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A newupper boundwhich involves a parameter for the infinity normof the inverse ofNekrasovmatrices is given. Andwe determine
the optimal value of the parameter such that the bound improves the results of Kolotilina, 2013. Numerical examples are given to
illustrate the corresponding results.

1. Introduction

The class of Nekrasov matrices is a subclass of 𝐻-matrices.
Estimating the infinity norm of the inverse of Nekrasov
matrices can be used to prove the convergence of matrix
splitting and matrix multisplitting iteration methods for
solving large sparse systems of linear equations; see [1–4].
Here, we call a matrix 𝐴 = (𝑎

𝑖𝑗
) ∈ 𝐶

𝑛,𝑛 an 𝐻-matrix if its
comparison matrix ⟨𝐴⟩ = [𝑚

𝑖𝑗
] defined by

⟨𝐴⟩ = [𝑚
𝑖𝑗
] ∈ 𝐶
𝑛,𝑛

, 𝑚
𝑖𝑗
= {

󵄨󵄨󵄨󵄨𝑎𝑖𝑖
󵄨󵄨󵄨󵄨 , 𝑖 = 𝑗

−
󵄨󵄨󵄨󵄨󵄨
𝑎
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
, 𝑖 ̸= 𝑗,

(1)

is an 𝑀-matrix; that is, ⟨𝐴⟩
−1

≥ 0 [1, 5, 6], and a matrix 𝐴 =

[𝑎
𝑖𝑗
] ∈ 𝐶
𝑛,𝑛 is called a Nekrasov matrix if for each 𝑖 ∈ 𝑁,

󵄨󵄨󵄨󵄨𝑎𝑖𝑖
󵄨󵄨󵄨󵄨 > ℎ
𝑖 (𝐴) , (2)

where ℎ
1
(𝐴) = ∑

𝑗 ̸= 1
|𝑎
1𝑗
| and ℎ

𝑖
(𝐴) = ∑

𝑖−1

𝑗=1
(|𝑎
𝑖𝑗
|/|𝑎
𝑗𝑗
|)ℎ
𝑗
(𝐴)+

∑
𝑛

𝑗=𝑖+1
|𝑎
𝑖𝑗
|, 𝑖 = 2, 3, . . . , 𝑛 [2, 6].

In 1975, Varah [7] provided the following upper bound
for strictly diagonally dominant (SDD) matrices as one most
important subclass of Nekrasov matrices, consequently, 𝐻-
matrices [2, 6, 8]. Here a matrix 𝐴 = [𝑎

𝑖𝑗
] ∈ 𝐶

𝑛,𝑛 is called
SDD if for each 𝑖 ∈ 𝑁 = {1, 2, . . . , 𝑛},

󵄨󵄨󵄨󵄨𝑎𝑖𝑖
󵄨󵄨󵄨󵄨 > 𝑟
𝑖 (𝐴) , (3)

where 𝑟
𝑖
(𝐴) = ∑

𝑗 ̸= 𝑖
|𝑎
𝑖𝑗
|.

Theorem 1 (see [7]). Let 𝐴 = [𝑎
𝑖𝑗
] ∈ 𝐶
𝑛,𝑛 be SDD. Then

󵄩󵄩󵄩󵄩󵄩
𝐴
−1󵄩󵄩󵄩󵄩󵄩∞

≤
1

min
𝑖∈𝑁

(
󵄨󵄨󵄨󵄨𝑎𝑖𝑖

󵄨󵄨󵄨󵄨 − 𝑟
𝑖 (𝐴))

. (4)

We call the bound in Theorem 1 the Varah’s bound. As
Cvetković et al. [2] said, Varah’s bound works only for SDD
matrices and even then it is not always good enough. To
obtain new upper bounds for the infinity norm of the inverse
of a wider class of matrices which sometimes works better in
the SDD case, Cvetković et al. [2] give the following bound of
Nekrasov matrices.

Theorem 2 (see [2, Theorem 2]). Let 𝐴 = [𝑎
𝑖𝑗
] ∈ 𝐶

𝑛,𝑛 be a
Nekrasov matrix. Then

󵄩󵄩󵄩󵄩󵄩
𝐴
−1󵄩󵄩󵄩󵄩󵄩∞

≤
max
𝑖∈𝑁

(𝑧
𝑖 (𝐴) /

󵄨󵄨󵄨󵄨𝑎𝑖𝑖
󵄨󵄨󵄨󵄨)

1 −max
𝑖∈𝑁

(ℎ
𝑖 (𝐴) /

󵄨󵄨󵄨󵄨𝑎𝑖𝑖
󵄨󵄨󵄨󵄨)
, (5)

󵄩󵄩󵄩󵄩󵄩
𝐴
−1󵄩󵄩󵄩󵄩󵄩∞

≤
max
𝑖∈𝑁

𝑧
𝑖 (𝐴)

min
𝑖∈𝑁

󵄨󵄨󵄨󵄨𝑎𝑖𝑖
󵄨󵄨󵄨󵄨 − ℎ
𝑖 (𝐴)

, (6)

where 𝑧
1
(𝐴) = 1 and 𝑧

𝑖
(𝐴) = ∑

𝑖−1

𝑗=1
(|𝑎
𝑖𝑗
|/|𝑎
𝑗𝑗
|)𝑧
𝑗
(𝐴) + 1, 𝑖 =

2, 3 . . . , 𝑛.

In [9, Theorems 2.2 and 2.3], Kolotilina gave an improve-
ment of these upper bounds in Theorem 2 (see Theorems 3
and 4).
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Theorem 3 (see [9, Theorem 2.2]). Let 𝐴 = [𝑎
𝑖𝑗
] ∈ 𝐶
𝑛,𝑛 be a

Nekrasov matrix. Then
󵄩󵄩󵄩󵄩󵄩
𝐴
−1󵄩󵄩󵄩󵄩󵄩∞

≤ max
𝑖∈𝑁

𝑧
𝑖 (𝐴)

󵄨󵄨󵄨󵄨𝑎𝑖𝑖
󵄨󵄨󵄨󵄨 − ℎ
𝑖 (𝐴)

. (7)

Theorem 4 (see [9, Theorem 2.3]). Let 𝐴 = [𝑎
𝑖𝑗
] ∈ 𝐶
𝑛,𝑛 be a

Nekrasov matrix. Then

max
𝑖∈𝑁

𝑧
𝑖 (𝐴)

󵄨󵄨󵄨󵄨𝑎𝑖𝑖
󵄨󵄨󵄨󵄨 − ℎ
𝑖 (𝐴)

≤
max
𝑖∈𝑁

(𝑧
𝑖 (𝐴) /

󵄨󵄨󵄨󵄨𝑎𝑖𝑖
󵄨󵄨󵄨󵄨)

1 −max
𝑖∈𝑁

(ℎ
𝑖 (𝐴) /

󵄨󵄨󵄨󵄨𝑎𝑖𝑖
󵄨󵄨󵄨󵄨)
,

max
𝑖∈𝑁

𝑧
𝑖 (𝐴)

󵄨󵄨󵄨󵄨𝑎𝑖𝑖
󵄨󵄨󵄨󵄨 − ℎ
𝑖 (𝐴)

≤
max
𝑖∈𝑁

𝑧
𝑖 (𝐴)

min
𝑖∈𝑁

󵄨󵄨󵄨󵄨𝑎𝑖𝑖
󵄨󵄨󵄨󵄨 − ℎ
𝑖 (𝐴)

.

(8)

In this paper, we also focus on the estimation problem of
the infinity normof the inverse of Nekrasovmatrices and give
an improvement of the bound inTheorem 3 (Theorem 2.2 in
[9]). Numerical example is given to illustrate the correspond-
ing results.

2. Bounds for the Infinity Norm of the Inverse
of Nekrasov Matrices

In order to obtain a new bound, we start with the following
lemmas and notations. Given a matrix 𝐴 = [𝑎

𝑖𝑗
], by 𝐴 =

𝐷 − 𝐿 − 𝑈 we denote the standard splitting of 𝐴 into its
diagonal (𝐷), strictly lower (−𝐿), and strictly upper (−𝑈)

triangular parts. And by [𝐴]
𝑖𝑗
denote the (𝑖, 𝑗)-entry of𝐴; that

is, [𝐴]
𝑖𝑗
= 𝑎
𝑖𝑗
. Furthermore, we denote |𝐴| = [|𝑎

𝑖𝑗
|].

Lemma 5 (see [10]). Let 𝐴 = [𝑎
𝑖𝑗
] ∈ 𝐶

𝑛,𝑛 be a nonsingular
𝐻-matrix. Then

󵄨󵄨󵄨󵄨󵄨
𝐴
−1󵄨󵄨󵄨󵄨󵄨

≤ ⟨𝐴⟩
−1
. (9)

Lemma 6 (see [11]). Given anymatrix𝐴 = [𝑎
𝑖𝑗
] ∈ 𝐶
𝑛,𝑛, 𝑛 ≥ 2,

with 𝑎
𝑖𝑖

̸= 0 for all 𝑖 ∈ 𝑁, then

ℎ
𝑖 (𝐴) =

󵄨󵄨󵄨󵄨𝑎𝑖𝑖
󵄨󵄨󵄨󵄨 [(|𝐷| − |𝐿|)

−1
|𝑈| 𝑒]

𝑖
, (10)

where 𝑒 ∈ 𝐶
𝑛,𝑛 is the vector with all components equal to 1.

Lemma 7 (see [12]). A matrix 𝐴 = [𝑎
𝑖𝑗
] ∈ 𝐶

𝑛,𝑛, 𝑛 ≥ 2, is a
Nekrasov matrix if and only if

(|𝐷| − |𝐿|)
−1

|𝑈| 𝑒 < 𝑒, (11)

that is, if and only if 𝐸 − (|𝐷| − |𝐿|)
−1
|𝑈| is an SDD matrix,

where 𝐸 is the identity matrix.

Let 𝐶 = 𝐸 − (|𝐷| − |𝐿|)
−1
|𝑈| = [𝑐

𝑖𝑗
]. Then from Lemma 7,

𝐶 is SDD when 𝐴 is a Nekrasov matrix. Note that 𝑐
11

= 1,
𝑐
𝑘1

= 0, 𝑘 = 2, 3, . . . , 𝑛, and 𝑐
1𝑘

= −|𝑎
1𝑘
|/|𝑎
11
|, 𝑘 = 2, 3, . . . , 𝑛,

which leads to the following lemma.

Lemma 8. Let 𝐴 = [𝑎
𝑖𝑗
] ∈ 𝐶
𝑛,𝑛 be a Nekrasov matrix and

𝐶 (𝜇) = 𝐶𝐷 (𝜇) = [𝐸 − (|𝐷| − |𝐿|)
−1

|𝑈|]𝐷 (𝜇) , (12)

where 𝐷(𝜇) = diag(𝜇, 1, . . . , 1) and 𝜇 > 𝑟
1
(𝐴)/|𝑎

11
|. Then

𝐶(𝜇) is SDD.

Proof. It is not difficult from (12) to see that [𝐶(𝜇)]
𝑘1

= 𝜇𝑐
𝑘1

for all 𝑘 ∈ 𝑁 and [𝐶(𝜇)]
𝑘𝑗

= 𝑐
𝑘𝑗
for all 𝑘 ∈ 𝑁 and 𝑗 ̸= 1. Hence

[𝐶(𝜇)]
11

= 𝜇, 𝑟
1
(𝐶 (𝜇)) = 𝑟

1 (𝐶) =
𝑟
1 (𝐴)

󵄨󵄨󵄨󵄨𝑎𝑖𝑖
󵄨󵄨󵄨󵄨

(13)

and for 𝑖 = 2, . . . , 𝑛,

[𝐶(𝜇)]
𝑖𝑖
= 𝑐
𝑖𝑖
, 𝑟

𝑖
(𝐶 (𝜇)) = 𝑟

𝑖 (𝐶) . (14)

From the fact that𝐶 is SDD and 𝜇 > 𝑟
1
(𝐴)/|𝑎

11
|, we have that

𝐶(𝜇) is SDD.The proof is completed.

The main result of this paper is the following theorem.

Theorem 9. Let 𝐴 = [𝑎
𝑖𝑗
] ∈ 𝐶
𝑛,𝑛 be a Nekrasov matrix. Then

for 𝜇 > 𝑟
1
(𝐴)/|𝑎

11
|,

󵄩󵄩󵄩󵄩󵄩
𝐴
−1󵄩󵄩󵄩󵄩󵄩∞

≤ max {𝜇, 1}max{ 1

𝜇
󵄨󵄨󵄨󵄨𝑎11

󵄨󵄨󵄨󵄨 − ℎ
1 (𝐴)

,

max
𝑖 ̸= 1

𝑧
𝑖 (𝐴)

󵄨󵄨󵄨󵄨𝑎𝑖𝑖
󵄨󵄨󵄨󵄨 − ℎ
𝑖 (𝐴)

} .

(15)

Proof. Let𝐶(𝜇) = 𝐶𝐷(𝜇) = (𝐸−(|𝐷| − |𝐿|)
−1
|𝑈|)𝐷(𝜇), where

𝐷(𝜇) = diag(𝜇, 1, . . . , 1). From (12), we have

𝐶 (𝜇) = (|𝐷| − |𝐿|)
−1

⟨𝐴⟩𝐷 (𝜇) , (16)

which implies that

⟨𝐴⟩ = (|𝐷| − |𝐿|) 𝐶 (𝜇)𝐷(𝜇)
−1

= (|𝐷| − |𝐿|) Δ ⋅ Δ
−1
𝐶 (𝜇)𝐷(𝜇)

−1
,

(17)

where

Δ = diag (𝛿
1
, 𝛿
2
, . . . , 𝛿

𝑛
) , 𝛿

𝑖
> 0, 𝑖 = 1, 2, . . . , 𝑛. (18)

Furthermore, since a Nekrasov matrix is an 𝐻-matrix, we
have, from Lemma 5,

󵄩󵄩󵄩󵄩󵄩
𝐴
−1󵄩󵄩󵄩󵄩󵄩∞

≤
󵄩󵄩󵄩󵄩󵄩
⟨𝐴⟩
−1󵄩󵄩󵄩󵄩󵄩∞

≤
󵄩󵄩󵄩󵄩𝐷(𝜇)

󵄩󵄩󵄩󵄩∞
⋅
󵄩󵄩󵄩󵄩󵄩
𝐶(𝜇)
−1
Δ
󵄩󵄩󵄩󵄩󵄩∞

⋅
󵄩󵄩󵄩󵄩󵄩
[(|𝐷| − |𝐿|)Δ]

−1󵄩󵄩󵄩󵄩󵄩∞
.

(19)

First, we estimate ‖[(|𝐷| − |𝐿|)Δ]
−1
‖
∞
. Since (|𝐷| − |𝐿|)Δ

is an 𝑀-matrix and there exists a positive diagonal matrix Δ

such that (|𝐷| − |𝐿|)Δ𝑒 = 𝑒, see [9], we get

󵄩󵄩󵄩󵄩󵄩
[(|𝐷| − |𝐿|)Δ]

−1󵄩󵄩󵄩󵄩󵄩∞
=

󵄩󵄩󵄩󵄩󵄩
[(|𝐷| − |𝐿|)Δ]

−1
𝑒
󵄩󵄩󵄩󵄩󵄩∞

= 1. (20)

Secondly, we estimate ‖𝐶(𝜇)
−1
Δ‖
∞
. From Lemma 8,𝐶(𝜇)

is SDD. Obviously, multiplying the left-hand side of 𝐶(𝜇)

by diagonal matrix Δ
−1 does not change SDD property,
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so Δ
−1
𝐶(𝜇) is also SDD. Thus, Varah’s bound (4) can be

applied as follows:

󵄩󵄩󵄩󵄩󵄩
𝐶(𝜇)
−1
Δ
󵄩󵄩󵄩󵄩󵄩∞

≤ max
𝑖∈𝑁

1

[Δ−1𝐶 (𝜇) 𝑒]
𝑖

= max
𝑖∈𝑁

𝛿
𝑖

[𝐶 (𝜇) 𝑒]
𝑖

= max{ 𝛿
1

[𝐶 (𝜇) 𝑒]
1

,max
𝑖 ̸= 1

𝛿
𝑖

[𝐶 (𝜇) 𝑒]
𝑖

}

= max{
𝛿
1

󵄨󵄨󵄨󵄨𝑎11
󵄨󵄨󵄨󵄨

𝜇
󵄨󵄨󵄨󵄨𝑎11

󵄨󵄨󵄨󵄨 − ℎ
1 (𝐴)

,max
𝑖 ̸= 1

𝛿
𝑖

󵄨󵄨󵄨󵄨𝑎𝑖𝑖
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑎𝑖𝑖
󵄨󵄨󵄨󵄨 − ℎ
𝑖 (𝐴)

} .

(21)

In addition, since 𝑧(𝐴) = [𝑧
1
(𝐴), . . . , 𝑧

𝑛
(𝐴)]
𝑇

=

|𝐷|(|𝐷| − |𝐿|)
−1
𝑒 and (|𝐷| − |𝐿|)Δ𝑒 = 𝑒, see [9, 13], we

have

𝛿
𝑖

󵄨󵄨󵄨󵄨𝑎𝑖𝑖
󵄨󵄨󵄨󵄨 = 𝑧
𝑖 (𝐴) , 𝑖 = 1, 2, . . . , 𝑛. (22)

Substituting (22) into (21), we get that

󵄩󵄩󵄩󵄩󵄩
𝐶(𝜇)
−1
Δ
󵄩󵄩󵄩󵄩󵄩∞

≤ max{ 𝑧
1 (𝐴)

𝜇
󵄨󵄨󵄨󵄨𝑎11

󵄨󵄨󵄨󵄨 − ℎ
1 (𝐴)

,max
𝑖 ̸= 1

𝑧
𝑖 (𝐴)

󵄨󵄨󵄨󵄨𝑎𝑖𝑖
󵄨󵄨󵄨󵄨 − ℎ
𝑖 (𝐴)

} .

(23)

Finally, from (20), (23), 𝑧
1
(𝐴) = 1, and the fact that

‖𝐷(𝜇)‖
∞

= max{𝜇, 1}, we have

󵄩󵄩󵄩󵄩󵄩
𝐴
−1󵄩󵄩󵄩󵄩󵄩∞

≤ max {𝜇, 1}

×max{ 𝑧
1 (𝐴)

𝜇
󵄨󵄨󵄨󵄨𝑎11

󵄨󵄨󵄨󵄨 − ℎ
1 (𝐴)

,max
𝑖 ̸= 1

𝑧
𝑖 (𝐴)

󵄨󵄨󵄨󵄨𝑎𝑖𝑖
󵄨󵄨󵄨󵄨 − ℎ
𝑖 (𝐴)

}

= max {𝜇, 1}

×max{ 1

𝜇
󵄨󵄨󵄨󵄨𝑎11

󵄨󵄨󵄨󵄨 − ℎ
1 (𝐴)

,max
𝑖 ̸= 1

𝑧
𝑖 (𝐴)

󵄨󵄨󵄨󵄨𝑎𝑖𝑖
󵄨󵄨󵄨󵄨 − ℎ
𝑖 (𝐴)

} .

(24)

The conclusions follow.

Example 10. Consider the Nekrasov matrix 𝐴
1
in [2, 9],

where

𝐴
1
=

[
[
[

[

−7 1 −0.2 2

7 88 2 −3

2 0.5 13 −2

0.5 3.0 1 6

]
]
]

]

. (25)

By computation, ℎ
1
(𝐴) = 3.2000, ℎ

2
(𝐴) = 8.2000, ℎ

3
(𝐴) =

2.9609, ℎ
4
(𝐴) = 0.7359, 𝑧

1
(𝐴) = 1, 𝑧

2
(𝐴) = 2, 𝑧

3
(𝐴) =

1.2971, and 𝑧
4
(𝐴) = 1.2394. By the bound of Theorem 3

(the bound of Theorem 2.2 in [9]), we have

󵄩󵄩󵄩󵄩󵄩
𝐴
−1

1

󵄩󵄩󵄩󵄩󵄩∞
≤ 0.2632. (26)

0.9 0.95 1 1.05 1.1 1.15
0.24

0.26

0.28

0.3

0.32

𝜇

The bound in Theorem 9 
The bound in Theorem 3 

(1.0639, 0.2505)

Th
e b

ou
nd

 o
f‖
A
−
1
‖ ∞

Figure 1: The bounds inTheorems 9 and 3.

ByTheorem 9, we have

󵄩󵄩󵄩󵄩󵄩
𝐴
−1

1

󵄩󵄩󵄩󵄩󵄩∞
≤ 0.3226 (Taking 𝜇 = 0.90) ,

󵄩󵄩󵄩󵄩󵄩
𝐴
−1

1

󵄩󵄩󵄩󵄩󵄩∞
≤ 0.2786 (Taking 𝜇 = 0.97) ,

󵄩󵄩󵄩󵄩󵄩
𝐴
−1

1

󵄩󵄩󵄩󵄩󵄩∞
≤ 0.2549 (Taking 𝜇 = 1.04) ,

󵄩󵄩󵄩󵄩󵄩
𝐴
−1

1

󵄩󵄩󵄩󵄩󵄩∞
≤ 0.2590 (Taking 𝜇 = 1.10) ,

󵄩󵄩󵄩󵄩󵄩
𝐴
−1

1

󵄩󵄩󵄩󵄩󵄩∞
≤ 0.2708 (Taking 𝜇 = 1.15) .

(27)

In fact, ‖𝐴−1
1
‖
∞

= 0.1921.

Remark 11. Example 10 shows that by choosing the value of
𝜇, the bound in Theorem 9 is better than that in Theorem 3
in some cases. We further observe the bound in Theorem 9
by Figure 1 and find that there is an interval such that for
any 𝜇 in this interval, the bound inTheorem 9 for the matrix
𝐴
1
is always smaller than that in Theorem 3. An interesting

problem arises: whether there is an interval of 𝜇 such that the
bound inTheorem 9 for any Nekrasov matrix is smaller than
that inTheorem 3. In the following section, we will study this
problem.

3. The Choice of 𝜇

In this section, we determine the value of 𝜇 such that the
bound for ‖𝐴−1‖

∞
in Theorem 9 is less than or equal to that

in [9]. First, we consider theNekrasovmatrix𝐴 = [𝑎
𝑖𝑗
] ∈ 𝐶
𝑛,𝑛

with

1

󵄨󵄨󵄨󵄨𝑎11
󵄨󵄨󵄨󵄨 − ℎ
1 (𝐴)

> max
𝑖 ̸= 1

𝑧
𝑖 (𝐴)

󵄨󵄨󵄨󵄨𝑎𝑖𝑖
󵄨󵄨󵄨󵄨 − ℎ
𝑖 (𝐴)

, (28)

and give the following lemma.



4 Journal of Applied Mathematics

Lemma 12. Let 𝑎, 𝑏, and 𝑐 be positive real numbers, and 0 <

𝑎(𝑏 − 𝑐) < 1. Then

1 <
1 + 𝑎𝑐

𝑎𝑏
<

1

𝑎 (𝑏 − 𝑐)
. (29)

Proof. We only need to prove that (1 + 𝑎𝑐)/𝑎𝑏 − 1 > 0 and
1/𝑎(𝑏 − 𝑐) − (1 + 𝑎𝑐)/𝑎𝑏 > 0. In fact,

1 + 𝑎𝑐

𝑎𝑏
− 1 =

1 − 𝑎 (𝑏 − 𝑐)

𝑎𝑏
> 0,

1

𝑎 (𝑏 − 𝑐)
−

1 + 𝑎𝑐

𝑎𝑏
=

𝑐 (1 − 𝑎 (𝑏 − 𝑐))

𝑎𝑏 (𝑏 − 𝑐)
> 0.

(30)

The proof is completed.

Lemma 13. Let 𝐴 = [𝑎
𝑖𝑗
] ∈ 𝐶
𝑛,𝑛 be a Nekrasov matrix with

1

󵄨󵄨󵄨󵄨𝑎11
󵄨󵄨󵄨󵄨 − ℎ
1 (𝐴)

> max
𝑖 ̸= 1

𝑧
𝑖 (𝐴)

󵄨󵄨󵄨󵄨𝑎𝑖𝑖
󵄨󵄨󵄨󵄨 − ℎ
𝑖 (𝐴)

. (31)

Then

1 <
1 +max

𝑖 ̸= 1
(𝑧
𝑖 (𝐴) / (

󵄨󵄨󵄨󵄨𝑎𝑖𝑖
󵄨󵄨󵄨󵄨 − ℎ
𝑖 (𝐴))) ⋅ ℎ1 (𝐴)

󵄨󵄨󵄨󵄨𝑎11
󵄨󵄨󵄨󵄨 ⋅max

𝑖 ̸= 1
((𝐴) / (

󵄨󵄨󵄨󵄨𝑎𝑖𝑖
󵄨󵄨󵄨󵄨 − ℎ
𝑖 (𝐴)))

<
1/ (

󵄨󵄨󵄨󵄨𝑎11
󵄨󵄨󵄨󵄨 − ℎ
1 (𝐴))

max
𝑖 ̸= 1

(𝑧
𝑖 (𝐴) / (

󵄨󵄨󵄨󵄨𝑎𝑖𝑖
󵄨󵄨󵄨󵄨 − ℎ
𝑖 (𝐴)))

.

(32)

Proof. Let 𝑎 = max
𝑖 ̸= 1

(𝑧
𝑖
(𝐴)/(|𝑎

𝑖𝑖
| − ℎ
𝑖
(𝐴))), 𝑏 = |𝑎

11
|, and

𝑐 = ℎ
1
(𝐴). From (28), we get 0 < 𝑎(𝑏 − 𝑐) < 1. Then from

Lemma 12, the first and second inequalities in (32) hold.

We now give an interval of 𝜇 such that the bound in
Theorem 9 is less than that in Theorem 3.

Lemma 14. Let 𝐴 = [𝑎
𝑖𝑗
] ∈ 𝐶
𝑛,𝑛 be a Nekrasov matrix with

1

󵄨󵄨󵄨󵄨𝑎11
󵄨󵄨󵄨󵄨 − ℎ
1 (𝐴)

> max
𝑖 ̸= 1

𝑧
𝑖 (𝐴)

󵄨󵄨󵄨󵄨𝑎𝑖𝑖
󵄨󵄨󵄨󵄨 − ℎ
𝑖 (𝐴)

. (33)

Then for each 𝜇 ∈ (1, (1/(|𝑎
11
|−ℎ
1
(𝐴)))/max

𝑖 ̸= 1
(𝑧
𝑖
(𝐴)/(|𝑎

𝑖𝑖
|−

ℎ
𝑖
(𝐴)))),
󵄩󵄩󵄩󵄩󵄩
𝐴
−1󵄩󵄩󵄩󵄩󵄩∞

≤ max {𝜇, 1}

×max{ 1

𝜇
󵄨󵄨󵄨󵄨𝑎11

󵄨󵄨󵄨󵄨 − ℎ
1 (𝐴)

,max
𝑖 ̸= 1

𝑧
𝑖 (𝐴)

󵄨󵄨󵄨󵄨𝑎𝑖𝑖
󵄨󵄨󵄨󵄨 − ℎ
𝑖 (𝐴)

}

< max
𝑖∈𝑁

𝑧
𝑖 (𝐴)

󵄨󵄨󵄨󵄨𝑎𝑖𝑖
󵄨󵄨󵄨󵄨 − ℎ
𝑖 (𝐴)

.

(34)

Proof. From Lemma 13, we have

𝜇 ∈ (1,
1 +max

𝑖 ̸= 1
(𝑧
𝑖 (𝐴) / (

󵄨󵄨󵄨󵄨𝑎𝑖𝑖
󵄨󵄨󵄨󵄨 − ℎ
𝑖 (𝐴))) ⋅ ℎ1 (𝐴)

󵄨󵄨󵄨󵄨𝑎11
󵄨󵄨󵄨󵄨 ⋅max

𝑖 ̸= 1
(𝑧
𝑖 (𝐴) / (

󵄨󵄨󵄨󵄨𝑎𝑖𝑖
󵄨󵄨󵄨󵄨 − ℎ
𝑖 (𝐴)))

]

⋃[
1 +max

𝑖 ̸= 1
(𝑧
𝑖 (𝐴) / (

󵄨󵄨󵄨󵄨𝑎𝑖𝑖
󵄨󵄨󵄨󵄨 − ℎ
𝑖 (𝐴))) ⋅ ℎ1 (𝐴)

󵄨󵄨󵄨󵄨𝑎11
󵄨󵄨󵄨󵄨 ⋅max

𝑖 ̸= 1
(𝑧
𝑖 (𝐴) / (

󵄨󵄨󵄨󵄨𝑎𝑖𝑖
󵄨󵄨󵄨󵄨 − ℎ
𝑖 (𝐴)))

,

1/ (
󵄨󵄨󵄨󵄨𝑎11

󵄨󵄨󵄨󵄨 − ℎ
1 (𝐴))

max
𝑖 ̸= 1

(𝑧
𝑖 (𝐴) / (

󵄨󵄨󵄨󵄨𝑎𝑖𝑖
󵄨󵄨󵄨󵄨 − ℎ
𝑖 (𝐴)))

)

(35)

and max{𝜇, 1} = 𝜇.

(I) For 𝜇 ∈ (1, (1 + max
𝑖 ̸= 1

(𝑧
𝑖
(𝐴)/(|𝑎

𝑖𝑖
| − ℎ

𝑖
(𝐴))) ⋅

ℎ
1
(𝐴))/(|𝑎

11
| ⋅max

𝑖 ̸= 1
(𝑧
𝑖
(𝐴)/(|𝑎

𝑖𝑖
| − ℎ
𝑖
(𝐴))))], then

𝜇
󵄨󵄨󵄨󵄨𝑎11

󵄨󵄨󵄨󵄨 − ℎ
1 (𝐴) ≤

1

max
𝑖 ̸= 1

(𝑧
𝑖 (𝐴) / (

󵄨󵄨󵄨󵄨𝑎𝑖𝑖
󵄨󵄨󵄨󵄨 − ℎ
𝑖 (𝐴)))

; (36)

that is,

1

𝜇
󵄨󵄨󵄨󵄨𝑎11

󵄨󵄨󵄨󵄨 − ℎ
1 (𝐴)

≥ max
𝑖 ̸= 1

𝑧
𝑖 (𝐴)

󵄨󵄨󵄨󵄨𝑎𝑖𝑖
󵄨󵄨󵄨󵄨 − ℎ
𝑖 (𝐴)

. (37)

Therefore,

max {𝜇, 1}max{ 1

𝜇
󵄨󵄨󵄨󵄨𝑎11

󵄨󵄨󵄨󵄨 − ℎ
1 (𝐴)

,max
𝑖 ̸= 1

𝑧
𝑖 (𝐴)

󵄨󵄨󵄨󵄨𝑎𝑖𝑖
󵄨󵄨󵄨󵄨 − ℎ
𝑖 (𝐴)

}

=
𝜇

𝜇
󵄨󵄨󵄨󵄨𝑎11

󵄨󵄨󵄨󵄨 − ℎ
1 (𝐴)

.

(38)

Consider the function 𝑓(𝑥) = 𝑥/(𝑥|𝑎
11
| − ℎ

1
(𝐴)),

𝑥 ∈ [1, (1 + max
𝑖 ̸= 1

(𝑧
𝑖
(𝐴)/(|𝑎

𝑖𝑖
| − ℎ
𝑖
(𝐴))) ⋅ ℎ

1
(𝐴))/(|𝑎

11
| ⋅

max
𝑖 ̸= 1

(𝑧
𝑖
(𝐴)/(|𝑎

𝑖𝑖
| − ℎ
𝑖
(𝐴))))]. It is easy to prove that 𝑓(𝑥)

is a monotonically decreasing function of 𝑥. Hence, for any
𝜇 ∈ (1, (1 + max

𝑖 ̸= 1
(𝑧
𝑖
(𝐴)/(|𝑎

𝑖𝑖
| − ℎ
𝑖
(𝐴))) ⋅ ℎ

1
(𝐴))/(|𝑎

11
| ⋅

max
𝑖 ̸= 1

(𝑧
𝑖
(𝐴)/(|𝑎

𝑖𝑖
| − ℎ
𝑖
(𝐴))))],

𝑓 (𝜇) < 𝑓 (1) ; (39)

that is,

𝜇

𝜇
󵄨󵄨󵄨󵄨𝑎11

󵄨󵄨󵄨󵄨 − ℎ
1 (𝐴)

<
1

󵄨󵄨󵄨󵄨𝑎11
󵄨󵄨󵄨󵄨 − ℎ
1 (𝐴)

= max
𝑖∈𝑁

𝑧
𝑖 (𝐴)

󵄨󵄨󵄨󵄨𝑎𝑖𝑖
󵄨󵄨󵄨󵄨 − ℎ
𝑖 (𝐴)

. (40)

Hence,

max {𝜇, 1}max{ 1

𝜇
󵄨󵄨󵄨󵄨𝑎11

󵄨󵄨󵄨󵄨 − ℎ
1 (𝐴)

,max
𝑖 ̸= 1

𝑧
𝑖 (𝐴)

󵄨󵄨󵄨󵄨𝑎𝑖𝑖
󵄨󵄨󵄨󵄨 − ℎ
𝑖 (𝐴)

}

< max
𝑖∈𝑁

𝑧
𝑖 (𝐴)

󵄨󵄨󵄨󵄨𝑎𝑖𝑖
󵄨󵄨󵄨󵄨 − ℎ
𝑖 (𝐴)

.

(41)

(II) For ∈ [(1 + max
𝑖 ̸= 1

(𝑧
𝑖
(𝐴)/(|𝑎

𝑖𝑖
| − ℎ
𝑖
(𝐴))) ⋅ ℎ

1
(𝐴))/

(|𝑎
11
| ⋅ max

𝑖 ̸= 1
(𝑧
𝑖
(𝐴)/(|𝑎

𝑖𝑖
| − ℎ
𝑖
(𝐴)))), (1/(|𝑎

11
| − ℎ
1
(𝐴)))/

max
𝑖 ̸= 1

(𝑧
𝑖
(𝐴)/(|𝑎

𝑖𝑖
| − ℎ
𝑖
(𝐴)))), then

𝜇
󵄨󵄨󵄨󵄨𝑎11

󵄨󵄨󵄨󵄨 − ℎ
1 (𝐴) ≥

1

max
𝑖 ̸= 1

(𝑧
𝑖 (𝐴) / (

󵄨󵄨󵄨󵄨𝑎𝑖𝑖
󵄨󵄨󵄨󵄨 − ℎ
𝑖 (𝐴)))

; (42)

that is,

1

𝜇
󵄨󵄨󵄨󵄨𝑎11

󵄨󵄨󵄨󵄨 − ℎ
1 (𝐴)

≤ max
𝑖 ̸= 1

𝑧
𝑖 (𝐴)

󵄨󵄨󵄨󵄨𝑎𝑖𝑖
󵄨󵄨󵄨󵄨 − ℎ
𝑖 (𝐴)

. (43)

Therefore,

max {𝜇, 1}max{ 1

𝜇
󵄨󵄨󵄨󵄨𝑎11

󵄨󵄨󵄨󵄨 − ℎ
1 (𝐴)

,max
𝑖 ̸= 1

𝑧
𝑖 (𝐴)

󵄨󵄨󵄨󵄨𝑎𝑖𝑖
󵄨󵄨󵄨󵄨 − ℎ
𝑖 (𝐴)

}

= 𝜇max
𝑖 ̸= 1

𝑧
𝑖 (𝐴)

󵄨󵄨󵄨󵄨𝑎𝑖𝑖
󵄨󵄨󵄨󵄨 − ℎ
𝑖 (𝐴)

.

(44)
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Consider the function

𝑔 (𝑥) = 𝑥max
𝑖 ̸= 1

𝑧
𝑖 (𝐴)

󵄨󵄨󵄨󵄨𝑎𝑖𝑖
󵄨󵄨󵄨󵄨 − ℎ
𝑖 (𝐴)

,

𝑥 ∈ [
1 +max

𝑖 ̸= 1
(𝑧
𝑖 (𝐴) / (

󵄨󵄨󵄨󵄨𝑎𝑖𝑖
󵄨󵄨󵄨󵄨 − ℎ
𝑖 (𝐴))) ⋅ ℎ1 (𝐴)

󵄨󵄨󵄨󵄨𝑎11
󵄨󵄨󵄨󵄨 ⋅max

𝑖 ̸= 1
(𝑧
𝑖 (𝐴) / (

󵄨󵄨󵄨󵄨𝑎𝑖𝑖
󵄨󵄨󵄨󵄨 − ℎ
𝑖 (𝐴)))

,

1/ (
󵄨󵄨󵄨󵄨𝑎11

󵄨󵄨󵄨󵄨 − ℎ
1 (𝐴))

max
𝑖 ̸= 1

(𝑧
𝑖 (𝐴) / (

󵄨󵄨󵄨󵄨𝑎𝑖𝑖
󵄨󵄨󵄨󵄨 − ℎ
𝑖 (𝐴)))

] .

(45)

Obviously, 𝑔(𝑥) is a monotonically increasing function of 𝑥.
Hence, for any 𝜇 ∈ [(1 + max

𝑖 ̸= 1
(𝑧
𝑖
(𝐴)/(|𝑎

𝑖𝑖
| − ℎ
𝑖
(𝐴))) ⋅

ℎ
1
(𝐴))/(|𝑎

11
| ⋅ max

𝑖 ̸= 1
(𝑧
𝑖
(𝐴)/(|𝑎

𝑖𝑖
| − ℎ

𝑖
(𝐴)))), (1/(|𝑎

11
| −

ℎ
1
(𝐴)))/max

𝑖 ̸= 1
(𝑧
𝑖
(𝐴)/(|𝑎

𝑖𝑖
| − ℎ
𝑖
(𝐴)))),

𝑔 (𝜇) < 𝑔(
(1/ (

󵄨󵄨󵄨󵄨𝑎11
󵄨󵄨󵄨󵄨 − ℎ
1 (𝐴)))

max
𝑖 ̸= 1

(𝑧
𝑖 (𝐴) / (

󵄨󵄨󵄨󵄨𝑎𝑖𝑖
󵄨󵄨󵄨󵄨 − ℎ
𝑖 (𝐴)))

) ; (46)

that is,

𝜇max
𝑖 ̸= 1

𝑧
𝑖 (𝐴)

󵄨󵄨󵄨󵄨𝑎𝑖𝑖
󵄨󵄨󵄨󵄨 − ℎ
𝑖 (𝐴)

<
1

󵄨󵄨󵄨󵄨𝑎11
󵄨󵄨󵄨󵄨 − ℎ
1 (𝐴)

= max
𝑖∈𝑁

𝑧
𝑖 (𝐴)

󵄨󵄨󵄨󵄨𝑎𝑖𝑖
󵄨󵄨󵄨󵄨 − ℎ
𝑖 (𝐴)

.

(47)

Hence,

max {𝜇, 1}max{ 1

𝜇
󵄨󵄨󵄨󵄨𝑎11

󵄨󵄨󵄨󵄨 − ℎ
1 (𝐴)

,max
𝑖 ̸= 1

𝑧
𝑖 (𝐴)

󵄨󵄨󵄨󵄨𝑎𝑖𝑖
󵄨󵄨󵄨󵄨 − ℎ
𝑖 (𝐴)

}

< max
𝑖∈𝑁

𝑧
𝑖 (𝐴)

󵄨󵄨󵄨󵄨𝑎𝑖𝑖
󵄨󵄨󵄨󵄨 − ℎ
𝑖 (𝐴)

.

(48)

The conclusion follows from (I) and (II).

Lemma 14 provides an interval of𝜇 such that the bound in
Theorem 9 is better than the bound inTheorem 3 (the bound
in [9]). Moreover, we can determine the optimal value of 𝜇 by
the following theorem.

Theorem 15. Let 𝐴 = [𝑎
𝑖𝑗
] ∈ 𝐶
𝑛,𝑛 be a Nekrasov matrix with

1

󵄨󵄨󵄨󵄨𝑎11
󵄨󵄨󵄨󵄨 − ℎ
1 (𝐴)

> max
𝑖 ̸= 1

𝑧
𝑖 (𝐴)

󵄨󵄨󵄨󵄨𝑎𝑖𝑖
󵄨󵄨󵄨󵄨 − ℎ
𝑖 (𝐴)

. (49)

Then

min{max {𝜇, 1}

×max{ 1

𝜇
󵄨󵄨󵄨󵄨𝑎11

󵄨󵄨󵄨󵄨 − ℎ
1 (𝐴)

,max
𝑖 ̸= 1

𝑧
𝑖 (𝐴)

󵄨󵄨󵄨󵄨𝑎𝑖𝑖
󵄨󵄨󵄨󵄨 − ℎ
𝑖 (𝐴)

} :

𝜇 ∈ (1,
1/ (

󵄨󵄨󵄨󵄨𝑎11
󵄨󵄨󵄨󵄨 − ℎ
1 (𝐴))

max
𝑖 ̸= 1

(𝑧
𝑖 (𝐴) / (

󵄨󵄨󵄨󵄨𝑎𝑖𝑖
󵄨󵄨󵄨󵄨 − ℎ
𝑖 (𝐴)))

)} .

=
𝑧
1 (𝐴)

󵄨󵄨󵄨󵄨𝑎11
󵄨󵄨󵄨󵄨

+max
𝑖 ̸= 1

𝑧
𝑖 (𝐴)

󵄨󵄨󵄨󵄨𝑎𝑖𝑖
󵄨󵄨󵄨󵄨 − ℎ
𝑖 (𝐴)

⋅
ℎ
1 (𝐴)

󵄨󵄨󵄨󵄨𝑎11
󵄨󵄨󵄨󵄨

.

(50)

Furthermore,

󵄩󵄩󵄩󵄩󵄩
𝐴
−1󵄩󵄩󵄩󵄩󵄩∞

≤ max {𝜇, 1} (𝑧
1 (𝐴)

󵄨󵄨󵄨󵄨𝑎11
󵄨󵄨󵄨󵄨

+max
𝑖 ̸= 1

𝑧
𝑖 (𝐴)

󵄨󵄨󵄨󵄨𝑎𝑖𝑖
󵄨󵄨󵄨󵄨 − ℎ
𝑖 (𝐴)

⋅
ℎ
1 (𝐴)

󵄨󵄨󵄨󵄨𝑎11
󵄨󵄨󵄨󵄨

)

< max
𝑖∈𝑁

𝑧
𝑖 (𝐴)

󵄨󵄨󵄨󵄨𝑎𝑖𝑖
󵄨󵄨󵄨󵄨 − ℎ
𝑖 (𝐴)

.

(51)

Proof. From the proof of Lemma 14, we have that

𝑓 (𝑥) =
𝑥

𝑥
󵄨󵄨󵄨󵄨𝑎11

󵄨󵄨󵄨󵄨 − ℎ
1 (𝐴)

,

𝑥 ∈ [1,
1 +max

𝑖 ̸= 1
(𝑧
𝑖 (𝐴) / (

󵄨󵄨󵄨󵄨𝑎𝑖𝑖
󵄨󵄨󵄨󵄨 − ℎ
𝑖 (𝐴))) ⋅ ℎ1 (𝐴)

󵄨󵄨󵄨󵄨𝑎11
󵄨󵄨󵄨󵄨 ⋅max

𝑖 ̸= 1
(𝑧
𝑖 (𝐴) / (

󵄨󵄨󵄨󵄨𝑎𝑖𝑖
󵄨󵄨󵄨󵄨 − ℎ
𝑖 (𝐴)))

]

(52)

is decreasing and that

𝑔 (𝑥) = 𝑥max
𝑖 ̸= 1

𝑧
𝑖 (𝐴)

󵄨󵄨󵄨󵄨𝑎𝑖𝑖
󵄨󵄨󵄨󵄨 − ℎ
𝑖 (𝐴)

,

𝑥 ∈ [
1 +max

𝑖 ̸= 1
(𝑧
𝑖 (𝐴) / (

󵄨󵄨󵄨󵄨𝑎𝑖𝑖
󵄨󵄨󵄨󵄨 − ℎ
𝑖 (𝐴))) ⋅ ℎ1 (𝐴)

󵄨󵄨󵄨󵄨𝑎11
󵄨󵄨󵄨󵄨 ⋅max

𝑖 ̸= 1
(𝑧
𝑖 (𝐴) / (

󵄨󵄨󵄨󵄨𝑎𝑖𝑖
󵄨󵄨󵄨󵄨 − ℎ
𝑖 (𝐴)))

,

1/ (
󵄨󵄨󵄨󵄨𝑎11

󵄨󵄨󵄨󵄨 − ℎ
1 (𝐴))

max
𝑖 ̸= 1

(𝑧
𝑖 (𝐴) / (

󵄨󵄨󵄨󵄨𝑎𝑖𝑖
󵄨󵄨󵄨󵄨 − ℎ
𝑖 (𝐴)))

]

(53)

is increasing. Therefore, the minimum of 𝑓(𝑥) and 𝑔(𝑥) is

𝑓(
1 +max

𝑖 ̸= 1
(𝑧
𝑖 (𝐴) / (

󵄨󵄨󵄨󵄨𝑎𝑖𝑖
󵄨󵄨󵄨󵄨 − ℎ
𝑖 (𝐴))) ⋅ ℎ1 (𝐴)

󵄨󵄨󵄨󵄨𝑎11
󵄨󵄨󵄨󵄨 ⋅max

𝑖 ̸= 1
(𝑧
𝑖 (𝐴) / (

󵄨󵄨󵄨󵄨𝑎𝑖𝑖
󵄨󵄨󵄨󵄨 − ℎ
𝑖 (𝐴)))

)

= 𝑔(
1 +max

𝑖 ̸= 1
(𝑧
𝑖 (𝐴) / (

󵄨󵄨󵄨󵄨𝑎𝑖𝑖
󵄨󵄨󵄨󵄨 − ℎ
𝑖 (𝐴))) ⋅ ℎ1 (𝐴)

󵄨󵄨󵄨󵄨𝑎11
󵄨󵄨󵄨󵄨 ⋅max

𝑖 ̸= 1
(𝑧
𝑖 (𝐴) / (

󵄨󵄨󵄨󵄨𝑎𝑖𝑖
󵄨󵄨󵄨󵄨 − ℎ
𝑖 (𝐴)))

)

=
𝑧
1 (𝐴)

󵄨󵄨󵄨󵄨𝑎11
󵄨󵄨󵄨󵄨

+max
𝑖 ̸= 1

𝑧
𝑖 (𝐴)

󵄨󵄨󵄨󵄨𝑎𝑖𝑖
󵄨󵄨󵄨󵄨 − ℎ
𝑖 (𝐴)

⋅
ℎ
1 (𝐴)

󵄨󵄨󵄨󵄨𝑎11
󵄨󵄨󵄨󵄨

,

(54)

which implies that (50) holds. Again by Lemma 14, (51)
follows easily.

Remark 16. Theorem 15 provides a method to determine the
optimal value of 𝜇 for aNekrasovmatrix𝐴 = [𝑎

𝑖𝑗
] ∈ 𝐶
𝑛,𝑛 with

1

󵄨󵄨󵄨󵄨𝑎11
󵄨󵄨󵄨󵄨 − ℎ
1 (𝐴)

> max
𝑖 ̸= 1

𝑧
𝑖 (𝐴)

󵄨󵄨󵄨󵄨𝑎𝑖𝑖
󵄨󵄨󵄨󵄨 − ℎ
𝑖 (𝐴)

. (55)

Also consider the matrix 𝐴
1
in Example 10. By computation,

we get

1

󵄨󵄨󵄨󵄨𝑎11
󵄨󵄨󵄨󵄨 − ℎ
1 (𝐴)

= 0.2632 > 0.2354 = max
𝑖 ̸= 1

𝑧
𝑖 (𝐴)

󵄨󵄨󵄨󵄨𝑎𝑖𝑖
󵄨󵄨󵄨󵄨 − ℎ
𝑖 (𝐴)

. (56)

Hence, by Theorem 15, we can obtain that the bound in
Theorem 9 reaches its minimum

𝑧
1 (𝐴)

󵄨󵄨󵄨󵄨𝑎11
󵄨󵄨󵄨󵄨

+max
𝑖 ̸= 1

𝑧
𝑖 (𝐴)

󵄨󵄨󵄨󵄨𝑎𝑖𝑖
󵄨󵄨󵄨󵄨 − ℎ
𝑖 (𝐴)

⋅
ℎ
1 (𝐴)

󵄨󵄨󵄨󵄨𝑎11
󵄨󵄨󵄨󵄨

= 0.2505 (57)

at 𝜇 = (1 + max
𝑖 ̸= 1

(𝑧
𝑖
(𝐴)/(|𝑎

𝑖𝑖
| − ℎ
𝑖
(𝐴))) ⋅ ℎ

1
(𝐴))/(|𝑎

11
| ⋅

max
𝑖 ̸= 1

(𝑧
𝑖
(𝐴)/(|𝑎

𝑖𝑖
| − ℎ
𝑖
(𝐴)))) = 1.0639 (also see Figure 1).
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Next, we study the bound inTheorem 9 for the Nekrasov
matrix 𝐴 = [𝑎

𝑖𝑗
] ∈ 𝐶
𝑛,𝑛 with

1

󵄨󵄨󵄨󵄨𝑎11
󵄨󵄨󵄨󵄨 − ℎ
1 (𝐴)

≤ max
𝑖 ̸= 1

𝑧
𝑖 (𝐴)

󵄨󵄨󵄨󵄨𝑎𝑖𝑖
󵄨󵄨󵄨󵄨 − ℎ
𝑖 (𝐴)

. (58)

Theorem 17. Let 𝐴 = [𝑎
𝑖𝑗
] ∈ 𝐶
𝑛,𝑛 be a Nekrasov matrix with

1

󵄨󵄨󵄨󵄨𝑎11
󵄨󵄨󵄨󵄨 − ℎ
1 (𝐴)

≤ max
𝑖 ̸= 1

𝑧
𝑖 (𝐴)

󵄨󵄨󵄨󵄨𝑎𝑖𝑖
󵄨󵄨󵄨󵄨 − ℎ
𝑖 (𝐴)

. (59)

Then we can take 𝜇 ∈ [(1 + max
𝑖 ̸= 1

(𝑧
𝑖
(𝐴)/(|𝑎

𝑖𝑖
| − ℎ
𝑖
(𝐴))) ⋅

ℎ
1
(𝐴))/(|𝑎

11
| ⋅max

𝑖 ̸= 1
(𝑧
𝑖
(𝐴)/(|𝑎

𝑖𝑖
| − ℎ
𝑖
(𝐴)))), 1] such that

󵄩󵄩󵄩󵄩󵄩
𝐴
−1󵄩󵄩󵄩󵄩󵄩∞

≤ max {𝜇, 1}

×max{ 1

𝜇
󵄨󵄨󵄨󵄨𝑎11

󵄨󵄨󵄨󵄨 − ℎ
1 (𝐴)

,max
𝑖 ̸= 1

𝑧
𝑖 (𝐴)

󵄨󵄨󵄨󵄨𝑎𝑖𝑖
󵄨󵄨󵄨󵄨 − ℎ
𝑖 (𝐴)

}

= max
𝑖∈𝑁

𝑧
𝑖 (𝐴)

󵄨󵄨󵄨󵄨𝑎𝑖𝑖
󵄨󵄨󵄨󵄨 − ℎ
𝑖 (𝐴)

.

(60)

Proof. From (59), we get (1 + max
𝑖 ̸= 1

(𝑧
𝑖
(𝐴)/(|𝑎

𝑖𝑖
| − ℎ
𝑖
(𝐴))) ⋅

ℎ
1
(𝐴))/(|𝑎

11
| ⋅ max

𝑖 ̸= 1
(𝑧
𝑖
(𝐴)/(|𝑎

𝑖𝑖
| − ℎ
𝑖
(𝐴)))) ≤ 1. Then, for

𝜇 > 𝑟
1
(𝐴)/|𝑎

11
| = ℎ
1
(𝐴)/|𝑎

11
|, we have

𝜇 ∈ (
ℎ
1 (𝐴)

󵄨󵄨󵄨󵄨𝑎11
󵄨󵄨󵄨󵄨

,
1 +max

𝑖 ̸= 1
(𝑧
𝑖 (𝐴) / (

󵄨󵄨󵄨󵄨𝑎𝑖𝑖
󵄨󵄨󵄨󵄨 − ℎ
𝑖 (𝐴))) ⋅ ℎ1 (𝐴)

󵄨󵄨󵄨󵄨𝑎11
󵄨󵄨󵄨󵄨 ⋅max

𝑖 ̸= 1
(𝑧
𝑖 (𝐴) / (

󵄨󵄨󵄨󵄨𝑎𝑖𝑖
󵄨󵄨󵄨󵄨 − ℎ
𝑖 (𝐴)))

)

⋃[
1 +max

𝑖 ̸= 1
(𝑧
𝑖 (𝐴) / (

󵄨󵄨󵄨󵄨𝑎𝑖𝑖
󵄨󵄨󵄨󵄨 − ℎ
𝑖 (𝐴))) ⋅ ℎ1 (𝐴)

󵄨󵄨󵄨󵄨𝑎11
󵄨󵄨󵄨󵄨 ⋅max

𝑖 ̸= 1
(𝑧
𝑖 (𝐴) / (

󵄨󵄨󵄨󵄨𝑎𝑖𝑖
󵄨󵄨󵄨󵄨 − ℎ
𝑖 (𝐴)))

, 1]

⋃(1, +∞) .

(61)

(I) For 𝜇 ∈ (ℎ
1
(𝐴)/|𝑎

11
|, (1 + max

𝑖 ̸= 1
(𝑧
𝑖
(𝐴)/(|𝑎

𝑖𝑖
| −

ℎ
𝑖
(𝐴))) ⋅ ℎ

1
(𝐴))/(|𝑎

11
| ⋅ max

𝑖 ̸= 1
(𝑧
𝑖
(𝐴)/(|𝑎

𝑖𝑖
| − ℎ
𝑖
(𝐴))))), then

max{𝜇, 1} = 1 and

𝜇 <
1 +max

𝑖 ̸= 1
(𝑧
𝑖 (𝐴) / (

󵄨󵄨󵄨󵄨𝑎𝑖𝑖
󵄨󵄨󵄨󵄨 − ℎ
𝑖 (𝐴))) ⋅ ℎ1 (𝐴)

󵄨󵄨󵄨󵄨𝑎11
󵄨󵄨󵄨󵄨 ⋅max

𝑖 ̸= 1
(𝑧
𝑖 (𝐴) / (

󵄨󵄨󵄨󵄨𝑎𝑖𝑖
󵄨󵄨󵄨󵄨 − ℎ
𝑖 (𝐴)))

; (62)

that is,

1

𝜇
󵄨󵄨󵄨󵄨𝑎11

󵄨󵄨󵄨󵄨 − ℎ
1 (𝐴)

> max
𝑖 ̸= 1

𝑧
𝑖 (𝐴)

󵄨󵄨󵄨󵄨𝑎𝑖𝑖
󵄨󵄨󵄨󵄨 − ℎ
𝑖 (𝐴)

. (63)

Therefore,

max {𝜇, 1}max{ 1

𝜇
󵄨󵄨󵄨󵄨𝑎11

󵄨󵄨󵄨󵄨 − ℎ
1 (𝐴)

,max
𝑖 ̸= 1

𝑧
𝑖 (𝐴)

󵄨󵄨󵄨󵄨𝑎𝑖𝑖
󵄨󵄨󵄨󵄨 − ℎ
𝑖 (𝐴)

}

=
1

𝜇
󵄨󵄨󵄨󵄨𝑎11

󵄨󵄨󵄨󵄨 − ℎ
1 (𝐴)

> max
𝑖 ̸= 1

𝑧
𝑖 (𝐴)

󵄨󵄨󵄨󵄨𝑎𝑖𝑖
󵄨󵄨󵄨󵄨 − ℎ
𝑖 (𝐴)

= max
𝑖∈𝑁

𝑧
𝑖 (𝐴)

󵄨󵄨󵄨󵄨𝑎𝑖𝑖
󵄨󵄨󵄨󵄨 − ℎ
𝑖 (𝐴)

.

(64)

(II) For 𝜇 ∈ [(1+max
𝑖 ̸= 1

(𝑧
𝑖
(𝐴)/(|𝑎

𝑖𝑖
| −ℎ
𝑖
(𝐴))) ⋅ ℎ

1
(𝐴))/(|𝑎

11
| ⋅

max
𝑖 ̸= 1

(𝑧
𝑖
(𝐴)/(|𝑎

𝑖𝑖
| − ℎ
𝑖
(𝐴)))), 1], then max{𝜇, 1} = 1 and

𝜇 ≥
1 +max

𝑖 ̸= 1
(𝑧
𝑖 (𝐴) / (

󵄨󵄨󵄨󵄨𝑎𝑖𝑖
󵄨󵄨󵄨󵄨 − ℎ
𝑖 (𝐴))) ⋅ ℎ1 (𝐴)

󵄨󵄨󵄨󵄨𝑎11
󵄨󵄨󵄨󵄨 ⋅max

𝑖 ̸= 1
(𝑧
𝑖 (𝐴) / (

󵄨󵄨󵄨󵄨𝑎𝑖𝑖
󵄨󵄨󵄨󵄨 − ℎ
𝑖 (𝐴)))

; (65)

that is,

1

𝜇
󵄨󵄨󵄨󵄨𝑎11

󵄨󵄨󵄨󵄨 − ℎ
1 (𝐴)

≤ max
𝑖 ̸= 1

𝑧
𝑖 (𝐴)

󵄨󵄨󵄨󵄨𝑎𝑖𝑖
󵄨󵄨󵄨󵄨 − ℎ
𝑖 (𝐴)

. (66)

Therefore,

max {𝜇, 1}max{ 1

𝜇
󵄨󵄨󵄨󵄨𝑎11

󵄨󵄨󵄨󵄨 − ℎ
1 (𝐴)

,max
𝑖 ̸= 1

𝑧
𝑖 (𝐴)

󵄨󵄨󵄨󵄨𝑎𝑖𝑖
󵄨󵄨󵄨󵄨 − ℎ
𝑖 (𝐴)

}

= max
𝑖 ̸= 1

𝑧
𝑖 (𝐴)

󵄨󵄨󵄨󵄨𝑎𝑖𝑖
󵄨󵄨󵄨󵄨 − ℎ
𝑖 (𝐴)

= max
𝑖∈𝑁

𝑧
𝑖 (𝐴)

󵄨󵄨󵄨󵄨𝑎𝑖𝑖
󵄨󵄨󵄨󵄨 − ℎ
𝑖 (𝐴)

.

(67)

(III) For 𝜇 ∈ (1, +∞), then max{𝜇, 1} = 𝜇 and

1

𝜇
󵄨󵄨󵄨󵄨𝑎11

󵄨󵄨󵄨󵄨 − ℎ
1 (𝐴)

≤ max
𝑖 ̸= 1

𝑧
𝑖 (𝐴)

󵄨󵄨󵄨󵄨𝑎𝑖𝑖
󵄨󵄨󵄨󵄨 − ℎ
𝑖 (𝐴)

. (68)

Therefore,

max {𝜇, 1}max{ 1

𝜇
󵄨󵄨󵄨󵄨𝑎11

󵄨󵄨󵄨󵄨 − ℎ
1 (𝐴)

,max
𝑖 ̸= 1

𝑧
𝑖 (𝐴)

󵄨󵄨󵄨󵄨𝑎𝑖𝑖
󵄨󵄨󵄨󵄨 − ℎ
𝑖 (𝐴)

}

= 𝜇 ⋅max
𝑖 ̸= 1

𝑧
𝑖 (𝐴)

󵄨󵄨󵄨󵄨𝑎𝑖𝑖
󵄨󵄨󵄨󵄨 − ℎ
𝑖 (𝐴)

> max
𝑖 ̸= 1

𝑧
𝑖 (𝐴)

󵄨󵄨󵄨󵄨𝑎𝑖𝑖
󵄨󵄨󵄨󵄨 − ℎ
𝑖 (𝐴)

= max
𝑖∈𝑁

𝑧
𝑖 (𝐴)

󵄨󵄨󵄨󵄨𝑎𝑖𝑖
󵄨󵄨󵄨󵄨 − ℎ
𝑖 (𝐴)

.

(69)

The conclusion follows from (I), (II), and (III).

Remark 18. Theorems 15 and 17 provide the value of 𝜇; that is,

𝜇 =
1 +max

𝑖 ̸= 1
(𝑧
𝑖 (𝐴) / (

󵄨󵄨󵄨󵄨𝑎𝑖𝑖
󵄨󵄨󵄨󵄨 − ℎ
𝑖 (𝐴))) ⋅ ℎ1 (𝐴)

󵄨󵄨󵄨󵄨𝑎11
󵄨󵄨󵄨󵄨 ⋅max

𝑖 ̸= 1
(𝑧
𝑖 (𝐴) / (

󵄨󵄨󵄨󵄨𝑎𝑖𝑖
󵄨󵄨󵄨󵄨 − ℎ
𝑖 (𝐴)))

(70)

such that the bound in Theorem 9 is not worse than that
in Theorem 3 for a Nekrasov matrix 𝐴 = [𝑎

𝑖𝑗
] ∈ 𝐶

𝑛,𝑛. In
particular, for the Nekrasov matrix𝐴with 1/(|𝑎

11
|−ℎ
1
(𝐴)) >

max
𝑖 ̸= 1

(𝑧
𝑖
(𝐴)/(|𝑎

𝑖𝑖
− ℎ
𝑖
(𝐴)|)), the bound in Theorem 9 is

better than that in Theorem 3.
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Table 1: The upper bounds for ||𝐴−1
𝑖
||
∞
, 𝑖 = 2, . . . , 6.

Matrix 𝐴
2

𝐴
3

𝐴
4

𝐴
5

𝐴
6

Exact ||𝐴−1||
∞

0.2390 0.8759 0.2707 1.1519 0.4474
Varah (4) 1 1.4286 0.5556 — —
Cvetković et al. (5) 0.8848 1.8076 0.6200 1.4909 1.1557
Cvetković et al. (6) 0.6885 0.9676 0.7937 2.4848 0.5702
Kolotilina (7) 0.5365 0.9676 0.5556 1.4138 0.4928
Theorem 9 0.5365 0.9676 0.5038 1.4138 0.4928

Example 19. Consider the following five Nekrasov matrices
in [2, 9]:

𝐴
2
=

[
[
[

[

8 1 −0.2 3.3

7 13 2 −3

−1.3 6.7 13 −2

0.5 3 1 6

]
]
]

]

,

𝐴
3
=

[
[
[

[

21 −9.1 −4.2 −2.1

−0.7 9.1 −4.2 −2.1

−0.7 −0.7 4.9 −2.1

−0.7 −0.7 −0.7 2.8

]
]
]

]

,

𝐴
4
=

[
[
[

[

5 1 0.2 2

1 21 1 −3

2 0.5 6.4 −2

0.5 −1 1 9

]
]
]

]

, 𝐴
5
= [

[

6 −3 −2

−1 11 −8

−7 −3 10

]

]

,

𝐴
6
=

[
[
[

[

8 −0.5 −0.5 −0.5

−9 16 −5 −5

−6 −4 15 −3

−4.9 −0.9 −0.9 6

]
]
]

]

.

(71)

Obviously, 𝐴
2
, 𝐴
3
, and 𝐴

4
are SDD. And it is not difficult

to verify that 𝐴
4
satisfies the conditions in Theorem 15 and

𝐴
2
, 𝐴
3
, 𝐴
5
, and 𝐴

6
satisfy the conditions in Theorem 17.

We compute by Matlab 7.0 the upper bounds for the infinity
norm of the inverse of 𝐴

𝑖
, 𝑖 = 2, . . . , 6, which are shown

in Table 1. It is easy to see from Table 1 that this example
illustrates Theorems 15 and 17.

4. Conclusions

In this paper, we give an improvement on the infinity norm
bound for the inverse of a Nekrasov matrix in [9]. In
particular, for the Nekrasov matrix 𝐴 = [𝑎

𝑖𝑗
] ∈ 𝐶
𝑛,𝑛 with

1

󵄨󵄨󵄨󵄨𝑎11
󵄨󵄨󵄨󵄨 − ℎ
1 (𝐴)

> max
𝑖 ̸= 1

𝑧
𝑖 (𝐴)

󵄨󵄨󵄨󵄨𝑎𝑖𝑖
󵄨󵄨󵄨󵄨 − ℎ
𝑖 (𝐴)

, (72)

we prove that new bound is better than that in [9]. However,
for the Nekrasov matrix 𝐴 with

1

󵄨󵄨󵄨󵄨𝑎11
󵄨󵄨󵄨󵄨 − ℎ
1 (𝐴)

≤ max
𝑖 ̸= 1

𝑧
𝑖 (𝐴)

󵄨󵄨󵄨󵄨𝑎𝑖𝑖
󵄨󵄨󵄨󵄨 − ℎ
𝑖 (𝐴)

, (73)

we only obtain that new bound is equal to that in [9].
For this case, we try to found some better bounds in
future. On the other hand, our bound only considers one

parameter 𝜇, that is,𝐷(𝜇) = diag(𝜇, 1, . . . , 1), which poses an
interesting problem: whether we further improve this bound
by introducing more parameters. In future, we will research
this problem.
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