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Real-time pricing DSM (demand side management) is widely used to dynamically change or shift the electricity consumption in
the smart grid. In this paper, a game decision making scheme is proposed in the smart grid with DSM. The interaction between
two retailers and their wholesaler is modeled as a two-stage game model. Considering the competition between two retailers, two
different gamemodels are developed in terms of the different action order between retailers and their wholesaler.Through analyzing
the equilibrium revenues of the retailers for different situations we find that although the wholesaler expects to decentralize certain
management powers to the retailers, it has retained the right to change the rules of the game and frequently reneged on the promises.
More specifically, the law should ensure that any change of the revenue-sharing formula must go through certain legal procedures.
Imposing legal restrictions on the wholesaler’s discretionary policy suggests that the time-inconsistency problem is mitigated.
Numerical simulation shows the effectiveness of proposed scheme.

1. Introduction

Today much more electricity grids have operated more than
half a century and tend to be outdated even in some devel-
oped countries.Modernising electricity grids can increase the
efficiency of electricity production and promote the use of
grid assets and meanwhile makes the whole power network
more reliable and secure so as to decrease carbon emission.
The concept of smart grid has, especially, been arousing
significant attention of much more researchers. The data
communication networks play an important role during the
development of smart grid. However, data communication
network in smart grid is affected by many decisive factors
such as different load and congestion level, changing cus-
tomer demand, power generation, and different prices.These
variable factors lead to different decision making problems.
To solve these problems, demand side management (DSM)
is a fine choice for residential customers to reduce the peak
load and decrease the demand ability and costs inmuchmore
cases. DSM has been practiced since the early 1980s [1–3].
DSM is designed to affect the consumption of the customer

electricity through implementing and monitoring practical
activities. Usually, DSM can make users flatten the demand
curve or shift the energy use to off-peak hours [4]. It is
especially urgent to improve efficiency of the customers both
in quantity and quality in power grid [5].There is a significant
scope for DSM to contribute to increasing the efficiency and
use of system assets, for example, peak clipping, valley filling,
load shifting, and flexible load shape [6]. Real-time pricing
is one of the most effective DSM tools that can encourage
users to consume electricity wisely. The reason is that the
electricity is a very short-term commodity and economically
nonstorable; that is, it has to be consumed the moment it is
produced, where markets constantly experience short-term
changes as capacity fluctuations from surplus to scarcity due
to the hourly and daily fluctuation in demand. Considering
the enhancement of the current power transmission and
distribution systemswith communication facilities and infor-
mation technologies, real-time and adaptive pricing attract
more attention. Adaptive pricing and peak load pricing have
been practiced for many years [7–10]. In peak load pricing,
the operating cycle is divided into several periods and instinct
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price is determined for each period. The prices are then
announced ahead of time at the beginning of the operation
cycle [9]. If real-time pricing is implemented, the price would
become elastic on the demand side opposed to fixed price
tariff. In real-time pricing, random events and the reaction
of the customers to the previous prices will affect the price in
the future [7]; then real-time pricing is conducive to realizing
the linkage between demand side price and wholesale market
clearing price as a kind of ideal dynamic electricity price
mechanism.Themarket risk at proper points between power
suppliers and users makes the retail price truly reflect real-
time electricity costs change, really achieve paretooptimal
efficiency of the market, and realize the optimal allocation of
power resources and maximization of total social benefit.

The spreading technologies and services in smart grid
imply that game theory and some other more up-to-date
techniques [11–15] will naturally become a prominent tool in
the design and analysis of real-time pricing in smart grids. In
recent years, several efforts have been carried out to design
intelligent systems for managing the energy consumption in
real-time pricing. Mohsenian-Rad and Leon-Garcia utilize
the smart grid and smart meters to provide an efficient power
dispatching scheme for studying a single user’s reaction [16];
Saad et al. use game theory to study the various decision
making problems in the smart grid based on the DSM [17].
The Stackelberg game model is used to study the pricing
problem of hierarchical decision problem in [18–20] and is
adopted to study the real-time pricing based on the demand
side in [21–24]. However, the proposed framework might
not be suitable for all circumstances in practical electricity
market. The reason is that the parallel structure in each
layer and the order problem of the hierarchical structure are
excluded from the object of study.

The Stackelberg game and Cournot game are unified
into our model in our paper. The Stackelberg game is a
game model in economics in which the leader firm moves
first and then the follower firms move sequentially. Firms
may engage in Stackelberg game if one has some sort of
advantage enabling it to move first. More generally, the
leader must have one commitment in power market. The
Cournot game is an economic model used to describe an
industry structure in which firms compete on quantity.
The Stackelberg and Cournot models are similar in both
competitions on quantity. However, a crucial advantage is
given to the leader in Stackelberg game. The assumption of
perfect information is also needed in the Stackelberg game;
the followermust observe the strategy of the leader; otherwise
the game reduces to Cournot game. Inspired by [25], we
propose a real-time pricing method based on DSM using
optimization technique and game theory. The novelty of
this approach is threefold. Firstly, we jointly consider the
optimization of consumers’ revenues, integrating them into
the retailers’ problem. Secondly, in our model we not only
consider the Stackelberg game between the retailers and
wholesaler but also consider the Cournot game between the
retailers to study the real-time pricing problem of bilevel
decision. Last but not least, we consider the Stackelberg game
between the retailers and wholesaler in different order of the
hierarchical structure.

The remainder of this paper is organized as follows. In
Section 2 we introduce the system model and the problem
formulations, and we propose an efficient game model for
electricity consumption scheduling between the wholesaler
and retailers based on two different situations with elaborate
mathematical analysis. In Section 3 the solution of model is
proposed, and then a numerical analysis and simulation are
done in Section 4. In Section 5, we evaluated the performance
of the proposed model and a summary is provided.

2. System Model and Problem Formulation

We consider a smart grid with more than one retailer from
which customers purchase electricity in electricity market
liberalization. We aim to maximize the customers’ utilities
with minimum payment and increase the retailers’ profit,
so as to reduce peak to average load demand ratio through
considering real-time varying prices. The retailers can com-
pete or cooperate with each other in the electricity market to
obtain the highest individual or combined revenue by varying
price for the customers.

2.1. Electricity Demand Models

Utility Functions of Customers. Each customer is equipped
with a smart meter in our model. The retailers set the
real-time retail electricity prices and information for the
customers via LAN. As far as customers are concerned,
the energy scheduler in the smart meter can compute and
distribute optimal energy consumption according to the
prices for the upcoming time. Certainly customers always
prefer to take lower prices to consume more electricity till
reaching maximal consumption level if possible. Similar to
[17], the utility function of each customer is taken as

𝑈 (𝑝, 𝑑) = 𝑋𝑑 −
𝛼

2
𝑑
2
− 𝜉𝑝𝑑, (1)

where 𝑋 is varying parameter at different times of the day
and among different customers, 𝑑 denotes the customer’s
electricity demand, 𝛼 is a parameter that is pre-determined,
𝜉 indicates the price elasticity of electricity demand, and 𝑝 is
the price provided by the retailer.

Since real-time pricing DSM is an effective tool to direct
and affect the electricity consumption behavior of customers,
each customer adjusts electricity consumption level to max-
imize utility according to real-time prices which are offered
by the retailers. Each customer’s electricity consumption can
be calculated on the base of utility function. The electricity
demand function of each customer 𝐷(𝑝) can be obtained by
maximizing the following utility function:

𝐷(𝑝) =
𝑋 − 𝜉𝑝

𝛼
. (2)

Retailers’ Electricity Demand Function. Assuming that there
are𝑀wholesalers and𝑁 electricity retailers in the electricity
market, the retailers procure electricity from the wholesalers
and provide the electricity for customers. Different retailers
offered different price for customers they serve. The lower
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price attracts more customers and the customers can turn
to other retailers in that area. So the electricity demand of
retailer 𝑖 can be shown as follows:

𝐷
𝑖
(𝑝) = 𝐷

𝑖
− 𝜉
𝑖
𝑝
𝑖
+

𝑁

∑

𝑛=1,𝑛 ̸= 𝑖

V
𝑖,𝑛
𝑝
𝑛
, (3)

where 𝑝 = (𝑝
1
, 𝑝
2
, . . . , 𝑝

𝑛
) denotes the price vector offered

by the retailers, 𝐷
𝑖
denotes varying parameter with different

retailers and time, 𝜉
𝑖
denotes the price elasticity of electricity

demand of retailer 𝑖, 𝑝
𝑖
denotes the price offered by retailer 𝑖,

and V
𝑖,𝑛
(0 ≤ V

𝑖,𝑛
≤ 1) represents the proportion of electricity

demand flowing from retailer 𝑛 to retailer 𝑖 for a given price
from retailer 𝑛.

2.2. Revenue of Electricity Retailers and Wholesaler. Solving
the equilibrium of game based on multiple wholesalers and
multiple retailers will yield nonsmooth problems. It is a
hard work for the traditional game algorithm and needs to
use the corresponding nonsmooth optimization algorithm
to solve them; in this paper we only consider the case that
there are one wholesaler and two retailers in the electricity
market for simplicity.Thewholesaler wholesales electricity to
retailers and chooses the percentages of retailers’ revenue to
be submitted to him, where the retailers make the decision
on how much revenue to procure in their jurisdictions. The
revenue function of retailer 𝑖 can be expressed as

𝑦
𝑖
(𝑝) = 𝐷

𝑖
(𝑝) 𝑝
𝑖
, 𝑖 = 1, 2. (4)

The budget revenue function of wholesaler can be expressed
as

𝑅
𝑤
= 𝑦
1
(𝑝) 𝑥
1
+ 𝑦
2
(𝑝) 𝑥
2
, (5)

where 𝑥
𝑖
(𝑖 = 1, 2) denotes the share of revenue submitted

to the wholesaler from the retailer 𝑖. The budget revenue
function of retailer 𝑖 can be expressed as

𝐿
𝑖
= (1 − 𝑥

𝑖
) 𝑦
𝑖
(𝑝) , 𝑖 = 1, 2, (6)

where the net income of the retailer 𝑖 after deducting the cost
from budget revenue is, namely,

𝑅
𝑖
= (1 − 𝑥

𝑖
) 𝑦
𝑖
− 𝐶
𝑖
(𝑦
𝑖
) , 𝑖 = 1, 2, (7)

where 𝐶
𝑖
(𝑦
𝑖
) denotes cost; assume marginal costs rise with

the increase of income, specially; we set 𝐶
𝑖
(𝑦
𝑖
) = 𝑎

𝑖
𝑦
2

𝑖
. In

general, 𝑎
1
̸= 𝑎
2
; we can regard 𝑎

𝑖
as the parameter repre-

senting regional development level. The higher the level of
development is, the smaller the 𝑎

𝑖
is.

Thewholesaler aims tominimize the income gap between
retailers after ensuring its fundamental spending needs.
So the wholesaler’s preferences can be expressed with a
logarithmic function defined on the retailer’ budget revenue
as follows:

𝑈 = ln (1 − 𝑥
1
) 𝑦
1
+ ln (1 − 𝑥

2
) 𝑦
2
. (8)

The retailers can be noncooperative or cooperative with each
other; that is, each retailer maximizes its individual utility
disregarding the benefit of the other retailer, or the retailers
maximize the sum of their utility in the game.

2.3. Game Model Formulation

2.3.1. The Wholesaler Can Abide by the Commitment. The
wholesaler and the two retailers play a two-stage game. The
timing of this game is as follows.

Let the wholesaler move first. The retailers move and will
have incentive to obtain more revenues.

The game proceeds as follows:

(1) Stage 1: the wholesaler announces 𝑥
1
and 𝑥

2
;

(2) Stage 2: retailer 1 and retailer 2 choose 𝑝
1
and 𝑝

2

simultaneously after observing 𝑥
1
and 𝑥

2
.

The above assumption says that the wholesaler plays a
Stackelberg game with the retailers and the wholesaler moves
first (as the leader). Under such regime, the retailers obtain
their revenues through serving electricity customers after
knowing the wholesaler’s offer of 𝑥

𝑖
, while the wholesaler

takes into account the retailers’ reaction to 𝑥
𝑖
and finds the

optimal 𝑥
𝑖
. In terms of retailers, they play a Cournot game in

which both players do not have the information about other
player’s move and maximize the sum of their utility.

Definition 1. The equilibrium is defined as follows.
(1) The wholesaler acts optimally given the retailers’

reaction functions. (2) The retailer 𝑖 optimizes his revenue
given the wholesaler’s announced 𝑥

𝑖
and retailer’s revenue.

The wholesaler’s aim is to solve the problem,

max
𝑥
1
,𝑥
2

𝑈 = ln (1 − 𝑥
1
) 𝑦
1
+ ln (1 − 𝑥

2
) 𝑦
2

s.t. 𝑥
1
𝑦
1
+ 𝑥
2
𝑦
2
≥ 𝐸,

(9)

where 𝐸 is spending needs which is assumed as small enough
so that 𝑥

𝑖
≤ 1, 𝑖 = 1, 2, while the aim of the retailers is

to maximize the net income after deducting the cost from
budget revenue; namely,

max
𝑦
𝑖

𝑅
𝑖
= (1 − 𝑥

𝑖
) 𝑦
𝑖
− 𝐶
𝑖
(𝑦
𝑖
) , 𝑖 = 1, 2. (10)

2.3.2. The Wholesaler Cannot Abide by the Commitment.
The wholesaler and the two retailers play a two-stage game,
but the order of game is changed. The wholesaler can
modify arbitrarily the payout rate despite the commitment
in advance; the action sequence of this game is that retailers
move firstly.

(1) Stage 1: retailer 1 and retailer 2 choose 𝑝
1
and 𝑝

2
;

(2) Stage 2: after observing 𝑝
1
and 𝑝

2
, the wholesaler

chooses 𝑥
1
and 𝑥

2
.

The above assumption states that the wholesaler plays a
Stackelberg game with the retailers and the retailers move
first. The retailers are the leaders and the wholesaler is the
follower in the game. This assumption embodies the true
feature of current Chinese economic system. The wholesaler
does not precommit to a fixed revenue sharing method
and the retailers often take this reality into account when
determining their revenues; in this ease the two retailers are
still noncooperative and play a Cournot game between them
as they move simultaneously.
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Definition 2. The equilibrium is defined as follows.

(1) The wholesaler responds optimally given each
retailer’s collected revenues.

(2) The retailer 𝑖 optimizes its collected revenue given the
wholesaler’s reaction function and retailer 𝑗’s choice
of revenue collection (𝑖 ̸= 𝑗, 𝑖, 𝑗 = 1, 2).

3. Solution of the Game Model

3.1. The Wholesaler Can Abide by the Commitment. To find
the equilibriumof the gamewhen thewholesaler can abide by
the commitment, we use backward induction. In other words,
we first solve for the retailers’ reaction function. Believing that
the wholesaler will commit constant 𝑥

1
, retailer 1 chooses 𝑝

1

to maximize

𝑅
1
= (1 − 𝑥

1
) 𝑦
1
− 𝑎
1
𝑦
2

1
, (11)

where 𝑥
1
is fixed. This yields the optimal revenue 𝑦

1
under

the commitment regime satisfying 𝑑𝑅
1
/𝑑𝑦
1
= 0; the solution

is

𝑦
∗

1
=
1 − 𝑥
1

2𝑎
1

. (12)

For retailer 2,

𝑅
2
= (1 − 𝑥

2
) 𝑦
2
− 𝑎
2
𝑦
2

2
, (13)

where 𝑥
1
is fixed. This leads to the optimal revenue 𝑦

2
under

the commitment regime satisfying 𝑑𝑅
1
/𝑑𝑦
1
= 0; its optimal

revenue is

𝑦
∗

2
=
1 − 𝑥
2

2𝑎
2

. (14)

By introducing (3) and (4) to (12) and (14), respectively, we
have

(𝐷
1
− 𝜉
1
𝑝
1
+ V
1,2
𝑝
2
) 𝑝
1
=
1 − 𝑥
1

2𝑎
1

,

(𝐷
2
− 𝜉
2
𝑝
2
+ V
2,1
𝑝
1
) 𝑝
2
=
1 − 𝑥
2

2𝑎
2

.

(15)

By (15), we obtain

𝑝
∗

1
=
(((1 − 𝑥

2
) /2𝑎
2
𝑝
∗

2
) + 𝜉
2
𝑝
∗

2
− 𝐷
2
)

V
2,1

,

𝑝
∗

2
=
(((1 − 𝑥

1
) /2𝑎
1
𝑝
∗

1
) + 𝜉
1
𝑝
∗

1
− 𝐷
1
)

V
1,2

.

(16)

Now return to the wholesaler’s problem. The wholesaler
chooses 𝑥

1
and 𝑥

2
to aim for

max
𝑥
1
,𝑥
2

𝑈 = ln (1 − 𝑥
1
) 𝑦
∗

1
+ ln (1 − 𝑥

2
) 𝑦
∗

2
,

s.t. 𝑥
1
𝑦
∗

1
+ 𝑥
2
𝑦
∗

2
≥ 𝐸,

(17)

where 𝑦∗
1
and 𝑦∗

2
are given by (12) and (14). Substituting (12)

and (14) into (17), we can construct the Lagrange function

𝐿 =
ln (1 − 𝑥

1
)
2

2𝑎
1

+
ln (1 − 𝑥

2
)
2

2𝑎
2

+ 𝜆[
𝑥
1
(1 − 𝑥

1
)

2𝑎
1

+
𝑥
2
(1 − 𝑥

2
)

2𝑎
2

− 𝐸] .

(18)

The first-order optimality conditions are

𝜕𝐿

𝜕𝑥
1

= −
2

1 − 𝑥
1

+ 𝜆
1 − 2𝑥

1

2𝑎
1

= 0;

𝜕𝐿

𝜕𝑥
2

= −
2

1 − 𝑥
2

+ 𝜆
1 − 2𝑥

2

2𝑎
1

= 0;

𝜕𝐿

𝜕𝜆
=
𝑥
1
(1 − 𝑥

1
)

2𝑎
1

+
𝑥
2
(1 − 𝑥

2
)

2𝑎
2

− 𝐸 = 0.

(19)

Eliminating 𝜆 from (19) gives (1/𝑎
1
)(1 − 𝑥

1
)(1 − 2𝑥

1
) =

(1/𝑎
2
)(1−𝑥

2
)(1−2𝑥

2
), andwe also can see𝑥

1
< 1/2, 𝑥

2
< 1/2

from (19); therefore, we have

𝑦
𝑐

𝑖

∗
>
1

4𝑎
𝑖

(𝑖 = 1, 2) . (20)

On the other hand, the budget constraint can be rewritten as

𝑥
1
(1 − 𝑥

1
)

2𝑎
1

+
𝑥
2
(1 − 𝑥

2
)

2𝑎
2

= 𝐸. (21)

Equation (21) defines the optimal point 𝑥∗
𝑖
(𝑖 = 1, 2)

under commitment. But solving the two equations yields
a third-order polynomial equation. We have the following
proposition through the previous derivation.

Proposition 3. The equilibrium of the game when the whole-
saler can abide by the commitment satisfies the following
conditions:

𝑝
∗

2
=
(((1 − 𝑥

∗

1
) /2𝑎
1
𝑝
∗

1
) + 𝜉
1
𝑝
∗

1
− 𝐷
1
)

V
1,2

,

𝑝
∗

1
=
(((1 − 𝑥

∗

2
) /2𝑎
2
𝑝
∗

2
) + 𝜉
2
𝑝
∗

2
− 𝐷
2
)

V
2,1

,

1

𝑎
1

(1 − 𝑥
∗

1
) (1 − 2𝑥

∗

1
) =
1

𝑎
2

(1 − 𝑥
∗

2
) (1 − 2𝑥

∗

2
) ,

𝑥
∗

1
(1 − 𝑥

∗

1
)

2𝑎
1

+
𝑥
∗

2
(1 − 𝑥

∗

2
)

2𝑎
2

= 𝐸.

(22)

3.2. The Wholesaler Cannot Abide by the Commitment. To
find the equilibrium, we use backward induction.The whole-
saler’s aim is

max
𝑥
1
,𝑥
2

𝑈 = ln (1 − 𝑥
1
) 𝑦
1
+ ln (1 − 𝑥

2
) 𝑦
2

s.t. 𝑥
1
𝑦
1
+ 𝑥
2
𝑦
2
≥ 𝐸.

(23)
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The first-order condition of problem (23) is equivalent to the
following equation:

(1 − 𝑥
1
) 𝑦
1
= (1 − 𝑥

2
) 𝑦
2
. (24)

Namely, the wholesaler will equalize the budget revenues
between the two retailers, given the optimal levels of 𝑥

1
and

𝑥
2
as functions of 𝑦

1
, 𝑦
2
, and 𝐸; the reaction function of the

wholesaler is

𝑥
1
(𝑦
1
, 𝑦
2
) =
1

2
−
𝑦
2
− 𝐸

2𝑦
1

,

𝑥
2
(𝑦
1
, 𝑦
2
) =
1

2
−
𝑦
1
− 𝐸

2𝑦
2

.

(25)

The above reaction function means payout rate of a retailer
increases with the rising of its relative income and decreases
with the falling of the other retailers’ falling of the other
retailer’s relative income. Because the retailers know the
reaction function of the wholesaler, in the first stage of game,
the problems of the retailers are to maximize their individual
utility

𝑅
𝑖
= (1 − 𝑥

𝑖
(𝑦
1
, 𝑦
2
)) 𝑦
𝑖
− 𝑎
𝑖
𝑦
2

𝑖
, 𝑖 = 1, 2. (26)

The first-order condition determines that the optimal 𝑦
𝑖
is

𝜕𝑅
𝑖

𝜕𝑦
𝑖

=
1

2
+

𝜕𝑦
𝑗

𝜕𝑦
𝑖

− 2𝑎
𝑖
𝑦
𝑖
= 0, 𝑖 ̸= 𝑗, 𝑖, 𝑗 = 1, 2. (27)

Through the Cournot game assumption 𝜕𝑦
𝑖
/𝜕𝑦
𝑗
= 0, 𝑖 ̸= 𝑗,

𝑖, 𝑗 = 1, 2, we can solve the Nash equilibrium as follows:

𝑦
nc
1

∗
=
1

4𝑎
1

, 𝑦
nc
2

∗
=
1

4𝑎
2

. (28)

The wholesaler substitutes (28) into (25) and obtains equilib-
rium

𝑥
∗

1
=
1

2
−
𝑎
1

2𝑎
2

+ 2𝑎
1
𝐸, 𝑥

∗

2
=
1

2
−
𝑎
2

2𝑎
1

+ 2𝑎
2
𝐸,

(𝐷
1
− 𝜉
1
𝑝
1
+ V
1,2
𝑝
2
) 𝑝
1
=
1

4𝑎
1

,

(𝐷
2
− 𝜉
2
𝑝
2
+ V
2,1
𝑝
1
) 𝑝
2
=
1

4𝑎
2

.

(29)

By solving the two equations, we obtain the equilibrium price
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(30)

Therefore, we have the following proposition through the
previous derivation.

Proposition 4. The equilibrium of the game when the whole-
saler cannot abide by the commitment satisfies the following
conditions:
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(31)

4. Model Analysis and Simulation

Weobserve the change trend whenwe assume that 𝑎
1
= 0.04,

𝑎
2
= 0.01, and 𝐸 = 20, V

1,2
= V
2,1
= 0.3, 𝜉

1
= 𝜉
2
= 0.5. We

vary the number of𝐷
1
when𝐷

2
changes from 0 to 5 to study

how they affect the equilibrium price.
Firstly, we simulate the situation that the wholesaler can

abide by the commitment. From (22) we have
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(32)

In Figure 1, when 𝐷
1
keeps constant and 𝐷

2
grows to

the low regional development level the increase of electricity
demand results in short supply which causes prices to rise
for retailer 2. But the change trends of two equilibrium price
vary greatly. Retailer 1 maintains price stability in electricity
demand stable circumstances, which can be explained by
the low level of development. Retailer 1 can only expand
electricity price instead of expanding production.

Next we simulate the situation that the wholesaler cannot
abide by the commitment. From (31) we have
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𝑥
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2
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(33)

In Figure 2, the change trends of equilibrium price stay
similar to Figure 1; 𝑝∗

1
increases much faster than it does in

Figure 1 which shows the effect of actions in a different order.
In addition to the above situation, we also can verify

the key differences of the retailers’ revenue between the two
cases through comparing the two kinds of equilibrium. From
the above section it can be seen that each retailer ignores
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when the wholesaler cannot abide by the commitment.

the externality problem (one retailer’s revenue collection can
affect the other retailers’ share of revenue submitted to the
wholesaler). Moreover, a revenue distortion is involved in the
no-commitment case as retailers are tempted to reduce their
efforts in order to avoid high rate. However, the externality
of a retailer’s revenue disappears under the commitment
regime since the wholesaler precommits to fixed rates,
which increases the retailers’ revenue, but the predetermined
rates can create distortions on the retailer’s revenue. So we
should consider two factors when comparing the two cases.

On one hand, the absence of the externality can contribute
to higher revenue in the commitment case compared with
the no-commitment case; on the other hand, the two cases
involve a distortion that reduces retailers’ revenue which
yields higher revenue levels in the commitment case than
the no-commitment case. From (20) and (28) we know
𝑦
nc
1

∗
< 𝑦

c
1

∗, 𝑦nc
2

∗
< 𝑦

c
2

∗ at different equilibrium price.
The commitment case provides a way to partially overcome
the retailers’ incentive problem in the no-commitment case.
Firstly, the institution is not adequate for restricting the
wholesaler from reneging on preannounced declaring; that
is, there is no legal restriction on the wholesaler’s contract
revision. Secondly, the wholesaler still does not want to
commit after knowing that the commitment case can yield
higher level of revenue than the no-commitment case. The
problem is that the wholesaler’s policy is time-inconsistent.
Suppose the wholesaler preannounces the optimal rates, but
the wholesaler wants to change the preannounced rates after
having observed the realized revenues; then the optimal
policy is time-inconsistent. In view of this, the promise made
by the wholesaler becomes incredible to the retailers.

5. Conclusion

In this paper, we propose a novel game-theoretical decision
making scheme for electricity retailers and wholesaler in
the smart grid with DSM. The interaction between two
retailers and their wholesaler has been modeled as a two-
stage dynamic game, in which the competition between
two retailers is considered. Two different game models are
constructed in terms of the different action order between
retailers and their wholesaler. Backward induction is used to
determine the SPE of the game.

Through analyzing the equilibrium revenues of the retail-
ers in different situations we find that the wholesaler wants
to decentralize certain management powers to the retailers.
As he has retained the right to change the rules of the game,
he frequently reneged on the promises when he thought
“necessary.” Imposing legal restrictions on the wholesaler’s
discretionary policy suggests that the time-inconsistency
problem is mitigated. Numerical simulation shows the effec-
tiveness of proposed conclusion and effect of parameters on
the equilibrium price.

More wholesalers and retailers will be researched in the
direction as a possible future extension for the electricity
market. The main results of this paper will be extended to
other complex systems [26–30].
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