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A limited memory BFGS (L-BFGS) algorithm is presented for solving large-scale symmetric nonlinear equations, where a
line search technique without derivative information is used. The global convergence of the proposed algorithm is established
under some suitable conditions. Numerical results show that the given method is competitive to those of the normal BFGS
methods.

1. Introduction

Consider

ℎ (𝑥) = 0, 𝑥 ∈ R
𝑛

, (1)

where ℎ : R𝑛 → R𝑛 is continuously differentiable, the
Jacobian ∇ℎ(𝑥) of 𝑔 is symmetric for all 𝑥 ∈ R𝑛, and 𝑛

denotes the large-scale dimensions. It is not difficult to see
that if 𝑔 is the gradient mapping of some function 𝑓 : R𝑛 →
R, problem (1) is the first order necessary condition for the
problem min

𝑥∈R𝑛𝑓(𝑥). Furthermore, considering

min𝑓 (𝑢) s.t. 𝑎 (𝑢) = 0, (2)

where 𝑎 is a vector-valued function, then the KKT conditions
can be represented as the system (1) with 𝑥 = (𝑢, V) and
ℎ(𝑢, V) = (∇𝑓(𝑢) + ∇𝑎(𝑢)V, 𝑎(𝑢)), where V is the vector of
Lagrangemultipliers.The above two cases show that problem
(1) can come from an unconstrained problem or an equality
constrained optimization problem in theory. Moreover, there
are other practical problems that can also take the form
of (1), such as the discretized two-point boundary value
problem, the saddle point problem, and the discretized
elliptic boundary value problem (see Chapter 1 of [1] in
detail). Let 𝜃 be the norm function 𝜃(𝑥) = (1/2)‖ℎ(𝑥)‖2; then

problem (1) is equivalent to the following global optimization
problem:

min 𝜃 (𝑥) 𝑥 ∈ R
𝑛

, (3)
where ‖ ⋅ ‖ is the Euclidean norm.

In this paper we will focus on the line search method for
(1), where its normal iterative formula is defined by

𝑥
𝑘+1

= 𝑥
𝑘
+ 𝛼
𝑘
𝑑
𝑘
, (4)

where 𝑑
𝑘
is the so-called search direction and 𝛼

𝑘
is a ste-

plength along 𝑑
𝑘
. To begin with, we briefly review some

methods for 𝛼
𝑘
.

(i) Normal Line Search (Brown and Saad [2]).The stepsize 𝛼
𝑘

is determined by

𝜃 (𝑥
𝑘
+ 𝛼
𝑘
𝑑
𝑘
) − 𝜃 (𝑥

𝑘
) ≤ 𝜎𝛼

𝑘
∇𝜃(𝑥
𝑘
)
𝑇

𝑑
𝑘
, (5)

where 𝜎 ∈ (0, 1) and∇𝜃(𝑥
𝑘
) = ∇ℎ(𝑥

𝑘
)ℎ(𝑥
𝑘
).The convergence

is proved and some good results are obtained. We all know
that the nonmonotone idea is more interesting than the
normal technique in many cases. Then a nonmonotone line
search technique based on this motivation is presented by
Zhu [3].

(ii) Nonmonotone Line Search (Zhu [3]). The stepsize 𝛼
𝑘
is

determined by

𝜃 (𝑥
𝑘
+ 𝛼
𝑘
𝑑
𝑘
) − 𝜃 (𝑥

𝑙(𝑘)
) ≤ 𝜎𝛼

𝑘
∇𝜃(𝑥
𝑘
)
𝑇

𝑑
𝑘
, (6)
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𝜃(𝑥
𝑙(𝑘)
) = max

0≤𝑗≤𝑚(𝑘)
{𝜃(𝑥
𝑘−𝑗
)},𝑚(0) = 0,𝑚(𝑘) = min{𝑚(𝑘−

1) + 1,𝑀} (for 𝑘 ≥ 1), and 𝑀 is a nonnegative integer.
The global convergence and the superlinear convergence
are established under mild conditions, respectively. It is not
difficult to see that, for the above two line search techniques,
the Jacobian matrix ∇ℎ

𝑘
must be computed at each iteration,

which obviously increase the workload and the CPU time
consumed. In order to avoid this drawback, Yuan and Lu [4]
presented a new backtracking inexact technique.

(iii) A New Line Search (Yuan and Lu [4]). The stepsize 𝛼
𝑘
is

determined by
ℎ(𝑥𝑘 + 𝛼𝑘𝑑𝑘)


2

≤
ℎ(𝑥𝑘)


2

+ 𝛿𝛼
2

𝑘
ℎ
𝑇

𝑘
𝑑
𝑘
, (7)

where 𝛿 ∈ (0, 1) and ℎ
𝑘
= ℎ(𝑥

𝑘
). They established the

global convergence and the superlinear convergence. And the
numerical tests showed that the new line search technique is
more effective than those of the normal line search technique.
However, these three line search techniques can not directly
ensure the descent property of 𝑑

𝑘
. Thus more interesting line

search techniques are studied.

(iv) Approximate Monotone Line Search (Li and Fukushima
[5]).The stepsize 𝛼

𝑘
is determined by

𝜃 (𝑥
𝑘
+ 𝛼
𝑘
𝑑
𝑘
) − 𝜃 (𝑥

𝑘
) ≤ − 𝛿

1

𝛼𝑘𝑑𝑘

2

− 𝛿
2

𝛼𝑘ℎ𝑘

2

+ 𝜖
𝑘

ℎ𝑘

2

,

(8)

where 𝛼
𝑘
= 𝑟
𝑖
𝑘 , 𝑟 ∈ (0, 1), 𝑖

𝑘
is the smallest nonnegative

integer 𝑖 satisfying (8), 𝛿
1
> 0 and 𝛿

2
> 0 are constants, and

𝜖
𝑘
is such that

∞

∑

𝑘=0

𝜖
𝑘
< ∞. (9)

The line search (8) can be rewritten as
ℎ(𝑥𝑘 + 𝛼𝑑𝑘)


2

≤ (1 + 𝜖
𝑘
)
ℎ𝑘


2

− 𝛿
1

𝛼ℎ𝑘

2

− 𝛿
2

𝛼𝑑𝑘

2

;

(10)

it is straightforward to see that as 𝛼 → 0, the right-hand
side of the above inequality goes to (1 + 𝜖

𝑘
)‖ℎ
𝑘
‖
2. Then it is

not difficult to see that the sequence {𝑥
𝑘
} generated by one

algorithmwith line search (8) is approximately normdescent.
In order to ensure the sequence {𝑥

𝑘
} is norm descent, Gu et

al. [6] presented the following line search.

(v) Monotone Descent Line Search (Gu et al. [6]).The stepsize
𝛼
𝑘
is determined by

ℎ(𝑥𝑘 + 𝛼𝑘𝑑𝑘)

2

−
ℎ𝑘


2

≤ − 𝛿
1

𝛼𝑘ℎ𝑘

2

− 𝛿
2

𝛼𝑘𝑑𝑘

2

,

(11)

where 𝛼
𝑘
, 𝛿
1
, and 𝛿

2
are similar to (8).

In the following, we present some techniques for 𝑑
𝑘
.

(i) Newton Method.The search direction 𝑑
𝑘
is defined by

∇ℎ (𝑥
𝑘
) 𝑑
𝑘
= −ℎ (𝑥

𝑘
) . (12)

Newton method is one of the most effective methods since
it normally requires a fewest number of function evaluations
and is very good at handling ill-conditioning. However, its
efficiency largely depends on the possibility to efficiently solve
a linear system (12) which arises when computing. Moreover,
the exact solution of the system (12) could be too burdensome
or is not necessary when 𝑥

𝑘
is far from a solution [7].Thus the

quasi-Newton methods are proposed.

(ii) Quasi-Newton Method.The search direction 𝑑
𝑘
is defined

by

𝐵
𝑘
𝑑
𝑘
+ ℎ
𝑘
= 0, (13)

where 𝐵
𝑘
is the quasi-Newton update matrix. The quasi-

Newton methods represent the basic approach underlying
most of the Newton-type large-scale algorithms (see [3, 4, 8],
etc.), where the famous BFGS method is one of the most
effective quasi-Newton methods, generated by the following
formula:

𝐵
𝑘+1

= 𝐵
𝑘
−
𝐵
𝑘
𝑠
𝑘
𝑠
𝑇

𝑘
𝐵
𝑘

𝑠𝑇
𝑘
𝐵
𝑘
𝑠
𝑘

+
𝑦
𝑘
𝑦
𝑘

𝑇

𝑦
𝑘

𝑇𝑠
𝑘

, (14)

where 𝑠
𝑘
= 𝑥
𝑘+1

− 𝑥
𝑘
and 𝑦

𝑘
= ℎ
𝑘+1

− ℎ
𝑘
with ℎ

𝑘
= ℎ(𝑥

𝑘
)

and ℎ
𝑘+1

= ℎ(𝑥
𝑘
+ 𝛼
𝑘
𝑑
𝑘
). By (11) and (14), Yuan and Yao [9]

proposed a BFGS method for nonlinear equations and some
good results were obtained. Denote𝐻

𝑘
= 𝐵
−1

𝑘
, and then (14)

has the inverse update formula represented by

𝐻
𝑘+1

= 𝐻
𝑘
−
𝑦
𝑘

𝑇

(𝑠
𝑘
− 𝐻
𝑘
𝑦
𝑘
) 𝑠
𝑘
𝑠
𝑇

𝑘

(𝑦
𝑘

𝑇𝑠
𝑘
)
2

+
(𝑠
𝑘
− 𝐻
𝑘
𝑦
𝑘
) 𝑠
𝑇

𝑘
+ 𝑠
𝑘
(𝑠
𝑘
− 𝐻
𝑘
𝑦
𝑘
)
𝑇

(𝑦
𝑘

𝑇𝑠
𝑘
)
2

= (𝐼 −
𝑠
𝑘
𝑦
𝑘

𝑇

𝑦
𝑘

𝑇𝑠
𝑘

)𝐻
𝑘
(𝐼 −

𝑦
𝑘
𝑠
𝑇

𝑘

𝑦
𝑘

𝑇𝑠
𝑘

) +
𝑠
𝑘
𝑠
𝑇

𝑘

𝑦
𝑘

𝑇𝑠
𝑘

.

(15)

Unfortunately, both the Newton method and the quasi-
Newton method require many space to store 𝑛 × 𝑛 matrix
at every iteration, which will prevent the efficiency of the
algorithm for problems, especially for large-scale problems.
Therefore low storage matrix information method should be
necessary.

(iii) Limited Memory Quasi-Newton Method. The search
direction 𝑑

𝑘
is defined by

𝑑
𝑘
= −𝐻
𝑘
ℎ
𝑘
, (16)

where 𝐻
𝑘
is generated by limited memory quasi-Newton

method, where the famous limited memory quasi-Newton
method is the so-called limited memory BFGS method.
The L-BFGS method is an adaptation of the BFGS method
for large-scale problems (see [10] in detail), which often
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requires minimal storage and provides a fast rate of linear
convergence. The L-BFGS method has the following form:

𝐻
𝑘+1

= 𝑉
𝑇

𝑘
𝐻
𝑘
𝑉
𝑘
+ 𝜌
𝑘
𝑠
𝑘
𝑠
𝑇

𝑘

= 𝑉
𝑇

𝑘
[𝑉
𝑇

𝑘−1
𝐻
𝑘−1
𝑉
𝑘−1

+ 𝜌
𝑘−1
𝑠
𝑘−1
𝑠
𝑇

𝑘−1
]𝑉
𝑘
+ 𝜌
𝑘
𝑠
𝑘
𝑠
𝑇

𝑘

= ⋅ ⋅ ⋅

= [𝑉
𝑇

𝑘
⋅ ⋅ ⋅ 𝑉
𝑇

𝑘−�̃�+1
]𝐻
𝑘−�̃�+1

[𝑉
𝑘−�̃�+1

⋅ ⋅ ⋅ 𝑉
𝑘
]

+ 𝜌
𝑘−�̃�+1

[𝑉
𝑇

𝑘−1
⋅ ⋅ ⋅ 𝑉
𝑇

𝑘−�̃�+2
]

× 𝑠
𝑘−�̃�+1

𝑠
𝑇

𝑘−�̃�+1
[𝑉
𝑘−�̃�+2

⋅ ⋅ ⋅ 𝑉
𝑘−1
] + ⋅ ⋅ ⋅ + 𝜌

𝑘
𝑠
𝑘
𝑠
𝑇

𝑘
,

(17)

where 𝜌
𝑘
= 1/𝑠

𝑇

𝑘
𝑦
𝑘
, 𝑉
𝑘
= 𝐼 − 𝜌

𝑘
𝑦
𝑘
𝑠
𝑇

𝑘
, �̃� > 0 is an integer,

and 𝐼 is the unit matrix. Formula (17) shows that matrix𝐻
𝑘
is

obtained by updating the basicmatrix𝐻
0
�̃� times using BFGS

formula with the previous �̃� iterations. By (17), together with
(7) and (8), Yuan et al. [11] presented the L-BFGS method
for nonlinear equations and got the global convergence. At
present, there are many papers proposed for (1) (see [6, 12–
15], etc.).

In order to effectively solve large-scale nonlinear equa-
tions and possess good theory property, based on the above
discussions of 𝛼

𝑘
and 𝑑

𝑘
, we will combine (11) and (16) and

present a L-BFGSmethod for (1) since (11) canmake the norm
function be descent and (16) need less low storage. The main
attributes of the new algorithm are stated as follows.

(i) A L-BFGS method with (11) is presented.

(ii) The norm function is descent.

(iii) The global convergence is established under appropri-
ate conditions.

(iv) Numerical results show that the given algorithm is
more competitive than the normal algorithm for
large-scale nonlinear equations.

This paper is organized as follows. In the next section, the
backtracking inexact L-BFGS algorithm is stated. Section 3
will present the global convergence of the algorithm under
some reasonable conditions. Numerical experiments are
done to test the performance of the algorithms in Section 4.

2. Algorithms

This section will state the L-BFGSmethod in association with
the newbacktracking line search technique (11) for solving (1).

Algorithm 1.

Step 0. Choose an initial point 𝑥
0
∈ R𝑛, an initial symmetric

positive definite matrix𝐻
0
∈ R𝑛×𝑛, positive constants 𝛿

1
, 𝛿
2
,

constants 𝑟, 𝜌 ∈ (0, 1), and a positive integer𝑚
1
. Let 𝑘 := 0.

Step 1. Stop if ‖ℎ
𝑘
‖ = 0.

Step 2. Determine 𝑑
𝑘
by (16).

Step 3. If
ℎ (𝑥𝑘 + 𝑑𝑘)

 ≤ 𝜌
ℎ (𝑥𝑘)

 , (18)

then take 𝛼
𝑘
= 1 and go to Step 5. Otherwise go to Step 4.

Step 4. Let 𝑖
𝑘
be the smallest nonnegative integer 𝑖 such that

(11) holds for 𝛼 = 𝑟𝑖. Let 𝛼
𝑘
= 𝑟
𝑖
𝑘 .

Step 5. Let the next iterative be 𝑥
𝑘+1

= 𝑥
𝑘
+ 𝛼
𝑘
𝑑
𝑘
.

Step 6. Let �̃� = min{𝑘+1,𝑚
1
}. Put 𝑠

𝑘
= 𝑥
𝑘+1

−𝑥
𝑘
= 𝛼
𝑘
𝑑
𝑘
and

𝑦
𝑘
= ℎ
𝑘+1

− ℎ
𝑘
. Update𝐻

0
for �̃� times to get𝐻

𝑘+1
by (17).

Step 7. Let 𝑘 := 𝑘 + 1. Go to Step 1.

In the following, to conveniently analyze the global
convergence, we assume that the algorithm updates 𝐵

𝑘
(the

inverse of 𝐻
𝑘
) with the basically bounded and positive

definite matrix 𝐵
0
(𝐻
0
’s inverse). Then Algorithm 1 with 𝐵

𝑘

has the following steps.

Algorithm 2.

Step 2. Determine 𝑑
𝑘
by

𝐵
𝑘
𝑑
𝑘
= −ℎ
𝑘
. (19)

Step 6. Let �̃� = min{𝑘 + 1,𝑚
1
}. Put 𝑠

𝑘
= 𝑥
𝑘+1

− 𝑥
𝑘
= 𝛼
𝑘
𝑑
𝑘

and 𝑦
𝑘
= ℎ
𝑘+1

− ℎ
𝑘
. Update 𝐵

0
for �̃� times; that is, for 𝑙 =

𝑘 − �̃� + 1, . . . , 𝑘 compute

𝐵
𝑙+1

𝑘
= 𝐵
𝑙

𝑘
−
𝐵
𝑙

𝑘
𝑠
𝑙
𝑠
𝑇

𝑙
𝐵
𝑙

𝑘

𝑠𝑇
𝑙
𝐵𝑙
𝑘
𝑠
𝑙

+
𝑦
𝑙
𝑦
𝑙

𝑇

𝑦
𝑙

𝑇𝑠
𝑙

, (20)

where 𝑠
𝑙
= 𝑥
𝑙+1

− 𝑥
𝑙
, 𝑦
𝑙
= ℎ
𝑙+1

− ℎ
𝑙
, and 𝐵𝑘−�̃�+1

𝑘
= 𝐵
0
for all 𝑘.

Remark 3. Algorithms 1 and 2 aremathematically equivalent.
Throughout this paper, Algorithm 2 is given only for the
purpose of analysis, so we only discuss Algorithm 2 in theory.
In the experiments, we implement Algorithm 1.

3. Global Convergence

Define the level set Ω by

Ω = {𝑥 | ‖ℎ (𝑥)‖ ≤
ℎ (𝑥0)

} . (21)

In order to establish the global convergence of Algorithm 2,
similar to [4, 11], we need the following assumptions.

Assumption A. 𝑔 is continuously differentiable on an open
convex set Ω

1
containing Ω. Moreover the Jacobian of 𝑔 is

symmetric, bounded, and positive definite on Ω
1
; namely,

there exist positive constants𝑀 ≥ 𝑚 > 0 satisfying

‖∇ℎ (𝑥)‖ ≤ 𝑀 ∀𝑥 ∈ Ω
1
,

𝑚‖𝑑‖
2

≤ 𝑑
𝑇

∇ℎ (𝑥) 𝑑 ∀𝑥 ∈ Ω
1
, 𝑑 ∈ R

𝑛

.
(22)
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Assumption B. 𝐵
𝑘
is a good approximation to ∇𝑔

𝑘
; that is,

(∇ℎ𝑘 − 𝐵𝑘) 𝑑𝑘
 ≤ 𝜖

ℎ𝑘
 , (23)

where 𝜖 ∈ (0, 1) is a small quantity.

Remark 4. Assumption A implies
𝑦𝑘

 ≤ 𝑀
𝑠𝑘
 , 𝑦

𝑘

𝑇

𝑠
𝑘
≥ 𝑚

𝑠𝑘

2

. (24)

The relations in (24) can ensure that 𝐵
𝑘+1

generated by
(20) inherits symmetric and positive definiteness of 𝐵

𝑘
. Thus,

(19) has a unique solution for each 𝑘. Moreover, the following
lemma holds.

Lemma 5 (see Theorem 2.1 in [16] or see Lemma 3.4 of [11]).
Let Assumption𝐴 hold and let {𝛼

𝑘
, 𝑑
𝑘
, 𝑥
𝑘+1
, 𝑔
𝑘+1
} be generated

by Algorithm 2. Then, for any 𝑟
0
∈ (0, 1) and 𝑘 ≥ 0, there are

positive constants 𝛽
𝑗
, 𝑗 = 1, 2, 3; the following relations

𝛽
2

𝑠𝑖

2

≤ 𝑠
𝑇

𝑖
𝐵
𝑖
𝑠
𝑖
≤ 𝛽
3

𝑠𝑖

2

,
𝐵𝑖𝑠𝑖

 ≤ 𝛽1
𝑠𝑖


(25)

hold for at least ⌈𝑟
0
𝑘⌉ values of 𝑖 ∈ [0, 𝑘].

By Assumption B, similar to [4, 9, 11, 15], it is easy to get
the following lemma.

Lemma 6. Let Assumption 𝐵 hold and let {𝛼
𝑘
, 𝑑
𝑘
, 𝑥
𝑘+1
, ℎ
𝑘+1
}

be generated by Algorithm 2. Then 𝑑
𝑘
is a descent direction for

𝜃(𝑥) at 𝑥
𝑘
; that is, ∇𝜃(𝑥

𝑘
)
𝑇

𝑑
𝑘
< 0 holds.

Based on the above lemma, by Assumption B, similar to
Lemma 3.8 in [2], we can get the following lemma.

Lemma 7. Let Assumption B hold and let {𝛼
𝑘
, 𝑑
𝑘
, 𝑥
𝑘+1
, ℎ
𝑘+1
}

be generated by Algorithm 2. Then {𝑥
𝑘
} ⊂ Ω. Moreover, {‖ℎ

𝑘
‖}

converges.

Lemma 8. Let Assumptions A and B hold. Then, in a finite
number of backtracking steps, Algorithm 2 will produce an
iterate 𝑥

𝑘+1
= 𝑥
𝑘
+ 𝛼
𝑘
𝑑
𝑘
.

Proof. It is sufficient for us to prove that the line search (11)
is reasonable. By Lemma 3.8 in [2], we can deduce that, in a
finite number of backtracking steps, 𝛼

𝑘
is such that

ℎ(𝑥𝑘 + 𝛼𝑘𝑑𝑘)

2

−
ℎ (𝑥𝑘)


2

≤ 𝛿𝛼
𝑘
ℎ(𝑥
𝑘
)
𝑇

∇ℎ (𝑥
𝑘
) 𝑑
𝑘
,

𝛿 ∈ (0, 1) .

(26)

By (19), we get

∇𝜃(𝑥
𝑘
)
𝑇

𝑑
𝑘
= ℎ(𝑥

𝑘
)
𝑇

∇ℎ (𝑥
𝑘
) 𝑑
𝑘

= ℎ(𝑥
𝑘
)
𝑇

[(∇ℎ (𝑥
𝑘
) − 𝐵
𝑘
) 𝑑
𝑘
− ℎ (𝑥

𝑘
)]

= ℎ(𝑥
𝑘
)
𝑇

(∇ℎ (𝑥
𝑘
) − 𝐵
𝑘
) 𝑑
𝑘
− ℎ(𝑥
𝑘
)
𝑇

ℎ (𝑥
𝑘
) .

(27)

Thus

∇𝜃(𝑥
𝑘
)
𝑇

𝑑
𝑘
+
ℎ𝑘


2

≤ ℎ(𝑥
𝑘
)
𝑇

(∇ℎ (𝑥
𝑘
) − 𝐵
𝑘
) 𝑑
𝑘

≤
ℎ (𝑥𝑘)


(∇ℎ (𝑥𝑘) − 𝐵𝑘) 𝑑𝑘

 .

(28)

By Assumption B, we have

∇𝜃(𝑥
𝑘
)
𝑇

𝑑
𝑘
≤
ℎ (𝑥𝑘)


(∇ℎ (𝑥𝑘) − 𝐵𝑘) 𝑑𝑘

 −
ℎ (𝑥𝑘)


2

≤ − (1 − 𝜖)
ℎ (𝑥𝑘)


2

.

(29)

Using (19) again and 𝛼
𝑘
≤ 1, we obtain

𝛼
𝑘
ℎ(𝑥
𝑘
)
𝑇

∇ℎ (𝑥
𝑘
) 𝑑
𝑘
≤ −𝛼
𝑘
(1 − 𝜖)

ℎ(𝑥𝑘)

2

= −
(1 − 𝜖)

2𝛼
𝑘

𝛼𝑘ℎ𝑘

2

−
(1 − 𝜖)

2𝛼
𝑘

𝛼𝑘𝐵𝑘𝑑𝑘

2

≤ −
(1 − 𝜖)

2

𝛼𝑘ℎ𝑘

2

−
𝛽
2

2
(1 − 𝜖)

2

𝛼𝑘𝑑𝑘

2

.

(30)

Setting 𝛿
1
∈ (0, 𝛿((1 − 𝜖)/2)) and 𝛿

2
∈ (0, 𝛿(𝛽

2

2
(1 − 𝜖)/2))

implies (11). This completes the proof.

Remark 9. The above lemma shows that Algorithm 2 is well
defined. By a way similar to Lemma 3.2 and Corollary 3.4 in
[5], it is not difficult to deduce that

𝛼
𝑘
≥

𝛽
2
𝑟

𝛽2
1
𝜎
1
+ 𝜎
2
+𝑀2

(31)

holds; we do not prove it anymore. Now we establish the
global convergence theorem.

Theorem 10. Let Assumptions A and B hold. Then the
sequence {𝑥

𝑘
} generated by Algorithm 2 converges to the unique

solution 𝑥∗ of (1).

Proof. Lemma 7 implies that {‖ℎ
𝑘
‖} converges. If

lim
𝑘→∞

ℎ𝑘
 = 0, (32)

then every accumulation point of {𝑥
𝑘
} is a solution of

(1). Assumption A means that (1) has only one solution.
Moreover, since Ω is bounded, {𝑥

𝑘
} ⊆ Ω has at least one

accumulation point. Therefore {𝑥
𝑘
} itself converges to the

unique solution of (1). Therefore, it suffices to verify (32).
If (18) holds for infinitely many 𝑘’s, then (32) is trivial.

Otherwise, if (18) holds for only finitelymany 𝑘’s, we conclude
that Step 3 is executed for all 𝑘 sufficiently large. By (11), we
have

𝛿
1

𝛼𝑘ℎ𝑘

2

+ 𝛿
2

𝑠𝑘

2

≤
ℎ𝑘


2

−
ℎ𝑘+1


2

. (33)

Since {‖ℎ
𝑘
‖} is bounded, by adding these inequalities, we get
∞

∑

𝑘=0

𝛼𝑘ℎ𝑘

2

< ∞,

∞

∑

𝑘=0

𝛼𝑘𝑑𝑘

2

< ∞. (34)

Then we have

lim
𝑘→∞

𝛼𝑘ℎ𝑘
 = 0, (35)

which together with (31) implies (32). This completes the
proof.
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4. Numerical Results

This section reports numerical results with Algorithm 1
and normal BFGS algorithm. The test problems with the
associated initial guess 𝑥

0
are listed with

ℎ (𝑥) = (𝑓
1
(𝑥) , 𝑓

2
(𝑥) , . . . , 𝑓

𝑛
(𝑥))
𝑇

. (36)

Problem 1. Exponential function 1:

𝑓
1
(𝑥) = 𝑒

𝑥
1
−1

− 1,

𝑓
𝑖
(𝑥) = 𝑖 (𝑒

𝑥
𝑖
−1

− 𝑥
𝑖
) , 𝑖 = 2, 3, . . . , 𝑛.

(37)

Initial guess: 𝑥
0
= (1/𝑛

2

, 1/𝑛
2

, . . . , 1/𝑛
2

)
𝑇.

Problem 2. Exponential function 2:

𝑓
1
(𝑥) = 𝑒

𝑥
1 − 1,

𝑓
𝑖
(𝑥) =

𝑖

10
(𝑒
𝑥
𝑖 + 𝑥
𝑖−1

− 𝑖) , 𝑖 = 2, 3, . . . , 𝑛.

(38)

Initial guess: 𝑥
0
= (1/𝑛

2

, 1/𝑛
2

, . . . , 1/𝑛
2

)
𝑇.

Problem 3. Trigonometric function:

𝑓
𝑖
(𝑥) = 2(𝑛 + 𝑖 (1 − cos𝑥

𝑖
) − sin𝑥

𝑖
−

𝑛

∑

𝑗=1

cos𝑥
𝑗
)

× (2 sin𝑥
𝑖
− cos𝑥

𝑖
) , 𝑖 = 1, 2, 3, . . . , 𝑛.

(39)

Initial guess: 𝑥
0
= (101/100𝑛, 101/100𝑛, . . . , 101/100𝑛)

𝑇.

Problem 4. Singular function:

𝑓
1
(𝑥) =

1

3
𝑥
3

1
+
1

2
𝑥
2

2
,

𝑓
𝑖
(𝑥) = −

1

2
𝑥
2

𝑖
+
𝑖

3
𝑥
3

𝑖
+
1

2
𝑥
2

𝑖+1
, 𝑖 = 2, 3, . . . , 𝑛 − 1,

𝑓
𝑛
(𝑥) = −

1

2
𝑥
2

𝑛
+
𝑛

3
𝑥
3

𝑛
.

(40)

Initial guess: 𝑥
0
= (1, 1, . . . , 1)

𝑇.

Problem 5. Logarithmic function:

𝑓
𝑖
(𝑥) = ln (𝑥

𝑖
+ 1) −

𝑥
𝑖

𝑛
, 𝑖 = 1, 2, 3, . . . , 𝑛. (41)

Initial guess: 𝑥
0
= (1, 1, . . . , 1)

𝑇.

Problem 6. Broyden tridiagonal function [17, pages 471-472]:

𝑓
1
(𝑥) = (3 − 0.5𝑥

1
) 𝑥
1
− 2𝑥
2
+ 1,

𝑓
𝑖
(𝑥) = (3 − 0.5𝑥

𝑖
) 𝑥
𝑖
− 𝑥
𝑖−1

+ 2𝑥
𝑖+1

+ 1,

𝑖 = 2, 3, . . . , 𝑛 − 1,

𝑓
𝑛
(𝑥) = (3 − 0.5𝑥

𝑛
) 𝑥
𝑛
− 𝑥
𝑛−1

+ 1.

(42)

Initial guess: 𝑥
0
= (−1, −1, . . . , −1)

𝑇.

Problem 7. Trigexp function [17, page 473]:

𝑓
1
(𝑥) = 3𝑥

3

1
+ 2𝑥
2
− 5 + sin (𝑥

1
− 𝑥
2
) sin (𝑥

1
+ 𝑥
2
) ,

𝑓
𝑖
(𝑥) = − 𝑥

𝑖−1
𝑒
𝑥
𝑖−1
−𝑥
𝑖 + 𝑥
𝑖
(4 + 3𝑥

2

𝑖
) + 2𝑥

𝑖+1

+ sin (𝑥
𝑖
− 𝑥
𝑖+1
) sin (𝑥

𝑖
+ 𝑥
𝑖+1
) − 8,

𝑖 = 2, 3, . . . , 𝑛 − 1,

𝑓
𝑛
(𝑥) = −𝑥

𝑛−1
𝑒
𝑥
𝑛−1
−𝑥
𝑛 + 4𝑥

𝑛
− 3.

(43)

Initial guess: 𝑥
0
= (0, 0, . . . , 0)

𝑇.

Problem 8. Strictly convex function 1 [18, page 29]: ℎ(𝑥) is the
gradient of ℎ(𝑥) = ∑𝑛

𝑖=1
(𝑒
𝑥
𝑖 − 𝑥
𝑖
). Consider

𝑓
𝑖
(𝑥) = 𝑒

𝑥
𝑖 − 1, 𝑖 = 1, 2, 3, . . . , 𝑛. (44)

Initial guess: 𝑥
0
= (1/𝑛, 2/𝑛, . . . , 1)

𝑇.

Problem 9. Linear function-full rank:

𝑓
𝑖
(𝑥) = 𝑥

𝑖
−
2

𝑛

𝑛

∑

𝑗=1

𝑥
𝑗
+ 1. (45)

Initial guess: 𝑥
0
= (100, 100, . . . , 100)

𝑇.

Problem 10. Penalty function:

𝑓
𝑖
(𝑥) = √10−5 (𝑥

𝑖
− 1) , 𝑖 = 1, 2, 3, . . . , 𝑛 − 1,

𝑓
𝑛
(𝑥) = (

1

4𝑛
)

𝑛

∑

𝑗=1

𝑥
2

𝑗
−
1

4
.

(46)

Initial guess: 𝑥
0
= (1/3, 1/3, . . . , 1/3)

𝑇.

Problem 11. Variable dimensioned function:

𝑓
𝑖
(𝑥) = 𝑥

𝑖
− 1, 𝑖 = 1, 2, 3, . . . , 𝑛 − 2,

𝑓
𝑛−1

(𝑥) =

𝑛−2

∑

𝑗=1

𝑗 (𝑥
𝑗
− 1) ,

𝑓
𝑛
(𝑥) = (

𝑛−2

∑

𝑗=1

𝑗 (𝑥
𝑗
− 1))

2

.

(47)

Initial guess: 𝑥
0
= (1 − (1/𝑛), 1 − (2/𝑛), . . . , 0)

𝑇.

Problem 12. Tridiagonal system [19]:

𝑓
1
(𝑥) = 4 (𝑥

1
− 𝑥
2

2
) ,

𝑓
𝑖
(𝑥) = 8𝑥

𝑖
(𝑥
2

𝑖
− 𝑥
𝑖−1
) − 2 (1 − 𝑥

𝑖
)

+ 4 (𝑥
𝑖
− 𝑥
2

𝑖+1
) , 𝑖 = 2, 3, . . . , 𝑛 − 1,

𝑓
𝑛
(𝑥) = 8𝑥

𝑛
(𝑥
2

𝑛
− 𝑥
𝑛−1
) − 2 (1 − 𝑥

𝑛
) .

(48)

Initial guess: 𝑥
0
= (12, 12, . . . , 12).
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Table 1

Nr. Dim Algorithm 1 Normal BFGS algorithm
NI/NG GN Time NI/NG GN Time

Problem 1

500 24/25 9.908338e − 05 2.901619e + 01 23/87 NaN 1.950013e + 00
1000 9/10 5.697414e − 05 5.366434e + 01 23/87 NaN 1.124767e + 01
1500 9/10 3.363290e − 05 1.689803e + 02 NI > 1000 Inf 8.094892e + 01
2000 9/10 2.706880e − 05 3.880213e + 02 NI > 1000 Inf 1.550962e + 02

Problem 2

500 8/16 3.660478e − 05 6.926444e + 00 60/390 NaN 7.269647e + 00
1000 8/16 6.406401e − 05 4.513109e + 01 40/314 NaN 2.857938e + 01
1500 9/17 7.655321e − 05 1.689959e + 02 33/258 NaN 7.102726e + 01
2000 9/17 9.651851e − 05 3.881617e + 02 29/226 NaN 1.410717e + 02

Problem 3

500 18/33 7.747640e − 06 2.110694e + 01 NI > 1000 5.905028e + 04 1.220396e + 02
1000 17/32 8.381440e − 05 1.270472e + 02 NI > 1000 1.577282e + 05 5.830069e + 02
1500 17/32 6.658002e − 05 3.975217e + 02 NI > 1000 2.929920e + 05 1.645561e + 03
2000 17/32 5.689277e − 05 9.154451e + 02 NI > 1000 4.345902e + 05 3.776363e + 03

Problem 4

500 809/3134 9.614778e − 05 1.113785e + 03 9/73 NaN 1.107607e + 00
1000 960/3894 9.865549e − 05 8.674373e + 03 8/65 NaN 5.725237e + 00
1500 197/695 8.562547e − 05 5.509394e + 03 8/65 NaN 1.584970e + 01
2000 220/676 9.847745e − 05 1.418851e + 04 8/65 NaN 3.584903e + 01

Problem 5

500 6/7 4.925073e − 06 4.305628e + 00 6/7 4.925073e − 06 7.488048e − 01
1000 6/7 6.747222e − 06 2.725337e + 01 6/7 6.747222e − 06 4.477229e + 00
1500 6/7 8.176417e − 06 8.352294e + 01 6/7 8.176417e − 06 1.340049e + 01
2000 6/7 9.391335e − 06 1.925364e + 02 6/7 9.391335e − 06 3.001459e + 01

Problem 6

500 96/97 9.183793e − 05 1.272812e + 02 65/66 9.473359e − 05 8.346053e + 00
1000 17/18 7.206980e − 05 1.263140e + 02 63/64 8.700852e − 05 4.623870e + 01
1500 17/18 6.663689e − 05 3.956965e + 02 63/64 9.605270e − 05 1.402917e + 02
2000 17/18 6.136239e − 05 9.107026e + 02 64/65 8.724048e − 05 3.194588e + 02

Problem 7

500 14/15 7.551200e − 05 1.533490e + 01 52/53 9.761790e − 05 6.333641e + 00
1000 15/16 5.530847e − 05 1.084051e + 02 55/63 8.871231e − 05 3.985826e + 01
1500 14/15 8.445286e − 05 3.119708e + 02 60/68 7.722045e − 05 1.336617e + 02
2000 15/16 4.705617e − 05 7.805354e + 02 13/63 NaN 5.564556e + 01

Problem 8

500 6/7 4.600878e − 05 4.196427e + 00 6/7 2.375490e − 05 7.020045e − 01
1000 6/7 6.434846e − 05 2.658257e + 01 6/7 3.327487e − 05 4.461629e + 00
1500 6/7 7.851881e − 05 8.319533e + 01 6/7 4.062329e − 05 1.335369e + 01
2000 6/7 9.049762e − 05 1.928484e + 02 6/7 4.683284e − 05 2.985859e + 01

Problem 9

500 2/10 2.027911e − 10 5.460035e − 01 NI > 1000 4.514037e + 117 1.037407e + 01
1000 2/10 2.666034e − 10 2.698817e + 00 NI > 1000 6.383813e + 117 2.861058e + 01
1500 2/10 1.379742e − 09 8.330453e + 00 NI > 1000 7.818542e + 117 5.319634e + 01
2000 2/10 1.701735e − 09 1.942212e + 01 NI > 1000 9.028075e + 117 8.375694e + 01

Problem 10

500 435/2865 5.154286e − 05 5.901362e + 02 41/210 NaN 3.806424e + 00
1000 637/4215 5.701191e − 05 5.749432e + 03 67/425 NaN 3.689424e + 01
1500 303/1914 4.003848e − 05 8.526469e + 03 63/491 NaN 1.146919e + 02
2000 473/3281 3.558910e − 05 3.074095e + 04 64/499 NaN 2.622845e + 02

Problem 11

500 1/2 0.000000e + 00 1.092007e − 01 1/2 0.000000e + 00 1.560010e − 01
1000 1/2 0.000000e + 00 7.956051e − 01 1/2 0.000000e + 00 6.864044e − 01
1500 1/2 0.000000e + 00 2.277615e + 00 1/2 0.000000e + 00 2.324415e + 00
2000 1/2 0.000000e + 00 5.101233e + 00 1/2 0.000000e + 00 5.210433e + 00

Problem 12

500 260/800 1.654459e − 05 3.509398e + 02 8/51 NaN 7.800050e − 01
1000 324/1053 8.997051e − 05 2.902289e + 03 8/51 NaN 5.226033e + 00
1500 254/829 1.257117e − 05 7.123224e + 03 8/51 NaN 1.583410e + 01
2000 372/1353 9.331122e − 05 2.414117e + 04 8/51 NaN 3.046700e + 01
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Table 1: Continued.

Nr. Dim Algorithm 1 Normal BFGS algorithm
NI/NG GN Time NI/NG GN Time

Problem 13

500 96/209 9.194537e − 05 1.287632e + 02 10/74 NaN 1.185608e + 00
1000 53/89 5.718492e − 05 4.531049e + 02 10/74 NaN 6.021639e + 00
1500 NI > 1000 1.180195e + 10 2.835008e + 04 10/74 NaN 1.790891e + 01
2000 54/132 3.919816e − 05 3.337298e + 03 10/74 NaN 4.031066e + 01

Problem 14

500 18/68 5.826508e − 05 2.076373e + 01 16/115 NaN 6.240040e − 01
1000 18/68 8.239959e − 05 1.357989e + 02 16/115 NaN 3.354021e + 00
1500 19/69 5.002681e − 05 4.532921e + 02 16/115 NaN 9.765663e + 00
2000 19/69 5.774900e − 05 1.042820e + 03 16/115 NaN 2.148134e + 01

Problem 15

500 8/9 6.870902e − 05 6.910844e + 00 22/23 8.899350e − 05 2.667617e + 00
1000 7/8 7.203786e − 05 3.561503e + 01 16/17 9.828207e − 05 1.174688e + 01
1500 7/8 4.809670e − 05 1.122739e + 02 13/14 9.654107e − 05 2.903179e + 01
2000 7/8 3.609946e − 05 2.583845e + 02 11/12 9.465949e − 05 5.519315e + 01

Problem 16

500 0/1 0.000000e + 00 0.000000e + 00 0/1 0.000000e + 00 0.000000e + 00
1000 0/1 0.000000e + 00 0.000000e + 00 0/1 0.000000e + 00 0.000000e + 00
1500 0/1 0.000000e + 00 1.560010e − 02 0/1 0.000000e + 00 0.000000e + 00
2000 0/1 0.000000e + 00 1.560010e − 02 0/1 0.000000e + 00 1.560010e − 02

Problem 13. Five-diagonal system [19]:

𝑓
1
(𝑥) = 4 (𝑥

1
− 𝑥
2

2
) + 𝑥
2
− 𝑥
2

3
,

𝑓
2
(𝑥) = 8𝑥

2
(𝑥
2

2
− 𝑥
1
) − 2 (1 − 𝑥

2
) + 4 (𝑥

2
− 𝑥
2

3
) + 𝑥
3
− 𝑥
2

4
,

𝑓
𝑖
(𝑥) = 8𝑥

𝑖
(𝑥
2

𝑖
− 𝑥
𝑖−1
) − 2 (1 − 𝑥

𝑖
) + 4 (𝑥

𝑖
− 𝑥
2

𝑖+1
) + 𝑥
2

𝑖−1

− 𝑥
𝑖−2

+ 𝑥
𝑖+1

− 𝑥
2

𝑖+2
, 𝑖 = 3, 4, . . . , 𝑛 − 2,

𝑓
𝑛−1

(𝑥) = 8𝑥
𝑛−1

(𝑥
2

𝑛−1
− 𝑥
𝑛−2
) − 2 (1 − 𝑥

𝑛−1
)

+ 4 (𝑥
𝑛−1

− 𝑥
2

𝑛
) + 𝑥
2

𝑛−2
− 𝑥
𝑛−3
,

𝑓
𝑛
(𝑥) = 8𝑥

𝑛
(𝑥
2

𝑛
− 𝑥
𝑛−1
) − 2 (1 − 𝑥

𝑛
) + 𝑥
2

𝑛−1
− 𝑥
𝑛−2
.

(49)

Initial guess: 𝑥
0
= (−2, −2, . . . , −2).

Problem 14. Extended Freudentein and Roth function (𝑛 is
even) [20]: for 𝑖 = 1, 2, . . . , 𝑛/2

𝑓
2𝑖−1

(𝑥) = 𝑥
2𝑖−1

+ ((5 − 𝑥
2𝑖
) 𝑥
2𝑖
− 2) 𝑥

2𝑖
− 13,

𝑓
2𝑖
(𝑥) = 𝑥

2𝑖−1
+ ((1 + 𝑥

2𝑖
) 𝑥
2𝑖
− 14) 𝑥

2𝑖
− 29.

(50)

Initial guess: 𝑥
0
= (6, 3, 6, 3, . . . , 6, 3).

Problem 15. Discrete boundry value problem [21]:

𝑓
1
(𝑥) = 2𝑥

1
+ 0.5ℎ

2

(𝑥
1
+ 𝑡)
3

− 𝑥
2
,

𝑓
𝑖
(𝑥) = 2𝑥

𝑖
+ 0.5ℎ

2

(𝑥
𝑖
+ 𝑡𝑖)
3

− 𝑥
𝑖−1

+ 𝑥
𝑖+1
,

𝑖 = 2, 3, . . . , 𝑛 − 1,

𝑓
𝑛
(𝑥) = 2𝑥

𝑛
+ 0.5ℎ

2

(𝑥
𝑛
+ 𝑡𝑛)
3

− 𝑥
𝑛−1
,

𝑡 =
1

𝑛 + 1
.

(51)

Initial guess: 𝑥
0
= (𝑡(𝑡 − 1), 𝑡(2𝑡 − 1), . . . , 𝑡(𝑛𝑡 − 1)).

Problem 16. Troesch problem [22]:

𝑓
1
(𝑥) = 2𝑥

1
+ ℎ
2 sin 𝑡 (𝑥

1
) − 𝑥
2
,

𝑓
𝑖
(𝑥) = 2𝑥

𝑖
+ ℎ
2 sin 𝑡 (𝑥

𝑖
) − 𝑥
𝑖−1

− 𝑥
𝑖+1
,

𝑖 = 2, 3, . . . , 𝑛 − 1,

𝑓
𝑛
(𝑥) = 2𝑥

𝑛
+ ℎ
2 sin 𝑡 (𝑥

𝑛
) − 𝑥
𝑛−1
,

𝑡 =
1

𝑛 + 1
,  = 10.

(52)

Initial guess: 𝑥
0
= (0, 0, . . . , 0).

In the experiments, the parameters in Algorithm 1 and
the normal BFGS method were chosen as 𝑟 = 0.1, 𝜌 = 0.5,
𝑚
1
= 6, 𝛿

1
= 𝛿
2
= 0.001, 𝐻

0
and is the unit matrix. All

codes were written in MATLAB r2013b and run on PC with
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6600@2.40GHzCore 2 CPU processor and 4.00GBmemory
and Windows 7 operation system. We stopped the program
when the condition ‖ℎ(𝑥)‖ ≤ 10

−4 was satisfied. Since
the line search cannot always ensure the descent condition
𝑑
𝑇

𝑘
ℎ
𝑘
< 0, uphill search direction may occur in the numerical

experiments. In this case, the line search rule maybe fails. In
order to avoid this case, the stepsize 𝛼

𝑘
will be accepted if

the searching time is larger than eight in the inner circle for
the test problems. We also stop this program if the iteration
number arrived at 1000. The columns of the tables have the
following meaning.

Dim: the dimension. NI: the total number of itera-
tions.
NG: the number of the norm function evaluations.
Time: the CPU time in second.
GN: the normal value of ‖ ℎ(𝑥) ‖ when the program
stops.
NaN: not-a-number, impling that the code fails to get
a real value.
Inf: returning the IEEE arithmetic representation for
positive infinity or infinity which is also produced by
operations like dividing by zero.

From the numerical results in Table 1, it is not difficult
to show that the proposed method is more successful than
the normal BFGS method. We can see that there exist many
problems which can not be successfully solved by the normal
BFGS method. Moreover, the normal BFGS method fails to
get real value for several problems.Thenwe can conclude that
the presented method is more competitive than the normal
BFGS method.
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