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We introduce a class of variational integrals whose Euler equations are nonhomogeneous A-harmonic equations. We investigate
the relationship between the minimization problem and the Euler equation and give a simple proof of the existence of some
nonhomogeneous A-harmonic equations by applying direct methods of the calculus of variations. Besides, we establish some
interesting results on variational integrals.

1. Introduction

In this paper, we study the variational integral of the form

𝐼(𝐹
1
,𝐹
2
) (𝑢, 𝐸) = ∫

𝐸

(𝐹1 (𝑥, ∇𝑢 (𝑥)) + 𝐹2 (𝑥, 𝑢 (𝑥))) 𝑑𝑥, (1)

whose Euler equations are nonhomogeneous A-harmonic
equations

− divA (𝑥∇𝑢) +B (𝑥, 𝑢) = 0, (2)

where𝐹1 : R
𝑛
×R𝑛 → R,𝐹2 : R

𝑛
×R→ R,A : R𝑛×R𝑛 → R𝑛,

andB : R𝑛 ×R → R are operators satisfying some assump-
tions. There are many literatures on (2) and a large of useful
results have been established; see [1–3] and their references.
We investigate the relationship between the minimization of
𝐼(𝐹
1
,𝐹
2
)(𝑢, 𝐸) and solutions of the Euler equation. Based on

that, we give a simple proof of the existence of some nonho-
mogeneousA-harmonic equations by applying direct meth-
ods of the calculus of variations. Besides, we establish some
interesting results on variational integrals. The results of this
paper make the theory on (2) easier to comprehend.

We recall the weighted Sobolev spaces 𝐻1,𝑝(Ω; 𝜇) which
are adopted in [4].

Let R𝑛 be the real Euclidean space with the dimension 𝑛,
𝑛 ≥ 2.Throughout this paper,Ωwill denote an open subset of
R𝑛 and 1 < 𝑝 < ∞. Let𝑤 be a locally integrable, nonnegative

function inR𝑛. A Radon measure 𝜇 is canonically associated
with the weight 𝑤,

𝜇 (𝐸) = ∫
𝐸

𝑤 (𝑥) 𝑑𝑥. (3)

Thus 𝑑𝜇(𝑥) = 𝑤(𝑥)𝑑𝑥, where 𝑑𝑥 is the 𝑛-dimensional
Lebesgue measure. In this paper, unless otherwise stated, we
always assume that 𝜇 is a 𝑝-admissible measure and 𝑑𝜇(𝑥) =
𝑤(𝑥)𝑑𝑥; see [4].

Let 𝐿𝑝(Ω; 𝜇) = {𝜑 : Ω → R : ∫
Ω
|𝜑|
𝑝
𝑑𝜇 < ∞} and

𝐿
𝑝
(Ω; 𝜇;R𝑛) = {𝜑 : Ω → R𝑛 : ∫

Ω
|𝜑|
𝑝
𝑑𝜇 < ∞}. Denote the

norm of 𝐿𝑝(Ω; 𝜇) and 𝐿𝑝(Ω; 𝜇;R𝑛) by ‖ ⋅ ‖𝑝,

𝜙
𝑝
= (∫
Ω

𝜙


𝑝
𝑑𝜇)

1/𝑝

, (4)

where 𝜙 ∈ 𝐿𝑝(Ω; 𝜇) (or 𝐿𝑝(Ω; 𝜇;R𝑛)).
For 𝜑 ∈ 𝐶∞(Ω), let

𝜑
1,𝑝

= (∫
Ω

𝜑


𝑝
𝑑𝜇)

1/𝑝

+ (∫
Ω

∇𝜑


𝑝
𝑑𝜇)

1/𝑝

, (5)

where ∇𝜑 = (𝜕1𝜑, . . . , 𝜕𝑛𝜑) is the gradient of 𝜑. The Sobolev
space 𝐻1,𝑝(Ω; 𝜇) is defined to be the completion of the set
{𝜑 ∈ 𝐶

∞
(Ω) : ‖𝜑‖1,𝑝 < ∞} with respect to the norm ‖ ⋅ ‖1,𝑝.

In other words, 𝑢 ∈ 𝐻
1,𝑝
(Ω; 𝜇) if and only if 𝑢 ∈ 𝐿

𝑝
(Ω; 𝜇)
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and there is a function V ∈ 𝐿𝑝(Ω; 𝜇;R𝑛) and a sequence 𝜑𝑖 ∈
𝐶
∞
(Ω), such that

∫
Ω

𝜑𝑖 − 𝑢


𝑝
𝑑𝜇 → 0, ∫

Ω

∇𝜑𝑖 − V
𝑝
𝑑𝜇 → 0,

𝑖 → ∞.

(6)

We call V the gradient of 𝑢 in𝐻1,𝑝(Ω; 𝜇) and write V = ∇𝑢.
The space 𝐻

1,𝑝

0 (Ω; 𝜇) is the closure of 𝐶
∞
0 (Ω) in

𝐻
1,𝑝
(Ω; 𝜇). Obviously,𝐻1,𝑝(Ω; 𝜇) and𝐻1,𝑝0 (Ω; 𝜇) are Banach

space with respect to the norm ‖ ⋅ ‖1,𝑝. Moreover, ‖ ⋅ ‖1,𝑝 is
uniformly convex and the Sobolev space 𝐻1,𝑝(Ω; 𝜇) and
𝐻
1,𝑝

0 (Ω; 𝜇) are reflexive; see [5] for details.
The corresponding local Sobolev space 𝐻1,𝑝loc (Ω; 𝜇) is

defined in the obviousmanner: a function 𝑢 is in𝐻1,𝑝loc (Ω; 𝜇) if
and only if 𝑢 is in𝐻1,𝑝loc (Ω


; 𝜇) each open setΩ ⋐ Ω.

2. Variational Integrals

Suppose that 𝐸 is a measurable set and that 𝑢 ∈ 𝐻
1,𝑝

loc (Ω; 𝜇)
for an open neighborhood Ω of 𝐸. Then, we have the follow-
ing variational integral:

𝐼(𝐹
1
,𝐹
2
) (𝑢, 𝐸) = ∫

𝐸

(𝐹1 (𝑥, ∇𝑢 (𝑥)) + 𝐹2 (𝑥, 𝑢 (𝑥))) 𝑑𝑥, (7)

where 𝐹1 : R
𝑛
×R𝑛 → R is a variational kernel satisfying the

following assumptions for some constants 0 < 𝛾1 ≤ 𝛿1 < ∞:

the mapping 𝑥 → 𝐹1 (𝑥, 𝜉) is measurable ∀𝜉 ∈ R
𝑛
; (8)

for a.e. 𝑥 ∈ R𝑛;

𝛾1𝑤 (𝑥)
𝜉


𝑝
≤ 𝐹1 (𝑥, 𝜉) ≤ 𝛿1𝑤 (𝑥)

𝜉


𝑝
, 𝜉 ∈ R

𝑛
, (9)

the mapping 𝜉 → 𝐹1 (𝑥, 𝜉)

is strictly convex and differentiable,
(10)

𝐹1 (𝑥, 𝜆𝜉) = |𝜆|
𝑝
𝐹1 (𝑥, 𝜉) , 𝜆 ∈ R, 𝜉 ∈ R

𝑛
, (11)

and𝐹2 : R
𝑛
×R → R is also a variational kernel satisfying the

following assumptions for some constants 0 < 𝛾2 ≤ 𝛿2 < ∞:

the mapping 𝑥 → 𝐹2 (𝑥, 𝑡) is measurable ∀𝑡 ∈ R;

(12)

for a.e. 𝑥 ∈ R𝑛;

𝛾2𝑤 (𝑥) |𝑡|
𝑝
≤ 𝐹2 (𝑥, 𝑡) ≤ 𝛿2𝑤 (𝑥) |𝑡|

𝑝
, 𝑡 ∈ R; (13)

the mapping 𝑡 → 𝐹2 (𝑥, 𝑡) is convex and differentiable.
(14)

Remark 1. Note that a convex function is differential if and
only if it is continuously differentiable; see [6]. Thus, by
assumptions (10) and (14), mappings 𝜉 → 𝐹1(𝑥, 𝜉) and 𝑡 →
𝐹2(𝑥, 𝑡) are continuously differentiable for a.e. 𝑥. Denote by
∇𝜉𝐹1(𝑥, ⋅) the usual gradient of 𝐹1 with respect to the second

variable and by 𝜕𝑡𝐹2(𝑥, ⋅) the usual derivative of 𝐹1 with
respect to the second variable. Obviously, ∇𝜉𝐹1(𝑥, ⋅) and
𝜕𝑡𝐹2(𝑥, ⋅) exist for a.e. 𝑥 ∈ R𝑛.

The value 𝐼(𝐹
1
,𝐹
2
)(𝑢, 𝐸) lies in the interval [0,∞] and by

assumptions (9) and (13), 𝐼(𝐹
1
,𝐹
2
)(𝑢, 𝐸) < ∞ if and only if 𝑢 ∈

𝐿
𝑝
(𝐸; 𝜇) and ∇𝑢 ∈ 𝐿𝑝(𝐸; 𝜇); that is, 𝑢 ∈ 𝐻1,𝑝(𝐸; 𝜇).
The convexity assumptions (10) and (14) can imply the

following useful inequalities.

Lemma 2. For a.e. 𝑥 ∈ R𝑛,

𝐹1 (𝑥, 𝜉1) − 𝐹1 (𝑥, 𝜉2) > ∇𝜉𝐹1 (𝑥, 𝜉2) ⋅ (𝜉1 − 𝜉2) , (15)

𝐹2 (𝑥, 𝑡1) − 𝐹2 (𝑥, 𝑡2) ≥ 𝜕𝑡𝐹2 (𝑥, 𝑡2) (𝑡1 − 𝑡2) , (16)

whenever 𝜉1, 𝜉2 ∈ R𝑛, 𝜉1 ̸= 𝜉2, and 𝑡1, 𝑡2 ∈ R.

Proof. The proof is based on assumptions (10) and (14) and
the definition of directional derivative. Here, we only show
the proof of the first inequality (15) and the other is similar.

Fix 𝑥 ∈ R𝑛 such that the mapping 𝜉 → 𝐹1(𝑥, 𝜉) is strictly
convex and differentiable. Then, for 0 < 𝑠 < 1,

𝐹1 (𝑥, 𝜉2 + 𝑠 (𝜉1 − 𝜉2))

= 𝐹1 (𝑥, (1 − 𝑠) 𝜉2 + 𝑠𝜉1)

< (1 − 𝑠) 𝐹1 (𝑥, 𝜉2) + 𝑠𝐹1 (𝑥, 𝜉1) .

(17)

Setting 𝜉 = 𝜉1 − 𝜉2, we can get

𝐹1 (𝑥, 𝜉2 + 𝑠𝜉) − 𝐹1 (𝑥, 𝜉2) < 𝑠 (𝐹1 (𝑥, 𝜉2 + 𝜉) − 𝐹1 (𝑥, 𝜉2)) .

(18)

Dividing by 𝑠 and subtracting ∇𝜉𝐹1(𝑥, 𝜉2) ⋅ 𝜉 from both sides,
we obtain that

𝐹1 (𝑥, 𝜉2 + 𝑠𝜉) − 𝐹1 (𝑥, 𝜉2)

𝑠
− ∇𝜉𝐹1 (𝑥, 𝜉2) ⋅ 𝜉

< 𝐹1 (𝑥, 𝜉2 + 𝜉) − 𝐹1 (𝑥, 𝜉2) − ∇𝜉𝐹1 (𝑥, 𝜉2) ⋅ 𝜉.

(19)

By the definition of directional derivative, we have that

lim
𝑠→0+

𝐹1 (𝑥, 𝜉2 + 𝑠𝜉) − 𝐹1 (𝑥, 𝜉2)

𝑠
= ∇𝜉𝐹1 (𝑥, 𝜉2) ⋅ 𝜉.

(20)

Then, we can get that 𝐹1(𝑥, 𝜉1) −𝐹1(𝑥, 𝜉2) ≥ ∇𝜉𝐹1(𝑥, 𝜉2) ⋅ (𝜉1 −
𝜉2).

Suppose that there exist 𝜉1, 𝜉2 ∈ R𝑛, 𝜉1 ̸= 𝜉2, such that
𝐹1(𝑥, 𝜉1) − 𝐹1(𝑥, 𝜉2) = ∇𝜉𝐹1(𝑥, 𝜉2) ⋅ (𝜉1 − 𝜉2), let 𝜉 = (1/2)(𝜉1 +
𝜉2), and then we can obtain that

𝐹1 (𝑥, 𝜉) = 𝐹1 (𝑥,
1

2
(𝜉1 + 𝜉2))

<
1

2
(𝐹1 (𝑥, 𝜉1) + 𝐹1 (𝑥, 𝜉2))

= 𝐹1 (𝑥, 𝜉2) +
1

2
∇𝜉𝐹1 (𝑥, 𝜉2) ⋅ (𝜉1 − 𝜉2) .

(21)
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On the other hand, since 𝜉 ̸= 𝜉2, we have that

𝐹1 (𝑥, 𝜉) ≥ 𝐹1 (𝑥, 𝜉2) + ∇𝜉𝐹1 (𝑥, 𝜉2) ⋅ (𝜉 − 𝜉2)

= 𝐹1 (𝑥, 𝜉2) +
1

2
∇𝜉𝐹1 (𝑥, 𝜉2) ⋅ (𝜉1 − 𝜉2) .

(22)

Then, (22) contradicts (21) and the lemma follows.

3. Nonhomogeneous A-Harmonic Equations
and the Obstacles Problem

The following nonlinear elliptic equation:

− divA (𝑥, ∇𝑢) +B (𝑥, 𝑢) = 0 (23)

is called the nonhomogeneousA-harmonic equation, where
A : R𝑛 × R𝑛 → R𝑛 is an operator satisfying the following
assumptions for some constants 0 < 𝛼 ≤ 𝛽 < ∞:

the mapping 𝑥 → A (𝑥, 𝜉) is measurable ∀𝜉 ∈ R
𝑛
,

the mapping 𝜉 → A (𝑥, 𝜉) is continuous for a.e. 𝑥 ∈ R
𝑛
;

(24)

for all 𝜉 ∈ R𝑛 and almost all 𝑥 ∈ R𝑛,

A (𝑥, 𝜉) ⋅ 𝜉 ≥ 𝛼𝑤 (𝑥)
𝜉


𝑝
, (25)

A (𝑥, 𝜉)
 ≤ 𝛽𝑤 (𝑥)

𝜉


𝑝−1
, (26)

(A (𝑥, 𝜉1) −A (𝑥, 𝜉2)) ⋅ (𝜉1 − 𝜉2) > 0, (27)

whenever 𝜉1, 𝜉2 ∈ R𝑛, 𝜉1 ̸= 𝜉2, and

A (𝑥, 𝜆𝜉) = 𝜆|𝜆|
𝑝−2

A (𝑥, 𝜉) , (28)

whenever 𝜆 ∈ R, 𝜆 ̸= 0, and B : R𝑛 × R → R is also an
operator satisfying the following similar assumptions for
some constants 0 < 𝛾 ≤ 𝛿 < ∞:

the mapping 𝑥 →B (𝑥, 𝑡) is measurable ∀𝑡 ∈ R,

the mapping 𝑡 → A (𝑥, 𝑡) is continuous

for a.e. 𝑥 ∈ R
𝑛
;

(29)

for all 𝑡 ∈ R and almost all 𝑥 ∈ R𝑛,

B (𝑥, 𝑡) 𝑡 ≥ 𝛾𝑤 (𝑥) |𝑡|
𝑝
, (30)

|B (𝑥, 𝑡)| ≤ 𝛿𝑤 (𝑥) |𝑡|
𝑝−1
, (31)

(B (𝑥, 𝑡1) −B (𝑥, 𝑡2)) (𝑡1 − 𝑡2) ≥ 0, (32)

whenever 𝑡1, 𝑡2 ∈ R.

Definition 3. A function 𝑢 ∈ 𝐻1,𝑝loc (Ω; 𝜇) is a (weak) solution
of (2) inΩ if

∫
Ω

(A (𝑥, ∇𝑢) ⋅ ∇𝜑 +B (𝑥, 𝑢) 𝜑) 𝑑𝑥 = 0 (33)

for all 𝜑 ∈ 𝐶
∞
0 (Ω). A function 𝑢 ∈ 𝐻

1,𝑝

loc (Ω; 𝜇) is a super-
solution of (2) in Ω if

∫
Ω

(A (𝑥, ∇𝑢) ⋅ ∇𝜑 +B (𝑥, 𝑢) 𝜑) 𝑑𝑥 ≥ 0, (34)

whenever 𝜑 ∈ 𝐶
∞
0 (Ω) is nonnegative. A function 𝑢 ∈

𝐻
1,𝑝

loc (Ω; 𝜇) is a subsolution of (2) in Ω if

∫
Ω

(A (𝑥, ∇𝑢) ⋅ ∇𝜑 +B (𝑥, 𝑢) 𝜑) 𝑑𝑥 ≤ 0, (35)

whenever 𝜑 ∈ 𝐶∞0 (Ω) is nonnegative.

Next is the obstacles problem associated with nonhomo-
geneousA-harmonic equations (2).

Suppose that Ω is bounded in R𝑛, 𝜓 : Ω → [−∞,∞] is
a function, and 𝜗 ∈ 𝐻1,𝑝(Ω; 𝜇). Let

K𝜓,𝜗 =K𝜓,𝜗 (Ω) = {V ∈ 𝐻
1,𝑝
(Ω; 𝜇) : V ≥ 𝜓

a.e. in Ω, V − 𝜗 ∈ 𝐻1,𝑝0 (Ω; 𝜇)} .

(36)

If 𝜓 = 𝜗, writeK𝜓,𝜓(Ω) =K𝜓(Ω).
The problem is to find a function 𝑢 inK𝜓,𝜗 such that

∫
Ω

(A (𝑥, ∇𝑢) ⋅ (∇V − ∇𝑢) +B (𝑥, 𝑢) (V − 𝑢)) 𝑑𝑥 ≥ 0,

(37)

whenever V ∈K𝜓,𝜗. We call the function 𝜓 an obstacle.

Definition 4. If a function 𝑢 ∈ K𝜓,𝜗(Ω) satisfies (37) for all
V ∈K𝜓,𝜗(Ω), we say that 𝑢 is a solution to the obstacle prob-
lemwith obstacle𝜓 and boundary values 𝜗 or a solution to the
obstacle problem inK𝜓,𝜗(Ω).

If 𝑢 is a solution to the obstacle problem in K𝜓,𝑢(Ω), we
say that𝑢 is a solution to the obstacle problemwith obstacle𝜓.

Proposition 5. (1) A solution 𝑢 to the obstacle problem is
always a supersolution to (2) in Ω.

(2) If 𝑢 is a supersolution to (2) in Ω, 𝑢 is a solution to the
obstacle problem in K𝑢,𝑢(𝐷) for each open sets 𝐷 ⋐ Ω.
Moreover, ifΩ is bounded and 𝑢 ∈ 𝐻1,𝑝(Ω; 𝜇), 𝑢 is a solution to
the obstacle problem inK𝑢,𝑢(Ω).

(3) A solution 𝑢 to the obstacle problem in K−∞,𝑢(Ω) is a
solution to (2) in Ω.

(4) If 𝑢 is a solution to (2) inΩ, 𝑢 is a solution to the obstacle
problem inK−∞,𝑢(𝐷) for each open set𝐷 ⋐ Ω. Moreover, ifΩ
is bounded 𝑢 ∈ 𝐻1,𝑝(Ω; 𝜇), 𝑢 is a solution to the obstacle prob-
lem inK−∞,𝑢(Ω).

Proof. By the definition of supersolution and solution to (2)
and the definition of solution to the obstacle problem, it is
easy to prove that Proposition 5 is true. Here, we only give a
proof of (1).

Suppose 𝑢 is a solution to the obstacle problem in
K𝜓,𝜗(Ω), and𝑢 is obviously in𝐻

1,𝑝
(Ω; 𝜇). For all nonnegative

𝜑 ∈ 𝐶
∞
0 (Ω), 𝑢 + 𝜑 ∈ 𝐻

1,𝑝
(Ω; 𝜇), 𝑢 + 𝜑 ≥ 𝑢 ≥ 𝜗 a.e. inΩ, and

𝑢 + 𝜑 − 𝜗 = (𝑢 − 𝜗) + 𝜑 ∈ 𝐻
1,𝑝

0 (Ω; 𝜇) . (38)
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Then, 𝑢 + 𝜑 ∈K𝜓,𝜗(Ω). By (37), we can get

∫
Ω

(A (𝑥, ∇𝑢) ⋅ ∇𝜑 +B (𝑥, 𝑢) 𝜑) 𝑑𝑥

= ∫
Ω

(A (𝑥, ∇𝑢) ⋅ (∇𝑢 + ∇𝜑 − ∇𝑢)

+B (𝑥, 𝑢) (𝑢 + 𝜑 − 𝑢)) 𝑑𝑥 ≥ 0.

(39)

Therefore, 𝑢 is a supersolution to (2) inΩ.

Theorem 6 (see [3]). Suppose 𝑢 is a solution to the obstacle
problem inK𝜓,𝜗(Ω). If V ∈ 𝐻1,𝑝(Ω; 𝜇) is a supersolution to (2)
in Ω, such thatmin{𝑢, V} ∈K𝜓,𝜗(Ω), then V ≥ 𝑢 a.e. in Ω.

4. Relationship between the Minimization
Problem and the Euler Equation

In this section, we establish that the variational integral (7)
gives rise to an equation of the type (2) as its Euler equation,
where the mappings A(𝑥, 𝜉) = ∇𝜉𝐹1(𝑥, 𝜉) and B(𝑥, 𝑡) =

𝜕𝑡𝐹2(𝑥, 𝑡) satisfy the structural assumptions (24)–(32).

Theorem7. Suppose that𝐹1 and𝐹2 are two variational kernels
satisfying (8)–(14) and letA(𝑥, 𝜉) = ∇𝜉𝐹1(𝑥, 𝜉) andB(𝑥, 𝑡) =
𝜕𝑡𝐹2(𝑥, 𝑡). Then,A andB satisfy assumptions (24)–(32) with
𝛼 = 𝛾1, 𝛽 = 2𝑝𝛿1, 𝛾 = 𝛾2, and 𝛿 = 2𝑝𝛿2.

Proof. For points 𝑥 for which (9), (10), (11), (13), and (14) do
not hold, we are free to defineA(𝑥, 𝜉) andB(𝑥, 𝑡) arbitrarily.
Fix 𝑥 ∈ R𝑛 such that 𝐹1 satisfies (9)–(11) and 𝐹2 satisfies (13)
and (14).

(i) By the definition of partial derivative, the 𝑘th coordi-
nate ofA(𝑥, 𝜉) equals

lim
𝑖→∞

𝑖 (𝐹1 (𝑥, 𝜉 +
𝑒𝑘

𝑖
) − 𝐹1 (𝑥, 𝜉)) . (40)

Then, the mapping 𝑥 → A(𝑥, 𝜉) is measurable. Moreover, by
(10), 𝜉 → 𝐹1(𝑥, 𝜉) is continuously differentiable. Then, 𝜉 →
A(𝑥, 𝜉) is continuous andA satisfies (24).

(ii) If 𝜉 ̸= 0, then 𝜉 = 0 ̸= 𝜉. By (15), we have that

𝐹1 (𝑥, 𝜉

) − 𝐹1 (𝑥, 𝜉) > ∇𝜉𝐹1 (𝑥, 𝜉) ⋅ (𝜉


− 𝜉)

= A (𝑥, 𝜉) ⋅ (𝜉

− 𝜉) .

(41)

Since 𝜉 = 0 and 𝐹1(𝑥, 𝜉

) = 𝐹1(𝑥, 0) = 0, we can obtain that

−𝐹1(𝑥, 𝜉) > A(𝑥, 𝜉) ⋅ (−𝜉). Then,

A (𝑥, 𝜉) ⋅ 𝜉 > 𝐹1 (𝑥, 𝜉) ≥ 𝛾1𝑤 (𝑥)
𝜉


𝑝
. (42)

If 𝜉 = 0, A(𝑥, 𝜉) ⋅ 𝜉 = 0 = 𝛾1𝑤(𝑥)|𝜉|
𝑝. Therefore, A satisfies

(25).
(iii) If 𝜉 ̸= 0, thenA(𝑥, 𝜉) ̸= 0 by (25). Write

V =
A (𝑥, 𝜉)

A (𝑥, 𝜉)


(43)

and 𝜉1 = 𝜉+|𝜉|V.Then, 𝜉1 = 𝜉+|𝜉|V ̸= 𝜉 and |𝜉1| ≤ |𝜉|+|𝜉||V| =
2|𝜉|. Applying (15) with 𝜉1 and 𝜉, we can obtain that

A (𝑥, 𝜉)


𝜉
 = A (𝑥, 𝜉) ⋅

𝜉
A (𝑥, 𝜉)

A (𝑥, 𝜉)


= A (𝑥, 𝜉) ⋅ (
𝜉
 V) = A (𝑥, 𝜉) ⋅ (𝜉1 − 𝜉)

< 𝐹1 (𝑥, 𝜉1) − 𝐹1 (𝑥, 𝜉)

≤ 𝐹1 (𝑥, 𝜉1) ≤ 𝛿1𝑤 (𝑥)
𝜉1


𝑝
≤ 2
𝑝
𝛿1𝑤 (𝑥)

𝜉


𝑝
.

(44)

Since 𝜉 ̸= 0, we have that |A(𝑥, 𝜉)| < 2𝑝𝛿1𝑤(𝑥)|𝜉|
𝑝−1.

If 𝜉 = 0, we just need to verify thatA(𝑥, 0) = 0. If not, for
each 𝑘 ∈ N, write

V𝑘 =
A (𝑥, 0)

𝑘 |A (𝑥, 0)|
, (45)

and |V𝑘| = 1/𝑘 ̸= 0. By (15), 𝐹1(𝑥, V𝑘) = 𝐹1(𝑥, V𝑘) − 𝐹1(𝑥, 0) >
A(𝑥, 0) ⋅ V𝑘. Therefore,

1

𝑘
|A (𝑥, 0)| = A (𝑥, 0) ⋅

A (𝑥, 0)

𝑘 |A (𝑥, 0)|

= A (𝑥, 0) ⋅ V𝑘 < 𝐹1 (𝑥, V𝑘) ≤ 𝛿1𝑤 (𝑥)
V𝑘


𝑝

= 𝛿1𝑤 (𝑥) 𝑘
−𝑝
.

(46)

Thus, |A(𝑥, 0)| ≤ 𝛿1𝑤(𝑥)𝑘
1−𝑝 for 𝑘 ∈ N. The right hand side

goes to zero as 𝑘 → ∞ and A(𝑥, 0) = 0. Then, A satisfies
(26).

(iv) For 𝜉1, 𝜉2 ∈ R𝑛, 𝜉1 ̸= 𝜉2, by (15), we have that

𝐹1 (𝑥, 𝜉1) − 𝐹1 (𝑥, 𝜉2) > ∇𝜉𝐹1 (𝑥, 𝜉2) ⋅ (𝜉1 − 𝜉2)

= A (𝑥, 𝜉2) ⋅ (𝜉1 − 𝜉2) ,

(47)

𝐹1 (𝑥, 𝜉2) − 𝐹1 (𝑥, 𝜉1) > ∇𝜉𝐹1 (𝑥, 𝜉1) ⋅ (𝜉2 − 𝜉1)

= A (𝑥, 𝜉1) ⋅ (𝜉2 − 𝜉1) .

(48)

Combining (47) with (48), we obtain that

0 > A (𝑥, 𝜉2) ⋅ (𝜉1 − 𝜉2) +A (𝑥, 𝜉1) ⋅ (𝜉2 − 𝜉1)

= − (A (𝑥, 𝜉1) −A (𝑥, 𝜉2)) ⋅ (𝜉1 − 𝜉2) .

(49)

Then, (A(𝑥, 𝜉1) −A(𝑥, 𝜉2)) ⋅ (𝜉1 −𝜉2) > 0 andA satisfies (27).
(v) For 𝜆 ∈ R, 𝜆 ̸= 0, 𝐹1(𝑥, 𝜆𝜉1) = |𝜆|

𝑝
𝐹1(𝑥, 𝜉1). Taking

partial derivative from both sides with respect to 𝜉 yields

𝜆A (𝑥, 𝜆𝜉) = 𝜆∇𝜉𝐹 (𝑥, 𝜆𝜉) = |𝜆|
𝑝
∇𝜉𝐹 (𝑥, 𝜉) = |𝜆|

𝑝
A (𝑥, 𝜉) .

(50)

Then,A(𝑥, 𝜆𝜉) = 𝜆|𝜆|𝑝−2A(𝑥, 𝜉).
By the similar argument, we can obtain that B(𝑥, 𝑡) sat-

isfies assumptions (29)–(32).

The next theorem shows that minimizers of the varia-
tional integral 𝐼(𝐹

1
,𝐹
2
)(𝑢, Ω) are solutions to the corresponding

Euler equation and vice versa.



Abstract and Applied Analysis 5

Theorem 8. Suppose that 𝐾 ⊂ 𝐻
1,𝑝
(Ω; 𝜇) is a convex set and

𝑢 ∈ 𝐾. Then,

𝐼(𝐹
1
,𝐹
2
) (𝑢, Ω) = min {𝐼(𝐹

1
,𝐹
2
) (V, Ω) : V ∈ 𝐾} (51)

if and only if

∫
Ω

(∇𝜉𝐹1 (𝑥, ∇𝑢) ⋅ (∇V − ∇𝑢) + 𝜕𝑡𝐹2 (𝑥, 𝑢) (V − 𝑢)) 𝑑𝑥 ≥ 0

(52)

for all V ∈ 𝐾.

Proof. (i) By Lemma 2, we have that

∇𝜉𝐹1 (𝑥, ∇𝑢) ⋅ (∇V − ∇𝑢) ≤ 𝐹1 (𝑥, ∇V) − 𝐹1 (𝑥, ∇𝑢)

𝜕𝑡𝐹2 (𝑥, 𝑢) (V − 𝑢) ≤ 𝐹2 (𝑥, V) − 𝐹2 (𝑥, 𝑢)
(53)

for all V ∈ 𝐾 ⊂ 𝐻
1,𝑝
(Ω; 𝜇). Then,

0 ≤ ∫
Ω

(∇𝜉𝐹1 (𝑥, ∇𝑢) ⋅ (∇V − ∇𝑢) + 𝜕𝑡𝐹2 (𝑥, 𝑢) (V − 𝑢)) 𝑑𝑥

≤ ∫
Ω

(𝐹1 (𝑥, ∇V) − 𝐹1 (𝑥, ∇𝑢) + 𝐹2 (𝑥, V) − 𝐹2 (𝑥, 𝑢)) 𝑑𝑥

≤ ∫
Ω

(𝐹1 (𝑥, ∇V) + 𝐹2 (𝑥, V)) 𝑑𝑥

− ∫
Ω

(𝐹1 (𝑥, ∇𝑢) + 𝐹2 (𝑥, 𝑢)) 𝑑𝑥

= 𝐼(𝐹
1
,𝐹
2
) (V, Ω) − 𝐼(𝐹

1
,𝐹
2
) (𝑢, Ω) .

(54)

That is, 𝐼(𝐹
1
,𝐹
2
)(𝑢, Ω) ≤ 𝐼(𝐹

1
,𝐹
2
)(V, Ω). Therefore, 𝐼(𝐹

1
,𝐹
2
)(𝑢, Ω) =

min{𝐼(𝐹
1
,𝐹
2
)(V, Ω) : V ∈ 𝐾}.

(ii) Fix V ∈ 𝐾 and let𝜑 = V−𝑢.Then, since𝐾 is convex and
by (51), we have that

𝑢 + 𝜀𝜑 = (1 − 𝜀) 𝑢 + 𝜀V ∈ 𝐾 (55)

for all 0 < 𝜀 < 1 and 𝐼(𝐹
1
,𝐹
2
)(𝑢, Ω) ≤ 𝐼(𝐹

1
,𝐹
2
)(𝑢 + 𝜀𝜑,Ω).

Therefore,

∫
Ω

(
𝐹1 (𝑥, ∇𝑢 + 𝜀∇𝜑) − 𝐹1 (𝑥, ∇𝑢)

𝜀

+
𝐹2 (𝑥, 𝑢 + 𝜀𝜑) − 𝐹2 (𝑥, 𝑢)

𝜀
) 𝑑𝑥 ≥ 0.

(56)

By assumptions (10) and (14) and the definition of directional
derivative,

lim
𝜀→0

𝐹1 (𝑥, ∇𝑢 + 𝜀∇𝜑) − 𝐹1 (𝑥, ∇𝑢)

𝜀
= ∇𝜉𝐹1 (𝑥, ∇𝑢) ⋅ ∇𝜑,

lim
𝜀→0

𝐹2 (𝑥, 𝑢 + 𝜀𝜑) − 𝐹2 (𝑥, 𝑢)

𝜀
= 𝜕𝑡𝐹2 (𝑥, 𝑢) 𝜑

(57)

for a.e. 𝑥 ∈ R𝑛. By the mean value theorem, there exists a real
number 𝑡0 ∈ (0, 1), such that

𝐹1 (𝑥, ∇𝑢 + 𝜀∇𝜑) + 𝐹2 (𝑥, 𝑢 + 𝜀𝜑) − 𝐹1 (𝑥, ∇𝑢) − 𝐹2 (𝑥, 𝑢)

= ∇𝜉𝐹1 (𝑥, ∇𝑢 + 𝑡0𝜀∇𝜑) ⋅ 𝜀∇𝜑 + 𝜕𝑡𝐹2 (𝑥, 𝑢 + 𝑡0𝜀𝜑) 𝜀𝜑.

(58)

Then, we have

𝐹1 (𝑥, ∇𝑢 + 𝜀∇𝜑) − 𝐹1 (𝑥, ∇𝑢)

𝜀
+
𝐹2 (𝑥, 𝑢 + 𝜀𝜑) − 𝐹2 (𝑥, 𝑢)

𝜀

= ∇𝜉𝐹1 (𝑥, ∇𝑢 + 𝑡0𝜀∇𝜑) ⋅ ∇𝜑 + 𝜕𝑡𝐹2 (𝑥, 𝑢 + 𝑡0𝜀𝜑) 𝜑.

(59)

ByTheorem 7, the following inequalities hold:


∇𝜉𝐹1 (𝑥, ∇𝑢 + 𝑡0𝜀∇𝜑) ⋅ ∇𝜑



≤

∇𝜉𝐹1 (𝑥, ∇𝑢 + 𝑡0𝜀∇𝜑)



∇𝜑


≤ 2
𝑝
𝛿1𝑤 (𝑥)

∇𝑢 + 𝑡0𝜀∇𝜑


𝑝−1 ∇𝜑


≤ 2
2𝑝−1

𝛿1𝑤 (𝑥) (|∇𝑢|
𝑝−1

+
𝑡0𝜀∇𝜑



𝑝−1
)
∇𝜑



≤ 2
2𝑝−1

𝛿1𝑤 (𝑥) (|∇𝑢|
𝑝−1 ∇𝜑

 +
∇𝜑



𝑝
) ,

𝜕𝑡𝐹2 (𝑥, 𝑢 + 𝑡0𝜀𝜑) 𝜑
 ≤

𝜕𝑡𝐹2 (𝑥, 𝑢 + 𝑡0𝜀𝜑)


𝜑


≤ 2
𝑝
𝛿2𝑤 (𝑥)

𝑢 + 𝑡0𝜀𝜑


𝑝−1 𝜑


≤ 2
2𝑝−1

𝛿2𝑤 (𝑥) (|𝑢|
𝑝−1 𝜑

 +
𝜑


𝑝
) ,


∇𝜉𝐹1 (𝑥, ∇𝑢) ⋅ ∇𝜑


≤ 2
𝑝
𝛿1𝑤 (𝑥) |∇𝑢|

𝑝−1 ∇𝜑
 ,

𝜕𝑡𝐹2 (𝑥, 𝑢) 𝜑
 ≤ 2
𝑝
𝛿2𝑤 (𝑥) |𝑢|

𝑝−1 𝜑
 .

(60)

Write 𝑔(𝑥) = 2
2𝑝−1

𝛿1𝑤(𝑥)(|∇𝑢|
𝑝−1
|∇𝜑| + |∇𝜑|

𝑝
) +

2
2𝑝−1

𝛿2𝑤(𝑥)(|𝑢|
𝑝−1
|𝜑| + |𝜑|

𝑝
) and by 𝑢, 𝜑 ∈ 𝐻

1,𝑝
(Ω; 𝜇), we

have that

∫
Ω

𝑔 (𝑥) 𝑑𝑥 ≤ 2
2𝑝−1

𝛿1 ∫
Ω

𝑤 (𝑥) (|∇𝑢|
𝑝−1 ∇𝜑

 +
∇𝜑



𝑝
) 𝑑𝑥

+ 2
2𝑝−1

𝛿2 ∫
Ω

𝑤 (𝑥) (|𝑢|
𝑝−1 𝜑

 +
𝜑


𝑝
) 𝑑𝑥

= 2
2𝑝−1

𝛿1 ∫
Ω

|∇𝑢|
𝑝−1 ∇𝜑

 𝑑𝜇 + 2
2𝑝−1

𝛿1

× ∫
Ω

∇𝜑


𝑝
𝑑𝜇 + 2

2𝑝−1
𝛿2

× ∫
Ω

|𝑢|
𝑝−1 𝜑

 𝑑𝜇 + 2
2𝑝−1

𝛿2 ∫
Ω

𝜑


𝑝
𝑑𝜇
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= 2
2𝑝−1

𝛿1(∫
Ω

|∇𝑢|
𝑝
𝑑𝜇)

1−1/𝑝

(∫
Ω

∇𝜑


𝑝
𝑑𝜇)

1/𝑝

+ 2
2𝑝−1

𝛿1 ∫
Ω

∇𝜑


𝑝
𝑑𝜇

+ 2
2𝑝−1

𝛿2(∫
Ω

|𝑢|
𝑝
𝑑𝜇)

1−1/𝑝

(∫
Ω

𝜑


𝑝
𝑑𝜇)

1/𝑝

+ 2
2𝑝−1

𝛿2 ∫
Ω

𝜑


𝑝
𝑑𝜇 < ∞;

(61)

that is, 𝑔 ∈ 𝐿
1
(Ω; 𝑑𝑥). Then, we can get the following

conditions:


𝐹1 (𝑥, ∇𝑢 + 𝜀∇𝜑) − 𝐹1 (𝑥, ∇𝑢)

𝜀
+
𝐹2 (𝑥, 𝑢 + 𝜀𝜑) − 𝐹2 (𝑥, 𝑢)

𝜀



≤ 𝑔 (𝑥) ,


∇𝜉𝐹1 (𝑥, ∇𝑢) ⋅ ∇𝜑 + 𝜕𝑡𝐹2 (𝑥, 𝑢) 𝜑


≤ 𝑔 (𝑥) ,

𝐹1 (𝑥, ∇𝑢 + 𝜀∇𝜑) − 𝐹1 (𝑥, ∇𝑢)

𝜀
+
𝐹2 (𝑥, 𝑢 + 𝜀𝜑) − 𝐹2 (𝑥, 𝑢)

𝜀

→ ∇𝜉𝐹1 (𝑥, ∇𝑢) ⋅ ∇𝜑 + 𝜕𝑡𝐹2 (𝑥, 𝑢) 𝜑

(62)

as 𝜀 → 0. By the Lebesgue’s dominated convergence theo-
rem, we obtain that

∫
Ω

(∇𝜉𝐹1 (𝑥, ∇𝑢) ⋅ ∇𝜑 + 𝜕𝑡𝐹2 (𝑥, 𝑢) 𝜑) 𝑑𝑥

= lim
𝜀→0

∫
Ω

(
𝐹1 (𝑥, ∇𝑢 + 𝜀∇𝜑) − 𝐹1 (𝑥, ∇𝑢)

𝜀

+
𝐹2 (𝑥, 𝑢 + 𝜀𝜑) − 𝐹2 (𝑥, 𝑢)

𝜀
) 𝑑𝑥 ≥ 0.

(63)

The theorem is proved.

5. (𝐹1,𝐹2)-Extremals and (𝐹1,𝐹2)-Superextremals
with Obstacles

Definition 9. A function 𝑢 ∈ 𝐻1,𝑝(Ω; 𝜇) is called an (𝐹1, 𝐹2)-
extremal inΩ with boundary values 𝜗 ∈ 𝐻1,𝑝(Ω; 𝜇) if 𝑢 − 𝜗 ∈
𝐻
1,𝑝

0 (Ω; 𝜇) and

𝐼(𝐹
1
,𝐹
2
) (𝑢, Ω) ≤ 𝐼(𝐹

1
,𝐹
2
) (V, Ω) (64)

whenever V − 𝜗 ∈ 𝐻1,𝑝0 (Ω; 𝜇). A function 𝑢 ∈ 𝐻1,𝑝loc (Ω; 𝜇) is
called a (free) (𝐹1, 𝐹2)-extremal in Ω if 𝑢 is an (𝐹1, 𝐹2)-extre-
mal with boundary values 𝑢 in each open set𝐷 ⋐ Ω.

It is immediate that an (𝐹1, 𝐹2)-extremal with boundary
values is a free (𝐹1, 𝐹2)-extremal.

Theorem 10. Suppose that 𝑢 ∈ 𝐻1,𝑝(Ω; 𝜇) is a free (𝐹1, 𝐹2)-
extremal in Ω. Then,

𝐼(𝐹
1
,𝐹
2
) (𝑢, Ω) ≤ 𝐼(𝐹

1
,𝐹
2
) (V, Ω) (65)

whenever V − 𝑢 ∈ 𝐻1,𝑝0 (Ω; 𝜇).

Proof. For 𝜑 ∈ 𝐶
∞
0 (Ω), 𝜑 has compact support. Choose an

open set𝐷 ⋐ Ω such that spt𝜑 ⊂ 𝐷. Then, 𝜑 ∈ 𝐶∞0 (𝐷) and 𝑢
is an (𝐹1, 𝐹2)-extremalwith boundary values𝑢 in𝐷. Since (𝑢+
𝜑) − 𝑢 ∈ 𝐻

1,𝑝

0 (𝐷; 𝜇), we have that

𝐼(𝐹
1
,𝐹
2
) (𝑢, 𝐷) ≤ 𝐼(𝐹

1
,𝐹
2
) (𝑢 + 𝜑,𝐷) . (66)

Since 𝜑 vanishes outside𝐷, we can obtain that

𝐼(𝐹
1
,𝐹
2
) (𝑢, Ω) = ∫

Ω

(𝐹1 (𝑥, ∇𝑢) + 𝐹2 (𝑥, 𝑢)) 𝑑𝑥

= ∫
𝐷

(𝐹1 (𝑥, ∇𝑢) + 𝐹2 (𝑥, 𝑢)) 𝑑𝑥

+ ∫
Ω\𝐷

(𝐹1 (𝑥, ∇𝑢) + 𝐹2 (𝑥, 𝑢)) 𝑑𝑥

= 𝐼(𝐹
1
,𝐹
2
) (𝑢, 𝐷)

+ ∫
Ω\𝐷

(𝐹1 (𝑥, ∇𝑢) + 𝐹2 (𝑥, 𝑢)) 𝑑𝑥

≤ 𝐼(𝐹
1
,𝐹
2
) (𝑢 + 𝜑,𝐷)

+ ∫
Ω\𝐷

(𝐹1 (𝑥, ∇𝑢) + 𝐹2 (𝑥, 𝑢)) 𝑑𝑥

= ∫
𝐷

(𝐹1 (𝑥, ∇𝑢 + ∇𝜑) + 𝐹2 (𝑥, 𝑢 + 𝜑)) 𝑑𝑥

+ ∫
Ω\𝐷

(𝐹1 (𝑥, ∇𝑢) + 𝐹2 (𝑥, 𝑢)) 𝑑𝑥

= ∫
Ω

(𝐹1 (𝑥, ∇𝑢 + ∇𝜑) + 𝐹2 (𝑥, 𝑢 + 𝜑)) 𝑑𝑥

= 𝐼(𝐹
1
,𝐹
2
) (𝑢 + 𝜑,Ω) ,

(67)

whenever 𝜑 ∈ 𝐶∞0 (Ω).
Fix V with V − 𝑢 ∈ 𝐻

1,𝑝

0 (Ω; 𝜇) and let 𝜑𝑗 ∈ 𝐶
∞
0 (Ω) be

a sequence with 𝜑𝑗 converging to V − 𝑢 in 𝐻1,𝑝(Ω; 𝜇). By
Lemma 2, we can get that

𝐹1 (𝑥, ∇𝑢 + ∇𝜑𝑗) ≤ 𝐹1 (𝑥, ∇V)

+ ∇𝜉𝐹1 (𝑥, ∇𝑢 + ∇𝜑𝑗)

⋅ (∇𝑢 + ∇𝜑𝑗 − ∇V) ,

𝐹2 (𝑥, 𝑢 + 𝜑𝑗) ≤ 𝐹2 (𝑥, V)

+ 𝜕𝑡𝐹2 (𝑥, 𝑢 + 𝜑𝑗) (𝑢 + 𝜑𝑗 − V) .

(68)
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By the inequality (67), we obtain that

𝐼(𝐹
1
,𝐹
2
) (𝑢, Ω) ≤ 𝐼(𝐹

1
,𝐹
2
) (𝑢 + 𝜑𝑗, Ω)

= ∫
Ω

(𝐹1 (𝑥, ∇𝑢 + ∇𝜑) + 𝐹2 (𝑥, 𝑢 + 𝜑)) 𝑑𝑥

≤ ∫
Ω

(𝐹1 (𝑥, ∇V) + 𝐹2 (𝑥, V)) 𝑑𝑥

+ ∫
Ω

∇𝜉𝐹1 (𝑥, ∇𝑢 + ∇𝜑𝑗)

⋅ (∇𝑢 + ∇𝜑𝑗 − ∇V) 𝑑𝑥

+ ∫
Ω

𝜕𝑡𝐹2 (𝑥, 𝑢 + 𝜑𝑗) (𝑢 + 𝜑𝑗 − V) 𝑑𝑥

≤ 𝐼(𝐹
1
,𝐹
2
) (V, Ω) + ∫

Ω


∇𝜉𝐹1 (𝑥, ∇𝑢 + ∇𝜑𝑗)



×

∇𝑢 + ∇𝜑𝑗 − ∇V


𝑑𝑥

+ ∫
Ω


𝜕𝑡𝐹2 (𝑥, 𝑢 + 𝜑𝑗)




𝑢 + 𝜑𝑗 − V


𝑑𝑥

≤ 𝐼(𝐹
1
,𝐹
2
) (V, Ω) + ∫

Ω

2
𝑝
𝛿1𝑤 (𝑥)


∇𝑢 + ∇𝜑𝑗



𝑝−1

×

∇𝑢 + ∇𝜑𝑗 − ∇V


𝑑𝑥

+ ∫
Ω

2
𝑝
𝛿2𝑤 (𝑥)


𝑢 + 𝜑𝑗



𝑝−1 
𝑢 + 𝜑𝑗 − V


𝑑𝑥

≤ 𝐼(𝐹
1
,𝐹
2
) (V, Ω)

+ 2
𝑝
𝛿1(∫
Ω


∇𝑢 + ∇𝜑𝑗



𝑝
𝑑𝜇)

1−1/𝑝

× (∫
Ω


∇𝑢 + ∇𝜑𝑗 − ∇V



𝑝
𝑑𝜇)

1/𝑝

+ 2
𝑝
𝛿2(∫
Ω


𝑢 + 𝜑𝑗



𝑝
𝑑𝜇)

1−1/𝑝

× (∫
Ω


𝑢 + 𝜑𝑗 − V



𝑝
𝑑𝜇)

1/𝑝

≤ 𝐼(𝐹
1
,𝐹
2
) (V, Ω) + 2

𝑝
(𝛿1 + 𝛿2)

×

𝑢 + 𝜑𝑗



𝑝−1

1,𝑝


𝑢 + 𝜑𝑗 − V

1,𝑝
.

(69)

Since 𝜑𝑗 converges to V − 𝑢 in 𝐻1,𝑝(Ω; 𝜇), letting 𝑗 converge
to∞ in inequality (69), it follows that

𝐼(𝐹
1
,𝐹
2
) (𝑢, Ω) ≤ 𝐼(𝐹

1
,𝐹
2
) (V, Ω) . (70)

The theorem follows.

Theorem 11. A function 𝑢 ∈ 𝐻1,𝑝loc (Ω; 𝜇) is an (free) (𝐹1, 𝐹2)-
extremal in Ω if and only if

− div∇𝜉𝐹1 (𝑥, ∇𝑢) + 𝜕𝑡𝐹2 (𝑥, 𝑢) = 0 (71)

in Ω, that is,

∫
Ω

(∇𝜉𝐹1 (𝑥, ∇𝑢) ⋅ ∇𝜑 + 𝜕𝑡𝐹2 (𝑥, 𝑢) 𝜑) 𝑑𝑥 = 0 (72)

for all 𝜑 ∈ 𝐶∞0 (Ω).

Proof. Write

𝐾𝐷 = {V ∈ 𝐻
1,𝑝
(𝐷; 𝜇) : 𝑢 − V ∈ 𝐻1,𝑝0 (𝐷; 𝜇)} (73)

for each open set𝐷 ⋐ Ω.
(i) Fix 𝜑 ∈ 𝐶∞0 (Ω) and let𝐷 ⋐ Ω be an open set such that

spt𝜑 ⊂ 𝐷. Then, 𝑢 − (𝑢 + 𝜑) ∈ 𝐻1,𝑝0 (𝐷; 𝜇) and 𝑢 − (𝑢 − 𝜑) ∈
𝐻
1,𝑝

0 (𝐷; 𝜇). Thus, 𝑢 ∈ 𝐾𝐷, 𝑢 + 𝜑 ∈ 𝐾𝐷, 𝑢 − 𝜑 ∈ 𝐾𝐷, and𝐾𝐷 ⊂
𝐻
1,𝑝
(𝐷; 𝜇) is a convex set. Since 𝑢 is an (free) (𝐹1, 𝐹2)-

extremal in Ω and𝐷 ⋐ Ω, we have that

𝐼(𝐹
1
,𝐹
2
) (𝑢, 𝐷) = min {𝐼(𝐹

1
,𝐹
2
) (V, 𝐷) : V ∈ 𝐾𝐷} . (74)

ByTheorem 8, it follows that

∫
𝐷

(∇𝜉𝐹1 (𝑥, ∇𝑢) ⋅ (∇𝑢 + ∇𝜑 − ∇𝑢)

+ 𝜕𝑡𝐹2 (𝑥, 𝑢) (𝑢 + 𝜑 − 𝑢) ) 𝑑𝑥 ≥ 0,

∫
𝐷

(∇𝜉𝐹1 (𝑥, ∇𝑢) ⋅ (∇𝑢 − ∇𝜑 − ∇𝑢)

+ 𝜕𝑡𝐹2 (𝑥, 𝑢) (𝑢 − 𝜑 − 𝑢) ) 𝑑𝑥 ≥ 0.

(75)

Then,

∫
𝐷

(∇𝜉𝐹1 (𝑥, ∇𝑢) ⋅ ∇𝜑 + 𝜕𝑡𝐹2 (𝑥, 𝑢) 𝜑) 𝑑𝑥 = 0. (76)

Since 𝜑 and ∇𝜑 vanish outside𝐷, it follows that

∫
Ω

(∇𝜉𝐹1 (𝑥, ∇𝑢) ⋅ ∇𝜑 + 𝜕𝑡𝐹2 (𝑥, 𝑢) 𝜑) 𝑑𝑥 = 0. (77)

(ii) Fix the open set 𝐷 ⋐ Ω and V ∈ 𝐾𝐷. Then, 𝑢 ∈

𝐻
1,𝑝
(𝐷; 𝜇) and 𝑢 − V ∈ 𝐻

1,𝑝

0 (𝐷; 𝜇). Choose a sequence
𝜑𝑗 ∈ 𝐶

∞
0 (𝐷) with 𝜑𝑗 converging to 𝑢 − V in 𝐻1,𝑝(𝐷; 𝜇). By

Theorem 7, we obtain that


∫
Ω

∇𝜉𝐹1 (𝑥, ∇𝑢) ⋅ (∇V − ∇𝑢) 𝑑𝑥 + ∫
Ω

∇𝜉𝐹1 (𝑥, ∇𝑢) ⋅ ∇𝜑𝑗 𝑑𝑥



≤ ∫
Ω


∇𝜉𝐹1 (𝑥, ∇𝑢)




∇V − ∇𝑢 + ∇𝜑𝑗


𝑑𝑥
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≤ ∫
Ω

2
𝑝
𝛿1𝑤 (𝑥) |∇𝑢|

𝑝−1 
∇V − ∇𝑢 + ∇𝜑𝑗


𝑑𝑥

≤ 2
𝑝
𝛿1(∫
Ω

|∇𝑢|
𝑝
𝑑𝜇)

1−1/𝑝

× (∫
Ω


∇V − ∇𝑢 + ∇𝜑𝑗



𝑝
𝑑𝜇)

1/𝑝

→ 0,


∫
Ω

𝜕𝑡𝐹2 (𝑥, 𝑢) (V − 𝑢) 𝑑𝑥 + ∫
Ω

𝜕𝑡𝐹2 (𝑥, 𝑢) 𝜑𝑗 𝑑𝑥



≤ ∫
Ω

𝜕𝑡𝐹2 (𝑥, 𝑢)



V − 𝑢 + 𝜑𝑗


𝑑𝑥

≤ ∫
Ω

2
𝑝
𝛿2𝑤 (𝑥) |𝑢|

𝑝−1 
V − 𝑢 + 𝜑𝑗


𝑑𝑥

≤ 2
𝑝
𝛿2(∫
Ω

|𝑢|
𝑝
𝑑𝜇)

1−1/𝑝

× (∫
Ω


V − 𝑢 + 𝜑𝑗



𝑝
𝑑𝜇)

1/𝑝

→ 0

(78)

as 𝑗 → ∞. Therefore, it follows that

∫
𝐷

(∇𝜉𝐹1 (𝑥, ∇𝑢) ⋅ (∇V − ∇𝑢) + 𝜕𝑡𝐹2 (𝑥, 𝑢) (V − 𝑢)) 𝑑𝑥

= − lim
𝑗→∞

∫
𝐷

(∇𝜉𝐹1 (𝑥, ∇𝑢) ⋅ ∇𝜑𝑗 + 𝜕𝑡𝐹2 (𝑥, 𝑢) 𝜑𝑗) 𝑑𝑥

= − lim
𝑗→∞

∫
Ω

(∇𝜉𝐹1 (𝑥, ∇𝑢) ⋅ ∇𝜑𝑗 + 𝜕𝑡𝐹2 (𝑥, 𝑢) 𝜑𝑗) 𝑑𝑥 = 0.

(79)

By Theorem 8, we have that 𝐼(𝐹
1
,𝐹
2
)(𝑢, 𝐷) ≤ 𝐼(𝐹

1
,𝐹
2
)(V, 𝐷).

Then, 𝑢 is a free (𝐹1, 𝐹2)-extremal inΩ.

Based on the proof of Theorem 11, we easily infer the fol-
lowing corollary.

Corollary 12. Suppose that a sequence 𝑢𝑗 converges to 𝑢 in
𝐻
1,𝑝
(Ω; 𝜇), and then

𝐼(𝐹
1
,𝐹
2
) (𝑢, Ω) = lim

𝑗→∞
𝐼(𝐹
1
,𝐹
2
) (𝑢𝑗, Ω) . (80)

Next, we formulate the obstacle problem in terms of vari-
ational integrals. This makes the essence of the problem
clearer.

Definition 13. Suppose that Ω is bounded. Let 𝜓 : Ω →

[−∞,∞] be an arbitrary function and call it an obstacle. For
𝜗 ∈ 𝐻

1,𝑝
(Ω; 𝜇), write

𝐾𝜓,𝜗 (Ω) = {V ∈ 𝐻
1,𝑝
(Ω; 𝜇) : V − 𝜗 ∈ 𝐻1,𝑝0 (Ω; 𝜇) ,

V ≥ 𝜓 a.e. in Ω} .
(81)

A function 𝑢 ∈ 𝐾𝜓,𝜗(Ω) is called an (𝐹1, 𝐹2)-superextremal
with obstacle 𝜓 and boundary values 𝜗 if

𝐼(𝐹
1
,𝐹
2
) (𝑢, Ω) ≤ 𝐼(𝐹

1
,𝐹
2
) (V, Ω) (82)

for all V ∈ 𝐾𝜓,𝜗(Ω).

A function 𝑢 ∈ 𝐻1,𝑝loc (Ω; 𝜇) is called a (free) (𝐹1, 𝐹2)-super-
extremal in Ω if 𝑢 is an (𝐹1, 𝐹2)-superextremal with obstacle
and boundary values 𝑢 in each open set𝐷 ⋐ Ω.

Remark 14. (1) The (𝐹1, 𝐹2)-superextremal 𝑢 with obstacle 𝜓
and boundary values 𝜗 minimizes the variational integral
𝐼(𝐹
1
,𝐹
2
)(V, Ω) among all functions V which, roughly speaking,

coincidewith𝜗on the boundary 𝜕Ω and lie above the obstacle
𝜓. Naturally, this problemmakes sense only if𝐾𝜓,𝜗(Ω) is non-
empty.Moreover, we always assume that the notation𝐾𝜓,𝜗(Ω)
that includes the assumptionsΩ is bounded in this paper.

(2) (𝐹1, 𝐹2)-extremal can be interpreted as (𝐹1, 𝐹2)-
superextremal with 𝜓 identically −∞.

Theorem 15. Suppose that 𝜓 : Ω → [−∞,∞] and 𝜗 ∈

𝐻
1,𝑝
(Ω; 𝜇). Then, a function 𝑢 ∈ 𝐾𝜓,𝜗(Ω) is an (𝐹1, 𝐹2)-super-

extremal with obstacle𝜓 and boundary values 𝜗 if and only if 𝑢
is a solution to the obstacle problem in𝐾𝜓,𝜗(Ω) withA = ∇𝜉𝐹1

andB = 𝜕𝑡𝐹2.

Proof. It is easy to see that 𝐾𝜓,𝜗(Ω) is a convex subset of
𝐻
1,𝑝
(Ω; 𝜇) and 𝑢 ∈ 𝐻

1,𝑝
(Ω; 𝜇). Then, 𝑢 is a (𝐹1, 𝐹2)-super-

extremal with obstacle 𝜓 and boundary values 𝜗 if and only
if

𝐼(𝐹
1
,𝐹
2
) (𝑢, Ω) ≤ 𝐼(𝐹

1
,𝐹
2
) (V, Ω) (83)

for all V ∈ 𝐾𝜓,𝜗(Ω).
ByTheorem 8, we can get that 𝐼(𝐹

1
,𝐹
2
)(𝑢, Ω) ≤ 𝐼(𝐹

1
,𝐹
2
)(V, Ω)

for all V ∈ 𝐾𝜓,𝜗(Ω) if and only if

∫
Ω

(A (𝑥, ∇𝑢) ⋅ (∇V − ∇𝑢) +B (𝑥, 𝑢) (V − 𝑢)) 𝑑𝑥

= ∫
Ω

(∇𝜉𝐹1 (𝑥, ∇𝑢) ⋅ (∇V − ∇𝑢) + 𝜕𝑡𝐹2 (𝑥, 𝑢) (V − 𝑢)) 𝑑𝑥

≥ 0

(84)

for all V ∈ 𝐾𝜓,𝜗(Ω).
Thus, the theorem follows by the definition of the solution

to the obstacle problem.

6. Existence of (𝐹1,𝐹2)-Superextremals

In this section, we establish the existence of (𝐹1, 𝐹2)-super-
extremals by the direct methods of the calculus of variations.

First, we show a lemma, which is a direct corollary of
Mazur lemma.

Lemma 16. If𝑋 is a normed space with the norm ‖ ⋅ ‖ and 𝑥𝑗
converges weakly in 𝑋 to 𝑥, then there exists a sequence 𝑥𝑗 of
convex combinations of 𝑥𝑗,

𝑥𝑗 =

𝑙

∑

𝑘=𝑗

𝜆𝑗,𝑘𝑥𝑘, 𝜆𝑗,𝑘 ≥ 0,

𝑙

∑

𝑘=𝑗

𝜆𝑗,𝑘 = 1 (85)

such that 𝑥𝑗 converges to 𝑥 in the norm topology of 𝑋.
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Proof. Fix 𝑗 = 1, 2, . . . and it is easily to see that the subse-
quence 𝑥𝑘, 𝑘 ≥ 𝑗, of 𝑥𝑗 converges weakly in 𝑋 to 𝑥. By the
Mazur lemma, we can get that 𝑦𝑘 converges to 𝑥 in the norm
topology of𝑋, where

𝑦𝑘 =

𝑘

∑

𝑠=𝑗

𝜆𝑘,𝑠𝑢𝑠, 𝜆𝑘,𝑠 ≥ 0,

𝑘

∑

𝑠=𝑗

𝜆𝑘,𝑠 = 1. (86)

Then, there exists a number 𝑘𝑗 ∈ N, such that

𝑦𝑘 − 𝑥
 ≤

1

𝑗
(87)

for all 𝑘 ≥ 𝑘𝑗. Let 𝑥𝑗 = 𝑦𝑘
𝑗

and the lemma follows.

Theorem 17. Suppose that 𝐾 ⊂ 𝐻
1,𝑝
(Ω; 𝜇) is a nonempty

convex closed set. Then there is 𝑢 ∈ 𝐾 such that

𝐼(𝐹
1
,𝐹
2
) (𝑢, Ω) = min {𝐼(𝐹

1
,𝐹
2
) (V, Ω) : V ∈ 𝐾} . (88)

Proof. Let 𝑢𝑗 ∈ 𝐾 be a minimizing sequence, that is,

𝐼(𝐹
1
,𝐹
2
) (𝑢𝑗, Ω) → 𝐼0 = min {𝐼(𝐹

1
,𝐹
2
) (V, Ω) : V ∈ 𝐾} (89)

as 𝑗 → ∞. Since𝐾 ̸= 0, 0 ≤ 𝐼0 < ∞, and we can assume that

𝐼(𝐹
1
,𝐹
2
) (𝑢𝑗, Ω) ≤ 𝐼0 + 1 (90)

for all 𝑗. By assumptions (9) and (13), we have that

𝛾1 ∫
Ω


∇𝑢𝑗



𝑝
𝑑𝜇 + 𝛾2 ∫

Ω


𝑢𝑗



𝑝
𝑑𝜇

≤ 𝐼(𝐹
1
,𝐹
2
) (𝑢𝑗, Ω)

≤ 𝐼0 + 1 < ∞.

(91)

Therefore, 𝑢𝑗 is a bounded sequence in 𝐻1,𝑝(Ω; 𝜇). Thus a
subsequence which we still denote by 𝑢𝑗 converges weakly in
𝐻
1,𝑝
(Ω; 𝜇) to a function 𝑢 ∈ 𝐻1,𝑝(Ω; 𝜇). By Lemma 16, there

exists a sequence �̃�𝑗 of convex combinations of 𝑢𝑗,

�̃�𝑗 =

𝑙

∑

𝑘=𝑗

𝜆𝑗,𝑘𝑢𝑘, 𝜆𝑗,𝑘 ≥ 0,

𝑙

∑

𝑘=𝑗

𝜆𝑗,𝑘 = 1 (92)

such that �̃�𝑗 converges to 𝑢 in 𝐻1,𝑝(Ω; 𝜇). Since 𝐾 is closed
and convex, 𝑢 ∈ 𝐻1,𝑝(Ω; 𝜇). By Corollary 12, we have that

𝐼0 ≤ 𝐼(𝐹
1
,𝐹
2
) (𝑢, Ω) = lim

𝑗→∞
𝐼(𝐹
1
,𝐹
2
) (�̃�𝑗, Ω) . (93)

For each 𝜀 > 0, since 𝐼(𝐹
1
,𝐹
2
)(𝑢𝑗, Ω) → 𝐼0 as 𝑗 → ∞, there

exists a number 𝑗𝜀 ∈ N such that

max {𝐼0 − 𝜀, 0} ≤ 𝐼(𝐹
1
,𝐹
2
) (𝑢𝑗, Ω) < 𝐼0 + 𝜀 (94)

for all 𝑗 ≥ 𝑗𝜀. By assumptions (10) and (14), we obtain that

𝐼(𝐹
1
,𝐹
2
) (�̃�𝑗, Ω) = ∫

Ω

(𝐹1 (𝑥, ∇�̃�𝑗) + 𝐹2 (𝑥, �̃�𝑗)) 𝑑𝑥

= ∫
Ω

(𝐹1(𝑥,

𝑙

∑

𝑘=𝑗

𝜆𝑗,𝑘∇𝑢𝑘)

+ 𝐹2(𝑥,

𝑙

∑

𝑘=𝑗

𝜆𝑗,𝑘𝑢𝑘))𝑑𝑥

≤ ∫
Ω

𝑙

∑

𝑘=𝑗

𝜆𝑗,𝑘 (𝐹1 (𝑥, ∇𝑢𝑘) + 𝐹2 (𝑥, 𝑢𝑘)) 𝑑𝑥

=

𝑙

∑

𝑘=𝑗

𝜆𝑗,𝑘 ∫
Ω

(𝐹1 (𝑥, ∇𝑢𝑘) + 𝐹2 (𝑥, 𝑢𝑘)) 𝑑𝑥

=

𝑙

∑

𝑘=𝑗

𝜆𝑗,𝑘𝐼(𝐹
1
,𝐹
2
) (𝑢𝑘, Ω) ≤

𝑙

∑

𝑘=𝑗

𝜆𝑗,𝑘 (𝐼0 + 𝜀)

= 𝐼0 + 𝜀

(95)

whenever 𝑗 ≥ 𝑗𝜀. By (93) and (95), it follows that

𝐼0 ≤ 𝐼(𝐹
1
,𝐹
2
) (𝑢, Ω) ≤ 𝐼0 + 𝜀. (96)

Then, 𝐼0 = 𝐼(𝐹
1
,𝐹
2
)(𝑢, Ω) and 𝑢 is the desired minimizer.

Theorem 18. Suppose that Ω is bounded, that 𝜓 : Ω →

[−∞,∞], and that 𝜗 ∈ 𝐻1,𝑝(Ω; 𝜇). If

𝐾𝜓,𝜗 (Ω)

= {V ∈ 𝐻1,𝑝 (Ω) : V ≥ 𝜓 a.e. in Ω, V − 𝜗 ∈ 𝐻1,𝑝0 (Ω)} ̸= 0,

(97)

there exists a unique (𝐹1, 𝐹2)-superextremal with obstacle 𝜓
and boundary values 𝜗.

Proof. Since the set 𝐾𝜓,𝜗(Ω) is nonempty convex subset of
𝐻
1,𝑝
(Ω; 𝜇), the existence follows from Theorem 17 if we can

show that𝐾𝜓,𝜗(Ω) is closed in𝐻
1,𝑝
(Ω; 𝜇). To accomplish this,

let 𝑢𝑗 be a sequence such that 𝑢𝑗 converges to a function 𝑢 in
𝐻
1,𝑝
(Ω; 𝜇). Since𝑢𝑗−𝜗 ∈ 𝐻

1,𝑝

0 (Ω; 𝜇),𝑢−𝜗 ∈ 𝐻
1,𝑝

0 (Ω; 𝜇). Since
𝑢𝑗 converges to𝑢 in𝐻

1,𝑝
(Ω; 𝜇), there is subsequence of𝑢𝑗 that

converges a.e. to 𝑢.Therefore, 𝑢 ≥ 𝜓 a.e.Ω.Then, 𝑢 ∈ 𝐾𝜓,𝜗(Ω)
and the existence part is thereby established.

For the uniqueness, suppose that 𝑢1, 𝑢2 ∈ 𝐾𝜓,𝜗(Ω) are two
distinct minimizers. Since 𝑢1 − 𝜗, 𝑢1 − 𝜗 ∈ 𝐻

1,𝑝

0 (Ω; 𝜇), the set
{∇𝑢1 ̸= ∇𝑢2} has positive measure. By the strict convexity (10)
of 𝐹1, we can get that

𝐹1 (𝑥, ∇V (𝑥)) <
1

2
(𝐹1 (𝑥, ∇𝑢1 (𝑥)) + 𝐹1 (𝑥, ∇𝑢2 (𝑥)))

(98)
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for each 𝑥 ∈ {∇𝑢1 ̸= ∇𝑢2} and

∫
{∇𝑢
1
̸= ∇𝑢
2
}

𝐹1 (𝑥, ∇V) 𝑑𝑥

<
1

2
(∫
{∇𝑢
1
̸= ∇𝑢
2
}

𝐹1 (𝑥, ∇𝑢1) 𝑑𝑥

+∫
{∇𝑢
1
̸= ∇𝑢
2
}

𝐹1 (𝑥, ∇𝑢2) 𝑑𝑥) .

(99)

Then,

∫
Ω

𝐹1 (𝑥, ∇V) 𝑑𝑥

<
1

2
(∫
Ω

𝐹1 (𝑥, ∇𝑢1) 𝑑𝑥 + ∫
Ω

𝐹1 (𝑥, ∇𝑢2) 𝑑𝑥) .

(100)

By the convexity (14) of 𝐹2, we can obtain that

∫
Ω

𝐹2 (𝑥, V) 𝑑𝑥 ≤
1

2
(∫
Ω

𝐹2 (𝑥, 𝑢1) 𝑑𝑥 + ∫
Ω

𝐹2 (𝑥, 𝑢2) 𝑑𝑥) .

(101)

Thus,

𝐼(𝐹
1
,𝐹
2
) (V, Ω) = ∫

Ω

(𝐹1 (𝑥, ∇V) + 𝐹2 (𝑥, V)) 𝑑𝑥

<
1

2
(∫
Ω

𝐹1 (𝑥, ∇𝑢1) 𝑑𝑥 + ∫
Ω

𝐹1 (𝑥, ∇𝑢2) 𝑑𝑥)

+
1

2
(∫
Ω

𝐹2 (𝑥, 𝑢1) 𝑑𝑥 + ∫
Ω

𝐹2 (𝑥, 𝑢2) 𝑑𝑥)

=
1

2
(𝐼(𝐹
1
,𝐹
2
) (𝑢1, Ω) + 𝐼(𝐹

1
,𝐹
2
) (𝑢2, Ω))

= min {𝐼(𝐹
1
,𝐹
2
) (𝑢, Ω) : 𝑢 ∈ 𝐾𝜓,𝜗 (Ω)} .

(102)

This contradiction completes the proof.

Similar to the proof of Theorem 18, we can obtain the
existence of (𝐹1, 𝐹2)-extremals.

Theorem 19. Suppose that 𝜗 ∈ 𝐻1,𝑝(Ω; 𝜇), then there exists a
unique (𝐹1, 𝐹2)-extremals 𝑢 in Ω with 𝑢 − 𝜗 ∈ 𝐻1,𝑝(Ω; 𝜇).

Remark 20. In Theorem 19, the open set Ω can be
unbounded.
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