀
1
− 𝑁
1
) , 𝐿

𝑟,𝜔
= 𝑀
−1

1
𝑁
1
. (7)

Therefore, one can readily verify that the AORmethod can be
induced by the matrix splitting 𝐴 = (1/𝜔)(𝑀

1
− 𝑁
1
).

To establish theQAORmethod,we consider the following
matrix splitting of the coefficient matrix 𝐴; that is to say,

𝑀
2
= (1 + 𝜔)𝐷 − 𝑟𝐴

𝐿
,

𝑁
2
= 𝐷 + (𝜔 − 𝑟)𝐴

𝐿
+ 𝜔𝐴
𝑈
.

(8)

Then

𝐴 =
1

𝜔
(𝑀
2
− 𝑁
2
) . (9)

Based on the above matrix splitting (8), the QAORmethod is
defined as follows:

((1 + 𝜔)𝐷 − 𝑟𝐴
𝐿
) 𝑥
(𝑖+1)

= [𝐷 + (𝜔 − 𝑟)𝐴
𝐿
+ 𝜔𝐴
𝑈
] 𝑥
(𝑖)

+ 𝜔𝑏, 𝑖 = 1, 2, . . . ,

(10)

and its iterative matrix is
𝑄
𝑟,𝜔

= ((1 + 𝜔)𝐷 − 𝑟𝐴
𝐿
)
−1

[𝐷 + (𝜔 − 𝑟)𝐴
𝐿
+ 𝜔𝐴
𝑈
]

= ((1 + 𝜔) 𝐼 − 𝑟𝐿)
−1

[𝐼 + (𝜔 − 𝑟) 𝐿 + 𝜔𝑈] .

(11)

Comparing the QAOR method with the AOR method, it
is easy to see that the iteration matrix of the QAOR method
is similar to that of the AOR method. Based on this fact, the
QAOR method may conserve all the advantages of the AOR
method. If 𝜔 = 𝑟, the QAOR reduces to the QSOR method.
The QSOR method is called the KSOR method as well [23,
24].

Next, we will discuss some sufficient conditions for the
convergence of the QAOR method when the coefficient
matrices are irreducible diagonal dominant, 𝐻-matrices,
symmetric positive definite matrices, and 𝐿-matrices.

3. Main Results

When 𝐴 is an irreducible matrix with weak diagonal dom-
inance, obviously, both the coefficient matrix 𝐴 and the
corresponding diagonal matrix 𝐷 are nonsingular. Based on
this case, we have the following theorem for the QAOR
method.

Theorem 1. If 𝐴 is an irreducible matrix with weak diagonal
dominance, then the QAOR method converges for all −1 ≤ 𝑟 ≤

1 and 𝜔 > 0.

Proof. We assume that for the eigenvalue 𝜆 of 𝑄
𝑟,𝜔

we have
|𝜆| ≥ 1. For this eigenvalue the relationship below holds:

det (𝑄
𝑟,𝜔

− 𝜆𝐼) = 0. (12)

By performing a simple series of transformations, we have
det (𝑊) = 0, (13)

where

𝑊 = 𝐼 −
𝑟 (𝜆 − 1) + 𝜔

𝜆 − 1 + 𝜆𝜔
𝐿 −

𝜔

𝜆 − 1 + 𝜆𝜔
𝑈. (14)

The coefficients of 𝐿 and 𝑈 in (14) are less than one in
modulus. To prove this it is sufficient and necessary to prove
that

|𝜆 − 1 + 𝜆𝜔| ≥ |𝑟 (𝜆 − 1) + 𝜔| ,

|𝜆 − 1 + 𝜆𝜔| ≥ |𝜔| .

(15)

If 𝜆−1 = 𝑞𝑒
𝑖𝜃 where 𝑞 and 𝜃 are real with 0 < 𝑞 ≤ 1, then the

first inequality in (15) is equivalent to

(1 − 𝑟
2

) (1 + 𝑞
2

) − ((1 − 𝑟
2

) + (1 + 𝑟) 𝜔) 2𝑞 cos 𝜃

+ 2𝜔 + 𝜔
2

− 𝜔
2

𝑞
2

+ 2𝑟𝜔𝑞
2

≥ 0,

(16)
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which holds for 𝑟 = −1 (in this case, obviously, 𝜔(1 − 𝑞
2

)(2 +

𝜔) ≥ 0). Since (1 − 𝑟
2

) + (1 + 𝑟)𝜔 ≥ 0, (16) holds for all real 𝜃
if and only if it holds for cos 𝜃 = 1. Thus, (16) is equivalent to

(1 − 𝑟
2

) (1 − 𝑞)
2

+ 𝜔 [𝜔 (1 − 𝑞
2

) + 2 (1 − 𝑞) (1 − 𝑟𝑞)] ≥ 0,

(17)

which is true. The second inequality in (15) is equivalent to

(1 + 𝜔)
2

− 2𝑞 (1 + 𝜔) cos 𝜃 + 𝑞
2

− 𝜔
2

𝑞
2

≥ 0, (18)

which, for the same reason, must be satisfied for cos 𝜃 = 1.
Thus, we have

(1 + 𝜔)
2

+ 𝑞 (1 + 𝜔
2

) ≥ 0, (19)

which is also true. That is, for all −1 ≤ 𝑟 ≤ 1 and 𝜔 > 0, 𝑊 is
nonsingular which contradicts with det(𝑊) = 0. Therefore,
𝜌(𝑄
𝑟,𝜔

) < 1.

When 𝐴 = 𝐷 − 𝐴
𝐿
− 𝐴
𝑈
is an 𝐻-matrix, it follows that

𝜌(|𝐵|) < 1 with

𝐵 = 𝐷
−1

(𝐴
𝐿
+ 𝐴
𝑈
) = 𝐿 + 𝑈. (20)

Theorem 2. If𝐴 is an𝐻-matrix and 0 ≤ 𝑟 ≤ 𝜔 (𝜔 ̸= 0), then
the QAOR method converges.

Proof. Let 𝑄 = ((1 + 𝜔)𝐼 − 𝑟|𝐿|). Then

((1 + 𝜔) 𝐼 − 𝑟𝐿)

−1


=
1

1 + 𝜔



(𝐼 −
𝑟

1 + 𝜔
𝐿)

−1

=
1

1 + 𝜔



𝐼+
𝑟

1 + 𝜔
𝐿 +

𝑟
2

(1 + 𝜔)
2
𝐿
2

+ ⋅ ⋅ ⋅ +
𝑟
𝑛−1

(1 + 𝜔)
𝑛−1

𝐿
𝑛−1



≤
1

1 + 𝜔
(𝐼 +

𝑟

1 + 𝜔
|𝐿| +

𝑟
2

(1 + 𝜔)
2
|𝐿|
2

+ ⋅ ⋅ ⋅ +
𝑟
𝑛−1

(1 + 𝜔)
𝑛−1

|𝐿|
𝑛−1

)

= ((1 + 𝜔) 𝐼 − 𝑟 |𝐿|)
−1

= 𝑄
−1

.

(21)

Let 𝑅 = 𝐼 + (𝜔 − 𝑟)|𝐿| + 𝜔|𝑈|. Then

|𝐼 + (𝜔 − 𝑟) 𝐿 + 𝜔𝑈| ≤ 𝐼 + (𝜔 − 𝑟) |𝐿| + 𝜔 |𝑈| . (22)

Obviously, we have

𝑄𝑟,𝜔
 =


((1 + 𝜔) 𝐼 − 𝑟𝐿)

−1

× (𝐼 + (𝜔 − 𝑟) 𝐿 + 𝜔𝑈)

≤ 𝑄
−1

𝑅,

(23)

which implies

𝜌 (𝑄
𝑟𝜔
) ≤ 𝜌 (𝑄

−1

𝑅) . (24)

𝜌(𝑄
−1

𝑅) < 1 if and only if

𝑄 − 𝑅 = (1 + 𝜔) 𝐼 − 𝑟 |𝐿|

− (𝐼 + (𝜔 − 𝑟) |𝐿| + 𝜔 |𝑈|) = 𝜔 (𝐼 − |𝐵|)

(25)

is a monotonematrix. Since𝐴 is an𝐻-matrix, then 𝜔(𝐼− |𝐵|)

is a monotone matrix. Therefore it is completed.

Let

𝑄 =
1

𝜔
((1 + 𝜔)𝐷 − 𝑟𝐴

𝐿
) ,

𝑅 =
1

𝜔
(𝐷 + (𝜔 − 𝑟)𝐴

𝐿
+ 𝜔𝐴
𝑈
) .

(26)

When 𝐴 = 𝐷 − 𝐴
𝐿
− 𝐴
𝑈
is symmetric positive definite,

obviously, 𝑄 is nonsingular. It is easy to see that

𝐴 = 𝑄 − 𝑅 , 𝑄
𝑟,𝜔

= 𝑄
−1

𝑅. (27)

In this case, the QAORmethod converges if𝑀 = 𝑄+𝑄
𝑇

−𝐴

is positive definite [2]. By the simple computations, we have

𝑀 =
2 + 𝜔

𝜔
𝐷 +

𝜔 − 𝑟

𝜔
(𝐴
𝐿
+ 𝐴
𝑈
) . (28)

That is to say, the QAOR method converges if

𝐷
−1/2

𝑀𝐷
−1/2

=
2 + 𝜔

𝜔
𝐼 +

𝜔 − 𝑟

𝜔
𝐷
−1/2

(𝐴
𝐿
+ 𝐴
𝑈
)𝐷
−1/2

(29)

is positive definite. Let 𝜇
𝑖

(𝑖 = 1, 2, . . . , 𝑛) be eigenvalues of
𝐷
−1/2

(𝐴
𝐿
+ 𝐴
𝑈
)𝐷
−1/2. The left in (29) is positive definite if

and only if

2 + 𝜔

𝜔
+

𝜔 − 𝑟

𝜔
𝜇
𝑖
> 0, 𝑖 = 1, 2, . . . , 𝑛. (30)

Since𝐷−1/2(𝐴
𝐿
+𝐴
𝑈
)𝐷
−1/2 and𝐷

−1

(𝐴
𝐿
+𝐴
𝑈
) = 𝐵 are similar,

then both have the same eigenvalues. Let 𝜇 = min
𝑖
𝜇
𝑖
. If the

following inequality is satisfied

(2 + 𝜔) + (𝜔 − 𝑟) 𝜇 > 0, for𝜔 > 0, (31)

then the QAOR method converges. Therefore, we have the
following theorem.

Theorem 3. Assume that 𝐴 = 𝐷 − 𝐴
𝐿
− 𝐴
𝑈
is symmetric

positive definite. Let 𝜇
𝑖

(𝑖 = 1, 2, . . . , 𝑛) be eigenvalues of 𝐵 =

𝐷
−1

(𝐴
𝐿
+ 𝐴
𝑈
), 𝜇 = min

𝑖
𝜇
𝑖
, and 0 ≤ 𝑟 ≤ 𝜔 (𝜔 ̸= 0). If

(2 + 𝜔) + (𝜔 − 𝑟) 𝜇 > 0, (32)

then the QAOR method converges.

When 𝐴 = 𝐷 − 𝐴
𝐿
− 𝐴
𝑈
is an 𝐿-matrix, the following

theorem is derived.

Theorem 4. If 𝐴 is an 𝐿-matrix and 0 ≤ 𝑟 ≤ 𝜔 (𝜔 ̸= 0), then
the QAOR method converges for 𝜌(𝐿

0,1
) < 1.
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Proof. Assume that 𝜆 = 𝜌(𝑄
𝑟,𝜔

) ≥ 1. Based on our assump-
tions, we easily get that

𝐼 + (𝜔 − 𝑟) 𝐿 + 𝜔𝑈 ≥ 0, (33)

((1 + 𝜔) 𝐼 − 𝑟𝐿)
−1

=
1

1 + 𝜔
(𝐼 −

𝑟

1 + 𝜔
𝐿)

−1

=
1

1 + 𝜔
[𝐼 +

𝑟

1 + 𝜔
𝐿 +

𝑟
2

(1 + 𝜔)
2
𝐿
2

+ ⋅ ⋅ ⋅ +
𝑟
𝑛−1

(1 + 𝜔)
𝑛−1

𝐿
𝑛−1

]

≥ 0.

(34)

Thus, for the iteration matrix 𝑄
𝑟,𝜔

we have

𝑄
𝑟,𝜔

= ((1 + 𝜔) 𝐼 − 𝑟𝐿)
−1

[𝐼 + (𝜔 − 𝑟) 𝐿 + 𝜔𝑈] ≥ 0. (35)

That is, 𝑄
𝑟,𝜔

is a nonnegative matrix. If 𝑥 ̸= 0 is the
corresponding eigenvector, we have

𝑄
𝑟,𝜔

𝑥 = 𝜆𝑥, (36)

which is equivalent to

(
𝜔 − 𝑟 + 𝑟𝜆

𝜔
𝐿 + 𝑈)𝑥 =

𝜆 − 1 + 𝜆𝜔

𝜔
𝑥. (37)

From (37), we have

𝜆 − 1 + 𝜆𝜔

𝜔
≤ 𝜌(

𝜔 − 𝑟 + 𝑟𝜆

𝜔
𝐿 + 𝑈) . (38)

Obviously, (𝜔 − 𝑟 + 𝑟𝜆)/𝜔 ≥ 1. Therefore,

0 ≤
𝜔 − 𝑟 + 𝑟𝜆

𝜔
𝐿 + 𝑈 ≤

𝜔 − 𝑟 + 𝑟𝜆

𝜔
(𝐿 + 𝑈)

=
𝜔 − 𝑟 + 𝑟𝜆

𝜔
𝐿
0,1

.

(39)

Combining (38) with (39), we have

𝜆 − 1 + 𝜆𝜔 ≤ (𝜔 − 𝑟 + 𝑟𝜆) 𝜌 (𝐿
0,1

) . (40)

By simple manipulation, we have

𝜌 (𝐿
0,1

) ≥
𝜆 − 1 + 𝜆𝜔

𝜔 − 𝑟 + 𝑟𝜆
≥ 1. (41)

If 𝜌(𝐿
0,1

) < 1, then

𝜆 − 1 + 𝜆𝜔

𝜔 − 𝑟 + 𝑟𝜆
< 1, (42)

which implies 𝜆 < 1 so that if 𝜌(𝐿
0,1

) < 1 then so does the
QAOR method.

Further, we have the following theorem.

Theorem 5. Let 𝐴 = 𝐷 − 𝐴
𝐿
− 𝐴
𝑈
be an L-matrix and 𝜆 =

𝜌(𝑄
𝑟,𝜔

). If 0 ≤ 𝑟 ≤ 𝜔 (𝜔 ̸= 0), then

𝜆 − 1 + 𝜆𝜔

𝜔
= 𝜌(

𝜔 − 𝑟 + 𝑟𝜆

𝜔
𝐿 + 𝑈) . (43)

Proof. Based onTheorem 4, obviously, here it is need to prove

𝜆 − 1 + 𝜆𝜔

𝜔
≥ 𝜌(

𝜔 − 𝑟 + 𝑟𝜆

𝜔
𝐿 + 𝑈) . (44)

Let 𝜌(((𝜔−𝑟+𝑟𝜆)/𝜔)𝐿+𝑈) = 𝑎.There exists a nonzero vector
𝑦 ≥ 0 such that

[
𝜔 − 𝑟 + 𝑟𝜆

𝜔
𝐿 + 𝑈]𝑦 = 𝑎𝑦, (45)

which is equivalent to

((1 + 𝜔) 𝐼 −
𝜆 (1 + 𝜔) 𝑟

1 + 𝜔𝑎
𝐿)

−1

× [𝐼 + (𝜔 − 𝑟) 𝐿 + 𝜔𝑈] 𝑦 =
𝜔𝑎 + 1

1 + 𝜔
𝑦.

(46)

Let

𝑇 = ((1 + 𝜔) 𝐼 −
𝜆 (1 + 𝜔) 𝑟

1 + 𝜔𝑎
𝐿)

−1

[𝐼 + (𝜔 − 𝑟) 𝐿 + 𝜔𝑈] .

(47)

Obviously, (𝜔𝑎 + 1)/(1 + 𝜔) ≤ 𝜌(𝑇). Since 𝜆 − 1 + 𝜆𝜔 ≤ 𝜔𝑎,
we have

((1 + 𝜔) 𝐼 −
𝜆 (1 + 𝜔) 𝑟

1 + 𝜔𝑎
𝐿)

−1

≤ ((1 + 𝜔) 𝐼 − 𝑟𝐿)
−1

, (48)

which implies 𝑇 ≤ 𝑄
𝑟,𝜔
. Therefore, we have

𝜔𝑎 + 1

1 + 𝜔
≤ 𝜌 (𝑇) ≤ 𝜌 (𝑄

𝑟,𝜔
) = 𝜆. (49)

That is to say,

𝑎 ≤
𝜆 − 1 + 𝜆𝜔

𝜔
, (50)

which is completed.

Some remarks on (43) are given as follows.
(i) Obviously, 𝜆 ≥ 1/(1 + 𝜔). If 𝜆 = 1, then 𝜌(𝐵) = 1.
(ii) If 𝜆 = 1/(1 + 𝜔), then 𝜌(𝐵) = 0. In fact, we have

0 = 𝜌(
𝜔 − 𝑟 + 𝑟 (1/ (1 + 𝜔))

𝜔
𝐿 + 𝑈)

= 𝜌((1 −
𝑟

1 + 𝜔
)𝐿 + 𝑈)

≥ (1 −
𝑟

1 + 𝜔
) 𝜌 (𝐵) .

(51)

(iii) 0 < 𝜌(𝐵) < 1 if and only if 1/(1 + 𝜔) < 𝜆 < 1. In this
case, from (43) we have

(𝜔 − 𝑟) 𝜌 (𝐵) + 1

1 + 𝜔 − 𝑟𝜌 (𝐵)
≤ 𝜆 ≤

𝜔𝜌 (𝐵) + 1

1 + 𝜔
. (52)

(iv) 𝜌(𝐵) > 1 if and only if 𝜆 > 1.
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Table 1: 𝜌, IT, and RES of QAOR.

𝑛 𝑤 𝑟 𝜌 IT CPU
8 0.9 0.6 0.575 63 0.015
16 0.95 0.2 0.7188 102 0.056
20 0.9 0.3 0.8068 155 0.084
25 0.8 0.4 0.9198 385 0.156

Table 2: 𝜌, IT, and RES of QSOR.

𝑛 𝑤 𝜌 IT CPU
8 0.9 0.5726 62 0.015
16 0.95 0.6977 94 0.035
20 0.9 0.789 141 0.076
25 0.8 0.9123 352 0.098

4. A Relational Graph for QAOR and AOR

Based on the above discussion, we have

𝑄
𝑟,𝜔

= ((1 + 𝜔)𝐷 − 𝑟𝐴
𝐿
)
−1

[𝐷 + (𝜔 − 𝑟)𝐴
𝐿
+ 𝜔𝐴
𝑈
]

= ((1 + 𝜔) 𝐼 − 𝑟𝐿)
−1

[𝐼 + (𝜔 − 𝑟) 𝐿 + 𝜔𝑈]

= (𝐼 −
𝑟

1 + 𝜔
𝐿)

−1

[
1

1 + 𝜔
𝐼 +

𝜔 − 𝑟

1 + 𝜔
𝐿 +

𝜔

1 + 𝜔
𝑈]

= (𝐼 −
𝑟

1 + 𝜔
𝐿)

−1

× [(1 −
𝜔

1 + 𝜔
) 𝐼 +

𝜔 − 𝑟

1 + 𝜔
𝐿 +

𝜔

1 + 𝜔
𝑈] .

(53)

Let 𝑠 = 𝜔/(1 + 𝜔) and 𝑡 = 𝑟/(1 + 𝜔). Therefore, we have

𝑄
𝑟,𝜔

= (𝐼 − 𝑡𝐿)
−1

[(1 − 𝑠) 𝐼 + (𝑠 − 𝑡) 𝐿 + 𝑠𝑈] = 𝐿
𝑡,𝑠
. (54)

That is to say, when 𝑠 = 𝜔/(1 + 𝜔) and 𝑡 = 𝑟/(1 + 𝜔), the
QAOR method reduces to the AOR method. Based on this
case, Figure 1 describes the relationship between the QAOR
method and the AOR method.

5. Numerical Example

Now let us consider the following example to assess the
feasibility and effectiveness of the QAOR iteration method.
Suppose that 𝑏 = 𝐴𝑒 (𝑒 = (1, 1, . . . , 1)

𝑇

) and the coefficient
matrix 𝐴 of (1) is given by

𝐴 =

{{{{{

{{{{{

{

𝑎
𝑖𝑗
=

1

10𝑗
−

1

20
, 𝑖 > 𝑗,

𝑎
𝑖𝑖
= 1,

𝑎
𝑖𝑗
=

1

10 (𝑖 − 𝑗)
−

1

20
, 𝑖 < 𝑗.

(55)

The initial guess for all tests is zero. The tests are
performed in MATLAB 7.0. In Tables 1 and 2, we list the
value of the spectral radius 𝜌 of iterative matrix, the iteration

AOR 

KSOR 

QAOR SOR 

Jacobi 

Gauss-Seidel

t = s

s = 1

s = 0

t = 1

s =
𝜔

1 + 𝜔

s =
𝜔

1 + 𝜔

t =
r

1 + 𝜔

𝜔 = r

Figure 1: A graph for QAOR and AOR.

numbers (IT), and CPU’s time (CPU) with the different value
of𝑤 and 𝑟 when the QAOR (QSOR) iteration is used to solve
the linear system (1).

From Tables 1 and 2, the iteration numbers and CPU’s
time of QSOR are less than those of QAOR.That is to say, the
QAOR iteration is not much better than the QSOR iteration
under certain conditions.
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[11] L. Cvetković and V. Kostić, “A note on the convergence of the
AORmethod,” Applied Mathematics and Computation, vol. 194,
no. 2, pp. 394–399, 2007.

[12] Z. X. Gao and T. Z. Huang, “Convergence of AOR method,”
Applied Mathematics and Computation, vol. 176, no. 1, pp. 134–
140, 2006.

[13] J.-Y. Yuan and X.-Q. Jin, “Convergence of the generalized AOR
method,” Applied Mathematics and Computation, vol. 99, no. 1,
pp. 35–46, 1999.

[14] W. Li and W.-W. Sun, “Comparison results for parallel multi-
splitting methods with applications to AOR methods,” Linear
Algebra and Its Applications, vol. 331, no. 1–3, pp. 131–144, 2001.

[15] J. H. Yun, “Comparison results of the preconditioned AOR
methods for 𝐿-matrices,” Applied Mathematics and Computa-
tion, vol. 218, no. 7, pp. 3399–3413, 2011.

[16] H.-J. Wang and Y.-T. Li, “A new preconditioned AOR iterative
method for L-matrices,” Journal of Computational and Applied
Mathematics, vol. 229, no. 1, pp. 47–53, 2009.

[17] S. Wu and T. Huang, “A modified AOR-type iterative method
for L-matrix linear systems,”The ANZIAM Journal, vol. 49, no.
2, pp. 281–292, 2007.

[18] Y.-T. Li, C.-X. Li, and S.-L. Wu, “Improvements of precon-
ditioned AOR iterative method for L-matrices,” Journal of
Computational and Applied Mathematics, vol. 206, no. 2, pp.
656–665, 2007.

[19] Y.-T. Li, C.-X. Li, and S.-L. Wu, “Improving AOR method for
consistent linear systems,” Applied Mathematics and Computa-
tion, vol. 186, no. 1, pp. 379–388, 2007.

[20] L. Wang and Y.-Z. Song, “Preconditioned AOR iterative meth-
ods for 𝑀-matrices,” Journal of Computational and Applied
Mathematics, vol. 226, no. 1, pp. 114–124, 2009.

[21] M. Wu, L. Wang, and Y. Song, “Preconditioned AOR iterative
method for linear systems,” Applied Numerical Mathematics,
vol. 57, no. 5–7, pp. 672–685, 2007.

[22] Z. Bai, “Sharp error bounds of some Krylov subspace methods
for non-Hermitian linear systems,” Applied Mathematics and
Computation, vol. 109, no. 2-3, pp. 273–285, 2000.

[23] I. K. Youssef, “On the successive overrelaxation method,”
Journal of Mathematics and Statistics, vol. 8, no. 2, pp. 176–184,
2012.

[24] I. K. Youssef and A. A. Taha, “On the modified successive over-
relaxationmethod,”AppliedMathematics andComputation, vol.
219, no. 9, pp. 4601–4613, 2013.


