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The problem of stability for nonlinear impulsive stochastic functional differential equations with delayed impulses is addressed
in this paper. Based on the comparison principle and an impulsive delay differential inequality, some exponential stability and
asymptotical stability criteria are derived, which show that the system will be stable if the impulses’ frequency and amplitude are
suitably related to the increase or decrease of the continuous stochastic flows. The obtained results complement ones from some
recent works. Two examples are discussed to illustrate the effectiveness and advantages of our results.

1. Introduction

Impulsive dynamical equations have received considerable
attention during the recent decades since they provide a
natural framework for mathematical modeling of many
real world evolutionary processes where the states undergo
abrupt changes at certain instants (see [1–7]). In particular,
more researchers have given special interests to the stability
and stabilization analysis of impulsive functional differential
equations (IFDEs) and there are extensive literatures in this
field (see [8–14] and reference therein).

In the current literature concerning IFDEs, the impulses
are assumed to take the form Δ𝑥(𝑡𝑘) = 𝐼𝑘(𝑡𝑘, 𝑥(𝑡

−

𝑘
)), which

indicates that the state “jump” at the impulse times 𝑡𝑘 is only
related to the present state variables. But in most cases, it
is more applicable that the state variables on the impulses
that we add are also related to the past ones. For example,
in the transmission of the impulse information, input delays
are often encountered (see, e.g., [15, 16]). So, it is more
meaningful if the above impulses are modified as Δ𝑥(𝑡𝑘) =

𝑥(𝑡𝑘) − 𝑥(𝑡
−

𝑘
) = 𝐼𝑘(𝑡𝑘, 𝑥((𝑡𝑘 − 𝑑𝑘)

−
)). Recently, there have

been several attempts in the literature to study the stability

and control problems of IFDEs with delayed impulse (IFDEs-
DI). For example, by using Lyapunov functions couples with
Razumikhin techniques, some Razumikhin-type asymptotic
stability and exponential stability criteria for IFDEs-DI were
established in [17–19], and some Lyapunov-based sufficient
conditions for the exponential stability of the equations were
derived in [20].

On the other hand, stochastic perturbations are unavoid-
able in real equations (see [21, 22] and reference therein).
In recent years, the stability analysis of impulsive stochastic
functional equations which include delay equations is inter-
esting to many investigators, and many results of stability
criteria of these equations have been reported (see, e.g.,
[23–29]). Very recently, [30, 31] took environment noise
into account and generalized delayed impulses to stochastic
equations. In particular, applying the Lyapunov functions
couples with Razumikhin techniques, [30] investigates both
moment and almost sure exponential stability of impul-
sive stochastic functional differential equations with delayed
impulses (ISFDEs-DI), and several Razumikhin-type criteria
on the exponential stability and uniform stability in terms
of two measures for the equations were established in [31].
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But it is worth noting that the stability analysis in [30] and
the effects of time delay on the impulses have been ignored.
And in [30, 31], the authors only consider the case that the
impulsive stabilization. Moreover, it is well known that the
Razumikhin techniques are very effective in the study of
stability problems for ordinary and functional differential
equations. However, when we use the Razumikhin tech-
niques, we need to choose an appropriate minimal class of
functionals relative to which the derivative of the Lyapunov
function or Lyapunov functional is estimated, which is not
entirely convenient.

Motivated by the above discussion, in this paper, we
will further investigate the stability of ISFDEs-DI. By using
the comparison principle and an impulsive delay differen-
tial inequality, some exponential and asymptotical stabil-
ity criteria are derived, which are more convenient to be
applied than those Razumikhin-type conditions. Our results
complement ones from some recent works and show that
the ISFDE-ID will be stable if the impulses’ frequency and
amplitude are suitably related to the increase or decrease
of the corresponding continuous stochastic flows. The rest
of the paper is organized as follows. In Section 2, some
relevant notations and definitions are presented. In Section 3,
the comparison principle, an impulsive delay differential
inequality, and several criteria on the exponential stability
and asymptotical stability are established. Section 4 provides
two illustrative examples to demonstrate the applications
of the obtained results. Finally, conclusions are drawn in
Section 5.

2. Preliminaries

Throughout this paper, unless otherwise specified, we let
(Ω,F, {F𝑡}𝑡⩾0,P) be a complete probability space with a
filtration {F𝑡}𝑡⩾0 satisfying the usual conditions; that is, it
is right continuous and F0 contains all P-null sets. Let
𝑤(𝑡) = (𝑤1(𝑡), . . . , 𝑤𝑑(𝑡))

𝑇 be a 𝑑-dimensional Brownian
motion defined on the probability space. Let N denote the
set of positive integers, R𝑛 the 𝑛-dimensional real Euclidean
space, and R𝑛 × 𝑑 the space of 𝑛 × 𝑑 real matrices. 𝐼 stands
for the identity matrix of appropriate dimensions. For 𝑥 ∈

R𝑛, |𝑥| denotes the Euclidean norm. For 𝐴 ∈ R𝑛 × 𝑑, ‖𝐴‖
denotes spectral norm of the matrix𝐴. Denote by 𝜆min(⋅) the
minimum eigenvalue of a matrix. If 𝐴 is a vector or matrix,
its transpose is denoted by 𝐴𝑇.

Let 𝜏 > 0 and PC([−𝜏, 0];R𝑛) = {𝜑 : [−𝜏, 0] →

R𝑛| 𝜑(𝑡+) = 𝜑(𝑡) for all 𝑡 ∈ [−𝜏, 0), 𝜑(𝑡−) exist and let
𝜑(𝑡
−
) = 𝜑(𝑡) for all but at most a finite number of points

𝑡 ∈ (−𝜏, 0]} be with the norm ‖ 𝜑 ‖= sup
−𝜏⩽𝜃⩽0

|𝜑(𝜃)|, where
𝜑(𝑡
+
) and 𝜑(𝑡−) denote the right-hand and left-hand limits of

function 𝜑(𝑡) at 𝑡, respectively. Denote PC([𝑡0 − 𝜏,∞);R) =
{𝜑|𝜑|[𝑡0−𝜏,𝑏]

∈ PC([𝑡0 − 𝜏, 𝑏];R) for all 𝑏 > 𝑡0 − 𝜏}.
For 𝑝 > 0 and 𝑡 ⩾ 0, let PC𝑝

F𝑡
([−𝜏, 0];R𝑛) denote the

family of all F𝑡-measurable PC([−𝜏, 0];R𝑛)-valued random
variables 𝜑 such that sup

−𝜏⩽𝜃⩽0
E|𝜑(𝜃)|𝑝 < ∞, where E stands

for the mathematical expectation operator with respect to
the given probability measure P. And 𝐿

𝑝

F𝑡
(Ω;R𝑛) denote

the family of allF𝑡 measurable R𝑛-valued random variables
𝑋, such that E|𝑋|

𝑝
< ∞. Let PC𝑏([−𝜏, 0];R𝑛) be the

family of all bounded PC([−𝜏, 0];R𝑛)-valued functions, and
let PC𝑏F𝑡0 ([−𝜏, 0];R

𝑛
) be the family of all F𝑡0 measurable

PC𝑏([−𝜏, 0];R𝑛)-valued functions.
Consider the following ISFDE-DI:

d𝑥 (𝑡) = 𝑓 (𝑡, 𝑥𝑡) d𝑡 + 𝑔 (𝑡, 𝑥𝑡) d𝑤 (𝑡) , 𝑡 ̸= 𝑡𝑘, 𝑡 ⩾ 𝑡0,

𝑥 (𝑡𝑘) = 𝐼𝑘 (𝑡𝑘, 𝑥 (𝑡
−

𝑘
) , 𝑥 ((𝑡𝑘 − 𝑑𝑘)

−
)) , 𝑘 ∈ N,

𝑥𝑡0
(𝜃) = 𝜉 (𝜃) , 𝜃 ∈ [−𝜏, 0] ,

(1)

where the initial value 𝜉 ∈ PC𝑏F𝑡0 ([−𝜏, 0];R
𝑛
), 𝑥(𝑡) = ((𝑥1(𝑡),

. . . , 𝑥𝑛(𝑡))
𝑇, 𝑥𝑡 = 𝑥(𝑡 + 𝜃) ∈ PC𝑝

F𝑡
([−𝜏, 0];R𝑛). Both 𝑓 : R+ ×

PC𝑝
F𝑡
([−𝜏, 0];R𝑛) → R𝑛 and 𝑔 : R+ × PC𝑝

F𝑡
([−𝜏, 0];R𝑛) →

R𝑛×𝑑 are Borelmeasurable. 𝐼𝑘 : R+×𝐿
𝑝

F𝑡
(Ω;R𝑛)×𝐿

𝑝

F𝑡
(Ω;R𝑛)

→ R𝑛 represents the impulsive perturbation of 𝑥 at time 𝑡𝑘.
The fixed moments of impulse times {𝑡𝑘, 𝑘 ∈ N} satisfy 0 ⩽

𝑡0 < 𝑡1 < ⋅ ⋅ ⋅ < 𝑡𝑘 < ⋅ ⋅ ⋅ , 𝑡𝑘 → ∞ (as 𝑘 → ∞). {𝑑𝑘 ⩾ 0, 𝑘 ∈

N} are the impulse input delays satisfying 𝑑 = sup
𝑘∈N𝑑𝑘 < ∞.

As a standing hypothesis, we assume that for any 𝜉 ∈

PC𝑏F𝑡0 ([−𝜏, 0];R
𝑛
) there exists a unique stochastic process

satisfying (1) denoted by 𝑥(𝑡; 𝑡0, 𝜉), which is continuous on
the right-hand side and limitable on the left-hand side (see
[32]). Moreover, we assume that 𝑓(𝑡, 0) ≡ 0, 𝑔(𝑡, 0) ≡ 0, and
𝐼𝑘(𝑡, 0, 0) ≡ 0 for all 𝑡 ⩾ 𝑡0, 𝑘 ∈ N; then (1) admits a trivial
solution 𝑥(𝑡) ≡ 0.

We introduce the following scalar IFDE-DI as the com-
parison system:

�̇� (𝑡) = ℎ (𝑡, 𝑢 (𝑡) , 𝑢𝑡) , 𝑡 ̸= 𝑡𝑘, 𝑡 ⩾ 𝑡0,

𝑢 (𝑡𝑘) = Ψ1𝑘 (𝑢 (𝑡
−

𝑘
)) + Ψ2𝑘 (𝑢(𝑡𝑘 − 𝑑𝑘)

−
) , 𝑘 ∈ N,

𝑢𝑡0
(𝜃) = 𝜁 (𝜃) , 𝜃 ∈ [−𝜏, 0] ,

(2)

where the initial value 𝜁 ∈ PC([−𝜏, 0];R+); 𝑢𝑡 ∈ PC([−𝜏, 0];
R+) is defined as 𝑢𝑡 = 𝑢(𝑡 + 𝜃), 𝜃 ∈ [−𝜏, 0]. ℎ : R+ × R+ ×

PC([−𝜏, 0];R+) → R+ is continuous, Lebesgue measurable,
and nondecreasing with respect to the last argument; Ψ1𝑘,
Ψ2𝑘 : R+ → R+ are continuous and nondecreasing. Assume
that ℎ(𝑡, 0, 0) ≡ 0, Ψ1𝑘(0) ≡ 0, and Ψ2𝑘(0) ≡ 0; then system
(2) admits a trivial solution 𝑢(𝑡) ≡ 0. We further assume that
for any 𝜁 ∈ PC𝑏([−𝜏, 0];R+), there exists a unique solution
to system (2) on [𝑡0 − 𝜏,∞) denoted by 𝑢(𝑡; 𝑡0, 𝜁) (see [5, 6])
which is continuous on the right-handside and limitable on
the left-hand side.

For convenience, we introduce the following function
classes:

K = {𝜙 : R+ → R+, continuous and strictly increas-
ing, 𝜙(0) = 0}.
K∞ = {𝜙 ∈ K, 𝜙(𝑠) → ∞ as 𝑠 → ∞}.

𝐶K = {𝜙 ∈ K, 𝜙 is concave}.
𝑉K∞ = {𝜙 ∈ K∞, 𝜙 is convex}.
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At the end of this section, let us introduce the following
definitions.

Definition 1 (see [23, 26]). The trivial solution of (1) is said to
be as follows.

(i) 𝑝th moment stable if, for any 𝜀 > 0, there exists 𝛿 =

𝛿(𝜀, 𝑡0) > 0 such that

E
𝑥(𝑡; 𝑡0, 𝜉)



𝑝
⩽ 𝜀, 𝑡 ⩾ 𝑡0, (3)

whenever E‖𝜉‖𝑝 < 𝛿.
(ii) 𝑝th moment asymptotically stable if it is 𝑝th moment

stable and there exists 𝛿0 = 𝛿0(𝑡0) such that

lim
𝑡→∞

E
𝑥 (𝑡; 𝑡0, 𝜉)



𝑝
= 0, 𝑡 ⩾ 𝑡0, (4)

whenever E‖𝜉‖𝑝 < 𝛿0.
(iii) 𝑝th moment globally exponentially stable if there is a

pair of positive constants 𝜆, 𝐶 such that

E
𝑥 (𝑡; 𝑡0, 𝜉)



𝑝
⩽ 𝐶E

𝜉


𝑝
𝑒
−𝜆(𝑡−𝑡0), 𝑡 ⩾ 𝑡0 (5)

for all 𝜉 ∈ PC𝑏F𝑡0 ([−𝜏, 0];R
𝑛
). When 𝑝 = 2, it is usu-

ally said to be globally exponentially stable in mean
square.

Definition 2 (see [26]). A function𝑉 : [𝑡0−𝜏,∞) ×R𝑛 → R+
belongs to class V0 if

(i) 𝑉 is continuous on each of the sets [𝑡𝑘−1, 𝑡𝑘) × R𝑛

and for each 𝑥, 𝑦 ∈ R𝑛, 𝑡 ∈ [𝑡𝑘−1, 𝑡𝑘), and 𝑘 ∈ N,
lim(𝑡,𝑦)→ (𝑡−

𝑘
,𝑥)𝑉(𝑡, 𝑦) = 𝑉(𝑡

−

𝑘
, 𝑥) exists;

(ii) 𝑉(𝑡, 𝑥) is continuously once differentiable in 𝑡 and
twice in 𝑥 in each of the sets (𝑡𝑘−1, 𝑡𝑘) ×R𝑛, 𝑘 ∈ N.

If 𝑉 ∈ V0, define an operator L𝑉 from [𝑡0,∞) ×

PC([−𝜏, 0];R𝑛) to R by

L𝑉 (𝑡, 𝜑) = 𝑉𝑡 (𝑡, 𝜑 (0)) + 𝑉𝑥 (𝑡, 𝜑 (0)) 𝑓 (𝑡, 𝜑)

+
1

2
trace [𝑔𝑇 (𝑡, 𝜑)𝑉𝑥𝑥 (𝑡, 𝜑 (0)) 𝑔 (𝑡, 𝜑)] ,

(6)

where

𝑉𝑡 (𝑡, 𝑥) =
𝜕𝑉 (𝑡, 𝑥)

𝜕𝑡
,

𝑉𝑥 (𝑡, 𝑥) = (
𝜕𝑉 (𝑡, 𝑥)

𝜕𝑥1

, . . . ,
𝜕𝑉 (𝑡, 𝑥)

𝜕𝑥𝑛

) ,

𝑉𝑥𝑥 (𝑡, 𝑥) = (
𝜕
2
𝑉 (𝑡, 𝑥)

𝜕𝑥𝑖𝜕𝑥𝑗

)

𝑛×𝑛

.

(7)

3. Main results

In this section, we will develop an impulsive delay differential
inequality and comparison principles and establish some cri-
teria on 𝑝th moment exponential stability and asymptotical
stability for (1).

Lemma 3 (impulsive delay differential inequality). Assume
that 𝑐 ∈ R, 𝛿 ∈ R, 𝑞 ∈ R+, 𝑎𝑘 > 0, 𝑏𝑘 ⩾ 0, 𝑘 ∈ N, 𝑢(𝑡) :=

sup
𝜃∈[−𝜏,0]

𝑢(𝑡 + 𝜃), and

(i) ln(𝑎𝑘 + 𝑏𝑘𝑒
𝑐𝑑𝑘) ⩽ 𝛿(𝑡𝑘 − 𝑡𝑘−1) for each 𝑘 ∈ N;

(ii) 𝛿 + 𝑐 + 𝑞𝛾 < 0, where 𝛾 = sup
𝑘∈N{𝑒
𝛿(𝑡𝑘−𝑡𝑘−1), 1/

𝑒
𝛿(𝑡𝑘−𝑡𝑘−1)}.

Then any solution 𝑢 ∈ 𝑃𝐶([𝑡0 − 𝜏,∞);R+) of the scalar
impulsive delay differential inequality problem

𝐷
+
𝑢 (𝑡) ⩽ 𝑐𝑢 (𝑡) + 𝑞𝑢 (𝑡) , 𝑡 ̸= 𝑡𝑘, 𝑡 ⩾ 𝑡0,

𝑢 (𝑡𝑘) ⩽ 𝑎𝑘𝑢 (𝑡
−

𝑘
) + 𝑏𝑘𝑢 ((𝑡𝑘 − 𝑑𝑘)

−
) , 𝑘 ∈ N

(8)

satisfies

𝑢 (𝑡) ⩽ 𝛾𝑢 (𝑡0) 𝑒
−𝜆(𝑡−𝑡0), 𝑡 ⩾ 𝑡0 − 𝜏, (9)

where 𝜆 is the unique positive solution of 𝜆+ 𝛿+ 𝑐 + 𝑞𝛾𝑒𝜆𝜏 = 0.

Proof . Set V(𝑡) = 𝑒
−𝑐(𝑡−𝑡0)𝑢(𝑡), 𝑡 ∈ [𝑡0 −𝜏,∞). For each 𝑘 ∈ N,

by the second inequality of (8), we have

V (𝑡𝑘) = 𝑒
−𝑐(𝑡𝑘−𝑡0)𝑢 (𝑡𝑘)

⩽ 𝑒
−𝑐(𝑡𝑘−𝑡0) [𝑎𝑘𝑢 (𝑡

−

𝑘
) + 𝑏𝑘𝑢 ((𝑡𝑘 − 𝑑𝑘)

−
)]

= 𝑎𝑘𝑒
−𝑐(𝑡𝑘−𝑡0)𝑢 (𝑡

−

𝑘
) + 𝛽𝑘𝑏𝑘𝑢 ((𝑡𝑘 − 𝑑𝑘)

−
) 𝑒
−𝑐(𝑡𝑘−𝑑𝑘−𝑡0)

= 𝑎𝑘V (𝑡
−

𝑘
) + 𝛽𝑘𝑏𝑘V ((𝑡𝑘 − 𝑑𝑘)

−
) ,

(10)

where 𝛽𝑘 = 𝑒
𝑐𝑑𝑘 .

On the other hand, for any 𝑡 ̸= 𝑡𝑘, 𝑘 ∈ N,

𝐷
+V (𝑡) = 𝑒

−𝑐(𝑡−𝑡0) [−𝑐𝑢 (𝑡) + 𝐷
+
𝑢 (𝑡)] ⩽ 𝑞𝑒

−𝑐(𝑡−𝑡0)𝑢 (𝑡) .

(11)

For 𝑡 ∈ [𝑡0, 𝑡1), integrating inequality (11) from 𝑡0 to 𝑡, we
obtain

V (𝑡) ⩽ V (𝑡0) + ∫

𝑡

𝑡0

𝑞𝑒
−𝑐(𝑠−𝑡0)𝑢 (𝑠) d𝑠; (12)

this implies that

V (𝑡−
1
) ⩽ V (𝑡0) + ∫

𝑡1

𝑡0

𝑞𝑒
−𝑐(𝑠−𝑡0)𝑢 (𝑠) d𝑠. (13)
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For 𝑡 ∈ [𝑡1, 𝑡2), by the same method, together with (10), (11),
and (13), we have

V (𝑡) ⩽ V (𝑡1) + ∫

𝑡

𝑡1

𝑞𝑒
−𝑐(𝑠−𝑡0)𝑢 (𝑠) d𝑠

⩽ 𝑎1V (𝑡
−

1
) + 𝛽1𝑏1V ((𝑡1 − 𝑑1)

−
) + ∫

𝑡

𝑡1

𝑞𝑒
−𝑐(𝑠−𝑡0)𝑢 (𝑠) d𝑠

⩽ 𝑎1 [V (𝑡0) + ∫

𝑡1

𝑡0

𝑞𝑒
−𝑐(𝑠−𝑡0)𝑢 (𝑠) d𝑠]

+ 𝛽1𝑏1 [V (𝑡0) + ∫

𝑡1−𝑑1

𝑡0

𝑞𝑒
−𝑐(𝑠−𝑡0)𝑢 (𝑠) d𝑠]

+ ∫

𝑡

𝑡1

𝑞𝑒
−𝑐(𝑠−𝑡0)𝑢 (𝑠) d𝑠

⩽ (𝑎1 + 𝛽1𝑏1) V (𝑡0) + (𝑎1 + 𝛽1𝑏1)

× ∫

𝑡1

𝑡0

𝑞𝑒
−𝑐(𝑠−𝑡0)𝑢 (𝑠) d𝑠 + ∫

𝑡

𝑡1

𝑞𝑒
−𝑐(𝑠−𝑡0)𝑢 (𝑠) d𝑠.

(14)

By induction, we have, for 𝑡 ∈ [𝑡𝑘−1, 𝑡𝑘), 𝑘 ∈ N,

V (𝑡) ⩽ V (𝑡0) ∏

𝑡0<𝑡𝑗⩽𝑡

(𝑎𝑗 + 𝛽𝑗𝑏𝑗)

+ ∫

𝑡

𝑡0

∏

𝑠<𝑡𝑗⩽𝑡

(𝑎𝑗 + 𝛽𝑗𝑏𝑗) 𝑞𝑒
−𝑐(𝑠−𝑡0)𝑢 (𝑠) d𝑠.

(15)

Thus, for 𝑡 > 𝑡0, we get

𝑢 (𝑡) ⩽ 𝑢 (𝑡0) 𝑒
𝑐(𝑡−𝑡0) ∏

𝑡0<𝑡𝑗⩽𝑡

(𝑎𝑗 + 𝛽𝑗𝑏𝑗)

+ ∫

𝑡

𝑡0

∏

𝑠<𝑡𝑗⩽𝑡

(𝑎𝑗 + 𝛽𝑗𝑏𝑗) 𝑞𝑒
𝑐(𝑡−𝑠)

𝑢 (s) d𝑠.
(16)

Let 𝑡𝑗1 , 𝑡𝑗2 , . . . , 𝑡𝑗𝑚 be impulse points in (𝑠, 𝑡], 𝑡 > 𝑠. In view
of condition (i), we get

∏

𝑠<𝑡𝑗⩽𝑡

(𝑎𝑗 + 𝛽𝑗𝑏𝑗) = (𝑎𝑗1
+ 𝛽𝑗1

𝑏𝑗1
)

× (𝑎𝑗2
+ 𝛽𝑗2

𝑏𝑗2
) ⋅ ⋅ ⋅ (𝑎𝑗𝑚

+ 𝛽𝑗𝑚
𝑏𝑗𝑚

)

⩽ 𝑒
𝛿(𝑡𝑗1
−𝑡𝑗1−1
)
𝑒
𝛿(𝑡𝑗2
−𝑡𝑗1
)
⋅ ⋅ ⋅ 𝑒
𝛿(𝑡𝑗𝑚
−𝑡𝑗𝑚−1
)

= 𝑒
𝛿(𝑡𝑗𝑚
−𝑡𝑗1−1
)
= 𝑒
𝛿(𝑡−𝑠)

𝑒
𝛿(𝑡𝑗𝑚
−𝑡)
𝑒
𝛿(𝑠−𝑡𝑗

𝑙
−1)

⩽ 𝛾𝑒
𝛿(𝑡−𝑠)

,

(17)

where 𝑡𝑗1−1 is the first impulsive point before 𝑡𝑗1 and satisfies
𝑡𝑗1−1

< 𝑠. Submitting this into inequality (16), then, for 𝑡 > 𝑡0,

𝑢 (𝑡) ⩽ 𝛾𝑒
(𝑐+𝛿)(𝑡−𝑡0)𝑢 (𝑡0) + ∫

𝑡

𝑡0

𝛾𝑞𝑒
(𝑐+𝛿)(𝑡−𝑠)

𝑢 (𝑠) d𝑠. (18)

Let Φ(𝜆) = 𝜆 + 𝑐 + 𝛿 + 𝛾𝑞𝑒
𝜆𝜏. Then condition (ii) implies

Φ(0) < 0. Moreover,Φ(+∞) = +∞ andΦ(𝜆) = 1+𝜏𝛾𝑞𝑒
𝜆𝜏

>

0. HenceΦ(𝜆) = 0 has a unique positive solution 𝜆. Next, we
claim that

𝑢 (𝑡) ⩽ 𝛾𝑢 (𝑡0) 𝑒
−𝜆(𝑡−𝑡0), 𝑡 ⩾ 𝑡0 − 𝜏. (19)

Since

𝑢 (𝑡) ⩽ 𝑢 (𝑡0) ⩽ 𝛾𝑢 (𝑡0) 𝑒
−𝜆(𝑡−𝑡0), 𝑡 ∈ [𝑡0 − 𝜏, 𝑡0] . (20)

So we only need to prove (19) for 𝑡 > 𝑡0. Suppose not, then
there exists a 𝑡∗ ∈ (𝑡0, +∞) such that

𝑢 (𝑡
∗
) > 𝛾𝑢 (𝑡0) 𝑒

−𝜆(𝑡
∗
−𝑡0), (21)

𝑢 (𝑡) ⩽ 𝛾𝑢 (𝑡0) 𝑒
−𝜆(𝑡−𝑡0), 𝑡 ∈ [𝑡0 − 𝜏, 𝑡

∗
) . (22)

Thus from (18), (22), and Φ(𝜆) = 0, we see that

𝑢 (𝑡
∗
) ⩽ 𝛾𝑢 (𝑡0) 𝑒

(𝑐+𝛿)(𝑡
∗
−𝑡0) + 𝛾∫

𝑡
∗

𝑡0

𝑞𝑒
(𝑐+𝛿)(𝑡

∗
−𝑠)
𝑢 (𝑠) d𝑠

⩽ 𝛾𝑢 (𝑡0) 𝑒
(𝑐+𝛿)(𝑡

∗
−𝑡0)

+ 𝛾∫

𝑡
∗

𝑡0

𝛾𝑞𝑒
𝜆𝜏
𝑒
(𝑐+𝛿)(𝑡

∗
−𝑠)
𝑒
−𝜆(𝑠−𝑡0)𝑢 (𝑡0) d𝑠

= 𝛾𝑢 (𝑡0) 𝑒
−𝜆(𝑡
∗
−𝑡0),

(23)

which is a contradiction.Therefore, (19) holds.This completes
the proof.

Lemma 4 (comparison principle). Assume that there exists a
function 𝑉 ∈ V0 such that

(i) EL𝑉(𝑡, 𝜑) ⩽ ℎ(𝑡,E𝑉(𝑡, 𝜑(0)),E𝑉(𝑡 + 𝜃, 𝜑)) for any
(𝑡, 𝜑) ∈ [𝑡𝑘−1, 𝑡𝑘) × 𝑃𝐶

𝑝

F𝑡
([−𝜏, 0];R𝑛), 𝑘 ∈ N;

(ii) E𝑉(𝑡𝑘, 𝐼𝑘(𝑡𝑘, 𝑋, 𝑌)) ⩽ Ψ1𝑘(E𝑉(𝑡
−

𝑘
, 𝑋)) + Ψ2𝑘(E𝑉((𝑡𝑘 −

𝑑𝑘)
−
, 𝑌)) for all𝑋,𝑌 ∈ 𝐿

𝑝

F𝑡
(Ω;R𝑛), 𝑘 ∈ N.

Then,

E𝑉 (𝑡, 𝑥 (𝑡)) ⩽ 𝑢 (𝑡; 𝑡0, 𝜁) , 𝑡 ⩾ 𝑡0 (24)

providedE𝑉(𝑡0+𝜃, 𝑥(𝑡0+𝜃)) ⩽ 𝜁(𝜃), 𝜃 ∈ [−𝜏, 0], where 𝑥(𝑡) =
x(𝑡; 𝑡0, 𝜉) is the solution process to (1).

Proof. For any 𝑡 ∈ [𝑡𝑘−1, 𝑡𝑘) and 𝛼 > 0 sufficiently small
satisfying 𝑡 + 𝛼 < 𝑡𝑘, by the Itô formula together with
condition (i), we have

E𝑉 (𝑡 + 𝛼, 𝑥 (𝑡 + 𝛼)) − E𝑉 (𝑡, 𝑥 (𝑡))

= ∫

𝑡+𝛼

𝑡

EL𝑉 (𝑠, 𝑥𝑠) d𝑠

⩽ ∫

𝑡+𝛼

𝑡

ℎ (𝑠,E𝑉 (𝑠, 𝑥 (𝑠)) ,E𝑉 (𝑠 + 𝜃, 𝑥𝑠)) d𝑠;

(25)
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this implies that

𝐷
+
E𝑉 (𝑡, 𝑥 (𝑡))

:= lim sup
𝛼→0+

E𝑉 (𝑡 + 𝛼, 𝑥 (𝑡 + 𝛼)) − E𝑉 (𝑡, 𝑥 (𝑡))

𝛼

⩽ lim sup
𝛼→0+

1

𝛼
∫

𝑡+𝛼

𝑡

ℎ (𝑠,E𝑉 (𝑠, 𝑥 (𝑠)) ,E𝑉 (𝑠 + 𝜃, 𝑥𝑠)) d𝑠

= ℎ (𝑡,E𝑉 (𝑡, 𝑥 (𝑡)) ,E𝑉 (𝑡 + 𝜃, 𝑥𝑡)) .

(26)

Write 𝑢(𝑡; 𝑡0, 𝜁) = 𝑢(𝑡) simply. Now supposing that for
each 𝜃 ∈ [−𝜏, 0], E𝑉(𝑡0 + 𝜃, 𝑥(𝑡0 + 𝜃)) ⩽ 𝜁(𝜃), we claim that

E𝑉 (𝑡, 𝑥 (𝑡)) ⩽ 𝑢 (𝑡) , 𝑡 ∈ [𝑡0 − 𝜏, 𝑡1) . (27)

Consider the system

�̇� (𝑡) = ℎ (𝑡, 𝑈 (𝑡) , 𝑈𝑡) + 𝜀, 𝑡 ∈ [𝑡0, 𝑡1) ,

𝑈 (𝜃) = 𝜁 (𝜃) + 𝜀, 𝜃 ∈ [𝑡0 − 𝜏, 𝑡0] ,

(28)

where 𝜀 > 0 is a constant. We claim that 𝑈(𝑡) ⩾ E𝑉(𝑡, 𝑥(𝑡))

for 𝑡 ∈ [𝑡0 − 𝜏, 𝑡1).
In fact, if this is not true, then from the continuity of𝑈(𝑡)

and E𝑉(𝑡, 𝑥(𝑡)) in 𝑡 ∈ [𝑡0, 𝑡1), we know that there exist a 𝑡∗ ∈
(𝑡0, 𝑡1) and a sufficiently small constant 𝛼 > 0 such that 𝑡∗ +
𝛼 < 𝑡1 and

E𝑉 (𝑡, 𝑥 (𝑡)) ⩽ 𝑈 (𝑡) , 𝑡 ∈ [𝑡0 − 𝜏, 𝑡
∗
) ,

E𝑉 (𝑡
∗
, 𝑥 (𝑡
∗
)) = 𝑈 (𝑡

∗
) ,

E𝑉 (𝑡, 𝑥 (𝑡)) > 𝑈 (𝑡) , 𝑡 ∈ (𝑡
∗
, 𝑡
∗
+ 𝛼) .

(29)

Thus �̇�(𝑡∗) = 𝐷
+
𝑈(𝑡
∗
) ⩽ 𝐷

+E𝑉(𝑡∗, 𝑥(𝑡∗)). On the other
hand, by condition (i), we obtain that

�̇� (𝑡
∗
) = ℎ (𝑡

∗
, 𝑈 (𝑡
∗
) , 𝑈𝑡∗) + 𝜀

⩾ ℎ (𝑡
∗
, 𝑉 (𝑡
∗
, 𝑥 (𝑡
∗
)) ,E𝑉 (𝑡

∗
+ 𝜃, 𝑥𝑡∗)) + 𝜀

> ℎ (𝑡
∗
, 𝑉 (𝑡
∗
, 𝑥 (𝑡
∗
)) ,E𝑉 (𝑡

∗
+ 𝜃, 𝑥𝑡∗))

⩾ 𝐷
+
E𝑉 (𝑡
∗
, 𝑥 (𝑡
∗
)) .

(30)

This is a contradiction. So 𝑈(𝑡) ⩾ E𝑉(𝑡, 𝑥(𝑡)) holds for all
𝑡 ∈ [𝑡0 − 𝜏, 𝑡1). Let 𝜀 → 0; then 𝑈(𝑡) → 𝑢(𝑡), and hence
inequality (27) holds.

Noting that Ψ1𝑘(⋅) and Ψ2𝑘(⋅) are nondecreasing, by (27)
and condition (ii), we get

E𝑉 (𝑡1, 𝑥 (𝑡1))

= E𝑉(𝑡1, 𝐼1 (𝑡1, 𝑥 (𝑡
−

1
) , 𝑥(𝑡1 − 𝑑1)

−
))

⩽ Ψ11 (E𝑉 (𝑡
−

1
, 𝑥 (𝑡
−

1
)))

+ Ψ21 (E𝑉((𝑡1 − 𝑑1)
−
, 𝑥(𝑡1 − 𝑑1)

−
))

⩽ Ψ11 (𝑢 (𝑡
−

1
)) + Ψ21 (𝑢(𝑡1 − 𝑑1)

−
) = 𝑢 (𝑡1) .

(31)

Thus, it follows from (27) and (31) that

E𝑉 (𝑡1 + 𝜃, 𝑥 (𝑡1 + 𝜃)) ⩽ 𝑢 (𝑡1 + 𝜃) , 𝜃 ∈ [−𝜏, 0] . (32)

Similar to the previous process, we have E𝑉(𝑡, 𝑥(𝑡)) ⩽ 𝑢(𝑡)

when 𝑡 ∈ [𝑡0−𝜏, 𝑡2). By induction, it follows thatE𝑉(𝑡, 𝑥(𝑡)) ⩽
𝑢(𝑡), 𝑡 ∈ [𝑡0 − 𝜏,∞). The proof is complete.

Theorem 5. Assume that there exist functions 𝑉 ∈ V0, 𝜙1 ∈
𝑉K∞, and 𝜙2 ∈ 𝐶K such that

(i) 𝜙1(|𝑥|
𝑝
) ⩽ 𝑉(𝑡, 𝑥) ⩽ 𝜙2(|𝑥|

𝑝
) for any (𝑡, 𝑥) ∈ [𝑡0 −

𝜏,∞) ×R𝑛;
(ii) EL𝑉(𝑡, 𝜑) ⩽ ℎ(𝑡,E𝑉(𝑡, 𝜑(0)),E𝑉(t + 𝜃, 𝜑)) for any

(𝑡, 𝜑) ∈ [𝑡𝑘−1, 𝑡𝑘) × PC𝑝
F𝑡
([−𝜏, 0];R𝑛), 𝑘 ∈ N;

(iii) E𝑉(𝑡𝑘, 𝐼𝑘(𝑡𝑘, 𝑋, 𝑌)) ⩽ Ψ1𝑘(E𝑉(𝑡
−

𝑘
, 𝑋)) + Ψ2𝑘(E𝑉((𝑡𝑘 −

𝑑𝑘)
−
, 𝑌)) for all𝑋,𝑌 ∈ 𝐿

𝑝

F𝑡
(Ω;R𝑛), 𝑘 ∈ N.

Then the stability properties of the trivial solution of IFDE-DI
(2) imply the corresponding stability properties of the trivial
solution of ISFDE-DI (1). Moreover, if condition (i) is replaced
by

(i∗) there exist positive constants 𝑝, 𝑐1, and 𝑐2 such that for
all (𝑡, 𝑥) ∈ [𝑡0 − 𝜏,∞) ×R𝑛

𝑐1
𝑥|
𝑝
⩽ 𝑉 (𝑡, 𝑥) ⩽ 𝑐2

 𝑥|
𝑝 (33)

then the global exponential stability of the trivial solution
of IFDE-DI (2) implies that 𝑝th moment global exponential
stability of ISFDE-DI (1).

Proof. Firstly, assume that the trivial solution of IFDE-DI (2)
is stable. Let 𝜀 > 0; then for given 𝜙1(𝜀) > 0, there exists
𝛿1 = 𝛿1(𝑡0, 𝜀) > 0 such that 𝛿1 < 𝜙1(𝜀) and

𝜁


𝑝
< 𝛿1 implies 𝑢 (𝑡; 𝑡0, 𝜁) < 𝜙1 (𝜀) , 𝑡 ⩾ 𝑡0. (34)

Let 𝜁(𝜃) = E𝑉(𝑡0 + 𝜃, 𝑥(𝑡0 + 𝜃)), 𝜃 ∈ [−𝜏, 0]. From
conditions (ii) and (iii) and Lemma 4, we get that

E𝑉 (𝑡, 𝑥 (𝑡)) ⩽ 𝑢 (𝑡; 𝑡0, 𝜁) , 𝑡 ⩾ 𝑡0. (35)

Let 𝛿 ⩽ 𝜙
−1

2
(𝛿1) andE‖𝜉‖

𝑝
< 𝛿; then by condition (i) and 𝜙2 ∈

𝐶K, we have ‖𝜁‖𝑝 ⩽ E𝜙2(‖𝜉‖
𝑝
) ⩽ 𝜙2(E‖𝜉‖

𝑝
) < 𝜙2(𝛿) ⩽ 𝛿1.

Hence, by (34) and (35), we have

E𝑉 (𝑡, 𝑥 (𝑡)) < 𝜙1 (𝜀) , 𝑡 ⩾ 𝑡0. (36)

If E‖𝜉‖𝑝 < 𝛿, then by conditions (i) and (36), we have

E|𝑥 (𝑡)|
𝑝
⩽ 𝜙
−1

1
(E𝑉 (𝑡, 𝑥 (𝑡))) < 𝜀, 𝑡 ⩾ 𝑡0; (37)

that is, the trivial solution of ISFDE-DI (1) is stable.
Next, let us suppose that the trivial solution of IFDE-

DI (2) is asymptotically stable. This implies that the trivial
solution of ISFDE-DI (1) is stable. Let 𝜁(𝜃) = E𝑉(𝑡0+𝜃, 𝑥(𝑡0+

𝜃)), 𝜃 ∈ [−𝜏, 0]. Since 𝑢 = 0 is attractive, for any 𝜀 > 0, there
exist 𝛿0 = 𝛿0(𝑡0) > 0 and 𝑇 = 𝑇(𝑡0, 𝛿0) such that

𝜁


𝑝
< 𝛿0, implies 𝑢 (𝑡; 𝑡0, 𝜁) < 𝜙1 (𝜀) , 𝑡 ⩾ 𝑡0 + 𝑇. (38)
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Choose E‖𝜉‖𝑝 < 𝛿0. Note the fact that 𝜙 ∈ 𝑉K implies 𝜙−1 ∈
𝐶K. Then by (35) and (37), we get

E|𝑥 (𝑡)|
𝑝
⩽ 𝜙
−1

1
(E𝑉 (𝑡, 𝑥 (𝑡))) < 𝜀, 𝑡 ⩾ 𝑡0 + 𝑇, (39)

which implies that the trivial solution of ISFDE-DI (1) is
asymptotically stable.

Thirdly, let us suppose that the trivial solution of IFDE-DI
(2) is globally exponentially stable and condition (i∗) holds.
Then, there exists a couple of positive constants 𝛾 and𝐾 such
that

𝑢 (𝑡) ⩽ 𝐾
𝜁
 𝑒
−𝛾(𝑡−𝑡0), 𝑡 ⩾ 𝑡0. (40)

Let 𝜁(𝜃) = 𝑉(𝑡0 + 𝜃, 𝑥(𝑡0 + 𝜃)), 𝜃 ∈ [−𝜏, 0]. Then by (35) and
(40), we getE𝑉(𝑡, 𝑥(𝑡)) ⩽ 𝑢(𝑡) ⩽ 𝐾E‖𝜉‖

𝑝
𝑒
−𝛾(𝑡−𝑡0) for all 𝑡 ⩾ 𝑡0.

Thus, by condition (i∗), it yields that

E|𝑥 (𝑡)|
𝑝
⩽
𝐾𝑐2

𝑐1

E
𝜉


𝑝
𝑒
−𝛾(𝑡−𝑡0), 𝑡 ⩾ 𝑡0. (41)

Hence, the trivial solution of ISFDE-DI (1) is 𝑝th moment
globally exponentially stable. The proof is complete.

Theorem6. Assume that there exist a function𝑉 ∈ V0, positive
constants 𝑐1, 𝑐2, 𝑞, and 𝑎𝑘, constants 𝑐 and 𝛿, and 𝑏𝑘 ⩾ 0 such
that

(i) 𝑐1|𝑥|
𝑝
⩽ 𝑉(𝑡, 𝑥) ⩽ 𝑐2|𝑥|

𝑝 for any (𝑡, 𝑥) ∈ [𝑡0 − 𝜏,∞) ×

R𝑛;
(ii) EL𝑉(𝑡, 𝜑) ⩽ 𝑐E𝑉(𝑡, 𝜑(0)) + 𝑞E𝑉(𝑡 + 𝜃, 𝜑) for any

(𝑡, 𝜑) ∈ [𝑡𝑘−1, 𝑡𝑘) × 𝑃𝐶
𝑝

F𝑡
([−𝜏, 0];R𝑛), 𝑘 ∈ N;

(iii) E𝑉(𝑡𝑘, 𝐼𝑘(𝑡𝑘, 𝑋, 𝑌)) ⩽ 𝑎𝑘E𝑉(𝑡
−

𝑘
, 𝑋) + 𝑏𝑘E𝑉((𝑡𝑘 −

𝑑𝑘)
−
, 𝑌) for all𝑋,𝑌 ∈ 𝐿

𝑝

F𝑡
(Ω;R𝑛), 𝑘 ∈ N;

(iv) ln(𝑎𝑘 + 𝑏𝑘𝑒
𝑐𝑑𝑘) ⩽ 𝛿(𝑡𝑘 − 𝑡𝑘−1) for each 𝑘 ∈ N;

(v) 𝛿+𝑐+𝑞𝛾 < 0where 𝛾 = sup
𝑘∈N{𝑒
𝛿(𝑡𝑘−𝑡𝑘−1), 1/𝑒

𝛿(𝑡𝑘−𝑡𝑘−1)}.
Then the trivial solution of ISFDE-DI (1) is 𝑝th moment
globally exponentially stable.

Proof. Let 𝑢(𝑡) = E𝑉(𝑡, 𝜑(0)), ℎ(𝑡, 𝑢(𝑡), 𝑢𝑡) = 𝑐𝑢(𝑡) + 𝑞𝑢𝑡,
Ψ1𝑘(𝑢(𝑡

−

𝑘
)) = 𝑎𝑘𝑢(𝑡

−

𝑘
), and Ψ2𝑘(𝑢((𝑡𝑘 − 𝑑𝑘)

−
)) = 𝑏𝑘𝑢((𝑡𝑘 −

𝑑𝑘)
−
). We obtain the comparison system (2). It is easy to

verify that all conditions ofTheorem 5 are satisfied and so the
global exponential stability of the trivial solution of IFDE-DI
(2) implies that 𝑝th moment global exponential stability of
ISFDE-DI (1).

Furthermore, let 𝜆 be the unique positive solution of 𝜆 +

𝛿 + 𝑝 + 𝑞𝛾𝑒
𝜆𝜏

= 0. Using conditions (ii) and (iii), we find

𝐷
+
𝑢 (𝑡) ⩽ 𝑐𝑢 (𝑡) + 𝑞𝑢 (𝑡) , 𝑡 ̸= 𝑡𝑘, 𝑡 ⩾ 𝑡0,

𝑢 (𝑡𝑘) ⩽ 𝑎𝑘𝑢 (𝑡
−

𝑘
) + 𝑏𝑘𝑢 ((𝑡𝑘 − 𝑑𝑘)

−
) , 𝑘 ∈ N.

(42)

Thus from conditions (iv) and (v) and Lemma 3, we obtain
that

𝑢 (𝑡) ⩽ 𝛾𝑢 (𝑡0) 𝑒
−𝜆(𝑡−𝑡0), 𝑡 ⩾ 𝑡0 − 𝜏, (43)

which implies that the trivial solution of IFDE-DI (2) is
globally exponentially stable. The proof of Theorem 6 is
complete.

Remark 7. An impulsive stochastic dynamical system can
be viewed as a hybrid one comprised of two components:
a continuous stochastic dynamic and a discrete dynamic.
Theorem 6 can be used to deal will all three cases: the
system with stable continuous stochastic dynamic and unsta-
ble discrete dynamic, the system with unstable continuous
stochastic dynamic and stable discrete dynamic, and the
system with stable continuous stochastic dynamic and stable
discrete dynamic. When 𝑐 < 0, the continuous stochastic
dynamic of (1) may be stable. In this case, in order to
ensure the stability of the entire system, the delayed impulses’
frequency {𝑡𝑘 − 𝑡𝑘−1, 𝑘 ∈ N} and amplitude 𝑎𝑘, 𝑏𝑘 should be
suitably related to the decrease of continuous flows; that is,
conditions (iv) and (v) hold. In this sense, Theorem 6 can be
used to deal with the robust stabling of continuous stochastic
dynamic subject to delayed impulsive perturbations. When
𝑐 ⩾ 0, the continuous stochastic dynamic of (1) may be
unstable and the stability of the entire system is determined
by the delayed impulse effects. In this case, we need to require
that the delayed impulses’ frequency and amplitude should be
suitablly related to the decrease of of continuous flows.

Remark 8. It is noted that the exponential stability analysis in
[30, 31] only considers the case of impulsive stabilization. In
this sense, Theorem 6 has a wider adaptive range.

4. Examples

In this section, the effectiveness and advantages of the results
derived in the preceding section will be illustrated by two
examples.

Example 1. Consider the two-dimensional nonlinear impul-
sive stochastic delay equation in the form

d𝑥1 (𝑡) = [−2𝑥2 (𝑡) sin (𝑥1 (𝑡 − 𝜏)) − 5𝑥1 (𝑡)

+ 0.5𝑥2 (𝑡 − 𝜏) ] d𝑡 + 0.2𝑥1 (𝑡 − 𝜏) d𝑤 (𝑡) ,

𝑡 ̸= 𝑡𝑘,

d𝑥2 (𝑡) = [𝑥1 (𝑡) sin (𝑥1 (𝑡 − 𝜏)) − 5𝑥2 (𝑡)

+0.4𝑥2 (𝑡 − 𝜏)] d𝑡

+ 0.4𝑥2 (𝑡 − 𝜏) d𝑤 (𝑡) , 𝑡 ̸= 𝑡𝑘,

𝑥1 (𝑡𝑘) = 𝑥1 (𝑡
−

𝑘
) + 𝛼𝑥1 ((𝑡𝑘 − 𝑑𝑘)

−
) , 𝑘 ∈ N,

𝑥2 (𝑡𝑘) = 𝑥2 (𝑡
−

𝑘
) + 𝛼𝑥2 ((𝑡𝑘 − 𝑑𝑘)

−
) , 𝑘 ∈ N,

(44)

where 𝜏 > 0, 𝑑𝑘 ∈ [0, 𝑑], 𝛼 ⩾ 0. If there exists a positive
constant 𝜀 > 0 such that

𝛼 < √
9/0.445 − 1 − 𝜀

1 + 1/𝜀
,

 = inf
𝑘∈N

{𝑡𝑘 − 𝑡𝑘−1} >

ln [1 + 𝜀 + (1 + 1/𝜀) 𝛼
2
]

9 − 0.445 [1 + 𝜀 + (1 + 1/𝜀) 𝛼
2]
,

(45)
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then (44) is globally exponentially stable for any bounded
impulsive input delays {𝑑𝑘}.

Denote 𝐼𝑘(𝑡𝑘, 𝑋, 𝑌) = 𝑋 + 𝛼𝑌. Choose the Lyapunov
function 𝑉(𝑡, 𝑥) = (1/4)𝑥

2

1
+ (1/2)𝑥

2

2
; then for any 𝜀 > 0,

we have

E𝑉 (𝑡𝑘, 𝐼𝑘 (𝑡𝑘, 𝑋, 𝑌))

=
1

4

𝑋1 + 𝛼𝑌1


2
+
1

2

𝑋2 + 𝛼𝑌2


2

= E𝑉 (𝑡
−

𝑘
, 𝑋) + 𝛼

2
E𝑉((𝑡𝑘 − 𝑑𝑘)

−
, 𝑌)

+
𝛼

2
E (𝑋1𝑌1) + 𝛼E (𝑋2𝑌2)

⩽ (1 + 𝜀)E𝑉 (𝑡
−

𝑘
, 𝑋) + (1 +

1

𝜀
) 𝛼
2
E𝑉((𝑡𝑘 − 𝑑𝑘)

−
, 𝑌) ,

EL𝑉 (𝑡, 𝜑)

= −10E𝑉 (𝑡, 𝜑 (0))

+ E [0.25𝜑1 (0) 𝜑2 (−𝜏) + 0.4𝜑2 (0) 𝜑2 (−𝜏)

+0.01𝜑
2

1
(−𝜏) + 0.08𝜑

2

2
(−𝜏) ]

⩽ −10E𝑉 (𝑡, 𝜑 (0)) + E [0.01𝜑
2

1
(−𝜏) + 0.08𝜑

2

2
(−𝜏)]

+ E [0.25𝜑
2

1
(0) + 0.0625𝜑

2

2
(−𝜏)

+0.5𝜑
2

2
(0) + 0.08𝜑

2

2
(−𝜏)]

= −9E𝑉 (𝑡, 𝜑 (0)) + E [0.01𝜑
2

1
(−𝜏) + 0.2225𝜑

2

2
(−𝜏)]

⩽ −9E𝑉 (𝑡, 𝜑 (0)) + 0.445E𝑉 (𝑡 − 𝜏, 𝜑 (−𝜏)) ,

(46)

for 𝑡 ̸= 𝑡𝑘.
Take 𝑐1 = 1/4, 𝑐2 = 1/2, 𝑐 = −9, 𝑞 = 0.445, 𝑎𝑘 ≡ 1 + 𝜀,

𝑏𝑘 ≡ (1 + 1/𝜀)𝛼
2, 𝛿 = ln[1 + 𝜀 + (1 + 1/𝜀)𝛼

2
]/, 𝛾 = 1 + 𝜀 +

(1+1/𝜀)𝛼
2. It is easy to check that all conditions ofTheorem 6

are satisfied under conditions (45), which means that (44) is
globally mean square exponentially stable for any bounded
impulsive input delays {𝑑𝑘}.

Remark. It is noted that (44) without impulses is globally
mean square exponentially stable and the impulses are desta-
bilizing since 𝛼 ⩾ 0. Hence, the existing stability theorems in
[30, 31] fail to work. This shows that our results have a wider
adaptive range.

Example 2. Consider the following impulsive stochastic
delayed neural network:

d𝑥 (𝑡) = [−𝑥 (𝑡) + 𝐴𝑓 (𝑥 (𝑡 − 𝜏 (𝑡)))] d𝑡

+ 𝐵𝑥 (𝑡 − 𝜏 (𝑡)) d𝑤 (𝑡) , 𝑡 ̸= 𝑡𝑘,

𝑥 (𝑡𝑘) = 0.3𝑥 (𝑡
−

𝑘
)

+ 0.2𝑥 ((𝑡𝑘 − 𝑑𝑘)
−
) , 𝑘 ∈ N,

(47)
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x
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Figure 1: The solution of system (47) without impulses (single
sample).
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Figure 2: The mean square of the solution of system (47) without
impulses (2000 samples).

where

𝐴 = [
−1.5 1

−3 2.5
] , 𝐵 = [

0.5 0

0 0.4
] , (48)

𝑓(𝑥) = (𝑓1(𝑥1), 𝑓2(𝑥2))
𝑇 with 𝑓1(𝑠) = 𝑓2(𝑠) = (1/2)(|𝑠 + 1| −

|𝑠 − 1|).
It is noted that (47) without impulse is not stable, and

its simulation with delay 𝜏(𝑡) = 1 and initial data 𝜉(𝑠) =

[1, −1]
𝑇and 𝑠 ∈ [−1, 0] are shown in Figures 1 and 2.

In the following, applying Theorem 5, we will show that
under impulsive control law, (47) is mean square exponen-
tially stable if sup

𝑘∈N{𝑡𝑘 − 𝑡𝑘−1} ⩽ 0.0681.
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Figure 3:The solution of system (47) with impulses (single sample).
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Figure 4: The mean square of the solution of system (47) with
impulses (2000 samples).

Denote 𝐼𝑘(𝑡𝑘, 𝑋, 𝑌) = 0.3𝑋+ 0.2𝑌. Choose𝑉(𝑡, 𝑥) = |𝑥|
2.

Then condition (i) of Theorem 5 holds with 𝑐1 = 𝑐2 = 1,

E𝑉 (𝑡𝑘, 𝐼𝑘 (𝑡𝑘, 𝑋, 𝑌))

= [0.3𝑋 + 0.2𝑌]
𝑇
[0.3𝑋 + 0.2𝑌]

⩽ 0.18E|𝑋|
2
+ 0.08E|𝑌|

2

= 0.18E𝑉 (𝑡
−

𝑘
, 𝑋) + 0.08E𝑉((𝑡𝑘 − 𝑑𝑘)

−
, 𝑌) ,

EL𝑉 (𝑡, 𝜑)

= E [2𝜑
𝑇
(0) (−𝜑 (0) + 𝐴𝑓 (𝜑 (−𝜏 (𝑡))))]

+E [𝜑
𝑇
(−𝜏 (𝑡)) 𝐵

𝑇
𝐵𝜑 (−𝜏 (𝑡))]

⩽ E [ (−2 + ‖𝐴‖)
𝜑 (0)



2

+ (‖𝐴‖ + ‖𝐵‖
2
)
𝜑 (−𝜏 (𝑡))



2
]

⩽ 2.2976E
𝜑(0)



2
+ 4.5476E

𝜑 (−𝜏 (𝑡))


2

= 2.2976E𝑉 (𝑡, 𝜑 (0))

+ 4.5476E𝑉 (𝑡 − 𝜏 (𝑡) , 𝜑 (−𝜏 (𝑡))) ,

(49)

for 𝑡 ̸= 𝑡𝑘.
Thus, the comparison system is

�̇� (𝑡) = 2.2976𝑢 (𝑡) + 4.5476𝑢 (𝑡 − 𝜏 (𝑡)) , 𝑡 ̸= 𝑡𝑘,

𝑡 ⩾ 𝑡0,

𝑢 (𝑡𝑘) = 0.18𝑢 (𝑡
−

𝑘
) + 0.08𝑢 ((𝑡𝑘 − 𝑑𝑘)

−
) , 𝑘 ∈ N,

(50)

which according to case (iii) of Corollary 1 in [19] is globally
exponentially stable for any bounded impulsive input delays
{𝑑𝑘} if sup𝑘∈N{𝑡𝑘−𝑡𝑘−1} < ln(1/0.26)/(2.2976+4.5476/0.26) =
0.0681. Hence, we conclude by Theorem 6 that system (47)
is mean square exponentially stable if sup

𝑘∈N{𝑡𝑘 − 𝑡𝑘−1} ⩽

0.0681. With the same initial value, the simulations of the
impulsive stochastic delay neural network (47) under the
delayed impulsive control law 𝑥(𝑡𝑘) = 0.3𝑥(𝑡

−

𝑘
) + 0.2𝑥((𝑡𝑘 −

𝑑𝑘)
−
), 𝑡𝑘 − 𝑡𝑘−1 = 0.06, 𝑑𝑘 = 0.4 are shown in Figures 3 and 4.

5. Conclusions

This paper has investigated the exponential stability of
ISFDEs-DI based on the comparison approach and an
impulsive delay differential inequality. Some criteria on the
𝑝th moment global exponential stability are established.
The obtained results complement some recent works. Two
examples have been given to illustrate the effectiveness and
the advantages of the results obtained. One of the drawbacks
of the proposed method is perhaps that our results require
the condition 𝛿 + 𝑐 + 𝑞𝛾 < 0 and thus cannot deal with the
time delay system with Δ𝑥(𝑡𝑘) = 𝐵𝑘𝑥((𝑡𝑘 − 𝑑𝑘)

−
). There will

be future work to establish a criterion for the above system.
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