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Acceleration of convergence is discussed for some families of iterative methods in order to solve scalar nonlinear equations. In fact,
we construct mono- and biparametric methods with memory and study their orders. It is shown that the convergence orders 12
and 14 can be attained using only 4 functional evaluations, which provides high computational efficiency indices. Some illustrations
will also be given to reverify the theoretical discussions.

1. Introduction

Finding the zeros of nonlinear functions using iterativemeth-
ods is a challenging problem in computational mathematics
with many applications (see, e.g., [1, 2]). The solution 𝛼 can
be obtained as a fixed point of function 𝑓 : 𝐷 ⊆ R → R by
means of the following fixed-point iteration:

𝑥
𝑛+1
= 𝜙 (𝑥

𝑛
) , 𝑛 = 0, 1, . . . . (1)

The most widely used method for this purpose is the
classical Newton’smethod and its derivative-free formknown
as Steffensen’s scheme [3].These methods converge quadrati-
cally under the conditions that the function𝑓 is continuously
differentiable and a good initial approximation𝑥

0
is given [4].

Considering these fundamental methods, many iterative
methods without memory possessing optimal convergence
order based on the hypothesis of Kung and Traub [5] have
been constructed in the literature; see, for example, [6, 7] and
the references therein. For application, refer to [8, 9].

According to the recent trend of researches in this
topic, iterative methods with memory (also known as self-
accelerating schemes) are worth studying. The iterative
method with memory can improve the order of convergence

of a without memory method, without any additional func-
tional evaluations, and as a result it has a very high com-
putational efficiency index. There are two kinds of iterative
methods with memory, that is, Steffensen-type and Newton-
type methods. In this paper, we only consider the Steffensen-
type methods with memory.

To review the literature briefly, we remark that opti-
mal Steffensen-type families without memory for solving
nonlinear equations were introduced in [10] in a general
form; two-step self-accelerating Steffensen-typemethods and
their applications in the solution of nonlinear systems and
nonlinear differential equations were discussed in [11].

In 2012, Soleymani et al. in [12] proposed somemultipara-
metric multistep optimal iterative methods without memory
for nonlinear equations. For instance, they proposed

𝑦
𝑛
= 𝑥
𝑛
−

𝑓 (𝑥
𝑛
)

𝑓 [𝑘
𝑛
, 𝑥
𝑛
]

, 𝑘
𝑛
= 𝑥
𝑛
+ 𝛽𝑓 (𝑥

𝑛
) ,

𝛽 ∈ R − {0} , 𝑛 = 0, 1, 2, . . . ,

𝑧
𝑛
= 𝑦
𝑛
− (𝑓 (𝑦

𝑛
)) (𝑓 [𝑦

𝑛
, 𝑥
𝑛
] + 𝑓 [𝑘

𝑛
, 𝑥
𝑛
, 𝑦
𝑛
] (𝑦
𝑛
− 𝑥
𝑛
)
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+ 𝑎
3
(𝑦
𝑛
− 𝑥
𝑛
) (𝑦
𝑛
− 𝑘
𝑛
))
−1

,

𝑎
3
∈ R,

𝑥
𝑛+1
= 𝑧
𝑛
−

𝑓 (𝑧
𝑛
)

𝜓
𝑛

, 𝛾 ∈ R,

(2)

where for simplicity 𝜓
𝑛
= 𝑓[𝑥

𝑛
, 𝑧
𝑛
] + (𝑓[𝑘

𝑛
, 𝑥
𝑛
, 𝑦
𝑛
] −

𝑓[𝑘
𝑛
, 𝑥
𝑛
, 𝑧
𝑛
]−𝑓[𝑦

𝑛
, 𝑥
𝑛
, 𝑧
𝑛
])(𝑥
𝑛
−𝑧
𝑛
)+𝛾(𝑧

𝑛
−𝑥
𝑛
)(𝑧
𝑛
−𝑘
𝑛
)(𝑧
𝑛
−

𝑦
𝑛
) is used throughout. Equation (2) reads the following error

equation:

𝑒
𝑛+1
= (((1 + 𝛽𝑓



(𝛼))

4

𝑐
2

2
(𝑎
3
+ 𝑓


(𝛼) (𝑐
2

2
− 𝑐
3
))

× (−𝛾 + 𝑎
3
𝑐
2
+ 𝑓


(𝛼) (𝑐
3

2
− 𝑐
2
𝑐
3
+ 𝑐
4
)) )

×(𝑓


(𝛼)
2

)

−1

) 𝑒
8

𝑛
+ 𝑂 (𝑒

9

𝑛
) .

(3)

They also proposed the following scheme:

𝑦
𝑛
= 𝑥
𝑛
−

𝑓 (𝑥
𝑛
)

𝑓 [𝑘
𝑛
, 𝑥
𝑛
]

, 𝑘
𝑛
= 𝑥
𝑛
− 𝛽𝑓 (𝑥

𝑛
) ,

𝛽 ∈ R − {0} , 𝑛 = 0, 1, 2, . . . ,

𝑧
𝑛
= 𝑦
𝑛
− (𝑓 (𝑦

𝑛
)) (𝑓 [𝑦

𝑛
, 𝑥
𝑛
] + 𝑓 [𝑘

𝑛
, 𝑥
𝑛
, 𝑦
𝑛
] (𝑦
𝑛
− 𝑥
𝑛
)

+ 𝑎
3
(𝑦
𝑛
− 𝑥
𝑛
)(𝑦
𝑛
− 𝑘
𝑛
))
−1

, 𝑎
3
∈ R,

𝑥
𝑛+1
= 𝑧
𝑛
−

𝑓 (𝑧
𝑛
)

𝜓
𝑛

, 𝛾 ∈ R,

(4)

with the error equation

𝑒
𝑛+1
= (((−1 + 𝛽𝑓



(𝛼))

4

𝑐
2

2
(𝑎
3
+ 𝑓


(𝛼) (𝑐
2

2
− 𝑐
3
))

× (−𝛾 + 𝑎
3
𝑐
2
+ 𝑓


(𝛼) (𝑐
3

2
− 𝑐
2
𝑐
3
+ 𝑐
4
)) )

×(𝑓


(𝛼)
2

)

−1

) 𝑒
8

𝑛
+ 𝑂 (𝑒

9

𝑛
) ,

(5)

and also

𝑦
𝑛
= 𝑥
𝑛
−

𝑓 (𝑥
𝑛
)

𝑓 [𝑘
𝑛
, 𝑥
𝑛
]

, 𝑘
𝑛
= 𝑥
𝑛
+ 𝛽𝑓 (𝑥

𝑛
) ,

𝛽 ∈ R − {0} , 𝑛 = 0, 1, 2, . . . ,

𝑧
𝑛
= 𝑦
𝑛
−

𝑓 (𝑦
𝑛
)

𝑓 [𝑥
𝑛
, 𝑘
𝑛
]

× (

1

1 − (𝑓 (𝑦
𝑛
) /𝑓 (𝑥

𝑛
)) − (𝑓 (𝑦

𝑛
) /𝑓 (𝑘

𝑛
))

) ,

𝑥
𝑛+1
= 𝑧
𝑛
−

𝑓 (𝑧
𝑛
)

𝜓
𝑛

, 𝛾 ∈ R,

(6)

where

𝑒
𝑛+1
= (((1 + 𝛽𝑓



(𝛼))

4

𝑐
2

2
(𝑐
2

2
− 𝑐
3
)

× (−𝛾 + 𝑓


(𝛼) (𝑐
3

2
− 𝑐
2
𝑐
3
+ 𝑐
4
)) )

×(𝑓


(𝛼))

−1

) 𝑒
8

𝑛
+ 𝑂 (𝑒

9

𝑛
) .

(7)

Error relations (3), (5), and (7) play key roles in our study
of convergence acceleration in the subsequent sections.

The purpose of this paper is to extend the results of [12]
by providing with memory variants of the above three-step
schemes. We aim at contributing two types of memorization,
that is, variants using one accelerator and variants using two
accelerators. For obtaining a background on such accelera-
tions, one may refer to [13].

The remaining sections of this paper are organized as
follows. Section 2 is devoted to the derivation of new root
solvers with memory using one accelerator. Section 3 derives
some new methods without and with memory possessing
very high computational efficiency index. Computational
efficiency index is also discussed to reveal the applicability
and efficacy of the proposed approaches. The performance is
tested through numerical examples in Section 4. Moreover,
theoretical results concerning order of convergence and
computational efficiency are confirmed in the examples. It
is shown that the presented methods are more efficient than
their existing counterparts. Finally, concluding remarks are
given in Section 5.

2. Development of Some Monoaccelerator
Methods with Memory

Our motivation for constructing methods with memory is
directly connected to the basic concept of numerical analysis
that any numerical algorithm should give as good as possible
output results with minimal computational cost. In other
words, it is necessary to search for algorithms of great
computational efficiency.

Subsequently, we propose the following monoaccelerator
methods at which the parameter 𝛽 is replaced by 𝛽

𝑛
(𝑛 ≥ 1)

to accelerate the speed of convergence in what follows:

𝑦
𝑛
= 𝑥
𝑛
−

𝑓 (𝑥
𝑛
)

𝑓 [𝑘
𝑛
, 𝑥
𝑛
]

, 𝑘
𝑛
= 𝑥
𝑛
+ 𝛽
𝑛
𝑓 (𝑥
𝑛
) ,

𝛽
𝑛
= −

1

𝑁


4
(𝑥
𝑛
)

, 𝑛 = 0, 1, 2, . . . ,

𝑧
𝑛
= 𝑦
𝑛
− (𝑓 (𝑦

𝑛
)) (𝑓 [𝑦

𝑛
, 𝑥
𝑛
] + 𝑓 [𝑘

𝑛
, 𝑥
𝑛
, 𝑦
𝑛
] (𝑦
𝑛
− 𝑥
𝑛
)

+ 𝑎
3
(𝑦
𝑛
− 𝑥
𝑛
)(𝑦
𝑛
− 𝑘
𝑛
))
−1

,

𝑥
𝑛+1
= 𝑧
𝑛
−

𝑓 (𝑧
𝑛
)

𝜓
𝑛

,

(8)
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or the following variant:

𝑦
𝑛
= 𝑥
𝑛
−

𝑓 (𝑥
𝑛
)

𝑓 [𝑘
𝑛
, 𝑥
𝑛
]

, 𝑘
𝑛
= 𝑥
𝑛
− 𝛽
𝑛
𝑓 (𝑥
𝑛
) ,

𝛽
𝑛
=

1

𝑁


4
(𝑥
𝑛
)

, 𝑛 = 0, 1, 2, . . . ,

𝑧
𝑛
= 𝑦
𝑛
− (𝑓 (𝑦

𝑛
)) (𝑓 [𝑦

𝑛
, 𝑥
𝑛
] + 𝑓 [𝑘

𝑛
, 𝑥
𝑛
, 𝑦
𝑛
] (𝑦
𝑛
− 𝑥
𝑛
)

+ 𝑎
3
(𝑦
𝑛
− 𝑥
𝑛
)(𝑦
𝑛
− 𝑘
𝑛
))
−1

,

𝑥
𝑛+1
= 𝑧
𝑛
−

𝑓 (𝑧
𝑛
)

𝜓
𝑛

,

(9)

and also

𝑦
𝑛
= 𝑥
𝑛
−

𝑓 (𝑥
𝑛
)

𝑓 [𝑘
𝑛
, 𝑥
𝑛
]

, 𝑘
𝑛
= 𝑥
𝑛
+ 𝛽
𝑛
𝑓 (𝑥
𝑛
) ,

𝛽
𝑛
= −

1

𝑁


4
(𝑥
𝑛
)

, 𝑛 = 0, 1, 2, . . . ,

𝑧
𝑛
= 𝑦
𝑛
−

𝑓 (𝑦
𝑛
)

𝑓 [𝑥
𝑛
, 𝑘
𝑛
]

× (

1

1 − (𝑓 (𝑦
𝑛
) /𝑓 (𝑥

𝑛
)) − (𝑓 (𝑦

𝑛
) /𝑓 (𝑘

𝑛
))

) ,

𝑥
𝑛+1
= 𝑧
𝑛
−

𝑓 (𝑧
𝑛
)

𝜓
𝑛

.

(10)

Note that, throughout thiswork,𝑁
𝑙
(𝑡) stands forNewton’s

interpolating polynomial set through 𝑙 + 1 available approxi-
mations (nodes) from the current and previous iteration(s).

In fact, the main idea in constructing methods with
memory consists of the calculation of parameters 𝛽 = 𝛽

𝑛

as the iteration proceeds by the formulas 𝛽
𝑛
= −1/

̃
𝑓(𝛼) or

the similar ones, where ̃𝑓(𝛼) is an approximation to 𝑓(𝛼).
In essence, in this way we minimize the factors involved in
the final error equation of families without memory. This
automatically affects the speed of convergence by scaling the
method and is known as with memorization.

It is also assumed that initial estimates 𝛽
0
(or for the

similar ones in methods with memory) should be chosen
before starting the iterative process.

Now let us remember an important lemma from Traub
[4] in what follows.

Lemma 1. If 𝛽
𝑛
= −1/𝑁



4
(𝑥
𝑛
), 𝑛 = 1, 2, . . ., then the estimate

1 + 𝛽
𝑛
𝑓


(𝛼) ∼ 𝐷𝑒
𝑛−1,𝑧

𝑒
𝑛−1,𝑦

𝑒
𝑛−1,𝑘

𝑒
𝑛−1

(11)

holds, where𝐷 is an asymptotic constant.

Theorem 2 determines 𝑅-order of the three-step iterative
methods with memory (8), (9), and (10). Note that 𝑁

𝑙
(𝑡) is

chosen in this paper so as to obtain as high as possible of
convergence order. Obviously, if fewer nodes are used for the
interpolating polynomials, slower acceleration is achieved.

Theorem 2. If an initial estimation 𝑥
0
is close enough to a

simple root 𝛼 of 𝑓(𝑥) = 0, 𝑓 being a sufficiently differentiable
function, then the 𝑅-order of convergence of the three-step
methods with memory (8), (9), and (10) is at least 12.

Proof. Let {𝑥
𝑛
} be a sequence of approximations generated by

an iterative method (IM). If this sequence converges to a root
𝛼 of𝑓(𝑥) = 0with the𝑅-order𝑂

𝑅
((IM), 𝛼) ≥ 𝑅, we will write

𝑒
𝑛+1
∼ Ψ
𝑛,𝑅
𝑒
𝑅

𝑛
, 𝑒

𝑛
= 𝑥
𝑛
− 𝛼, (12)

whereΨ
𝑛,𝑅

tends to the asymptotic error constantΨ
𝑅
of (IM),

when 𝑛 → ∞. Hence

𝑒
𝑛+1
∼ Ψ
𝑛,𝑅
𝑒
𝑅

𝑛
= Ψ
𝑛,𝑅
(Ψ
𝑛−1,𝑅

𝑒
𝑅

𝑛−1
)

𝑅

= Ψ
𝑛,𝑅
Ψ
𝑅

𝑛−1,𝑅
𝑒
𝑅
2

𝑛−1
. (13)

We assume that the 𝑅-order of the iterative sequences {𝑘
𝑛
},

{𝑦
𝑛
}, and {𝑧

𝑛
} is at least 𝑝, 𝑞, and 𝑠, respectively; that is,

𝑒
𝑛,𝑘
∼ Ψ
𝑛,𝑝
𝑒
𝑝

𝑛
= Ψ
𝑛,𝑝
(Ψ
𝑛−1,𝑅

𝑒
𝑅

𝑛−1
)

𝑝

= Ψ
𝑛,𝑝
Ψ
𝑝

𝑛−1,𝑅
𝑒
𝑅𝑝

𝑛−1
,

𝑒
𝑛,𝑦
∼ Ψ
𝑛,𝑞
𝑒
𝑞

𝑛
= Ψ
𝑛,𝑞
(Ψ
𝑛−1,𝑅

𝑒
𝑅

𝑛−1
)

𝑞

= Ψ
𝑛,𝑞
Ψ
𝑞

𝑛−1,𝑅
𝑒
𝑅𝑞

𝑛−1
,

𝑒
𝑛,𝑧
∼ Ψ
𝑛,𝑠
𝑒
𝑠

𝑛
= Ψ
𝑛,𝑠
(Ψ
𝑛−1,𝑅

𝑒
𝑅

𝑛−1
)

𝑠

= Ψ
𝑛,𝑠
Ψ
𝑠

𝑛−1,𝑅
𝑒
𝑅𝑠

𝑛−1
.

(14)

By (14) and Lemma 1, we obtain

1 + 𝛽
𝑛
𝑓


(𝛼) ∼ 𝐷Ψ
𝑛−1,𝑝

Ψ
𝑛−1,𝑞

Ψ
𝑛−1,𝑠
𝑒
𝑝+𝑞+𝑠+1

𝑛−1
. (15)

Substituting these with 𝑒
𝑛,𝑤

, 𝑒
𝑛,𝑦
, 𝑒
𝑛,𝑧
, and 𝑒

𝑛+1
, we have

𝑒
𝑛,𝑘
∼ (1 + 𝛽

𝑛
𝑓


(𝛼)) 𝑒
𝑛

∼ 𝐷Ψ
𝑛−1,𝑝

Ψ
𝑛−1,𝑞

Ψ
𝑛−1,𝑠
Ψ
𝑛−1,𝑅

𝑒
(1+𝑝+𝑞+𝑠)+𝑅

𝑛−1
,

𝑒
𝑛,𝑦
∼ 𝑐
2
(1 + 𝛽

𝑛
𝑓


(𝛼)) 𝑒
2

𝑛

∼ 𝑐
2
𝐷Ψ
𝑛−1,𝑝

Ψ
𝑛−1,𝑞

Ψ
𝑛−1,𝑠
Ψ
2

𝑛−1,𝑅
𝑒
(1+𝑝+𝑞+𝑠)+2𝑅

𝑛−1
,

𝑒
𝑛,𝑧
∼ 𝑎
𝑛,4
(1 + 𝛽

𝑛
𝑓


(𝛼))

2

𝑒
4

𝑛

∼ 𝑎
𝑛,4
𝐷
2

Ψ
2

𝑛−1,𝑝
Ψ
2

𝑛−1,𝑞
Ψ
2

𝑛−1,𝑠
Ψ
4

𝑛−1,𝑅
𝑒
2(1+𝑝+𝑞+𝑠)+4𝑅

𝑛−1
,

𝑒
𝑛+1
∼ 𝑎
𝑛,8
(1 + 𝛽

𝑛
𝑓


(𝛼))

4

𝑒
8

𝑛

∼ 𝑎
𝑛,8
𝐷
4

Ψ
4

𝑛−1,𝑝
Ψ
4

𝑛−1,𝑞
Ψ
4

𝑛−1,𝑠
Ψ
8

𝑛−1,𝑅
𝑒
4(1+𝑝+𝑞+𝑠)+8𝑅

𝑛−1
.

(16)

This gives the following system of linear equations:

𝑅𝑝 − 𝑅 − (𝑝 + 𝑞 + 𝑠 + 1) = 0,

𝑅𝑞 − 2𝑅 − (𝑝 + 𝑞 + 𝑠 + 1) = 0,

𝑅𝑠 − 4𝑅 − 2 (𝑝 + 𝑞 + 𝑠 + 1) = 0,

𝑅
2

− 8𝑅 − 4 (𝑝 + 𝑞 + 𝑠 + 1) = 0.

(17)

This system has the solution 𝑝 = 2, 𝑞 = 3, 𝑠 = 6, and 𝑅 =
12, which specifies the 𝑅-order of convergence twelve for the
derivative-free schemes with memory (8) and (10). Similar
results are valid for (9). The proof is now complete.
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Significant acceleration of convergencewas attainedwith-
out any additional functional calculations, which provides
very high computational efficiency of the proposed methods.
We remark that another advantage is a convenient fact that
the proposed methods do not use derivatives.

Following the definition of efficiency index given by 𝜌1/𝜃,
whereas 𝜌 and 𝜃 stand for the rate of convergence and
the number of functional evaluations per cycle, then the
computational efficiency index of the proposed variants with
memory reaches 121/4 ≈ 1.861 which is higher than 1.682 of
the families (2), (4), and (6).

3. Biaccelerator Methods with Memory

An accelerating approach, similar to that used in the previous
section, will be applied for constructing three-step methods
with memory. Calculation of two parameters becomes more
complex since more information are needed per iteration.

3.1. The Development of Some Families without Memory. We
first apply a free parameter in the denominator of the first
substep of (4) to yield the following more general family of
eighth-order methods without memory:

𝑦
𝑛
= 𝑥
𝑛
−

𝑓 (𝑥
𝑛
)

𝑓 [𝑘
𝑛
, 𝑥
𝑛
] + 𝑝𝑓 (𝑘

𝑛
)

, 𝑘
𝑛
= 𝑥
𝑛
+ 𝛽𝑓 (𝑥

𝑛
) ,

𝛽 ∈ R \ {0} , 𝑝 ∈ R, 𝑛 = 0, 1, 2, . . . ,

𝑧
𝑛
= 𝑦
𝑛
− (𝑓 (𝑦

𝑛
)) (𝑓 [𝑦

𝑛
, 𝑥
𝑛
] + 𝑓 [𝑘

𝑛
, 𝑥
𝑛
, 𝑦
𝑛
] (𝑦
𝑛
− 𝑥
𝑛
)

+ 𝑎
3
(𝑦
𝑛
− 𝑥
𝑛
)(𝑦
𝑛
− 𝑘
𝑛
))
−1

,

𝑥
𝑛+1
= 𝑧
𝑛
−

𝑓 (𝑧
𝑛
)

𝜓
𝑛

.

(18)

Theorem 3. Assume that function 𝑓 : 𝐷 ⊆ R → R has
a single root 𝛼 ∈ 𝐷, where 𝐷 is an open interval. Assume
furthermore that𝑓(𝑥) is a sufficiently differentiable function in
the neighborhood of𝛼, that is,𝐷.Then, the order of convergence
for the iterative family without memory defined by (18) is eight.

Proof. The proof of this theorem is similar to the proofs in
[10]. Hence it is omitted and we only give the following error
equation for (18):

𝑒
𝑛+1
= (1 + 𝛽𝑓



(𝛼))

4

(𝑝 + 𝑐
2
)
2

𝐴
1
𝑒
8

𝑛
+ 𝑂 (𝑒

9

𝑛
) , (19)

where 𝐴
1
= ((𝑎
3
+ 𝑓


(𝛼)𝑐
2
(𝑝 + 𝑐

2
) − 𝑓


(𝛼)𝑐
3
)(−𝛾 + 𝑐

2
(𝑎
3
+

𝑓


(𝛼)𝑐
2
(𝑝 + 𝑐

2
) − 𝑓


(𝛼)𝑐
3
) + 𝑓


(𝛼)𝑐
4
))/𝑓


(𝛼)
2.

Similarly, we have the following new multiparametric
family of methods:

𝑦
𝑛
= 𝑥
𝑛
−

𝑓 (𝑥
𝑛
)

𝑓 [𝑘
𝑛
, 𝑥
𝑛
] + 𝑝𝑓 (𝑘

𝑛
)

, 𝑘
𝑛
= 𝑥
𝑛
− 𝛽𝑓 (𝑥

𝑛
) ,

𝛽 ∈ R \ {0} , 𝑝 ∈ R, 𝑛 = 0, 1, 2, . . . ,

𝑧
𝑛
= 𝑦
𝑛
− (𝑓 (𝑦

𝑛
)) (𝑓 [𝑦

𝑛
, 𝑥
𝑛
] + 𝑓 [𝑘

𝑛
, 𝑥
𝑛
, 𝑦
𝑛
] (𝑦
𝑛
− 𝑥
𝑛
)

+ 𝑎
3
(𝑦
𝑛
− 𝑥
𝑛
)(𝑦
𝑛
− 𝑘
𝑛
))
−1

, 𝑎
3
∈ R,

𝑥
𝑛+1
= 𝑧
𝑛
−

𝑓 (𝑧
𝑛
)

𝜓
𝑛

.

(20)

Similarly, we have the following theorem.

Theorem 4. Assume that function 𝑓 : 𝐷 ⊆ 𝑅 → 𝑅 has
a single root 𝛼 ∈ 𝐷, where 𝐷 is an open interval. Assume
furthermore that𝑓(𝑥) is a sufficiently differentiable function in
the neighborhood of𝛼, that is,𝐷.Then, the order of convergence
for the iterative family withoutmemory defined by (20) is eight.

Proof. The proof of this theorem is similar to the proofs in
[10]. Hence it is omitted and we only give the following error
equation for (20) by considering 𝑎

3
= 1:

𝑒
𝑛+1
= (−1 + 𝛽𝑓



(𝛼))

4

(𝑝 + 𝑐
2
)
2

𝐴
2
𝑒
8

𝑛
+ 𝑂 (𝑒

9

𝑛
) , (21)

where 𝐴
2
= ((1 + 𝑓



(𝛼)𝑐
2
(𝑝 + 𝑐

2
) − 𝑓



(𝛼)𝑐
3
)(−𝛾 + 𝑐

2
(1 +

𝑓


(𝛼)𝑐
2
(𝑝 + 𝑐

2
) − 𝑓


(𝛼)𝑐
3
) + 𝑓


(𝛼)𝑐
4
))/𝑓


(𝛼)
2.

In the next subsection, we extend these schemes to
methodswithmemory for solving scalar nonlinear equations.

3.2. The Development of Some Biaccelerator Methods with
Memory. Now using suitable Newton’s interpolatory polyno-
mials of appropriate degree passing through all the available
nodes, we can propose the following methods with memory
with two accelerators:

𝑘
𝑛
= 𝑥
𝑛
+ 𝛽
𝑛
𝑓 (𝑥
𝑛
) , 𝛽

𝑛
= −

1

𝑁


4
(𝑥
𝑛
)

, 𝑝
𝑛
= −

𝑁


5
(𝑘
𝑛
)

2𝑁


5
(𝑘
𝑛
)

,

𝑛 = 0, 1, 2, . . . ,

𝑦
𝑛
= 𝑥
𝑛
−

𝑓 (𝑥
𝑛
)

𝑓 [𝑘
𝑛
, 𝑥
𝑛
] + 𝑝
𝑛
𝑓 (𝑘
𝑛
)

,

𝑧
𝑛
= 𝑦
𝑛
− (𝑓 (𝑦

𝑛
)) (𝑓 [𝑦

𝑛
, 𝑥
𝑛
] + 𝑓 [𝑘

𝑛
, 𝑥
𝑛
, 𝑦
𝑛
] (𝑦
𝑛
− 𝑥
𝑛
)

+ 𝑎
3
(𝑦
𝑛
− 𝑥
𝑛
)(𝑦
𝑛
− 𝑘
𝑛
))
−1

,

𝑥
𝑛+1
= 𝑧
𝑛
−

𝑓 (𝑧
𝑛
)

𝜓
𝑛

,

(22)

𝑘
𝑛
= 𝑥
𝑛
− 𝛽
𝑛
𝑓 (𝑥
𝑛
) , 𝛽

𝑛
=

1

𝑁


4
(𝑥
𝑛
)

, 𝑝
𝑛
= −

𝑁


5
(𝑘
𝑛
)

2𝑁


5
(𝑘
𝑛
)

,

𝑛 = 0, 1, 2, . . . ,

𝑦
𝑛
= 𝑥
𝑛
−

𝑓 (𝑥
𝑛
)

𝑓 [𝑘
𝑛
, 𝑥
𝑛
] + 𝑝
𝑛
𝑓 (𝑘
𝑛
)

,
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𝑧
𝑛
= 𝑦
𝑛
− (𝑓 (𝑦

𝑛
)) (𝑓 [𝑦

𝑛
, 𝑥
𝑛
] + 𝑓 [𝑘

𝑛
, 𝑥
𝑛
, 𝑦
𝑛
] (𝑦
𝑛
− 𝑥
𝑛
)

+ 𝑎
3
(𝑦
𝑛
− 𝑥
𝑛
)(𝑦
𝑛
− 𝑘
𝑛
))
−1

,

𝑥
𝑛+1
= 𝑧
𝑛
−

𝑓 (𝑧
𝑛
)

𝜓
𝑛

.

(23)

Similarly, we have the following lemma.

Lemma 5. If 𝛽
𝑛
= −1/𝑁



4
(𝑥
𝑛
) and 𝑝

𝑛
= −𝑁



5
(𝑘
𝑛
)/(2𝑁



5
(𝑘
𝑛
)),

𝑛 = 1, 2, . . ., then the estimates

1 + 𝛽
𝑛
𝑓


(𝛼) ∼ 𝐷
1
𝑒
𝑛−1,𝑧

𝑒
𝑛−1,𝑦

𝑒
𝑛−1,𝑘

𝑒
𝑛−1
,

𝑐
2
+ 𝑝
𝑛
∼ 𝐷
2
𝑒
𝑛−1,𝑧

𝑒
𝑛−1,𝑦

𝑒
𝑛−1,𝑘

𝑒
𝑛−1

(24)

hold, where𝐷
1
and 𝐷

2
are some asymptotic constants.

Subsequently, the following theorem determines the con-
vergence orders of the three-step iterative with memory
methods (22).

Theorem 6. If an initial estimation 𝑥
0
is close enough to a

simple root 𝛼 of 𝑓(𝑥) = 0, 𝑓 being a sufficiently differentiable
function, then the 𝑅-order of convergence of the three-step
method with memory (22) is at least 14.

Proof. Let {𝑥
𝑛
} be a sequence of approximations generated by

an iterative method (IM). If this sequence converges to a root
𝛼 of𝑓(𝑥) = 0with the𝑅-order𝑂

𝑅
((IM), 𝛼) ≥ 𝑅, we will write

𝑒
𝑛+1
∼ Ψ
𝑛,𝑅
𝑒
𝑅

𝑛
, 𝑒

𝑛
= 𝑥
𝑛
− 𝛼, (25)

whereΨ
𝑛,𝑅

tends to the asymptotic error constantΨ
𝑅
of (IM),

when 𝑛 → ∞. Hence

𝑒
𝑛+1
∼ Ψ
𝑛,𝑅
𝑒
𝑅

𝑛
= Ψ
𝑛,𝑅
(Ψ
𝑛−1,𝑅

𝑒
𝑅

𝑛−1
)

𝑅

= Ψ
𝑛,𝑅
Ψ
𝑅

𝑛−1,𝑅
𝑒
𝑅
2

𝑛−1
. (26)

We assume that the 𝑅-order of the iterative sequences {𝑘
𝑛
},

{𝑦
𝑛
}, and {𝑧

𝑛
} is at least 𝑝, 𝑞, and 𝑠, respectively; that is,

𝑒
𝑛,𝑘
∼ Ψ
𝑛,𝑝
𝑒
𝑝

𝑛
= Ψ
𝑛,𝑝
(Ψ
𝑛−1,𝑅

𝑒
𝑅

𝑛−1
)

𝑝

= Ψ
𝑛,𝑝
Ψ
𝑝

𝑛−1,𝑅
𝑒
𝑅𝑝

𝑛−1
, (27)

𝑒
𝑛,𝑦
∼ Ψ
𝑛,𝑞
𝑒
𝑞

𝑛
= Ψ
𝑛,𝑞
(Ψ
𝑛−1,𝑅

𝑒
𝑅

𝑛−1
)

𝑞

= Ψ
𝑛,𝑞
Ψ
𝑞

𝑛−1,𝑅
𝑒
𝑅𝑞

𝑛−1
, (28)

𝑒
𝑛,𝑧
∼ Ψ
𝑛,𝑠
𝑒
𝑠

𝑛
= Ψ
𝑛,𝑠
(Ψ
𝑛−1,𝑅

𝑒
𝑅

𝑛−1
)

𝑠

= Ψ
𝑛,𝑠
Ψ
𝑠

𝑛−1,𝑅
𝑒
𝑅𝑠

𝑛−1
. (29)

By (27), (28), (29), and Lemma 5, we obtain

1 + 𝛽
𝑛
𝑓


(𝛼) ∼ 𝐷
1
Ψ
𝑛−1,𝑝

Ψ
𝑛−1,𝑞

Ψ
𝑛−1,𝑠
𝑒
𝑝+𝑞+𝑠+1

𝑛−1
,

𝑐
2
+ 𝑝
𝑛
∼ 𝐷
2
Ψ
𝑛−1,𝑝

Ψ
𝑛−1,𝑞

Ψ
𝑛−1,𝑠
𝑒
𝑝+𝑞+𝑠+1

𝑛−1
.

(30)

Substituting these into 𝑒
𝑛,𝑘
, 𝑒
𝑛,𝑦
, 𝑒
𝑛,𝑧
, and 𝑒

𝑛+1
, we obtain

𝑒
𝑛,𝑘
∼ (1 + 𝛽

𝑛
𝑓


(𝛼)) 𝑒
𝑛

∼ 𝐶
3
Ψ
𝑛−1,𝑝

Ψ
𝑛−1,𝑞

Ψ
𝑛−1,𝑠
Ψ
𝑛−1,𝑅

𝑒
(1+𝑝+𝑞+𝑠)+𝑅

𝑛−1
,

(31)

𝑒
𝑛,𝑦
∼ 𝑐
2
(1 + 𝛽

𝑛
𝑓


(𝛼)) (𝑐
2
+ 𝑝
𝑛
) 𝑒
2

𝑛

∼ 𝐶
4
Ψ
𝑛−1,𝑝

Ψ
𝑛−1,𝑞

Ψ
𝑛−1,𝑠
Ψ
2

𝑛−1,𝑅
𝑒
2(1+𝑝+𝑞+𝑠)+2𝑅

𝑛−1
,

(32)

𝑒
𝑛,𝑧
∼ 𝑎
𝑛,4
(1 + 𝛽

𝑛
𝑓


(𝛼))

2

(𝑐
2
+ 𝑝
𝑛
) 𝑒
4

𝑛

∼ 𝐶
5
Ψ
2

𝑛−1,𝑝
Ψ
2

𝑛−1,𝑞
Ψ
2

𝑛−1,𝑠
Ψ
4

𝑛−1,𝑅
𝑒
3(1+𝑝+𝑞+𝑠)+4𝑅

𝑛−1
,

(33)

𝑒
𝑛+1
∼ 𝑎
𝑛,8
(1 + 𝛽

𝑛
𝑓


(𝛼))

4

(𝑐
2
+ 𝑝
𝑛
)
2

𝑒
8

𝑛

∼ 𝐶
6
Ψ
4

𝑛−1,𝑝
Ψ
4

𝑛−1,𝑞
Ψ
4

𝑛−1,𝑠
Ψ
8

𝑛−1,𝑅
𝑒
6(1+𝑝+𝑞+𝑠)+8𝑅

𝑛−1
,

(34)

where 𝐶
𝑖
, 𝑖 = 3, 4, 5, 6, are some asymptotic constants.

Equating the powers of error exponents of 𝑒
𝑘−1

in pairs of
relations (27)–(31), (28)–(32), (29)–(33), and (26)–(34) gives

𝑅𝑝 − 𝑅 − (𝑝 + 𝑞 + 𝑠 + 1) = 0,

𝑅𝑞 − 2𝑅 − 2 (𝑝 + 𝑞 + 𝑠 + 1) = 0,

𝑅𝑠 − 4𝑅 − 3 (𝑝 + 𝑞 + 𝑠 + 1) = 0,

𝑅
2

− 8𝑅 − 6 (𝑝 + 𝑞 + 𝑠 + 1) = 0.

(35)

This system has the solution 𝑝 = 2, 𝑞 = 4, 𝑠 = 7, and 𝑅 = 14,
which specifies the 𝑅-orders of convergence fourteen of the
derivative-free schemes with memory (22).

The computational efficiency index of the proposed vari-
ants with memory (22) is 141/4 ≈ 1.934, which is higher than
1.861 of the families (8), (9), and (10). Note that biparametric
acceleration technique by self-correcting parameters in three-
step iterative methods was not applied in the literature at
present and this clearly reveals the originality of this study.

4. Numerical Reports

The presentation of numerical results in this section serves
to point to very high computational efficiency and also to
demonstrate fast convergence of the proposed methods.

The errors |𝑥
𝑘
− 𝛼| denote approximations to the sought

zeros, and 𝑎(−𝑏) stands for 𝑎×10−𝑏. Moreover, 𝑟
𝑐
indicates the

computational order of convergence (COC) and is computed
by

𝑟
𝑐
=

log (

𝑓 (𝑥
𝑘
) /𝑓 (𝑥

𝑘−1
)




)

log (

𝑓 (𝑥
𝑘−1
) /𝑓 (𝑥

𝑘−2
)




)

. (36)

Note that the packageMathematica 9 withmultiprecision
arithmetic was used.

For comparison, in our numerical experiments we also
tested several three-step iterative methods in what follows.
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Table 1: 𝑓
1
(𝑥) = 𝑒

(𝑥
2
−4)

+ sin(𝑥 − 2) − 𝑥4 + 15, 𝑥
0
= 1.67, 𝛼 = 2, 𝛽

0
= 0.01.

Methods |𝑥
1
− 𝛼| |𝑥

2
− 𝛼| |𝑥

3
− 𝛼| 𝑟

𝑐

Method (8) 1.9962 (−6) 5.7840 (−68) 6.2205 (−808) 12.025
Method (9) 1.6456 (−6) 2.2536 (−68) 1.0563 (−812) 12.032
Method (10) 1.2320 (−5) 2.7753 (−58) 9.2624 (−692) 12.032
Kung-Traub’s method 5.8921 (−4) 2.0646 (−40) 6.4593 (−477) 11.974
Sharma et al.’s method 9.9223 (−4) 4.4897 (−38) 4.8572 (−448) 11.937
Lotfi and Tavakoli’s method 1.3617 (−4) 1.1746 (−50) 3.3485 (−599) 11.908
Lotfi and Tavakoli’s method 2.2254 (−4) 1.0413 (−45) 1.7458 (−540) 11.971
Zheng et al.’s method 2.3735 (−6) 3.9324 (−67) 5.3263 (−798) 12.025
Method (22) 4.3356 (−4) 2.7252 (−53) 1.5758 (−737) 13.907
Method (23) 8.6117 (−4) 3.8041 (−49) 1.6820 (−679) 13.898

Kung and Traub’s method [5] is

𝑦
𝑛
= 𝑥
𝑛
−

𝑓 (𝑥
𝑛
)

𝑓 [𝑥
𝑛
, 𝑤
𝑛
]

, 𝑛 = 0, 1, 2, . . . ,

𝑧
𝑛
= 𝑦
𝑛
−

𝑓 (𝑦
𝑛
) 𝑓 (𝑤

𝑛
)

(𝑓 (𝑤
𝑛
) − 𝑓 (𝑦

𝑛
)) 𝑓 [𝑥

𝑛
, 𝑦
𝑛
]

,

𝑥
𝑛+1
= 𝑧
𝑛
−

𝑓 (𝑦
𝑛
) 𝑓 (𝑤

𝑛
) (𝑦
𝑛
− 𝑥
𝑛
+ 𝑓 (𝑥

𝑛
) /𝑓 [𝑥

𝑛
, 𝑧
𝑛
])

(𝑓 (𝑦
𝑛
) − 𝑓 (𝑧

𝑛
)) (𝑓 (𝑤

𝑛
) − 𝑓 (𝑧

𝑛
))

+

𝑓 (𝑦
𝑛
)

𝑓 [𝑦
𝑛
, 𝑧
𝑛
]

.

(37)

Sharma et al.’s method [14] is

𝑦
𝑛
= 𝑥
𝑛
−

𝑓 (𝑥
𝑛
)

𝑓 [𝑥
𝑛
, 𝑤
𝑛
]

, 𝑛 = 0, 1, 2, . . . ,

𝑧
𝑛
= 𝑦
𝑛
−

1 + 𝑢
𝑛

1 − V
𝑛

𝑓 (𝑦
𝑛
)

𝑓 [𝑦
𝑛
, 𝑤
𝑛
]

,

𝑥
𝑛+1
= 𝑧
𝑛
− (𝑓 (𝑧

𝑛
)) (𝑓 [𝑧

𝑛
, 𝑦
𝑛
] + 𝑓 [𝑧

𝑛
, 𝑦
𝑛
, 𝑥
𝑛
] (𝑧
𝑛
− 𝑦
𝑛
)

+ 𝑓 [𝑧
𝑛
, 𝑦
𝑛
, 𝑥
𝑛
, 𝑤
𝑛
] (𝑧
𝑛
− 𝑦
𝑛
)

× (𝑧
𝑛
− 𝑥
𝑛
))
−1

,

(38)

where 𝑢
𝑛
= 𝑓(𝑦

𝑛
)/𝑓(𝑥

𝑛
) and V

𝑛
= 𝑓(𝑦

𝑛
)/𝑓(𝑤

𝑛
).

Lotfi and Tavakoli’s method [15] is

𝑦
𝑛
= 𝑥
𝑛
−

𝑓 (𝑥
𝑛
)

𝑓 [𝑥
𝑛
, 𝑤
𝑛
]

, 𝑛 = 0, 1, 2, . . . ,

𝑧
𝑛
= 𝑦
𝑛
− (1 + 𝑡

𝑛
)

𝑓 (𝑦
𝑛
)

𝑓 [𝑦
𝑛
, 𝑤
𝑛
]

,

𝑥
𝑛+1
= 𝑧
𝑛
− (1 + 𝑡

𝑛
+ 𝑠
𝑛
+ 2𝑡
𝑛
𝑠
𝑛
+ (−1 + 𝜙

𝑛
) 𝑡
3

𝑛
)

× (1 + 𝑠
2

𝑛
+ 𝜐
2

𝑛
)

𝑓 (𝑧
𝑛
)

𝑓 [𝑧
𝑛
, 𝑤
𝑛
]

,

(39)

where 𝑡
𝑛
= 𝑓(𝑦

𝑛
)/𝑓(𝑥

𝑛
), 𝑠
𝑛
= 𝑓(𝑧

𝑛
)/𝑓(𝑦

𝑛
), 𝜐
𝑛
= 𝑓(𝑧

𝑛
) /

𝑓(𝑥
𝑛
), and 𝜙

𝑛
= 1/(1 + 𝛽

𝑛
𝑓[𝑥
𝑛
, 𝑤
𝑛
]).

Lotfi and Tavakoli’s method [15] is

𝑦
𝑛
= 𝑥
𝑛
−

𝑓 (𝑥
𝑛
)

𝑓 [𝑥
𝑛
, 𝑤
𝑛
]

, 𝑛 = 0, 1, 2, . . . ,

𝑧
𝑛
= 𝑦
𝑛
− (1 + 𝑡

𝑛
)

𝑓 (𝑦
𝑛
)

𝑓 [𝑦
𝑛
, 𝑤
𝑛
]

,

𝑥
𝑛+1
= 𝑧
𝑛
− (

(1/ (1 + 𝜙
𝑛
)) (1 + 𝑡

𝑛
+ 𝑠
𝑛
+ 2𝑡
𝑛
𝑠
𝑛
) + 𝑡
2

𝑛

1/ (1 + 𝜙
𝑛
) + 𝑡
2

𝑛

)

× (1 +

𝑠
2

𝑛

𝜐
2

𝑛
+ 1

)

𝑓 (𝑧
𝑛
)

𝑓 [𝑧
𝑛
, 𝑤
𝑛
]

.

(40)

Zheng et al.’s method [16] is

𝑦
𝑛
= 𝑥
𝑛
−

𝑓 (𝑥
𝑛
)

𝑓 [𝑥
𝑛
, 𝑤
𝑛
]

, 𝑛 = 0, 1, 2, . . . ,

𝑧
𝑛
= 𝑦
𝑛
−

𝑓 (𝑦
𝑛
)

𝑓 [𝑦
𝑛
, 𝑥
𝑛
] + 𝑓 [𝑦

𝑛
, 𝑥
𝑛
, 𝑤
𝑛
] (𝑦
𝑛
− 𝑥
𝑛
)

,

𝑥
𝑛+1
= 𝑧
𝑛
− (𝑓 (𝑧

𝑛
)) (𝑓 [𝑧

𝑛
, 𝑦
𝑛
] + 𝑓 [𝑧

𝑛
, 𝑦
𝑛
, 𝑥
𝑛
] (𝑧
𝑛
− 𝑦
𝑛
)

+ 𝑓 [𝑧
𝑛
, 𝑦
𝑛
, 𝑥
𝑛
, 𝑤
𝑛
] (𝑧
𝑛
− 𝑦
𝑛
)

× (𝑧
𝑛
− 𝑥
𝑛
))
−1

.

(41)

In Tables 1, 2, and 3, different test functions are tested
as their captions indicated. Results of the second and third
iterations are given only for demonstration of convergence
speed of the tested methods and in most cases they are not
required for practical problems at present. From the tables,
we observe extraordinary accuracy of the produced approxi-
mations, obtained using only few function evaluations. Such
an accuracy is not needed in practice but has a theoretical
importance. We emphasize that our primary aim was to
construct very efficient three-step methods with memory.
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Table 2: 𝑓
2
(𝑥) = 𝑒

−𝑥
2

(1 + 𝑥
3

+ 𝑥
6

)(𝑥 − 2), 𝑥
0
= 1.8, 𝛼 = 2, 𝛽

0
= 0.01.

Methods |𝑥
1
− 𝛼| |𝑥

2
− 𝛼| |𝑥

3
− 𝛼| 𝑟

𝑐

Method (8) 3.0652 (−6) 4.8857 (−66) 4.0327 (−783) 11.992
Method (9) 1.6119 (−6) 5.2218 (−70) 4.1933 (−831) 11.988
Method (10) 2.8081 (−6) 1.7460 (−66) 1.7496 (−788) 11.992
Kung-Traub’s method 5.9862 (−6) 1.8189 (−61) 1.7332 (−727) 11.997
Sharma et al.’s method 1.6364 (−6) 1.1449 (−69) 1.4239 (−826) 11.985
Lotfi and Tavakoli’s method 7.8686 (−6) 3.1496 (−60) 7.7390 (−713) 11.997
Lotfi and Tavakoli’s method 1.0173 (−5) 1.2131 (−58) 1.3423 (−693) 11.998
Zheng et al.’s method 7.8832 (−7) 5.4271 (−76) 3.3691 (−903) 11.960
Method (22) 1.1411 (−4) 5.7181 (−57) 1.0777 (−788) 13.991
Method (23) 1.0788 (−4) 2.9171 (−57) 8.7176 (−793) 13.992

Table 3: 𝑓
3
(𝑥) = 𝑒

𝑥
2
+𝑥 cos𝑥−1 sin𝑥 + 𝑥 log(1 + 𝑥), 𝑥

0
= 0.6, 𝛼 = 0, 𝛽

0
= 0.01.

Methods |𝑥
1
− 𝛼| |𝑥

2
− 𝛼| |𝑥

3
− 𝛼| 𝑟

𝑐

Method (8) 1.8675 (−2) 2.3638 (−15) 8.0916 (−170) 11.9949
Method (9) 1.2712 (−2) 2.1749 (−16) 2.0758 (−193) 11.971
Method (10) 1.8079 (−2) 1.6344 (−15) 9.6591 (−172) 11.951
Kung-Traub’s method 3.2701 (−2) 6.3936 (−12) 8.8536 (−128) 11.872
Sharma et al.’s method 3.0811 (−2) 1.5485 (−12) 1.4570 (−135) 11.891
Lotfi and Tavakoli’s method 3.8496 (−2) 2.6256 (−11) 1.2282 (−120) 11.852
Lotfi and Tavakoli’s method 4.2090 (−2) 9.7577 (−11) 1.4135 (−113) 11.823
Zheng et al.’s method 1.8803 (−2) 1.8332 (−15) 2.8135 (−171) 11.949
Method (22) 2.7837 (−1) 2.2953 (−6) 5.4520 (−83) 14.195
Method (23) 3.0041 (−1) 4.6086 (−6) 2.2147 (−79) 14.246

5. Summary

In this paper, we have shown that the three-step families
in [12] can be additionally accelerated without increasing
computational cost, which directly improves computational
efficiency of the modified methods. The main idea in con-
structing higher order methods consists of the introduction
of another parameter 𝑝 and the improvement of accelerating
technique for the parameter 𝛽.

It is evident from Tables 1 to 3 that approximations to
the roots possess great accuracy when the proposed methods
with memory are applied.

Further researches must be done to extend the resented
methods for systemof nonlinear equations or to proposewith
memory version using three or four accelerators.These could
be done in the next studies.
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