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We propose a generalized inexact Newton method for solving the inverse eigenvalue problems, which includes the generalized
Newton method as a special case. Under the nonsingularity assumption of the Jacobian matrices at the solution c∗, a convergence
analysis covering both the distinct and multiple eigenvalue cases is provided and the quadratic convergence property is proved.
Moreover, numerical tests are given in the last section and comparisons with the generalized Newton method are made.

1. Introduction

Inverse eigenvalue problems (IEPs) arise in a remarkable
variety of applications such as geophysics, control design,
system identification, exploration and remote sensing, prin-
cipal component analysis, molecular spectroscopy, parti-
cle physics, structural analysis, circuit theory, and applied
mechanics. One may refer to [1–14] for the applications,
mathematical theory, and algorithms of IEPs. Based on differ-
ent applications, inverse eigenvalue problems appear inmany
forms, for example, additive inverse eigenvalue problems,
multiplicative inverse eigenvalue problems, Jacobian matrix
inverse eigenvalue problems, nonnegative matrix inverse
eigenvalue problems, and Toeplitz matrix inverse eigenvalue
problems [3, 15, 16].

LetS be the linear space of symmetric matrices of size 𝑛.
Let 𝐴 : R𝑛 → S be continuously differentiable. Given 𝑛 real
numbers {𝜆

∗

𝑖
}
𝑛

𝑖=1
, which are arranged in the decreasing order

𝜆
∗

1
≤ 𝜆
∗

2
≤ ⋅ ⋅ ⋅ ≤ 𝜆

∗

𝑛
, the IEP considered here is to find a vector

c∗ ∈ R𝑛 such that

𝜆
𝑖
(c∗) = 𝜆

∗

𝑖
for each 𝑖 = 1, 2, . . . , 𝑛. (1)

The vector c∗ is called a solution of the IEP (1). A typical
choice for 𝐴(c) is

𝐴 (c) := 𝐴
0
+

𝑛

∑

𝑖=1

𝑐
𝑖
𝐴
𝑖
, (2)

which has been studied extensively (cf. [15, 17–20]).
Define the function f : R𝑛 → R𝑛 by

f (c) = (𝜆
1
(c) − 𝜆

∗

1
, 𝜆
2
(c) − 𝜆

∗

2
, . . . , 𝜆

𝑛
(c) − 𝜆

∗

𝑛
)
𝑇

for any c ∈ R
𝑛

.

(3)

Then solving the IEP (1) is equivalent to solving the equation
f(c) = 0 on R𝑛. Based on this equivalence, Newton’s method
can be applied to the IEP, and it converges quadratically
[15, 16, 21]. However, distinction of the given eigenvalues
is usually assumed among these works. In the case when
multiple eigenvalues are present, solving the IEP becomes
much more complicated because the eigenvalue function f
defined by (3) is not differentiable around the solution c∗,
in general, and the eigenvectors {q

𝑖
(c)} corresponding to the

multiplier value cannot generally be defined as a continuous
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functions of c at c∗; see [15]. Therefore, either Newton’s
method or the theoretical analysis may get into trouble.
In paper [15], the authors have analyzed the convergence
properties of Newton’s method in themultiple case. However,
the nonsingularity assumption needed for convergence in
[15] was that the inverse of the involved Jacobian and/or the
involved approximate Jacobian matrices at all iterations {c𝑘}
are bounded, and the bound must be independent of the
initial point c0. For ensuring this nonsingularity assumption
for Newton’s method, D. Sun and J. Sun introduced in [22]
a generalized Newton method and, by using the tool of
the strong semismoothness of the eigenvalue function for
symmetric matrices, developed a new approach to study the
convergence issue for the casewithmultiple eigenvalues.They
presented there a nonsingularity assumption in terms of the
Jacobian matrices evaluated at the solution c∗ to establish
a general convergence result of Newton’s method. Note that
in each Newton iteration (outer iteration) of the generalized
Newton method, we need to solve exactly the Jacobian
equation (inner iteration). When the problem size 𝑛 is large,
the inversion is costly, and onemay employ iterative methods
to solve the equation. Although iterative methods can reduce
the complexity, it may oversolve the systems in the sense
that the last few inner iterations before convergence may not
improve the convergence of the outer Newton iteration. The
generalized inexact Newton method is a method that stops
the inner iteration before convergence. By choosing a suitable
stopping criterion, we can reduce the total cost of the whole
inner-outer iteration.

In this paper, we give a generalized inexact Newton
method for solving the IEP (1) which can reduce the gen-
eralized Newton method. Motivated by Sun’s idea of the
strong semismoothness, we give a convergence analysis of
this method. By choosing a suitable stopping criterion, we
show that the generalized inexact Newton method converges
superlinearly. It should be noted that the analysis of the
present paper is “distinction free.”Though the nonsingularity
assumption is stated in terms of the Jacobian matrices
evaluated at the solution c∗, the inverse of the approximate
Jacobian matrices related to all iterations {c𝑘} is ensured to be
bounded and moreover the upper bound is independent of
the initial point c0. A numerical example is presented in the
last section to illustrate that our results and comparisons with
the generalized Newton method are made.

2. Semismoothness and Relative
Generalized Jacobian

Let 𝑔 : R𝑛 → R𝑚 be a locally Lipschitz continuous function.
Then, according to Rademacher’s theorem, 𝑔 is differentiable
almost everywhere. Let 𝐷

𝑔
be the set of differentiable points

of 𝑔 and let 𝑔 be the Jacobian of 𝑔whenever it exists. Denote

𝜕
𝐵
𝑔 (𝑥) := {𝑉 ∈ R

𝑚×𝑛

| 𝑉 = lim
𝑥𝑘→𝑥

𝑔


(𝑥
𝑘
) , 𝑥
𝑘
∈ 𝐷
𝑔
} . (4)

Then Clarke’s generalized Jacobian [23] is

𝜕𝑔 (𝑥) = conv {𝜕
𝐵
𝑔 (𝑥)} , (5)

where “conv” stands for the convex hull in the usual sense
of convex analysis [24]. Then we are ready to give the fol-
lowing definition of semismoothness. For original concept of
semismoothness for functions and vector-valued functions,
one may refer to [25, 26].

Definition 1. Suppose that𝑔 : R𝑛 → R𝑚 is a locally Lipschitz
continuous function.𝑔 is said to be semismooth at 𝑥 ∈ R𝑛 if𝑔
is directionally differentiable at 𝑥 and for any𝑉 ∈ 𝜕𝑔(𝑥+Δ𝑥)

𝑔 (𝑥 + Δ𝑥) − 𝑔 (𝑥) − 𝑉 (Δ𝑥) = 𝑜 (‖Δ𝑥‖) . (6)

𝑔 is said to be 𝑝-order (0 < 𝑝 < ∞) semismooth at 𝑥 if 𝑔 is
semismooth at 𝑥 and

𝑔 (𝑥 + Δ𝑥) − 𝑔 (𝑥) − 𝑉 (Δ𝑥) = 𝑂 (‖Δ𝑥‖
1+𝑝

) . (7)

In particular, 𝑔 is called strongly semismooth at 𝑥 if 𝑔 is 1-
order semismooth at 𝑥. A function 𝑔 is said to be a (strong)
semismooth function if it is (strong) semismooth everywhere
on R𝑛.

Now, let us consider the composite nonsmooth function:

𝑔 := 𝜑 ∘ 𝜓, (8)

where 𝜑 : R𝑛 → R𝑚 is nonsmooth but of special structure
and𝜓 : R𝑚 → R𝑛 is continuously differentiable. It should be
noted that neither 𝜕𝑔(𝑥) nor 𝜕

𝐵
𝑔(𝑥) is easy to compute even

if 𝜕𝜑(𝑦), 𝜕
𝐵
𝜑(𝑦), and 𝜓



(𝑥) are available. To circumvent the
difficulty in computing 𝜕

𝐵
𝑔(𝑥), Potra et al. [27] introduced

the concept of generalized Jacobian:

𝜕
𝑄
𝑔 (𝑥) = 𝜕

𝐵
(𝜑 (𝜓 (𝑥))) 𝜓



(𝑥) . (9)

Furthermore, in order to weaken the nonsingularity assump-
tion on the generalized Jacobians,D. Sun and J. Sun also intro-
duced in [22] the following concepts of relative generalized
Jacobians.

Definition 2. Let 𝑆 be a subset of R𝑛. The 𝑆-relative general-
ized Jacobians 𝜕

𝐵|𝑆
𝑔(𝑥) and 𝜕

𝑄|𝑆
𝑔(𝑥) of 𝑔 at 𝑥 are defined by

𝜕
𝐵|𝑆

𝑔 (𝑥) := {𝑉 | 𝑉 is a limit of 𝑉
𝑖
∈ 𝜕
𝐵
𝑔 (𝑦
𝑖
) ,

𝑦
𝑖
∈ 𝑆, 𝑦
𝑖
→ 𝑥} ,

𝜕
𝑄|𝑆

𝑔 (𝑥) := {𝑉 | 𝑉 is a limit of 𝑉
𝑖
∈ 𝜕
𝑄
𝑔 (𝑦
𝑖
) ,

𝑦
𝑖
∈ 𝑆, 𝑦
𝑖
→ 𝑥} .

(10)

Lemma 3 presents the properties of the relative general-
ized Jacobians which has been proved in [22]. We omit the
proof here.

Lemma 3. Let 𝑔 be Lipschitz continuous near 𝑥. Then

(i) 𝜕
𝐵|𝑆

𝑔(𝑥) and 𝜕
𝑄|𝑆

𝑔(𝑥) are compact subsets of 𝜕
𝐵
𝑔(𝑥)

and 𝜕
𝑄
𝑔(𝑥), respectively.

(ii) 𝜕
𝐵|𝑆

𝑔(𝑥) and 𝜕
𝑄|𝑆

𝑔(𝑥) are upper semicontinuous at 𝑥.
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3. The Generalized Inexact Newton Method

Let 𝐴 : R𝑛 → S be continuously differentiable and let
c = (c

1
, c
2
, . . . , c

𝑛
)
𝑇

∈ R𝑛. In what follows, we suppose that
{𝜆
𝑖
(c)}𝑛
𝑖=1

are the eigenvalues of the matrix 𝐴(c) with 𝜆
1
(c) ≤

𝜆
2
(c) ≤ ⋅ ⋅ ⋅ ≤ 𝜆

𝑛
(c) and write

Λ (c) := diag (𝜆
1
(c) , . . . , 𝜆

𝑛
(c)) . (11)

Let us define

Q (c) := {𝑄 (c) = [q
1
(c) , . . . q

𝑛
(c)] | 𝑄(c)𝑇𝑄 (c) = 𝐼,

𝑄(c)𝑇𝐴 (c) 𝑄 (c) = Λ (c)} .

(12)

Recall that the function f is defined by (3) and this means
that f is a composite nonsmooth function. Then the concept
of generalized Jacobian can be applied to f and we get

𝜕
𝑄
f (c) = {𝐽 (c) | [𝐽 (c)]

𝑖𝑗
= q
𝑖
(c)𝑇 𝜕𝐴 (c)

𝜕c
𝑗

q
𝑖
(c)

where [q
1
(c) q
2
(c) ⋅ ⋅ ⋅ q

𝑛
(c)] ∈ Q (c) } ;

(13)

see [22, Proposition 5.1]. Hence, according to this, the gener-
alized Newton method for solving the IEP can be described
as follows; see [22].

Algorithm 4 (the generalized Newton method). (1) For 𝑘 =

0, 1, . . . until convergence, do the following.

(a) Compute a 𝑄(c𝑘) ∈ Q(c𝑘).
(b) Form 𝐽(c𝑘) ∈ 𝜕

𝑄
f(c𝑘) according to (13).

(c) Solve c𝑘+1 from the equation

𝐽 (c𝑘) (c𝑘+1 − c𝑘) = −f (c𝑘) . (14)

The generalizedNewtonmethod converges quadratically;
see for instance [22, Theorem 5.3]. In deriving the quadratic
convergence of this method, it was assumed that system (14)
is solved exactly. Usually, one solves these systems by iterative
methods, in particular in the case when 𝑛 is large. However
iterative methods may bring an oversolving problem in
the sense that the last few iterations before convergence
are usually insignificant as far as the convergence of the
outer iteration is concerned. This oversolving of the inner
iterations will cause a waste of time and does not improve
the efficiency of the whole method. The generalized inexact
Newton method is derived precisely to avoid the oversolving
problem in the inner iterations. Instead of solving (14)
exactly, one solves it iteratively until a reasonable tolerance
is reached. The tolerance is chosen carefully such that it
is small enough to guarantee the convergence of the outer
iteration, but large enough to reduce the oversolving problem
of the inner iterations. We find that the tolerance has to be of
‖c𝑘 − c∗‖𝛽 in order to have a convergence rate of 𝛽 for the
outer iteration. We now give the generalized inexact Newton
method for solving the IEP. We will prove in Section 4 that
the convergence rate of the method is equal to 𝛽.

Algorithm 5 (the generalized inexact Newton method). (1)
For 𝑘 = 0, 1, . . . until convergence, do the following.

(a) Compute a 𝑄(c𝑘) ∈ Q(c𝑘).
(b) Form 𝐽(c𝑘) ∈ 𝜕

𝑄
f(c𝑘) according to (13).

(c) Solve c𝑘+1 inexactly from the equation

𝐽 (c𝑘) (c𝑘+1 − c𝑘) = −f (c𝑘) + r𝑘, (15)

until the residual r𝑘 satisfies






r𝑘


≤






f (c𝑘)



𝛽

, 1 < 𝛽 ≤ 2. (16)

4. Convergence Analysis

In this section, we carry on a convergence analysis of
Algorithm 5. Let {𝜆∗

𝑖
}
𝑛

𝑖=1
be given with

𝜆
∗

1
≤ 𝜆
∗

2
≤ ⋅ ⋅ ⋅ ≤ 𝜆

∗

𝑛
. (17)

Let c∗ be the solution of the IEP. Let Λ(c) be defined by (11)
and

𝑆 = {c ∈ R
𝑛

| 𝐴 (c) has distinct eigenvalues} . (18)

Then for any c ∈ 𝑆, f is continuously differentiable at c and
moreover

𝜕
𝐵
f (c) = 𝜕

𝑄
f (c) = {f (c)} . (19)

Thus, according to Definition 2, we obtain the following
relative generalized Jacobian of f at c:

𝜕
𝑄|𝑆

f (c) = 𝜕
𝐵|𝑆
f (c)

= {𝐽 (c) | 𝐽 (c) is the limit of 𝐽 (y𝑖) ∈ 𝜕
𝑄
f (y
𝑖
)

where y𝑖 ∈ 𝑆, y𝑖 → c} .

(20)

We first present the following two lemmas which are
important for the proof of the main theorem. Lemma 6
illustrates the continuous property about the eigenvalues and
can be found in many papers; see for example [15–18, 28].
However Lemma 7 is a crucial result in [22] and has been
proved there.

Lemma 6. Suppose that there exists c∗ such that the matrix
𝐴(c∗) has eigenvalues given by (17). Suppose that𝐴 is Lipschitz
continuous around c∗.Then there exist positive numbers 𝛿

0
and

𝐿
0
such that, for each c ∈ B(c∗, 𝛿

0
), the following assertion

holds:

‖f (c)‖ ≤ 𝐿
0





c − c∗


. (21)

Lemma 7. f(⋅) is a strongly semismooth function.

With Lemmas 6 and 7, we are in the position to prove the
superlinear convergence of Algorithm 5. In order to ensure
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the superlinear convergence, one may want to assume that all
𝐽(c∗) ∈ 𝜕

𝑄
f(c∗) are nonsingular. However, as noted by [15],

it is generally possible to choose the eigenvectors such that
𝐽(c∗) is nonsingular whenmultiple eigenvalues are presented.
Hence we assume here that all matrices 𝐽(c∗) ∈ 𝜕

𝑄|𝑆
f(c∗) are

nonsingular.

Theorem 8. Suppose that there exists c∗ ∈ 𝑐𝑙𝑆 such that the
matrix 𝐴(c∗) has eigenvalues given by (17). Let 𝜕

𝑄|𝑆
f(c) be

defined by (20). If (i) for each 𝑘, c𝑘 ∈ 𝑆, (ii) all 𝐽(c∗) ∈ 𝜕
𝑄|𝑆

f(c∗)
are nonsingular, and (iii) 𝐴

 is Lipschitz continuous around
c∗, then there exists a positive number 𝛿 such that, for each
c0 ∈ B(c∗, 𝛿)⋂ 𝑆, the sequence {c𝑘} generated by Algorithm 5
converges to c∗ with






c𝑘+1 − c∗


≤ 𝛼






c𝑘 − c∗



𝛽

. (22)

Here 𝛼 is a positive constant.

Proof. Since 𝐴
 is Lipschitz continuous around c∗, it follows

from Lemma 6 that f(⋅) is also Lipschitz continuous around
c∗. On the other hand, note that all 𝐽(c∗) ∈ 𝜕

𝑄|𝑆
f(c∗) are

nonsingular. Thus, thanks to Lemma 3, there exist positive
numbers 𝛿

1
and 𝐿

1
such that, for each c ∈ B(c∗, 𝛿

1
)⋂ 𝑆, all

𝐽(c) ∈ 𝜕
𝑄|𝑆

f(c) are nonsingular and






𝐽(c)−1


≤ 𝐿
1
. (23)

Since, by Lemma 7, f(⋅) is a strong semismooth function,
there exist positive numbers 𝐿

2
and 𝛿

2
such that for all c ∈

B(c∗, 𝛿
2
)⋂ 𝑆 and all 𝐽(c) ∈ 𝜕

𝑄|𝑆
f(c)





f (c) − f (c∗) − 𝐽 (c) (c − c∗)


≤ 𝐿
2





c − c∗



2

. (24)

Let

𝛼 = 𝐿
1
𝐿
2
+ 𝐿
1
𝐿
𝛽

0
. (25)

Take 𝛿 such that

0 < 𝛿 < min {1, 𝛿
0
, 𝛿
1
, 𝛿
2
, 𝛼
1/(1−𝛽)

} . (26)

Below we will show that 𝛼 and 𝛿 are as desired. For this end,
let c𝑚 be the 𝑚th-iteration. We assert that

c𝑚 ∈ B (c∗, 𝛿)⋂𝑆 ⇒






c𝑚+1 − c∗


≤ 𝛼





c𝑚 − c∗



𝛽

,

c𝑚+1 ∈ B (c∗, 𝛿)⋂𝑆.

(27)

Granting this and by the assumption that c0 ∈ B(c∗, 𝛿)⋂ 𝑆,
we can complete the proof of the theorem. To give the proof
of assertion (27), we suppose that c𝑚 ∈ B(c∗, 𝛿)⋂ 𝑆. Note that
0 < 𝛿 < min{𝛿

1
, 𝛿
2
}. Then, by (23) and (24), we obtain that

for all 𝐽(c𝑚) ∈ 𝜕
𝑄|𝑆

f(c𝑚)






𝐽(c𝑚)−1


≤ 𝐿
1
, (28)





f (c𝑚) − f (c∗) − 𝐽 (c𝑚) (c𝑚 − c∗)


≤ 𝐿
2





c𝑚 − c∗



2

. (29)

On the other hand, noting that 𝛿 < 𝛿
0
, one has by Lemma 6

and (16) that





r𝑚


≤





f(c𝑚)



𝛽

≤ 𝐿
𝛽

0





c𝑚 − c∗



𝛽

. (30)

Since f(c∗) = 0, we derive from (15) that

c𝑚+1 − c∗

= 𝐽(c𝑚)−1 [f (c𝑚) − f (c∗) − 𝐽 (c𝑚) (c𝑚 − c∗) − r𝑚] .
(31)

Combining this with (28)–(30), we obtain






c𝑚+1 − c∗


≤ 𝐿
1
(𝐿
2





c𝑚 − c∗



2

+ 𝐿
𝛽

0





c𝑚 − c∗



𝛽

)

≤ 𝛼




c𝑚 − c∗



𝛽

,

(32)

where the last inequality holds because ‖ c𝑚 − c∗ ‖< 𝛿 < 1

and 𝛼 = 𝐿
1
𝐿
2
+ 𝐿
1
𝐿
𝛽

0
. Furthermore, by the fact that 𝛼 ‖ c𝑚 −

c∗‖𝛽−1 < 𝛼𝛿
𝛽−1

< 1, we get






c𝑚+1 − c∗


<





c𝑚 − c∗


< 𝛿, (33)

which together with the assumption (𝑖) implies c𝑚+1 ∈

B(c∗, 𝛿)⋂ 𝑆.Therefore, we complete the proof of the assertion
and hence the proof of the whole theorem.

In the special case when r𝑘 ≡ 0, Algorithm 5 reduces
Algorithm 4. Thus, applying Theorem 8, we have the fol-
lowing result for the generalized Newton method which
coincides with [22, Theorem 5.4].

Corollary 9. Suppose that there exists c∗ ∈ 𝑐𝑙𝑆 such that the
matrix 𝐴(c∗) has eigenvalues given by (17). Let 𝜕

𝑄|𝑆
f(c) be

defined by (20). If (i) for each 𝑘, c𝑘 ∈ 𝑆, (ii) all 𝐽(c∗) ∈ 𝜕
𝑄|𝑆

f(c∗)
are nonsingular, and (iii) 𝐴

 is Lipschitz continuous around
c∗, then there exists a positive number 𝛿 such that, for each
c0 ∈ B(c∗, 𝛿)⋂ 𝑆, the sequence {c𝑘} generated by Algorithm 4
converges quadratically to c∗.

5. A Numerical Example

In this section, we present the numerical performance of
Algorithm 5 with that of Algorithm 4. Our aim is, for the
inverse eigenvalue problems with multiple eigenvalues, to
illustrate the advantage of the generalized inexact Newton
method over the generalized Newton method in terms of
minimizing the oversolving problem and the overall compu-
tational complexity. The test was carried out in MATLAB 7.0
running on a Genuine Intel(R) PC with 1.6GHz CPU.

We consider the typical choice,

𝐴 (c) := 𝐴
0
+

𝑛

∑

𝑖=1

𝑐
𝑖
𝐴
𝑖
, (34)
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Table 1: Averaged total numbers of outer and inner iterations.

Algorithm 4 𝛽 in Algorithm 5
1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

I 𝑁
𝑜

6.0 11.8 8.7 6.7 6.5 6.3 6.1 6.0 6.0 6.0 6.0
𝑁
𝑖

1373.0 1342.1 1072.6 878.8 874.1 884.6 874.7 890.8 944.8 967.7 1001.5

P 𝑁
𝑜

5.8 8.5 7.4 6.7 6.2 6.0 5.8 5.8 5.8 5.8 5.8
𝑁
𝑖

55.5 14.6 17.3 17.8 20.4 21.8 23.7 24.9 28.3 29.7 31.6

and use Toeplitz matrices as our {𝐴
𝑖
}
𝑛

𝑖=1
:

𝐴
1
= 𝐼, 𝐴

2
=

(

(

0 1 0 ⋅ ⋅ ⋅ 0

1 0 1 d
...

0 1 d d 0

... d d 0 1

0 ⋅ ⋅ ⋅ 0 1 0

)

)

, . . . ,

𝐴
𝑛
= (

0 0 ⋅ ⋅ ⋅ 0 1

0 d d ⋅ ⋅ ⋅ 0

... d d d
...

0 ⋅ ⋅ ⋅ d d 0

1 0 ⋅ ⋅ ⋅ 0 0

).

(35)

Thus 𝐴(c) is a symmetric Toeplitz matrix with the first
column equal to c. This numerical example has been studied
extensively; see for instance [12, 14, 17, 18, 20].

In the tests, we tried Algorithms 4 and 5 on ten 100-by-
100matrices. For eachmatrix, we first generate a vector c such
that there exist some integers 1 ≤ 𝑘 ≤ 𝑛−1 such that |𝜆

𝑘+1
(c)−

𝜆
𝑘
(c)| < 5𝑒 − 6, where {𝜆

𝑖
(c)}𝑛
𝑖=1

are the eigenvalues of matrix
𝐴(c). Set

𝜆
∗

𝑖
= {

𝜆
𝑘
(c) , 𝑖 = 𝑘, 𝑘 + 1;

𝜆
𝑖
(c) , otherwise.

(36)

Then we choose {𝜆
∗

𝑖
}
𝑛

𝑖=1
as the prescribed eigenvalues. Since

both Algorithms 4 and 5 are locally convergent, c0 is formed
by chopping the components of c∗ to four decimal places.
For both algorithms, the stopping tolerance for the outer
(Newton) iterations is 10

−10. The inner systems (14) and (15)
are all solved by the QMR method [29] via the MATLAB
QMR function, where themaximal number of iterations is set
to be 1000. Also, the initial guess for the Jacobian equations in
the (𝑘 + 1)th outer iteration is set to be c𝑘 obtained at the 𝑘th
outer iteration. The inner loop stopping tolerance for (15) is
given by (16), while for (14) in Algorithm 4, we are supposed
to solve it up tomachine precision eps (which is ≈2.2 × 10−16).

Comparisons of Algorithm 5 with Algorithm 4 are illus-
trated in Table 1. In this table, we give the total numbers of
outer iterations𝑁

𝑜
averaged over the ten tests and the average

total numbers of inner iterations 𝑁
𝑖
required for solving the

Jacobian equations. Here “I” means no preconditioner, while
“P” means that the MATLAB incomplete LU factorization
(MILU) is adopted as the preconditioner, that is, LUINC
(A, [drop-tolerance, 1, 1, 1]), where the drop tolerance is
set to be 0.01. We can see from this table that 𝑁

𝑜
is small

for Algorithm 4 and also for Algorithm 5 when 𝛽 ≥ 1.6.
This confirms the theoretical convergence rate of the two
algorithms. In terms of𝑁

𝑖
, we see that one requires less inner

iterations in Algorithm 5 than those in Algorithm 4. Thus,
we can conclude that Algorithm 5 with 𝛽 around 1.5 is much
better than Algorithm 4. On the other hand, we also note that
the MILU preconditioner is quite effective for the Jacobian
equations.

6. Concluding Remarks

In this paper, we have proposed a generalized inexact Newton
method for the inverse eigenvalue problem.We show that our
inexact method converges superlinearly. This inexact version
can minimize the oversolving problem of the generalized
Newton method and give a good tradeoff between the inner
and outer iterations. We also present numerical experiments
to illustrate our results.

It is a pity that similar approaches cannot been extended
to the inexactNewton-likemethod up till now.This is another
interesting topic of our works.
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