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The conjugacy of a discrete semidynamical system and its partially decoupled discrete semidynamical system in a Banach space is
proved in a neighbourhood of the nontrivial invariant manifold.

1. Introduction

The conjugacy for noninvertible mappings in a Banach space
was considered by Aulbach and Garay [1-3]. For noninvert-
ible mappings in a complete metric space it was extended
and generalized by Reinfelds [4-9]. In the present paper we
consider the case when the linear part of the noninvertible
mapping depends on the behaviour of variables in a neigh-
bourhood of the nontrivial invariant manifold.

2. Invariant Manifold

Let E and F be Banach spaces, B(a) = {r € F | |r] < a},
and a > 0. Consider the following mapping S : E x B(a) —
E x B(a) defined by

x =g (x)+¥(xr)=X(xr),

€]
r=Ax)r+®(xr)=R(x,r1),

where the derivative of the diffeomorphism g : E — E
is uniformly continuous || Dg(x) — Dg(x')ll < w(x - x')),
mappings A, ¥, and @ are Lipschitzian,

"A (x) —A(x')“ < y|x—x",

|‘I’(x,r) —‘I’(x',r')| < s('x—x'| + |r - r"),
R 0 S St

sup |[A (x)[| +2e < 1,
X
sup |® (x,0)] <a (1 —sup |A (x)| - e) .
At the beginning we will modify the previous results on
the existence of invariant manifolds of Neimark and Sacker
[10, 11] for (1).

Lemmal. If

sup, [P (x,0)| >

<sup [|A (x)| + 4e + yl sup. JA GOl — 2
X - x -

3)
X sup "Dg(x)_l" <1

then there exists a continuous mapping u : E — F satisfying
the following properties:

(1) u(g(x) + ¥(x, u(x))) = A(x)u(x) + O(x, u(x));
(ii) u(x) = u(x")| < |x - x|;
(iii) lull < sup, |D(x,0)/(1 - sup, JA(x)| - &).
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Proof. The set of continuous mappingsu : E — F,
K = {u € C(E,F) | stip lu (x)] < +oo} (4)
equipped with the norm
lull = sup fu (x)] (5)
is a Banach space. The set
K= {u eF | |u| < a,'u(x) —u(x’)| < 'x—x"} (6)

is a closed subset of the Banach space %
Let us consider the mapping u +— Zu, u € #, defined
by the equality

PLu(x)) = A u(x)+® (x,u ), @)
where
x;=g(x)+V¥(xu(x)). (8)
Ifu € %, then
17l < (sup 1A (] + ¢ ) Il + sup @ (.0)[ <@ (9)
We have
| Zu (x) - 2 (+1)|
< (sup 1A @I +¢ ) Ju- |
+ (sup 1A Gl + 22+ ) = .
e = |
< sup [Dg(x)"||g () - g (')
= sup [DgCe) ™| |1 - ) =¥ (e u () + ¥ (4 ()]

< s1)16p ”Dg(x)_l" (lx1 - x;| + 2¢ 'x - x'| +e "u - u'") .

(10)
It follows
'x - x'| § sup,, ||Dg(x)‘1“ |x . |
T 1-2¢ sup,, "Dg(x)_l" ! !
(11)
esup, ”Dg(x)f1 “

!
1 - 2esup, "Dg(x)_l" "u o " '
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Then

|$u (x,) -2 (x;)|

< <SuP A ()] + ¢

 (sup, [ GOll+ 28+ llul) sup, [ Dg()”'| )
1 - 2esup, ||Dg(x)‘1||

!
=]

(sup, [A (x)|| + 2& + y lull) sup, ”Dg(x)*l“
1 - 2esup, "Dg(x)_l"

X |x1 - x;| )

(12)

Let us note that
(sup, |A ()| + 2& + y [|lull) sup, “Dg(x)_1 “ <l @)

1 —2esup, "Dg(x)_l"
We obtain
|3u (x,) -2 (x;)' < <sup A (x)| + 28> “u - u'“

* (14)

!
e

We get that & € #, is contraction and consequently we
have the invariant manifold r = u(x). O

3. Conjugacy of Noninvertible Mappings

Definition 2. Two mappings S,T : X — X are conjugate, if
there exists a homeomorphism H : X — X such that

SoH (x)=HoT (x). (15)

Definition 3. Two discrete semidynamical systems S",T" :
X — X (n € N) are conjugate, if there exists a homeomor-
phism H : X — X such that

S"eH(x)=HoT"(x). (16)

It is easily verified that two discrete semidynamical
systems S” and T", generated by mappings S and T, are
conjugate if and only if the mappings S and T are conjugate.

Suppose that mapping (1) has an invariant manifold given
by Lipschitzian mapping u : E — F such that

sup [lu (x)]| <6,
i (17)
|u(x)—u(x')| < |x—x'|.

Our aim is to find a simpler mapping conjugated with (1).
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Theorem 4. Ifsupx(II(Dg(x))_III A + Sesup,ll(Dg
)M < 1, then there exists a continuous mapping
v : ExB(8) — E which is Lipschitzian with respect to the
second variable such that mappings (1) and

x; = X (x,u(x)), )
r=R(x+v(x,r),r)

are conjugated in a small neighbourhood of the invariant
manifold r = u(x).

We will seek the mapping establishing the conjugacy of
(1) and (18) in the form

H(x,r) = (x+v(x,1),r). 19)
We get the following functional equation:
X(x+v(xr),r)=X(xu(x))

+v(X (6 u(x),R(x+v(x,r),r))
(20)

or equivalently

v(x,r) = (Dg (x))f1 (Dg (x) v (x,1r) = X (x +v(x,1),7)
+ X (x,u(x))

+ (X (x,u(x)),R(x+v(x,7),1))).
(21)

The proof of the theorem consists of four lemmas.

Lemma 5. The functional equation (20) has a unique solution
in M,.

Proof. The set of continuous mappings v: E x B(§) — E,

M = {veC(EXB(S),E)IsSP% <+oo} (22)

becomes a Banach space if we use the norm |v| =
supx),(lv(x, )|/lr — u(x)|). The set

My ={ved | vl <1, |ver)-v(xr)| <|r-r|}
(23)

is a closed subset of the Banach space /.
Let us consider the mapping v — Zv, v € J#, defined by
the equality

ZLv(x,1)
= (Dg (x))"'v (X (x,u(x)), R (x + v (x,7),7))

+(Dg (x))_1 (Dg (x)v(x,1) — g (x+v(x,1)) + g (x)

-V (x+v(xr),r)+¥(xu(x)).
(24)

First we obtain
ILv (x,7)]
< |(Dg ()| IR (x + v (x, ), 1) = e (X (o, 4 ()]
+|(Dg )| IDg (x) v (x,7) = g (x + v (x,7)) + g ()]
+|(Dg ()| 1 G+ v (2, ) 1) = (6w ()]
< |(Dg o)

X (JA @) +ylr] + 2 + 0 (|r —u(x)]) + 2¢)

X |r—u(x)|.
(25)

Here we used Hadamard lemma:

g(x) - g ()= E Dy (x+6(x' - x))do (x' - x). (26)
Next we get
|Lv (x,7) - Lv (x,7")|
< |(Dg @) | [RGx+ v (or)or) = R (x4 v (') 1)
+|(Dg ) [Dg () (v (. 1) = v (3, +"))
g+ v +g(x+v(nr))
+](Dg ()|
< et vinn,n =¥ (x v (xr) )|
< (g )| (14 Gl + 2 max {r — u o), ||} + 2¢)
xJr =7
+|(pg )|

x (@ (max {|r - u (x)], '1" - u(x)'}) +2¢) |r - r" _
(27)

In addition,
|Lv (e, 7) = LV (x,7)|
< [(Dg )| |R(x+v (1), 1) = R(x +V (x,7) 7))
+]|(Dg () | (X (x5, (x)), R (x + v (x,7) 7))
=V (X (5,u(x),R(x + v (x,1),7))
+]|(Dg ()| |Pg ) (v (7 = ' (7))

- g(x+v(x,r))+g(x+v' (x,r))|



+|(Dg )7
X ¥ (x+ v (x,7),7) =¥ (x+ 9 (x,7),7)]

< |(Dg )| (1A ol + 2y Il + 3¢) v =¥/ | Ir = u ()]
+(Pg ) (@ Ir —u ol +e)

X "v— v'" |r —u(x)|.
(28)

We choose 8 > 0, where max{||, |r'|} = § < a, such that

sup (| (g [ 14 1)

(29)
+ (5 + w (88) + 4y8) sup "(Dg(x))_l” <1

Then | ZV| < 1, |Zv(x, 1)~ Lv(x,r")| < |r—7'|, the mapping
Z is a contraction, and consequently the functional equation
(20) has unique solution in .. O

Next we will prove that the mapping H is a homeomor-
phism in the small neighbourhood of the invariant manifold
r = u(x). Let us consider the functional equation

X(x+v, (x6r),u(x+v,(x,7)))

(30)
=X (1) +v; (X (x,7),R(x,71))
or equivalently
vy (x,7)
= (Dg(x))™" (Dg (x) v, (x,7)
(31

- X (x+v, (6r),u(x+v,(x,71)))

+ X (x,1r)+v, (X (x,7),R(x,7))).

Lemma 6. The functional equation (30) has a unique solution
in M,.

Proof. The set
Moy ={v e d | v <1} (32)

is a closed subset of the Banach space /.
Let us consider the mapping v, — Zv,, v, € M, defined
by the equality

L, (x,71)
= (Dg (x))'v; (X (x,1), R(x,7)) + (Dg (x)) "'

x (Dg (x) v, (x,7) — g (x + v, (x,7)) + g (x)

¥ (x+v (1), u(x+v (x,7))+¥(x,7).
(33)
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We have
|Lv, (x,7)]
< |(Dg ()™ IR (x,7) = (X (x, 7)) + || (Dg ()|
x|Dg (x) vy (1) = g (x + vy (x,7)) + g ()]
+ |(geen™!|
X W (x + vy (6, 7) 14 (x + v, (2,7))) = W (5, 7))
< [[(DgG) ™| (1A @)1l + 26 + @ (Ir = u (x)]) + 3¢)

X |r—u(x)|.
(34)

We obtain
|Lv, (x,7) = Lvy (1)
< |(Dg )7
X[y (X (o) R (7)) = ¥ (X (6,7), R (x,7)
+|(Dg ()7
x |Dg (x) (v (x,7) = v} (x,7))
—g(x+v, (en) + g (x+9, (6n)| + |(Dg ()]
x ¥ (xc + v, (7)1 (o + v, (x,7)))
¥ (x4 v (o) u (x4 ()|
< [(Dg )| A Gl + 26 + @ (r = u ()) + 2¢)
x ||v1 - v;|| Ir —u(x)|.

(35)

We get that £ is a contraction and consequently the func-
tional equation (30) has a unique solution in .Z,. O

Consider the mapping G defined by equality G(x,r) =
(x +vi(x,1),7).

Lemma 7. One has G- H = id.
Proof. Let us consider the functional equation
X (x+v, (1), u(x+v,(x,7)))
36)
= X (% u(x) + vy (X (x,u(x),R(x +v(x,7),7))
or equivalently

v, (x,7)
= (Dg()"'
X (Dg (x) vy (x,7) = X (x + v, (x,7),u(x + v, (x,7)))

+ X (0, u(x) +v, (X (x,u(x)),R(x +v(x,1),1))).
(37)
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It is easily verified that the functional equation (36) has the
trivial solution. Let us prove the uniqueness of the solution in
M 5, where

My ={v, € M| |v,| <3} (38)
is a closed subset of the Banach space .. We get
[v2 (1)

< [[(Dg ) Ivall IR G+ v (7)) = 0 (X (o ()]
x|(Dg )|
% |Dg (x) v, (x,7) = g (x + v, (x,7)) + g ()]
+] (g )7
X W (x + v, (%,7) 4 (5 + v, (x,7))) = ¥ (%, 1 ()]

< [(pg )"
X (IA GO +yIrl+ 26+ @ (3 |r —u(x)]) + 2¢)

X |vy|| Ir = u (x)].
(39)

It follows that v, (x, ) = 0. The mapping w,, where
wl(x,r):v(x,r)+v1(x+V(x,r),1’), (40)

also satisfies the functional equation (36). Using the change
of variables x — x + v(x, ) in (30) we get

X(x+w; (x,7),u(x+w, (x,7)))
=X(x+v(xr),r) (41)
+v X (x+v(x,7),r),R(x+v(x,1),1)).

Using (20), we obtain
X (x+w, (x,7),u(x+w (x,7)))

=X (u(x)+v(X(xu(x)),R(x+v(xr1),r))

+v (X (o ux) +v(X(xu(x),R(x+v(x,r),r)),
R(x+v(x,r),1))

=X (u(x)+w (X (ou(x),R(x+v(x,r),r)).
(42)

Let us note that

|w1 (x,r)| Slr—u)|+|r—ulx+v(xr)| <3|r—-u(x).

(43)

Therefore |lw, || < 3 and we have
v(x,r)+ vy (x+v(x,r),r) =0. (44)
We obtain that G o H = id. O

Lemma 8. One has H o G = id.

Proof. The set of continuous mappings v5 : ExB(8)xB(8) —
E,

N = {v3 € C(ExB(8) xB(9),E) |

(45)
|V3 (x) r, z)l
<00
xrz max (|r —u(x)|, |z —1|)
becomes a Banach space if we use the norm [vs|| =
sup, , . (Iv3(x, 7, 2)|/ max (|r —u(x)|, |z - r])). The set
Ny = {v3 eN || <L,
(46)
'v3 (x,7,2) = v3 (x, r,z')| < 'z - z'”
is a closed subset of the Banach space /.
Let us consider the functional equation
X (1) +v3 (X (x%,7),R(x,7),R(x +v5 (x,7,2),2))
(47)

=X (x+v;(x,1,2),2)
or equivalently

v3(x,71,2)
= (Dg(x))"
x (Dg (x) v (x,1,2) = g (x + v3 (x,1,2)) + g (x)
+V (1) = ¥ (x + v (x,7,2) ,2)

+v3 (X (x,7),R(x,7),R(x + v (x,1,2),2))).
(48)

Let us consider the mapping v; — Zvs, v5 € /| defined by
the equality

Ly (x,1,2)

= (Dg(x)"
x (Dg (x)v5 (x,7,2) — g (x + v5 (x,7,2)) + g (%)
~V¥(x+v;(x712),2)+¥(x7)

+v3 (X (x,7),R(x,7),R(x +v5(x,7,2),2))).
(49)

‘We obtain
|Lv3 (x, 7, z)|
< |(Dg ()™ max { IR (x, ) = u (X (x, 7)),

IR (x +v; (x,7,2),2) = R(x,7)|}
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+](Dg ()7 +|(Dg ()7
x|Dg (x) vs (x,7,2) = g (x + v3 (x,7,2)) + g ()| ¥ (x4 v5 (0,7,2),2) = ¥ (x4 V] (x,7,2), 2))|
+](Dg ()| 1¥ (1) = W (x4 v; (x,7,2).,2)) +](Dg ()7
< [(Dg )| (1A Gl + y 12l + 2¢) X |3 (X (6.7) R (5,7) R (x + 75 (x,7,2), 2))
x max {|r - u ()|, 1z - rl} + | (Dg (x)) "' — 4 (X (1), R(6,7), R (x +v3 (x,7,2),2))|
x (@ (max {|r — u (x)], |z — rl}) + 2¢) + (g )|
x max {|r — u ()], |z - I} o) X[V (X (6,7, R (6, 7) R (x4 7, (5,7,2) . 2))
In addition, — vy (X (5,7), R(x,7), R (x + v} (x,7,2) ,2) )
[£s e, 2) = Lys (o 2') < [(Dg ()] (@ (max {Ir — u ()], |z = 11, 85}) + )
< | (g o) x v = vy max{ir —u (o)l |z~ rl} + | (Dg ()7
x|Dg (0 (13 (6.1,2) = vs (x.7.2')) x mas { R (x,) - s (X (x, 7)1,
—g (x4 vs nn2) +g (x v (nn2)) IR (x+ ¥, (5,1, 2),2) = R Ge )| s =
+[(Dg o) +[(Dg )
x| (x +v3 (67,2),2) =¥ (x + 03 (1,2'),2')| % |R (x4 7, (6,7,2),2) - R(x + ¥, (5,1,2), 2)|
+[[(Pg ) < [(Dg ()] (@ (88) + &) v, — v
X |R(x +v3(6r.2),2) = R(x + v (w,122").2)| x max {lr - u (%), |z - rl}
< |(Dg )| +[(Dg )| (1Al + 3 + y I21)
x (@ (max{ir —u )|,z =11, | = r|}) + 2¢) | - | x max {|r - u (x)]. |z~ rl} [vs - v}
+](Dg ()7 = |(Dg ) [ (1A )1 + de + @ (88) + yzl)
x (N4l + 26 + 2y max{|r — u ()], lal, | - r}) x [vs = vi]| max {Ir — u ()], 1z ~ 71} .

X |z - z" . (53)
(51) Then [|Zvs|| < 1, | Lv5(x, 1, 2) — Lv5(x, 71, Z")| < |z - '], the
mapping & is a contraction, and consequently the functional
equation (47) has a unique solution in ;. Moreover, this

. . solution is also unique in the closed subset .//,. Let us note
Ny = <lv3 eN| sup |v3 (x,r,z)| < 86, that

x,|r|<8,|z|<6

Letv; € 4 and v} € A/, U/, where

(52) vy (x,1,7) = 0. (54)
! ! ! !
|V3 (r,2) =¥, (x.rz )l s |Z —z | } : The mapping w,, where
We have w, (x,1,2) =v; (x,r) +v(x+v, (x,7),2),  (55)
|LV3 (x,7,2) — Lv; (x, 1, z)| satisfies (47). Using the change of variables (x,r) — (x +
v1(x,7),2) in (20) we get
-1
= ”(Dg(x)) " X (x+w,(x,1,2),2)
x|Pg () (v3 (x.1,2) = ¥, (3,7, 2)) = X (x+v, (x,7),0) (56)

- g(x+v; (x,r,z))+g(x+v;(x,r,z))' +v (X (x+v,(x,7),0),R(x+w, (x,7,2),2)).
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Using (30) we obtain
X (x+w,(x,1,2),2)
=X (1) +v (X (x,7),R(x,71))

+v(X () +v; (X (x,7),R(x,7)),

(57)
R(x+w,(x,1,2),2))
=X (x,1)
+w, (X (x,7),R(x,7),R(x +w, (x,1,2),2)).
Let us note that
|w2 (x,7,2) —w, (x, 7, z')' < |z - z" , (58)
|w2 (x, r,z)| <|lr—u(x)|+|z-r1|
+]r—u(x+v (x,1)] (59)
<4max{|r —ux)|,|z-rl}.
Therefore w, € /4, and we have
v (6, r)+v(x+ v, (x,1),7) =0. (60)

It follows that H - G = id.

Finally we conclude that the mapping H is a home-
omorphism establishing a conjugacy of the noninvertible
mappings (1) and (18). O
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