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This paper proposes an observer-based robust guaranteed cost controlmethod for thrust-limited rendezvous in near-circular orbits.
Treating the noncircularity of the target orbit as a parametric uncertainty, a linearized motion model derived from the two-body
problem is adopted as the controlled plant. Based on this model, a robust guaranteed cost observer-controller is synthesized with a
less conservative saturation control law, and sufficient condition for the existence of this observer-based rendezvous controller
is derived. Finally, an illustrative example with immeasurable velocity states is presented to demonstrate the advantages and
effectiveness of the control scheme.

1. Introduction

As a fundamental operational technology, autonomous ren-
dezvous is widely applied to the astronautic missions involv-
ing more than one spacecraft, such as crew exchange, large-
scale assembly, spacecraft interception, maintenance, dock-
ing, and formation flying. Since the autonomous control
scheme is a primary factor that determines the success of the
rendezvous, it has been and continues to be an attractive area
of research.

In order to lower the technical difficulties, routine ren-
dezvous missions are often expected to be conducted in
circular orbits. However, an ideal circular orbit is hard to
achieve and maintain; as a result, most of the spacecraft
rendezvous were actually accomplished in the target orbits
with small eccentricities; therefore, adopting a proper and
accurate plant model is a prerequisite for the design of the
rendezvous controller. The most widely used model for the
study of rendezvous was proposed by Clohessy andWiltshire
[1], which is known as the Clohessy-Wiltshire equations (or
Hill’s equations [2]). Although the form of C-W equations
is linear and concise, these equations are only suitable and
precise enough for rendezvous in circular orbits. To solve

this problem, De Vries [3] and Tschauner [4] proposed the
relative motion models for rendezvous in elliptical orbits,
which are more accurate than C-W equations when reference
orbits are noncircular, but nonlinear terms involved in these
models would complicate the control task. The concept
of rendezvous in near-circular orbits was first raised by
Anthony and Sasaki [5], and a linearized modeling method
for this kind of rendezvous was investigated by Melton [6].
In consideration of the practical engineering application, a
linearized model for rendezvous in near-circular orbits is
chosen as the controlled plant in this paper.

In practice, some state variables may not always be
available for direct measurement due to physical constraints,
such as sensor failure and obstacle blocking. Observer-based
control and output feedback control are the two common
methods that can cope with this difficulty. Output feedback
control method is direct but has many restrictions; more
introductions on this method are given in [7–12]. State
observers were first proposed and developed by Luenberger
[13], since then various kinds of observers including sliding
mode observer [14] and fuzzy observer [15] have been devel-
oped. Based on these observers, many observer-based control
methods have been developed [16–18]. Since state observers
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Figure 1: Relative Cartesian coordinate system for spacecraft ren-
dezvous.

have the ability to reconstruct the system states from its
output measurements, the observer-based controllers are
widely applied to fault diagnosis, fault isolation, reliability
improvement, and cost saving by estimating the state vari-
ables instead of measuring them by sensors [19–21].

Since the last decades of the 20th century, advanced
control theories have been implemented in autonomous
rendezvous of spacecraft. Gao et al. [22] designed a multiob-
jective robust 𝐻

∞
controller for the spacecraft rendezvous.

For the fault-tolerant control problem, Yang and Gao [23]
propounded a robust reliable control scheme for thrust-
limited rendezvous. Yang and Gao [24] and Sheng et al. [25]
synthesized guaranteed cost output tracking controllers for
spacecraft rendezvous. Sampled-data controllers for space-
craft rendezvous with thrust nonlinearity were proposed in
[26, 27]. A sampled-data controller designed via a discon-
tinuous Lyapunov’s approach was discussed in [28]. By using
adaptive output feedback control technique, Singla et al. [29]
developed an adaptive control law that is valid for both
orbit and attitude control. Bevilacqua et al. [30] provided
a control scheme on the basis of Pontryagin’s maximum
principle; Zhou et al. [31] gave a control method via a
parametric Lyapunov’s differential equation approach; and a
robust tracking controller for relative position holding was
studied in our previous work [32]. However, up to now, to
the best of the authors’ knowledge, an observer-based control
scheme for spacecraft rendezvous has not been proposed yet.

To realize spacecraft rendezvous in the situation where
not all states are available for feedback, this paper develops
an observer-based rendezvous controller. For practicality, a
linearized motion model, which is fully suitable for the near-
circular rendezvous butwas seldom investigated previously, is
used in this paper. A modified saturation control technique,
which ismore concise but less conservative than those used in
[22, 23, 25, 26, 33–38], is employed to limit the control forces.
Robust guaranteed cost control technique is also utilized to
optimize the fuel and time cost in the presence of noncircular
uncertainty of the reference orbit. Finally, the observer-based
rendezvous controller is cast into a convex optimization
problem subject to linearmatrix inequality (LMI) constraints,

and a numerical example is given to illustrate the usefulness
and advantages of our proposed control scheme.

The remainder of this paper is organized as follows.
Section 2 sets up the relative motion model and formu-
lates the control problem. Section 3 derives the observer-
based controller. Section 4 shows an illustrative example, and
Section 5 draws the conclusion.

Notation. The notation used throughout this paper is given
below. For a matrix X, X𝑇 stands for the transpose of X;
sym(X) stands for X + X𝑇. For a real symmetric matrix
Y, the notation Y > 0 (Y < 0) is used to denote its
positive- (negative-) definiteness. diag(⋅ ⋅ ⋅ ) stands for a block-
diagonal matrix. In symmetric block matrices or complex
matrix expressions, we use an asterisk (∗) to represent a term
that is induced by symmetry. I and 0, respectively, denote the
identity matrix and zero matrix with compatible dimension.
If the dimensions ofmatrices are not explicitly stated, they are
assumed to be compatible for algebraic operation.

2. Motion Analysis and Problem Formulation

In this section, based on the two-body problem, a dynamic
model for rendezvous in near-circular orbits is established.
Furthermore, the autonomous control task is converted into
an observer-based stabilization problem, and some require-
ments on the observer-controller are stated.

2.1. Relative Motion Model. Suppose that two spacecrafts
moving in almost identical orbits are very close to each
other, and they are only influenced by a central gravitational
source. The spacecraft that approaches the other by orbital
maneuvering is denoted as the chase vehicle, and the target
vehicle denotes the other spacecraft that does not maneuver.
It is supposed that the propulsive thrusts of the chase vehicle
are independent and continue along each axis.

A relative Cartesian coordinate system shown in Figure 1
is defined to describe the relative motion between the target
and the chase vehicles. The origin of the coordinate system
is settled at the centroid of the target vehicle. The 𝑥-axis is
aligned with the vector from the Earth’s center to the origin
of the coordinates system. The 𝑧-axis is aligned with the
angular momentum vector of the target orbit, and the 𝑦-axis
completes an orthogonal right-handed system.

By forming state vector x(𝑡) = [𝑥, 𝑦, 𝑧, �̇�, ̇𝑦, �̇�]
𝑇 that con-

tains the position and velocity states of the chase vehicle and
the input vector u(𝑡) = [𝑓

𝑥
(𝑡), 𝑓
𝑦
(𝑡), 𝑓
𝑧
(𝑡)]
𝑇 where 𝑓

𝑖
(𝑡) for

𝑖 = 𝑥, 𝑦, 𝑧 are the chaser’s control forces along each axis, the
relative motion model for rendezvous in near-circular orbits
can be expressed as

ẋ (𝑡) = (A + ΔA) x (𝑡) + Bu (𝑡) , (1)

where
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0 0 0 0 0 0
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,

(2)

where 𝑛 is themeanmotion of the target vehicle;𝑚 is themass
of the chase vehicle; 𝑒 is the eccentricity of the target orbit;
𝑀 = 𝑛(𝑡 − 𝑡

𝑝
) is the mean anomaly of the target vehicle; and

𝑡
𝑝
is the time of periapsis passage.The norm-boundedmatrix

ΔA that determines the shape of the target orbit is defined as
noncircular uncertainty and can be factorized as

ΔA = E
1
ΛE
2
, (3)

where E
1
and E

2
are two constant matrices with proper

dimensions, and time-variant matrixΛ is bounded byΛ𝑇Λ <

I. More detailed descriptions and derivations on model (1)
can be obtained from our previous work [32].

The advantages of adopting (1) as the plant model are
significant. Compared with the models for circular target
orbit, as eccentricity of the target orbit is contained in ΔA,
model (1) is more accurate; while compared with the nonlin-
ear model for elliptical orbits, as model (1) is linearized, it is
more designer-friendly. Moreover, as most of the rendezvous
missions were accomplished in near-circular orbits, this
controlled plant is practical and precise enough to describe
the regular spacecraft rendezvous.

2.2. ProblemFormulation. In order to assess and optimize the
performance of the controller, a quadratic cost function 𝐽 is
defined as

𝐽 = ∫

∞

0

[x𝑇 (𝑡)Qx (𝑡) + uT (𝑡)Ru (𝑡)] 𝑑𝑡, (4)

where state weighting matrix Q ∈ R6×6 is a positive sym-
metric matrix related to the convergence rate of the rela-
tive motion states and the smoothness of the rendezvous
trajectory, and control weighting matrix Q ∈ R3×3 is a
positive symmetric matrix related to the fuel cost of the

chase vehicle.Theminimumquadratic costmeans an optimal
compromise among the convergence rate of themotion states,
the smoothness of the trajectory, and the consumption of the
fuel. Matrices U

𝑖
(𝑖 = 𝑥, 𝑦, 𝑧) are introduced for the purpose

of limiting the control forces. DefiningU
𝑥
= [1, 0, 0]

𝑇

[1, 0, 0],
U
𝑦

= [0, 1, 0]
𝑇

[0, 1, 0], and U
𝑧

= [0, 0, 1]
𝑇

[0, 0, 1], input
constraints along each axis can be expressed as

𝑓𝑖
 =

U𝑖u (𝑡)
 ≤ 𝑢
𝑖,max (𝑖 = 𝑥, 𝑦, 𝑧) , (5)

where 𝑢
𝑖,max is the maximum control force that thrusters can

produced along the 𝑖-axis.
According to the relative motion model (1) and some

restrictions presented above, the problems to be studied in
this paper are stated below.

Based on plant model (1), design an observer-based
robust guaranteed cost controller such that the following
requirements are met.

(i) Rendezvous system (1) is asymptotically stable at
x(𝑡) = 0, which means that the chase vehicle should
encounter the target vehicle in spite of the model
uncertainty.

(ii) The quadratic cost function 𝐽 defined in (4) should be
the minimum.

(iii) The propulsive control thrusts along each axis
𝑢
𝑖
(𝑡) should not exceed the maximum values 𝑢

𝑖,max
assigned in (5).

3. Robust Observer-Based Control

In this section, a full-order state observer that can estimate
the immeasurable states is proposed, and then a robust
observer-based guaranteed cost controller with input satu-
ration for autonomous rendezvous in near-circular orbits is
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designed via an LMI method. At the end of this section,
a convex optimization problem for solving the observer-
controller is presented.

3.1. Observer Design. As some state variables may not be
available for feedback during rendezvous, observer is used
to estimate those immeasurable states. Integrating the mea-
surable states into a vector, the output vector y(𝑡) of the
rendezvous system is defined as

y (𝑡) = Cx (𝑥) , (6)

whereC is an outputmatrix related to themeasurability of the
state variables. According to (1) and (6), a full-order observer
can be described by

̇̂x = Ax̂ + Bu (𝑡) + L [y (𝑡) − Cx̂ (𝑡)] , (7)

where L is the observer gain matrix, and x̂(𝑡) is the observed
state vector.

The error vector e(𝑡) denotes the difference between x(𝑡)
and x̂(𝑡) or

e (𝑡) = x (𝑡) − x̂ (𝑡) . (8)

Substituting (1), (6), and (7) into the derivative of (8), we
obtain the dynamic model for the error vector

ė (𝑡) = (A − LC) e (𝑡) + ΔAx (𝑡) . (9)

In spite of the disturbance caused by uncertain matrix
ΔA, when (A,C) is completely observable, an observer gain
matrix L that ensures the asymptotic stability of e(𝑡) can be
obtained by choosing a proper set of eigenvalues for matrix
(A − LC).

3.2. Robust Observer-Based Controller Design. Considering
the observer-based state feedback control law, the control
signal can be generated by

u (𝑡) = −Kx̂ (𝑡) , (10)

whereK ∈ R3×6 is the state feedback gainmatrix. Substituting
(10) into plant model (1), we obtain the closed-loop observer-
based system as

ẋ (𝑡) = (A + ΔA − BK) x (𝑡) + BKe (𝑡) . (11)

A lemma needed by subsequent derivation is given here, and
its proofs and application can be found in [39].

Lemma 1 (see [39]). Given matrices G = G𝑇, D, and E of
appropriate dimensions,

G + DFE + E𝑇F𝑇D𝑇 < 0, (12)

for all F satisfying F𝑇F ≤ I, if and only if there exists a scalar
𝛿 > 0 such that

G + 𝛿DD𝑇 + 𝛿
−1E𝑇E < 0. (13)

An augmented state vector is defined as 𝜉(𝑡) =

[x𝑇(𝑡) e𝑇(𝑡)]𝑇. Then, the following theorem gives a suffi-
cient condition for the existence of an observer-based robust
controller with an upper bound on the performance index
(4).

Theorem 2. Consider the closed-loop system (11) with the
observer-based state feedback control law in (10). For a given
initial augmented state vector 𝜉(0), if there exist a positive
symmetric matrix X ∈ R6×6, a matrix Y ∈ R3×6, and positive
scalars 𝜀 and 𝜌 satisfying

[
[
[
[
[
[
[
[
[
[

[

sym (AX − BY) + 𝜀E
1
E𝑇
1

BY + 𝜀E
1
E𝑇
1

XE𝑇
2

0 Y𝑇 −Y𝑇 X
∗ sym [(A − LC)X] + 𝜀E

1
E𝑇
1

0 0 −Y𝑇 Y𝑇 0
∗ ∗ −𝜀I 0 0 0 0
∗ ∗ ∗ −𝜀I 0 0 0
∗ ∗ ∗ ∗ −R−1 0 0
∗ ∗ ∗ ∗ ∗ −R−1 0
∗ ∗ ∗ ∗ ∗ ∗ −Q−1

]
]
]
]
]
]
]
]
]
]

]

< 0, (14)

[

−𝜌 𝜉
𝑇

(0)

∗ −X
] < 0, (15)

where

X = [

X 0
0 X

] , (16)

then there exists a proper observer-controller such that the
closed-loop system (11) is asymptotically stable at 𝜉(𝑡) = 0, and
the quadratic cost function (4) has an upper bound 𝜌.

Proof. Consider the Lyapunov function

𝑉 (𝑡) = [

[

x (𝑡)

e (𝑡)
]

]

𝑇

[

[

P 0

0 P
]

]

[

[

x (𝑡)

e (𝑡)
]

]

, (17)
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where P is a positive symmetric matrix. Substituting (9) and
(11) into the derivative of 𝑉(𝑡), we have

�̇� (𝑡) = [

x (𝑡)

e (𝑡)
]

𝑇

× [

[

sym [P (A + ΔA − BK)] PBK + ΔA𝑇P

∗ sym [P (A − LC)]

]

]

× [

x (𝑡)

e (𝑡)
] .

(18)

As is well known, the asymptotic stability of (15) can be
guaranteed by �̇�(𝑡) < 0. Then, suppose there exist matrices
K, P,Q, and R ensuring the following inequalities:

�̇� (𝑡) < − [x𝑇 (𝑡)Qx (𝑡) + u𝑇 (𝑡)Ru (𝑡)] < 0. (19)

Integrating (19) from 0 to ∞ and noticing that 𝜉(𝑡) → 0 as
𝑡 → ∞, we obtain

0 < 𝐽 = ∫

∞

0

[x𝑇 (𝑡)Qx (𝑡) + u𝑇 (𝑡)Ru (𝑡)] 𝑑𝑡 ≤ 𝑉 (0) = 𝐽max,

(20)

where 𝑉(0) also denoted as 𝐽max is an upper bound of the
performance index (4). Substituting (8), (10), and (18) into
inequalities (19), there is

[

[

sym [P (A + ΔA − BK)] + Q + K𝑇RK PBK + ΔA𝑇P − K𝑇RK

∗ sym [P (A − LC)] + K𝑇RK
]

]

< 0. (21)

Rewriting inequality (21), we have

Ψ + ΔΦE + E𝑇Φ𝑇Δ𝑇 < 0, (22)

where

Ψ = [

[

sym [P (A − BK)] +Q + K𝑇RK PBK − K𝑇RK

∗ sym [P (A − LC)] + K𝑇RK
]

]

,

Δ = [

PE
1
0

PE
1
0
] ,

Φ = [

Λ 0
0 0

] ,

E = [

E
2
0

0 0
] .

(23)

By Lemma 1, there exists a positive scalar 𝜀 ensuring (22) by

Ψ + 𝜀ΔΔ
𝑇

+ 𝜀
−1E𝑇E < 0. (24)

By the Schur complement, inequality (24) is equivalent to

[

Γ
11
Γ
12

∗ Γ
22

] < 0, (25)

where

Γ
11
=
[

[

sym [P (A − BK)] + 𝜀PE
1
E𝑇
1
P PBK + 𝜀PE

1
E𝑇
1
P

∗ sym [P (A − LC)] + 𝜀PE
1
E𝑇
1
P
]

]

,

Γ
12

= [

E𝑇
2

0 K𝑇 −K𝑇 I

0 0 −K𝑇 K𝑇 0
] ,

Γ
22

= diag (−𝜀I, −𝜀I,−R−1,−R−1,−Q−1) .

(26)

By defining X = P−1 and Y = KP−1 and pre- and post-
multiplying (24) by diag(P−1,P−1, I), where I is an identity
matrix with proper dimension, matrix inequality (25) is then
transformed into LMI (14).

To minimize 𝐽max, assume that there exists a positive
scalar 𝜌, which meets

𝐽max = 𝑉 (0) = 𝜉
𝑇

(0)P𝜉 (0) ≤ 𝜌, (27)

where

P = [

P 0
0 P

] . (28)

From (27), we know that 𝜌 is also an upper bound of the
quadratic cost function 𝐽 defined in (4). Then, by the Schur
complement, the inequality in (27) can be transformed into

[

[

𝜌 𝜉
𝑇

(0)

∗ −P−1
]

]

< 0. (29)

By defining X = P−1, matrix inequality (29) is equivalent to
LMI (15). This completes the proof.

According to Theorem 2, an observer-controller with an
upper bound 𝜌 on performance cost 𝐽 is obtained, which
meets the requirements (i) and (ii). But more constraints
are still needed to limit the control forces. On the basis of
Theorem 2,Theorem 3 provides a sufficient condition for the
existence of a robust guaranteed cost observer-controller with
input saturation.

Theorem 3. Consider closed-loop system (11) with the
observer-based state feedback control law in (10). For a given
initial augmented state vector 𝜉(0), if there exist a positive



6 Abstract and Applied Analysis

symmetric matrix X ∈ R6×6, a matrix Y ∈ R3×6, positive
scalars 𝜀 and 𝜌 satisfying (14), and the following inequalities

[

−𝜌
−1

𝜌
−1

𝜉
T
(0)

∗ −X
] < 0, (30)

[
[
[

[

−X 0 Y𝑇U𝑇
𝑖

∗ −X −Y𝑇U𝑇
𝑖

∗ ∗ −𝑢
2

𝑖,max𝜌
−1I

]
]
]

]

< 0, (31)

where

X = [

X 0
0 X

] , (32)

then there exists an observer-controller such that closed-loop
system (11) is asymptotically stable at 𝜉(𝑡) = 0; quadratic cost
function (4) has an upper bound 𝑤 > 0, and control inputs
along each axis are constrained below the maximum control
thrust 𝑢

𝑖,max (𝑖 = 𝑥, 𝑦, 𝑧) given in (5).

Proof. Pre- and postmultiplying (15) by diag(𝜌−1, I), where I
is an identity matrix with proper dimensions, we obtain LMI
(30). As the upper bound of the cost function 𝜌 is a positive
scalar, dividing both sides of (27) by 𝜌, we have

[

x (𝑡)

e (𝑡)
]

𝑇

[

𝜌
−1P 0
0 𝜌

−1P
][

x (𝑡)

e (𝑡)
] < 1. (33)

Inequality (33) can always hold, if positive scalar 𝜌 is large
enough. Squaring both sides of (5) and dividing both sides of
the result by 𝑢

2

𝑖,max, we obtain

[
x (𝑡)

e (𝑡)]
𝑇

[

𝑢
−2

𝑖,maxK
𝑇U𝑇
𝑖
U
𝑖
K −𝑢

−2

𝑖,maxK
𝑇U𝑇
𝑖
U
𝑖
K

∗ 𝑢
−2

𝑖,maxK
𝑇U𝑇
𝑖
U
𝑖
K

][
x (𝑡)

e (𝑡)] ≤ 1.

(34)

When (34) holds, the control force along the 𝑖-axis (𝑖 =

𝑥, 𝑦, 𝑧) will be restricted within the maximum thrust 𝑢
𝑖,max.

Utilizing inequality (33), inequality (34) can be ensured by

𝑢
−2

𝑖,max [
K𝑇U𝑇
𝑖
U
𝑖
K −K𝑇U𝑇

𝑖
U
𝑖
K

∗ K𝑇U𝑇
𝑖
U
𝑖
K

] < 𝜌
−1

[

P 0
0 P

] . (35)

By the Schur complement, inequality (35) is equivalent to

[
[
[

[

−P 0 K𝑇U𝑇
𝑖

∗ −P −K𝑇U𝑇
𝑖

∗ ∗ −𝑢
2

𝑖,max𝜌
−1I

]
]
]

]

< 0. (36)

By defining X = P−1 and Y = KP−1 and pre- and post-
multiplying (36) by diag(P−1,P−1, I), we get LMI (31). This
completes the proof.

In order to figure out the upper bound of the performance
cost function by commercial software, a standard minimiza-
tion problem is required. As 𝜌

−1 is treated as a variable
in Theorem 3, another positive scalar 𝑤, which meets 0 <

𝜌 < 𝑤, is introduced to convert Theorem 3 into a standard
minimization problem. By the Schur complement, positive
scalar 𝑤 should meet

[

[

−𝑤 1

1 −𝜌
−1

]

]

< 0. (37)

Then, the robust guaranteed cost observer-controller with
input saturation can be determined by solving the following
convex optimization problem:

min
𝜀,𝜌
−1

,X,Y
𝑤,

s.t. (14) , (30) , (31) and (37) .

(38)

By solving problem (38), we can obtain an optimal solution
that consists of 𝜀, 𝜌, 𝑤, X, and Y. Finally, the observer-based
state feedback gainmatrixK can be determined byK = YX−1.

4. Illustrative Example

In this section, an example is presented to illustrate the
usefulness and advantages of the rendezvous control scheme
proposed in this paper.

First of all, some parameters used in this demonstration
example are listed. Consider a pair of adjacent spacecrafts.
The target vehicle is assumed to be moving on a low earth
orbit (LEO) with perigee radius 𝑟

𝑝
= 6728.140 km and

eccentricity 𝑒 = 0.01; thus, its mean motion is 𝑛 = 1.13 ×

10
−3 rad/s. For the chase vehicle, its mass is set to 200 kg,

and the maximum control thrusts along the 𝑥-, 𝑦-, and 𝑧-
axis are 40N, 40N, and 20N. The initial position of the
chase vehicle is 3000m, −4000m, and 20m from the target
vehicle along the 𝑥-, 𝑦-, and 𝑧-axis, and the initial relative
velocities along each axis are −3m/s, 4m/s, and −0.02m/s.
Then, the initial state vector of this rendezvous scene is x(0) =

[3000, −4000, 20, −3, 4, −0.02]
𝑇. The weighting matrices Q

andR in (4) are chosen to be identitymatrices in this example.
According to the coefficients given above, 24 out of all 64

possible output matrices are completely observable. In this
example, the output matrix in (6) is assigned to

C =

[
[
[
[

[

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

]
]
]
]

]

, (39)
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Figure 2: Velocity components of the error vector e(𝑡).

which implies that the velocity states are not capable of direct
measurement. Set the closed-loop poles of the observer to

𝑠
1,2

= − 0.5 ± 𝑗0.12,

𝑠
3,4

= − 0.6 ± 𝑗0.08,

𝑠
5,6

= − 0.75 ± 𝑗0.1.

(40)

By using pole-assignment technique, observer gain matrix L
can be determined as

L =

[
[
[
[
[
[
[
[
[
[

[

1.2491 0.0127 0.0054

−0.025 1.2886 −0.0213

−0.0740 −0.0388 1.1623

0.3863 0.0322 0.0124

−0.0282 0.4142 −0.0153

−0.0535 −0.0258 0.3440

]
]
]
]
]
]
]
]
]
]

]

. (41)

Assign the matrices in (21) as

E
1
=

[
[
[
[
[
[
[
[
[
[

[

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 2𝑒 4𝑒 0 8𝑒 0

2𝑒 0 0 4𝑒 0 0

0 0 0 0 6𝑒 0

]
]
]
]
]
]
]
]
]
]

]

,

E
2
=

[
[
[
[
[
[
[
[

[

𝑛
2

0 0 0 0 0

0 𝑛
2

0 0 0 0

2.5𝑛
2

0 𝑛
2

0 𝑛 0

0 0.25𝑛
2

0 −𝑛 0 0

0 0 𝑛
2

0 0 0

0 0 0 0 0 𝑛
2

]
]
]
]
]
]
]
]

]

,

Λ = diag (sin𝑀,− sin𝑀, cos𝑀, cos𝑀,−0.5 cos𝑀, cos𝑀) ,

(42)

where the mean anomaly 𝑀 = 𝑛𝑡. We are now able to
compute the state feedback gainmatrixK by solving (38). For
brevity, only the crucial parts of the results are listed below

X =

[
[
[
[
[
[
[
[

[

0.0079 −8.8129 × 10
−4

1.0972 × 10
−4

−3.1524 × 10
−5

2.0526 × 10
−6

−4.8011 × 10
−7

−8.8129 × 10
−4

0.0079 4.0333 × 10
−5

1.2056 × 10
−5

−3.1936 × 10
−5

1.4397 × 10
−8

1.0972 × 10
−4

4.0333 × 10
−5

2.6784 × 10
−5

−3.8559 × 10
−7

−2.5802 × 10
−7

−1.4832 × 10
−7

−3.1524 × 10
−5

1.2056 × 10
−5

−3.8559 × 10
−7

3.4052 × 10
−7

−1.4787 × 10
−7

4.5543 × 10
−9

2.0526 × 10
−6

−3.1936 × 10
−5

−2.5802 × 10
−7

−1.4787 × 10
−7

3.0024 × 10
−7

−5.2384 × 10
−10

−4.8011 × 10
−7

1.4397 × 10
−8

−1.4832 × 10
−7

4.5543 × 10
−9

−5.2384 × 10
−10

8.4543 × 10
−9

]
]
]
]
]
]
]
]

]

,

Y = [

[

2.2713 × 10
−5

−1.9598 × 10
−5

2.2913 × 10
−7

3.3538 × 10
−8

−1.6493 × 10
−8

3.3957 × 10
−10

−6.1282 × 10
−6

3.2079 × 10
−6

−1.4904 × 10
−7

−9.4500 × 10
−8

1.7293 × 10
−7

−3.1120 × 10
−10

−1.7730 × 10
−9

−7.9663 × 10
−8

6.4364 × 10
−7

1.0459 × 10
−8

−2.0173 × 10
−9

1.2532 × 10
−8

]

]

.

(43)

Therefore, the observer-based state feedback gain matrix is

K = YX−1 = [
[

[

0.0050 −0.0035 7.2787 × 10
−4

0.6189 −0.1539 6.8035 × 10
−5

−7.7275 × 10
−4

0.0046 −1.3303 × 10
−4

−0.0601 1.0414 0.0060

−2.5577 × 10
−4

−1.5631 × 10
−4

0.0380 0.0429 0.0358 2.1136

]
]

]

. (44)

All the simulation results presented below are obtained
from a simulation system built on the two-body problem.

As the velocity states are not available for feedback in this
example, a full-order state observer (7) is used to estimate
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Figure 3: Relative velocities between two spacecrafts along each axis.

Th
ru

sts
 al

on
g 
x
-a

xi
s a

nd
 y

-a
xi

s (
N

) 

0 5 10 15 20

0 5 10 15 20
15

20

25
20

10

0

−10

−20

−30

−24

−26

−28

−30

−32

0 500 1000 1500 2000 2500 3000
Time (s)

y-axis
x-axis

(a)

0 10 20 30 40

0.2

0

−0.2

−0.4

−0.6

−0.8

−0.4

−0.6

−0.8

Th
ru

st 
al

on
g
z

-a
xi

s (
N

)

0 500 1000 1500 2000 2500 3000
Time (s)

(b)

Figure 4: Propulsive thrusts of the chase vehicle along each axis.

those state variables, and Figure 2 illustrates the errors of the
estimated states.

Although the velocity states of the chase vehicle cannot be
measured directly, from Figure 2, we can see that the velocity
components of the error vector converge to 0 asymptotically
and quickly. Compared with the time needed by rendezvous,
the convergence time of the error vector is short enough to
have little influence on the performance of the whole system.

The velocity states of the chase vehicle during the ren-
dezvous are illustrated in Figure 3. To check if the inputsmeet
the requirement (iii), Figure 4 shows the control thrusts along
each axis, and the rendezvous trajectory of the chase vehicle
during the first 3000 s is depicted in Figure 5.

From Figures 3 and 5, it can be seen that both the mea-
surable and the immeasurable states converge to 0 asymp-
totically. In Figure 4, the thrusts along each axis are smaller
than the bounds given in (5), and the initial fluctuations of
the control thrusts are due to the nonzero error vector at the
beginning of the rendezvous.

5. Conclusions

This paper has discussed a guaranteed cost observer-based
control problem for thrust-limited rendezvous in near-
circular orbits. A relative motion model with parametric
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Figure 5: Rendezvous trajectory of the chase vehicle.

uncertainty has been used in synthesizing the controller.
An optimal observer-based rendezvous controller with a
less conservative saturation control law has been developed.
An illustrative example has verified the effectiveness and
advantages of our proposed control schemes. As it has been
shown, this control method can be applied to many routine
rendezvous missions for fault isolation and cost saving in the
future.
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for Itô stochastic time-delay systems with limited capacity
channel,” Journal of the Franklin Institute: Engineering and
Applied Mathematics, vol. 349, no. 4, pp. 1602–1616, 2012.

[18] M. Liu, P. Shi, L. Zhang, and X. Zhao, “Fault-tolerant control
for nonlinear Markovian jump systems via proportional and
derivative sliding mode observer technique,” IEEE Transactions
on Circuits and Systems. I: Regular Papers, vol. 58, no. 11, pp.
2755–2764, 2011.

[19] P. M. Frank and X. Ding, “Survey of robust residual generation
and evaluation methods in observer-based fault detection
systems,” Journal of Process Control, vol. 7, no. 6, pp. 403–424,
1997.

[20] E. A. Garcia and P. M. Frank, “Deterministic nonlinear
observer-based approaches to fault diagnosis: a survey,” Control
Engineering Practice, vol. 5, no. 5, pp. 663–670, 1997.

[21] A. Zhang, J. Ni, and H. R. Karimi, “Reaction wheel installation
deviation compensation for overactuated spacecraft with finite-
time attitude control,” Mathematical Problems in Engineering,
vol. 2013, Article ID 268904, 10 pages, 2013.

[22] H.Gao, X. Yang, and P. Shi, “Multi-objective robustH∞ control
of spacecraft rendezvous,” IEEETransactions on Control Systems
Technology, vol. 17, no. 4, pp. 794–802, 2009.

[23] X. Yang and H. Gao, “Robust reliable control for autonomous
spacecraft rendezvous with limited-thrust,” Aerospace Science
and Technology, vol. 24, no. 1, pp. 161–168, 2011.

[24] X. Yang and H. Gao, “Guaranteed cost output tracking control
for autonomous homing phase of spacecraft rendezvous,” Jour-
nal of Aerospace Engineering, vol. 24, no. 4, pp. 478–487, 2011.

[25] D. Sheng, X. Yang, and H. R. Karimi, “Robust control for
autonomous spacecraft evacuation with model uncertainty and
upper bound of performance with constraints,” Mathematical
Problems in Engineering, vol. 2014, Article ID 589381, 16 pages,
2014.

[26] X. Yang, X. Cao, and H. Gao, “Sampled-data control for
relative position holding of spacecraft rendezvous with thrust
nonlinearity,” IEEE Transactions on Industrial Electronics, vol.
59, no. 2, pp. 1146–1153, 2012.

[27] Z. Li, M. Liu, H. R. Karimi, and X. Cao, “Observer-based sta-
bilization of spacecraft rendezvous with variable sampling and
sensor nonlinearity,”Mathematical Problems in Engineering, vol.
2013, Article ID 902452, 11 pages, 2013.

[28] Z. Li,M. Liu,H. R.Karimi, andX.Cao, “Sampled-data control of
spacecraft rendezvous with discontinuous Lyapunov approach,”
Mathematical Problems in Engineering, vol. 2013, Article ID
814271, 10 pages, 2013.

[29] P. Singla, K. Subbarao, and J. L. Junkins, “Adaptive output
feedback control for spacecraft rendezvous and docking under
measurement uncertainty,” Journal of Guidance, Control, and
Dynamics, vol. 29, no. 4, pp. 892–902, 2006.

[30] R. Bevilacqua, M. Romano, and O. Yakimenko, “Online gener-
ation of quasi-optimal spacecraft rendezvous trajectories,” Acta
Astronautica, vol. 64, no. 2-3, pp. 345–358, 2009.

[31] B. Zhou, Z. Lin, and G.-R. Duan, “Lyapunov differential equa-
tion approach to elliptical orbital rendezvous with constrained
controls,” Journal of Guidance, Control, and Dynamics, vol. 34,
no. 2, pp. 345–358, 2011.

[32] N. Wan, M. Liu, and H. R. Karimi, “Robust tracking control for
rendezvous in near-circular orbits,” Mathematical Problems in
Engineering, vol. 2013, Article ID 726945, 11 pages, 2013.

[33] S. Yin, H. Luo, and S. X. Ding, “Real-time implementation of
fault-tolerant control systems with performance optimization,”
IEEE Transactions on Industrial Electronics, vol. 61, no. 5, pp.
2402–2411, 2014.

[34] S. Yin, S. X. Ding, A. Haghani, H. Hao, and P. Zhang, “A
comparison study on basic data-driven fault diagnosis and
process monitoring methods on the benchmark Tennessee
Eastman process,” Journal of Process Control, vol. 22, no. 9, pp.
1567–1581, 2012.

[35] S. Yin, S. X. Ding, A. H. A. Sari, and H. Hao, “Data-driven
monitoring for stochastic systems and its application on batch
process,” International Journal of Systems Science: Principles and
Applications of Systems and Integration, vol. 44, no. 7, pp. 1366–
1376, 2013.

[36] H. Dong, Z. Wang, and H. Gao, “Distributed 𝐻
∞

filtering
for a class of Markovian jump nonlinear time-delay systems
over lossy sensor networks,” IEEE Transactions on Industrial
Electronics, vol. 60, no. 10, pp. 4665–4672, 2013.

[37] H. Dong, Z.Wang, and H. Gao, “Distributed filtering for a class
of time-varying systems over sensor networkswith quantization
errors and successive packet dropouts,” IEEE Transactions on
Signal Processing, vol. 60, no. 6, pp. 3164–3173, 2012.

[38] H. Dong, Z. Wang, and H. Gao, “Fault detection for Markovian
jump systems with sensor saturations and randomly varying
nonlinearities,” IEEE Transactions on Circuits and Systems. I:
Regular Papers, vol. 59, no. 10, pp. 2354–2362, 2012.

[39] P. P. Khargonekar, I. R. Petersen, and K. Zhou, “Robust sta-
bilization of uncertain linear systems: quadratic stabilizability
and 𝐻

∞
control theory,” Institute of Electrical and Electronics

Engineers: Transactions on Automatic Control, vol. 35, no. 3, pp.
356–361, 1990.


