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The stockmarket has the huge effect and influence on a country or region’s economic and financial activities. But we have found that
it is very hard for the prediction and control.This illustrates a critical need for new and fundamental understanding of the structure
and dynamics of stock markets. Previous research and analysis on stock markets often focused on some assumptions of the game
of competition and cooperation. Under the condition of these assumptions, the conclusions often reflect just part of the problem.
The stock price is the core reflections of a stock market. So, in this paper, the authors introduce a methodology for constructing
stock networks based on stock prices in a stock market and detecting dynamic communities in it. This strategy will help us from a
new macroperspective to explore and mine the characteristics and laws hiding in the big data of stock markets. Through statistical
analysis of many characteristics of dynamic communities, some interesting phenomena are found in this paper. These results are
new findings in finance data analysis field and will potentially contribute to the analysis and decision-making of a financial market.
The method presented in this paper can also be used to analyze other similar financial systems.

1. Introduction

The stock market is a dynamic complex system formed from
many enterprises, institutions, and individuals, which are
connected with each other by trade, investment, and so forth.
The stockmarket has a great effect and influence on a country
or region’s economic and financial activities. But we have
noticed that it is very difficult to predict and control it. There
is an urgent need to have a new and global understanding of
the structures and dynamic characteristics of stock market.

Previous researches on stock markets mainly focused on
some competition and cooperation games under specified
conditions. Because of the high complexity of the stock
market, the conclusions under the limited conditions often
only reflect a part of the problems. This forces us to adopt a
new study mode, from a more macroperspective, to explore
the characteristics and reasons behind stockmarkets complex
changes.

From chaos to complexity, from the molecular activities
of cells in our body to the communications between people

in our entire planet, complex network theory provides a new
method to explore the world for us. Particularly, from 15
years ago, Barabási published his pioneering paper of scale-
free network [1]; complex networks have attracted the interest
of many researchers in different fields of the world. And
a large number of research results have been produced in
recent years.These research achievements provide a powerful
tool and reference for our understanding of the real world
complex systems, such as protein interaction networks in the
field of biology, social networks, and scientists collaboration
networks in the field of sociology [2, 3]. The theory and tools
of complex networks also provide us with a new perspective
to study stock markets. The price of stocks is the final and
most core reflection of a stockmarket; therefore, in this paper,
we construct stock networks based on stock prices and study
the evolution characteristics of the community structure in
it, by using complex network theory and tools. The evolution
characteristics of community structure in time series not
only reflect the changes of a stock group, but also reflect the
stock market’s global features. Through such a new research
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approach, from a more macropoint of view, we can mine and
reveal the underlying characteristics and laws hiding in the
big data of stock markets.

In this paper, we constructed stock networks based on
prices of stocks in a stock market. The stock network refers
to the graph consisting of nodes (vertices) and edges, where
nodes correspond to stocks (companies) and edges between
them to price fluctuation relationships, which are constructed
by computing a correlation coefficient of each pair of stocks.
Mantegna is the first person to construct stock networks
based on stock price correlations [4]. After that, many
papers based on stock price correlations were presented. For
example, Onnela et al. studied split-adjusted daily closure
prices for a total of 𝑁 = 477 stocks traded at the New
York Stock Exchange over the period of 20 years, from 2
Juanuary 1980 to 31 December 1999 [5, 6]. They constructed
dynamic asset graphs and dynamic asset trees based on price
correlations and discussed their properties and differences.
Kullmann et al. studied the clustering of companies within
a specific stock market index, like the Dow Jones (DJ)
or the Standard & Poor’s 500 (S&P 500), by using the
Potts superparamagnetic method [7]. They constructed an
appropriate q-state Potts model, where the spins correspond
to companies and the interactions are functions of stock
price correlations. Boginski et al. studied characteristics of
the stock network representing the structure of the US stock
market and detected cliques and independent sets in it [8].
Jallo et al. constructed three kinds of stock networks based
on American and Swedish stock markets and compared the
characteristics of three construction methods [9]. Vizgunov
et al. constructed the stock network for different time periods
from 2007 to 2011, based on the Russian stock market. They
found that for the Russianmarket there is a strong connection
between the volume of stocks and the structure of maximum
cliques for all periods of the observations [10, 11]. Huang et al.
constructed a correlation network of the China stock market
using the threshold method and then studied the structural
properties and the topological stability of the network [12].

More specifically, in this paper, we study the split-adjusted
daily closure prices for 𝑁 = 400 stocks which were traded
at the Hong Kong Exchanges (HKEx) over the period of
10 years and construct stock networks based on stock price
correlations. Different from the literatures mentioned above,
we focus on the properties of dynamic communities in the
networks. Since one of the most relevant features of networks
representing real systems is community structure, which is
the organization of nodes with many edges joining nodes of
the same communities and comparatively few edges joining
nodes of different communities [13]. Moreover, a financial
market is characterized as an evolving complex system [14].
So the evolution (or change) of communities is analyzed
in this paper. Basic events that may occur in a community
evolution are birth, growth, contraction, merger with other
communities, split, and death, which were systematically
proposed by Palla et al. in the literature [15]. Therefore, we
believe that the analysis of dynamic communities in a stock
market is more meaningful than static ones and that is a new
macroperspective to understanding a stock market. Through
the analysis, we find several phenomena as follows. First,

the evolution of communities in stock networks is different
from other networks, such as social networks in the literature
[15] and, second, correlativity exists between the characters
of dynamic community structure and the fluctuation of the
stock market. These results potentially contribute to market
analysis and decision-making.

The paper is structured as follows. Section 2 describes
how to construct stock networks. In Section 3, we describe
how to detect and match communities in the networks. The
analysis of dynamic communities is then offered in Section 4.
Finally, in Section 5, we summarize our findings and present
some thoughts on future researches.

2. Constructing Stock Networks

In this paper, the term stock networks refers to a set of
undirected graphs, where the nodes correspond to stocks
and the edges correspond to correlation coefficients between
them.The data set is stocks’ daily closure prices traded at the
Hong Kong Exchanges (HKEx). We chose 𝑁 = 400 stocks
and collect the stock data over the period of 10 years, from
3 January 2000 to 6 August 2010. We construct networks
by the split-adjusted daily closure prices of stocks, in a total
of 2616 price quotes per stock. The data is divided into 𝑀
windows of width 𝑇 in order to uncover dynamic charac-
teristics of the networks. The window width 𝑇 corresponds
to the number of daily returns included in the window. A
number of consecutive windows overlap with each other.The
starting time of a window is determined by the window step
length parameter 𝛿𝑇, which describes the displacement of
the window, measured in trading days. The data windowing
method and some associated parameters are illustrated in
Figure 1.

Let𝑃
𝑖
(𝜏) be the closure price of the stock 𝑖 at time 𝜏, where

𝜏 refers to a date. Given a time window 𝑡, 𝑡 = 1, 2, . . . ,𝑀,
let the return vector of stock 𝑖 in the window 𝑡 be 𝑟𝑡
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where ⟨⋅⟩ indicates a time average over𝑇days.The correlation
coefficient 𝜌𝑡

𝑖𝑗
fulfills the condition −1 ≤ 𝜌𝑡

𝑖𝑗
≤ 1, and the value

of 𝜌𝑡
𝑖𝑗
reflects the level of correlations between the stock 𝑖 and

stock 𝑗, from the perfect correlation (𝜌𝑡
𝑖𝑗
= 1) to the perfect

anticorrelation (𝜌𝑡
𝑖𝑗
= −1).Those correlation coefficients form

an 𝑁 × 𝑁 correlation matrix 𝐶𝑡, which is the basis of stock
networks constructed in this paper.

To construct stock networks, we need to discuss two
parameters, 𝑇 and 𝛿𝑇, first. Onnela et al. have used this
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Figure 1: The data windowing method and parameters.

kind of correlation coefficients, and the method of time
windows division to construct asset graphs can be found in
the literature [6]. They also point out that the choice of 𝑇 is a
trade-off between too noisy and too smoothed data for small
and large 𝑇, respectively.They find out that 𝛿𝑇 = 21 days and
𝑇 = 1000 days are optimal values [16]. However, we find that
𝑇 = 1000 is not suitable for our data, although 𝛿𝑇 = 21 is a
good choice through many experiments. Some experimental
results can be seen in Figures 2 and 3.

Let 𝑇 = {1000, 400, 200, 100} and let the window step
length 𝛿𝑇 = 21 (fixed at about one month). Figure 2 shows
four plots of the mean correlation coefficient as a function of
time, defined as

𝜌 (𝑡) =
1

𝑁 (𝑁 − 1) /2
∑

𝜌
𝑡

𝑖𝑗
∈𝐶
𝑡

𝜌
𝑡

𝑖𝑗
. (2)

To have a clearer picture of correlation coefficients, Figure 3
shows four contour plots of probability density functions for
the correlation coefficients with different 𝑇 values. From the
visual point of view, it is difficult to say which is the optimal
𝑇 value. It seems that set 𝑇 = 1000 in Figures 2(a) and 3(a)
makes the data too smooth, whichmay lose toomuchmarket
information. On the contrary, setting 𝑇 = 100 in Figures
2(d) and 3(d) makes the data seems too noisy. So we consider
two periods of the HSI (Hang Seng Index, which is the most
widely quoted indicator of the performance of theHongKong
stock market) as two reference points to choose the 𝑇 value.
From 2000 to 2010, there are two large fluctuations of the
HSI. One is during the period from March 2004 to February
2005; the HSI fell to 10918 points from 14058 points, down
22%, and returned to the former level. The other is from
October 2007 to August 2010 (the end date of stock data used
in this paper); the HSI fell to 13674 points from 31958, down
57%, and still has not returned to the former level now. This
one can be considered as a bear market, since stocks trend
downwards for a long period. Taking these two periods as
reference points, we believe setting 𝑇 = 200 is a good choice,
since Figures 2(c) and 3(c) show quite clearly different regions
during the two periods. FromFigures 2 and 3, we can also find
that stocks are more closely associated with each other when
the stock market fell. This phenomenon is described by the
commonly heard phrase of “decline is characterized by the
stocks moving together.”

Setting 𝑇 = 200 and 𝛿𝑇 = 21, the overall number
of windows is 𝑀 = 116; that is, 𝑡 = 1, 2, . . . , 116. With

these choices, we can construct the stock networks 𝑆𝑡 based
on the correlation matrix 𝐶𝑡, by simply considering 𝐶𝑡 as
the adjacent matrix of 𝑆𝑡. Then 𝑆𝑡 are weighted undirected
complete graphs. However, it is hardly to analyze the commu-
nity structure in these complete graphs. Since these graphs
represent the market, it is natural to construct some graphs
by including only the strongest connections in it. But how
many edges (connections) should be included in such graphs?
From Figure 4(a), we can find that the fewer edges included
the fewer nodes incident with at least one edge. It means that
if we include few edges, thenmanynodeswill become isolated
nodes. This will lose a lot of useful information. On the
contrary, if we include too many edges, then graphs will not
have distinct community structure, measured by modularity
values, as Figure 4(b) shows, where the modularity is used
as an indicator of community structure, which measures the
density of links inside communities as compared to links
between communities. It is defined as

𝑄 =
1

2𝑚
∑

𝑖,𝑗

[𝐴
𝑖𝑗
−

𝑘
𝑖
𝑘
𝑗

2𝑚
]𝛿 (𝐷

𝑖
, 𝐷
𝑗
) , (3)

where 𝐴
𝑖𝑗
represents the weight of the edge between nodes 𝑖

and 𝑗, 𝑘
𝑖
= ∑
𝑗
𝐴
𝑖𝑗
is the sum of weights of edges attached to

node 𝑖, and𝐷
𝑖
is the community to which node 𝑖 is assigned.

It is detected by the algorithm of Blondel et al. [17], which
will be introduced in the next section. Consider 𝛿(𝜇, ]) = 1 if
𝜇 = ] and 0 otherwise; consider𝑚 = (1/2)∑

𝑖,𝑗
𝐴
𝑖𝑗
is the total

weights of edges of the graph.
In practice, modularity values of many real networks

typically fall in the range from about 0.3 to 0.7 [18]. When
the modularity value of a network is below 0.3, it can
be considered to have no distinct community structure.
Therefore, in this paper, we include 1.2% of total edges to
construct stock networks, according to the correlation values
from large to small and deleting all isolated nodes. Then
the average modularity value of the networks is 0.302 and
the average coverage of nodes reaches 35.2%. Finally, stock
networks 𝑆𝑡 are weighted undirected graphs with the fixed
edges number 957 and average 140.68 nodes. Figure 5 shows
several pictures of stock networks 𝑆𝑡. In the figure, different
node colors represent different communities. As we expected,
nodes in the same community are basic stocks belonging to
the same industry, which also fits the stock movements in the
real market.
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Figure 2: Some experiment results of 𝜌(𝑡) as a function of time.

3. Detecting and Matching Communities in
Time Windows

After constructing the stock networks, we detect commu-
nities in each time window using the algorithm of Blondel,
which is introduced in the literature [17] and has been widely
used in many cases of weighted graphs.There are several rea-
sons why we choose this algorithm. First, stock networks are
weighted graphs, and the quality of communities detected by
Blondel’s algorithm is very good, asmeasured by theweighted
modularity. Second, this algorithm can unfold a complete
hierarchical community structure for a network, which is
very useful for further studies of hierarchical structures in
stock networks. Third, the algorithm is extremely fast. It
is shown that this algorithm outperforms all other known
community detection methods in terms of computation time
in the literature [17].

Blondel’s algorithm uses a greedy method based on
weighted modularity optimization. Initially, all nodes of a
graph are put in different communities. Then, the algorithm
is divided into two phases that are repeated iteratively. The
first phase consists of a sequential sweep over all nodes
until no further improvement of modularity achieved. At the
end of the first phase, the first level partition is obtained.
In the second phase, a new network is built whose nodes
are the communities found during the first phase. The two
phases of the algorithm are then iterated, yielding new
hierarchical level partitions, until there are no more changes
and a maximum of modularity is attained. The details of the
algorithm can be seen in the literature [17].

After communities have been detected in each time
window separately, to analyze characters of dynamic commu-
nities, communities in succeeding time windows have to be
matched with each other. We use the match method posed



Abstract and Applied Analysis 5

Correlation coefficient

Ti
m

e (
ye

ar
s)

−0.2 0 0.2 0.4 0.6
2004

2005

2006

2007

2008

2009

2010

0

0.01

0.02

0.03

0.04

0.05

0.06

(a) Window width 𝑇 = 1000

Correlation coefficient
−0.2 0 0.2 0.4 0.6

0

0.01

0.02

0.03

0.04

0.05

0.06

2002

2003

2004

2005

2006

2007

2008

2009

2010

Ti
m

e (
ye

ar
s)

(b) Window width 𝑇 = 400

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

Correlation coefficient
−0.2 0 0.2 0.4 0.6

Ti
m

e (
ye

ar
s)

(c) Window width 𝑇 = 200

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Correlation coefficient
−0.2 0 0.2 0.4 0.6

Ti
m

e (
ye

ar
s)

(d) Window width 𝑇 = 100

Figure 3: (Color online) Contour plots of probability density functions for correlation coefficients with different 𝑇 values.
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Figure 4: (Color online) Contour plots of node numbers and modularity values of graphs versus rate of including edges and 𝑡.
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(a) Stock network 𝑆1 (b) Stock network 𝑆58

(c) Stock network 𝑆116

Figure 5: (Color online) Several pictures of stock networks 𝑆𝑡. Different node colors represent different communities and node sizes reflect
its degree.

in the literature [15]. The method is a process of finding
counterparts. Communities are matched from consecutive
time windows in descending order of their relative node
overlap (i.e., Jaccard similarity coefficient). The relative node
overlap between communities𝐴 and 𝐵 is defined as 𝐽(𝐴, 𝐵) =
|𝐴 ∩ 𝐵|/|𝐴 ∪ 𝐵|, where |𝐴 ∩ 𝐵| is the number of nodes in the
intersection of𝐴 and 𝐵 and |𝐴∪𝐵| is the number of nodes in
the union of two communities. When a community has no
counterpart from communities in the previous or the next
time window, it is considered as a newborn community or
finished its life, respectively.

4. Characters of Dynamic Communities in
Stock Networks

First, we investigate some basic statistic properties character-
izing the dynamic of stock networks, which are distributions
of the coverage of networks (the ratio of nodes contained in
a network), the community number, the modularity value
𝑄, and the overall community size. The results are shown
in Figure 6. There are overall 961 communities that can
be detected, in all time windows. The maximum size of
communities is 83 and the minimum is 2. In Figure 6(a),

we show the overall community size distribution, which
resembles a power-law distribution.

From Figures 6(b), 6(c), and 6(d), we can find that
these three curves have similar variation tendency. When
the coverage ratio gets smaller, as fixed edges number of
networks, connections of nodes will become denser and
community structure will become more indistinct. Using the
bear market in the period from October 2007 to August
2010 as a reference again, it is clearly shown in the figures
that these three curves are in a low level at this period. This
implies that when the market declines a few stocks will own
stronger connections with each other and these connections
are so tight that the network cannotmake distinct community
structure. Conversely, when the market is good, more stocks
will own strong connections and easily form communities.
Furthermore, this gives us a new inspiration; the modularity
level of stock networks can reflect that the market is good or
bad.

Second, we consider a basic quantity characterizing a
dynamic community with its age 𝛼, representing the time
passed since its birth. There are 243 dynamic communities
that can be extracted from all communities in time windows.
The average age of dynamic communities is 3.95. Figure 7
illustrates the age distribution of dynamic communities, and
we can find that it displays power-law shape. Most age of
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Figure 6: Plots of several basic statistic properties of stock networks.

dynamic communities is very small, 92.6% less than 10,
which reveals the high dynamic nature of stock market in
part. Figures 8 and 9 show the correlations of the dynamic
community age 𝛼 with the start size 𝑠 of a dynamic commu-
nity and the dynamic community stationarity 𝜁, respectively.
The stationarity 𝜁

𝑖
of a dynamic community (say 𝑑𝑐

𝑖
) is

defined as the average correlation between subsequent states,
𝜁
𝑖
≡ [∑
𝑡max−1
𝑡=𝑡
0

𝐽(𝑑𝑐
𝑖

𝑡
, 𝑑𝑐
𝑖

𝑡+1
)]/(𝑡max − 𝑡0), where 𝑡0 denotes the

birth of the community 𝑑𝑐
𝑖
, 𝑡max is the last step before the

extinction of the community 𝑑𝑐
𝑖
, and 𝐽 denotes the Jaccard

similarity coefficient mentioned in Section 3.The stationarity
𝜁 represents the stability of community components during
the lifetime of a dynamic community. The larger the 𝜁 is,

the smaller the change of components is. From Figure 8, we
cannot found clear correlations between the size and the age.
It is not as we expected; we thought larger communities may
be on average older, just like social relation networks in the
literature [15]. The correlation between the stationarity and
the age is relatively more obvious, as shown in Figure 9. It
is suggested that the value around 0.7 is easy to form older
dynamic communities.

Intuitively, the tightly linked community will probably
have longer lifetime. To verify this guess, for each community,
we measured the total weight inside the community (𝑊in) as
well as outside the community (𝑊out). Then, we calculated
the average age (⟨𝛼⟩) as a function of ⟨𝑊in/(𝑊in + 𝑊out)⟩
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of a dynamic community. But, from Figure 10, the curve
reaches its peak at 0.6; we find that more tightly dynamic
communities are not necessarily older.

5. Summary and Further Studies

In summary, we have introduced some characters of dynamic
communities in stock networks, which we have studied
recently. The way of constructing stock networks and detect-
ing communities can also be used in other similar complex
systems. There are two main results obtained in this paper.
First, the clarity of community structure in stock networks
can reflect fluctuation of the market. The modularity value 𝑄
can reflect clarity of community structure well. So the fluc-
tuation of the modularity value 𝑄 gives us a new viewpoint
for observing economic changes. Second, from statistical
analyses, we find that the tight link and the slow change
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Figure 9: Scatter plot of correlations between the dynamic commu-
nity age 𝛼 and the dynamic community stationarity 𝜁. ⟨𝛼⟩ represent
the arithmetic average value of 𝛼.
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Figure 10: Plot of correlations between the average dynamic
community age ⟨𝛼⟩ and the average community tightness parameter
⟨𝑊in/(𝑊in +𝑊out)⟩ in a dynamic community.

are both not good for a dynamic community’s long life.
Instead, when tight extent of a community (𝑊in/(𝑊in+𝑊out))
and stationarity of a community (𝜁) are about 0.6 or 0.7, a
community will be easier to have long life. By the way, this is
a coincidence or there are some correlations with the famous
golden ratio (about 0.618) or 30 : 70 Pareto Principle, which
need further research.

Our results potentially contribute to financial market
analysis and decision-making. Furthermore, there are many
problems that need further research. For example, from
Figure 5, we can find that there are dense links between
several communities and some nodes densely link to not only
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one community. This implies that stock networks have hier-
archical and overlapped community structure. The study of
hierarchical and overlapped communities in stock networks
may reveal more interesting phenomena.We also study some
statistical properties of a single node, such as the probability
of leaving its community, the lifetime of a single node in a
dynamic community, and the weight ratio between inside
a community and outside a community. But we have not
found a clear correlation between these properties of a single
node. This is because of the high dynamic nature of financial
market or the lack of our empirical data, which will be
studied in future research. In this paper, empirical data are
based on theHong Kong stockmarket; characters of dynamic
communities in other areas or economies are also worthy of
further study.
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