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The main purpose of this paper is to introduce and investigate a class of 𝑞-Bernoulli, 𝑞-Euler, and 𝑞-Genocchi polynomials. The
𝑞-analogues of well-known formulas are derived. In addition, the 𝑞-analogue of the Srivastava-Pintér theorem is obtained. Some
new identities, involving 𝑞-polynomials, are proved.

1. Introduction

Throughout this paper, we always make use of the classical
definition of quantum concepts as follows.

The 𝑞-shifted factorial is defined by

(𝑎; 𝑞)
0
= 1, (𝑎; 𝑞)

𝑛
=

𝑛−1

∏

𝑗=0

(1 − 𝑞
𝑗
𝑎) , 𝑛 ∈ N,

(𝑎; 𝑞)
∞
=

∞

∏

𝑗=0

(1 − 𝑞
𝑗
𝑎) ,

𝑞
 < 1, 𝑎 ∈ C.

(1)

It is known that

(𝑎; 𝑞)
𝑛
=

𝑛

∑

𝑘=0

[
𝑛

𝑘
]

𝑞

𝑞
(1/2)𝑘(𝑘−1)

(−1)
𝑘
𝑎
𝑘
. (2)

The 𝑞-numbers and 𝑞-factorial are defined by

[𝑎]𝑞 =
1 − 𝑞
𝑎

1 − 𝑞
, (𝑞 ̸= 1, 𝑎 ∈ C) ;

[0]𝑞! = 1, [𝑛]𝑞! = [𝑛]𝑞[𝑛 − 1]𝑞!.

(3)

The 𝑞-polynomial coefficient is defined by

[
𝑛

𝑘
]

𝑞

=
(𝑞; 𝑞)
𝑛

(𝑞; 𝑞)
𝑛−𝑘
(𝑞; 𝑞)
𝑘

, (𝑘 ⩽ 𝑛, 𝑘, 𝑛 ∈ N) . (4)

In the standard approach to the 𝑞-calculus two exponen-
tial functions are used, these 𝑞-exponential functions and
improved type 𝑞-exponential function (see [1]) are defined as
follows:

𝑒
𝑞
(𝑧) =

∞

∑

𝑛=0

𝑧
𝑛

[𝑛]𝑞!
=

∞

∏

𝑘=0

1

(1 − (1 − 𝑞) 𝑞𝑘𝑧)
,

0 <
𝑞
 < 1, |𝑧| <

1
1 − 𝑞



,

𝐸
𝑞 (𝑧) = 𝑒1/𝑞 (𝑧) =

∞

∑

𝑛=0

𝑞
(1/2)𝑛(𝑛−1)

𝑧
𝑛

[𝑛]𝑞!

=

∞

∏

𝑘=0

(1 + (1 − 𝑞) 𝑞
𝑘
𝑧) , 0 <

𝑞
 < 1, 𝑧 ∈ C,

E
𝑞
(𝑧) = 𝑒

𝑞
(
𝑧

2
)𝐸
𝑞
(
𝑧

2
) =

∞

∑

𝑛=0

(−1, 𝑞)
𝑛

2𝑛

𝑧
𝑛

[𝑛]𝑞!

=

∞

∏

𝑘=0

(1 + (1 − 𝑞) 𝑞
𝑘
(𝑧/2))

(1 − (1 − 𝑞) 𝑞𝑘 (𝑧/2))
, 0 < 𝑞 < 1, |𝑧|<

2

1 − 𝑞
.

(5)
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The form of improved type of 𝑞-exponential function E
𝑞
(𝑧)

motivated us to define a new 𝑞-addition and 𝑞-subtraction as

(𝑥 ⊕
𝑞
𝑦)
𝑛

:=

𝑛

∑

𝑘=0

[
𝑛

𝑘
]

𝑞

(−1, 𝑞)
𝑘
(−1, 𝑞)

𝑛−𝑘

2𝑛
𝑥
𝑘
𝑦
𝑛−𝑘
,

𝑛 = 0, 1, 2, . . . ,

(𝑥⊖
𝑞
𝑦)
𝑛

:=

𝑛

∑

𝑘=0

[
𝑛

𝑘
]

𝑞

(−1, 𝑞)
𝑘
(−1, 𝑞)

𝑛−𝑘

2𝑛
𝑥
𝑘
(−𝑦)
𝑛−𝑘
,

𝑛 = 0, 1, 2, . . . .

(6)

It follows that

E
𝑞 (𝑡𝑥)E𝑞 (𝑡𝑦) =

∞

∑

𝑛=0

(𝑥 ⊕
𝑞
𝑦)
𝑛 𝑡
𝑛

[𝑛]𝑞!
. (7)

The Bernoulli numbers {𝐵
𝑚
}
𝑚≥0

are rational numbers in a
sequence defined by the binomial recursion formula:

𝑚

∑

𝑘=0

(
𝑚

𝑘
)𝐵
𝑘
− 𝐵
𝑚
= {

1, 𝑚 = 1,

0, 𝑚 > 1,
(8)

or equivalently, the generating function

∞

∑

𝑘=0

𝐵
𝑘

𝑡
𝑘

𝑘!
=

𝑡

𝑒𝑡 − 1
. (9)

𝑞-Analogues of the Bernoulli numbers were first studied
by Carlitz [2] in the middle of the last century when he
introduced a new sequence {𝛽

𝑚
}
𝑚⩾0

:

𝑚

∑

𝑘=0

(
𝑚

𝑘
)𝛽
𝑘
𝑞
𝑘+1

− 𝛽
𝑚
= {

1, 𝑚 = 1,

0, 𝑚 > 1.
(10)

Here and in the remainder of the paper, for the parameter 𝑞
we make the assumption that |𝑞| < 1. Clearly we recover (8)
if we let 𝑞 → 1 in (10). The 𝑞-binomial formula is known as

(1 − 𝑎)
𝑛

𝑞
= (𝑎; 𝑞)

𝑛
=

𝑛−1

∏

𝑗=0

(1 − 𝑞
𝑗
𝑎)

=

𝑛

∑

𝑘=0

[
𝑛

𝑘
]

𝑞

𝑞
(1/2)𝑘(𝑘−1)

(−1)
𝑘
𝑎
𝑘
.

(11)

The above 𝑞-standard notation can be found in [3].
Carlitz has introduced the 𝑞-Bernoulli numbers and poly-

nomials in [2]. Srivastava and Pintér proved some relations
and theorems between the Bernoulli polynomials and Euler
polynomials in [4]. They also gave some generalizations
of these polynomials. In [4–16], the authors investigated
some properties of the 𝑞-Euler polynomials and 𝑞-Genocchi
polynomials. They gave some recurrence relations. In [17],
Cenkci et al. gave the 𝑞-extension of Genocchi numbers in
a different manner. In [18], Kim gave a new concept for the
𝑞-Genocchi numbers and polynomials. In [19], Simsek et al.
investigated the 𝑞-Genocchi zeta function and 𝑙-function by

using generating functions andMellin transformation.There
are numerous recent studies on this subject by, among many
other authors, Cigler [20], Cenkci et al. [17, 21], Choi et al.
[22], Cheon [23], Luo and Srivastava [8–10], Srivastava et al.
[4, 24], Nalci and Pashaev [25] Gaboury and Kurt, [26], Kim
et al. [27], and Kurt [28].

We first give the definitions of the 𝑞-numbers and 𝑞-
polynomials. It should be mentioned that the definition of 𝑞-
Bernoulli numbers in Definition 1 can be found in [25].

Definition 1. Let 𝑞 ∈ C, 0 < |𝑞| < 1. The 𝑞-Bernoulli numbers
b
𝑛,𝑞

and polynomials B
𝑛,𝑞
(𝑥, 𝑦) are defined by means of the

generating functions:

B̂ (𝑡) :=
𝑡𝑒
𝑞
(−𝑡/2)

𝑒
𝑞 (𝑡/2) − 𝑒𝑞 (−𝑡/2)

=
𝑡

E
𝑞 (𝑡) − 1

=

∞

∑

𝑛=0

b
𝑛,𝑞

𝑡
𝑛

[𝑛]𝑞!
, |𝑡| < 2𝜋,

𝑡

E
𝑞 (𝑡) − 1

E
𝑞
(𝑡𝑥)E

𝑞
(𝑡𝑦)

=

∞

∑

𝑛=0

B
𝑛,𝑞
(𝑥, 𝑦)

𝑡
𝑛

[𝑛]𝑞!
, |𝑡| < 2𝜋.

(12)

Definition 2. Let 𝑞 ∈ C, 0 < |𝑞| < 1. The 𝑞-Euler numbers
e
𝑛,𝑞

and polynomials E
𝑛,𝑞
(𝑥, 𝑦) are defined by means of the

generating functions:

Ê (𝑡) :=
2𝑒
𝑞
(−𝑡/2)

𝑒
𝑞 (𝑡/2) + 𝑒𝑞 (−𝑡/2)

=
2

E
𝑞 (𝑡) + 1

=

∞

∑

𝑛=0

e
𝑛,𝑞

𝑡
𝑛

[𝑛]𝑞!
, |𝑡| < 𝜋,

2

E
𝑞
(𝑡) + 1

E
𝑞
(𝑡𝑥)E

𝑞
(𝑡𝑦)

=

∞

∑

𝑛=0

E
𝑛,𝑞
(𝑥, 𝑦)

𝑡
𝑛

[𝑛]𝑞!
, |𝑡| < 𝜋.

(13)

Definition 3. Let 𝑞 ∈ C, 0 < |𝑞| < 1.The 𝑞-Genocchi numbers
g
𝑛,𝑞

and polynomials G
𝑛,𝑞
(𝑥, 𝑦) are defined by means of the

generating functions:

Ĝ (𝑡) :=
2𝑡𝑒
𝑞
(−𝑡/2)

𝑒
𝑞
(𝑡/2) + 𝑒

𝑞
(−𝑡/2)

=
2𝑡

E
𝑞
(𝑡) + 1

=

∞

∑

𝑛=0

g
𝑛,𝑞

𝑡
𝑛

[𝑛]𝑞!
, |𝑡| < 𝜋,

2𝑡

E
𝑞
(𝑡) + 1

E
𝑞 (𝑡𝑥)E𝑞 (𝑡𝑦)

=

∞

∑

𝑛=0

G
𝑛,𝑞
(𝑥, 𝑦)

𝑡
𝑛

[𝑛]𝑞!
, |𝑡| < 𝜋.

(14)
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Note that Cigler [20] defined 𝑞-Genocchi numbers as

𝑡
𝑒
𝑞 (𝑡) + 𝑒𝑞 (−𝑡)

𝑒
𝑞
(𝑡) + 𝑒

𝑞
(−𝑡)

=

∞

∑

𝑛=0

𝑔
2𝑛,𝑞

(−1)
𝑛−1
(−𝑞; 𝑞)

2𝑛−1
𝑡
2𝑛

[2𝑛]𝑞!
. (15)

Then comparing g
𝑛,𝑞

with 𝑔
𝑛,𝑞
, we see that

(−1)
𝑛−1
2
2𝑛+1

g
2𝑛+2,𝑞

= (−𝑞; 𝑞)
2𝑛+1

𝑔
2𝑛+2,𝑞

. (16)

Definition 4. Let 𝑞 ∈ C, 0 < |𝑞| < 1. The 𝑞-tangent numbers
T
𝑛,𝑞

are defined by means of the generating functions:

tanh
𝑞
𝑡 = −𝑖 tan

𝑞 (𝑖𝑡) =
𝑒
𝑞 (𝑡) − 𝑒𝑞 (−𝑡)

𝑒
𝑞
(𝑡) + 𝑒

𝑞
(−𝑡)

=
E
𝑞 (2𝑡) − 1

E
𝑞
(2𝑡) + 1

=

∞

∑

𝑛=1

T
2𝑛+1,𝑞

(−1)
𝑘
𝑡
2𝑛+1

[2𝑛 + 1]𝑞!
.

(17)

It is obvious that, by letting 𝑞 tend to 1 from the left side,
we lead to the classic definition of these polynomials:

b
𝑛,𝑞
:= B
𝑛,𝑞 (0) , lim

𝑞→1
−

B
𝑛,𝑞 (𝑥) = 𝐵𝑛 (𝑥) ,

lim
𝑞→1

−

B
𝑛,𝑞
(𝑥, 𝑦) = 𝐵

𝑛
(𝑥 + 𝑦) , lim

𝑞→1
−

b
𝑛,𝑞
= 𝐵
𝑛
,

e
𝑛,𝑞
:= E
𝑛,𝑞 (0) , lim

𝑞→1
−

E
𝑛,𝑞 (𝑥) = 𝐸𝑛 (𝑥) ,

lim
𝑞→1

−

E
𝑛,𝑞
(𝑥, 𝑦) = 𝐸

𝑛
(𝑥 + 𝑦) , lim

𝑞→1
−

e
𝑛,𝑞
= 𝐸
𝑛
,

g
𝑛,𝑞
:= G
𝑛,𝑞
(0) , lim

𝑞→1
−

G
𝑛,𝑞
(𝑥) = 𝐺

𝑛
(𝑥) ,

lim
𝑞→1

−

G
𝑛,𝑞
(𝑥, 𝑦) = 𝐺

𝑛
(𝑥 + 𝑦) lim

𝑞→1
−

g
𝑛,𝑞
= 𝐺
𝑛
.

(18)

Here 𝐵
𝑛
(𝑥), 𝐸

𝑛
(𝑥), and 𝐺

𝑛
(𝑥) denote the classical Bernoulli,

Euler, and Genocchi polynomials, respectively, which are
defined by

𝑡

𝑒𝑡 − 1
𝑒
𝑡𝑥
=

∞

∑

𝑛=0

𝐵
𝑛
(𝑥)

𝑡
𝑛

𝑛!
,

2

𝑒𝑡 + 1
𝑒
𝑡𝑥
=

∞

∑

𝑛=0

𝐸
𝑛
(𝑥)

𝑡
𝑛

𝑛!
,

2𝑡

𝑒𝑡 + 1
𝑒
𝑡𝑥
=

∞

∑

𝑛=0

𝐺
𝑛 (𝑥)

𝑡
𝑛

𝑛!
.

(19)

The aim of the present paper is to obtain some results
for the above newly defined 𝑞-polynomials. It should be
mentioned that 𝑞-Bernoulli and 𝑞-Euler polynomials in our
definitions are polynomials of 𝑥 and 𝑦 and when 𝑦 = 0,
they are polynomials of 𝑥. First advantage of this approach is
that for 𝑞 → 1

−
, B
𝑛,𝑞
(𝑥, 𝑦) (E

𝑛,𝑞
(𝑥, 𝑦), G

𝑛,𝑞
(𝑥, 𝑦)) becomes

the classical BernoulliB
𝑛
(𝑥 + 𝑦) (EulerE

𝑛
(𝑥 + 𝑦), Genocchi

G
𝑛,𝑞
(𝑥, 𝑦)) polynomial and wemay obtain the 𝑞-analogues of

well-known results, for example, Srivastava and Pintér [11],
Cheon [23], and so forth. Second advantage is that, similar
to the classical case, odd numbered terms of the Bernoulli
numbers b

𝑘,𝑞
and the Genocchi numbers g

𝑘,𝑞
are zero, and

even numbered terms of the Euler numbers e
𝑛,𝑞

are zero.

2. Preliminary Results

In this section we will provide some basic formulae for the
𝑞-Bernoulli, 𝑞-Euler, and 𝑞-Genocchi numbers and polyno-
mials in order to obtain the main results of this paper in the
next section.

Lemma 5. The 𝑞-Bernoulli numbers b
𝑛,𝑞

satisfy the following
𝑞-binomial recurrence:

𝑛

∑

𝑘=0

[
𝑛

𝑘
]

𝑞

(−1, 𝑞)
𝑛−𝑘

2𝑛−𝑘
b
𝑘,𝑞
− b
𝑛,𝑞
= {

1, 𝑛 = 1,

0, 𝑛 > 1.
(20)

Proof. By a simple multiplication of (8) we see that

B̂ (𝑡)E
𝑞
(𝑡) = 𝑡 + B̂ (𝑡) . (21)

So
∞

∑

𝑛=0

𝑛

∑

𝑘=0

[
𝑛

𝑘
]

𝑞

(−1, 𝑞)
𝑛−𝑘

2𝑛−𝑘
b
𝑘,𝑞

𝑡
𝑛

[𝑛]𝑞!
= 𝑡 +

∞

∑

𝑛=0

b
𝑛,𝑞

𝑡
𝑛

[𝑛]𝑞!
. (22)

The statement follows by comparing 𝑡𝑚 coefficients.

We use this formula to calculate the first few b
𝑘,𝑞
:

b
0,𝑞
= 1,

b
1,𝑞
= −

1

2
,

b
2,𝑞
=
1

4

𝑞 (𝑞 + 1)

𝑞2 + 𝑞 + 1
=
𝑞[2]𝑞

4[3]𝑞

,

b
3,𝑞
= 0.

(23)

The similar property can be proved for 𝑞-Euler numbers

𝑚

∑

𝑘=0

[
𝑛

𝑘
]

𝑞

(−1, 𝑞)
𝑛−𝑘

2𝑛−𝑘
e
𝑘,𝑞
+ e
𝑚,𝑞

= {
2, 𝑚 = 0,

0, 𝑚 > 0.
(24)

and 𝑞-Genocchi numbers

𝑚

∑

𝑘=0

[
𝑛

𝑘
]

𝑞

(−1, 𝑞)
𝑛−𝑘

2𝑛−𝑘
g
𝑘,𝑞
+ g
𝑚,𝑞

= {
2, 𝑚 = 1,

0, 𝑚 > 1.
(25)

Using the above recurrence formulae we calculate the first
few e
𝑛,𝑞

and g
𝑛,𝑞

terms as well:

e
0,𝑞
= 1, g

0,𝑞
= 0,

e
1,𝑞
= −

1

2
, g

1,𝑞
= 1,

e
2,𝑞
= 0, g

2,𝑞
= −

[2]𝑞

2
= −

𝑞 + 1

2
,

e
3,𝑞
=
[3]𝑞[2]𝑞 − [4]𝑞

8
=
𝑞 (1 + 𝑞)

8
, g

3,𝑞
= 0.

(26)



4 Abstract and Applied Analysis

Remark 6. The first advantage of the new 𝑞-numbers
b
𝑘,𝑞
, e
𝑘,𝑞
, and g

𝑘,𝑞
is that similar to classical case odd num-

bered terms of the Bernoulli numbers b
𝑘,𝑞

and the Genocchi
numbers g

𝑘,𝑞
are zero, and even numbered terms of the Euler

numbers e
𝑛,𝑞

are zero.

Next lemma gives the relationship between 𝑞-Genocchi
numbers and 𝑞-Tangent numbers.

Lemma 7. For any 𝑛 ∈ N, we have

T
2𝑛+1,𝑞

= g
2𝑛+2,𝑞

(−1)
𝑘−1
2
2𝑛+1

[2𝑛 + 2]𝑞

. (27)

Proof. First we recall the definition of 𝑞-trigonometric func-
tions:

cos
𝑞
𝑡 =

𝑒
𝑞
(𝑖𝑡) + 𝑒

𝑞
(−𝑖𝑡)

2
, sin

𝑞
𝑡 =

𝑒
𝑞
(𝑖𝑡) − 𝑒

𝑞
(−𝑖𝑡)

2𝑖
,

𝑖 tan
𝑞
𝑡 =

𝑒
𝑞
(𝑖𝑡) − 𝑒

𝑞
(−𝑖𝑡)

𝑒
𝑞 (𝑖𝑡) + 𝑒𝑞 (−𝑖𝑡)

, cot
𝑞
𝑡 = 𝑖

𝑒
𝑞
(𝑖𝑡) + 𝑒

𝑞
(−𝑖𝑡)

𝑒
𝑞 (𝑖𝑡) − 𝑒𝑞 (−𝑖𝑡)

.

(28)

Now by choosing 𝑧 = 2𝑖𝑡 in B̂(𝑧), we get

B̂ (2𝑖𝑡) =
2𝑖𝑡

E
𝑞
(2𝑖𝑡) − 1

=
𝑡𝑒
𝑞
(−𝑖𝑡)

sin
𝑞
𝑡

=

∞

∑

𝑛=0

b
𝑛,𝑞

(2𝑖𝑡)
𝑛

[𝑛]𝑞!
. (29)

It follows that

B̂ (2𝑖𝑡) =
𝑡𝑒
𝑞
(−𝑖𝑡)

sin
𝑞
𝑡

=
𝑡

sin
𝑞
𝑡
(cos
𝑞
𝑡 − 𝑖 sin

𝑞
𝑡) = 𝑡 cot

𝑞
𝑡 − 𝑖𝑡

= b
0,𝑞
+ 2𝑖𝑡b

1,𝑞
+

∞

∑

𝑛=2

b
𝑛,𝑞

(2𝑖𝑡)
𝑛

[𝑛]𝑞!

= 1 − 𝑖𝑡 +

∞

∑

𝑛=2

b
𝑛,𝑞

(2𝑖𝑡)
𝑛

[𝑛]𝑞!
.

(30)

Since the function 𝑡 cot
𝑞
𝑡 is even in the above sum odd

coefficients b
2𝑘+1,𝑞

, 𝑘 = 1, 2, . . ., are zero, and we get

𝑡 cot
𝑞
𝑡 = 1 +

∞

∑

𝑛=2

b
𝑛,𝑞

(2𝑖𝑡)
𝑛

[𝑛]𝑞!
= 1 +

∞

∑

𝑛=1

b
𝑛,𝑞

(2𝑖𝑡)
2𝑛

[2𝑛]𝑞!
. (31)

By choosing 𝑧 = 2𝑖𝑡 in Ĝ(𝑧), we get

Ĝ (2𝑖𝑡) =
4𝑖𝑡

E
𝑞
(2𝑖𝑡) + 1

=
2𝑖𝑡𝑒
𝑞 (−𝑖𝑡)

cos
𝑞
𝑡

=

∞

∑

𝑛=0

g
𝑛,𝑞

(2𝑖𝑡)
𝑛

[𝑛]𝑞!
,

Ĝ (2𝑖𝑡) =
4𝑖𝑡

E
𝑞 (2𝑖𝑡) + 1

=
2𝑖𝑡𝑒
𝑞 (−𝑖𝑡)

cos
𝑞
𝑡

=
2𝑖𝑡

cos
𝑞
𝑡
(cos
𝑞
𝑡 − 𝑖 sin

𝑞
𝑡)

= 2𝑖𝑡 + 2𝑡 tan
𝑞
𝑡 = g
0,𝑞
+ 2𝑖𝑡g

1,𝑞
+

∞

∑

𝑛=2

g
𝑛,𝑞

(2𝑖𝑡)
𝑛

[𝑛]𝑞!

= 2𝑖𝑡 +

∞

∑

𝑛=2

g
𝑛,𝑞

(2𝑖𝑡)
𝑛

[𝑛]𝑞!
.

(32)

It follows that

2𝑡 tan
𝑞
𝑡 =

∞

∑

𝑛=1

g
2𝑛,𝑞

(2𝑖𝑡)
2𝑛

[2𝑛]𝑞!
,

tan
𝑞
𝑡 =

∞

∑

𝑛=1

g
2𝑛,𝑞

(−1)
𝑛
(2𝑡)
2𝑛−1

[2𝑛]𝑞!
,

tanh
𝑞
𝑡 = −𝑖 tan

𝑞
(𝑖𝑡) = −𝑖

∞

∑

𝑛=1

g
2𝑛,𝑞

(−1)
𝑛
(2𝑖𝑡)
2𝑛−1

[2𝑛]𝑞!

= −

∞

∑

𝑛=1

g
2𝑛,𝑞

(2𝑡)
2𝑛−1

[2𝑛]𝑞!
= −

∞

∑

𝑛=1

g
2𝑛+2,𝑞

(2𝑡)
2𝑛+1

[2𝑛 + 2]𝑞!
,

(33)

Thus

tanh
𝑞
𝑡 = −𝑖tan

𝑞 (𝑖𝑡) =
𝑒
𝑞
(𝑡) − 𝑒

𝑞
(−𝑡)

𝑒
𝑞
(𝑡) + 𝑒

𝑞
(−𝑡)

=
E
𝑞
(2𝑡) − 1

E
𝑞
(2𝑡) + 1

=

∞

∑

𝑛=1

T
2𝑛+1,𝑞

(−1)
𝑘
𝑡
2𝑛+1

[2𝑛 + 1]𝑞!
,

T
2𝑛+1,𝑞

= g
2𝑛+2,𝑞

(−1)
𝑘−1
2
2𝑛+1

[2𝑛 + 2]𝑞

.

(34)

The following result is a 𝑞-analogue of the addition
theorem, for the classical Bernoulli, Euler, and Genocchi
polynomials.

Lemma 8 (addition theorems). For all 𝑥, 𝑦 ∈ C we have

B
𝑛,𝑞
(𝑥, 𝑦) =

𝑛

∑

𝑘=0

[
𝑛

𝑘
]

𝑞

b
𝑘,𝑞
(𝑥 ⊕
𝑞
𝑦)
𝑛−𝑘

,

B
𝑛,𝑞
(𝑥, 𝑦) =

𝑛

∑

𝑘=0

[
𝑛

𝑘
]

𝑞

(−1, 𝑞)
𝑛−𝑘

2𝑛−𝑘
B
𝑘,𝑞 (𝑥) 𝑦

𝑛−𝑘
,
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E
𝑛,𝑞
(𝑥, 𝑦) =

𝑛

∑

𝑘=0

[
𝑛

𝑘
]

𝑞

e
𝑘,𝑞
(𝑥 ⊕
𝑞
𝑦)
𝑛−𝑘

,

E
𝑛,𝑞
(𝑥, 𝑦) =

𝑛

∑

𝑘=0

[
𝑛

𝑘
]

𝑞

(−1, 𝑞)
𝑛−𝑘

2𝑛−𝑘
E
𝑘,𝑞
(𝑥) 𝑦
𝑛−𝑘
,

G
𝑛,𝑞
(𝑥, 𝑦) =

𝑛

∑

𝑘=0

[
𝑛

𝑘
]

𝑞

g
𝑘,𝑞
(𝑥 ⊕
𝑞
𝑦)
𝑛−𝑘

,

G
𝑛,𝑞
(𝑥, 𝑦) =

𝑛

∑

𝑘=0

𝑛

∑

𝑘=0

[
𝑛

𝑘
]

𝑞

(−1, 𝑞)
𝑛−𝑘

2𝑛−𝑘
G
𝑘,𝑞
(𝑥) 𝑦
𝑛−𝑘
.

(35)

Proof. We prove only the first formula. It is a consequence of
the following identity:

∞

∑

𝑛=0

B
𝑛,𝑞
(𝑥, 𝑦)

𝑡
𝑛

[𝑛]𝑞!
=

𝑡

E
𝑞
(𝑡) − 1

E
𝑞
(𝑡𝑥)E

𝑞
(𝑡𝑦)

=

∞

∑

𝑛=0

b
𝑛,𝑞

𝑡
𝑛

[𝑛]𝑞!

∞

∑

𝑛=0

(𝑥 ⊕
𝑞
𝑦)
𝑛 𝑡
𝑛

[𝑛]𝑞!

=

∞

∑

𝑛=0

𝑛

∑

𝑘=0

[
𝑛

𝑘
]

𝑞

b
𝑘,𝑞
(𝑥 ⊕
𝑞
𝑦)
𝑛−𝑘 𝑡
𝑛

[𝑛]𝑞!
.

(36)

In particular, setting 𝑦 = 0 in (35), we get the following
formulae for 𝑞-Bernoulli, 𝑞-Euler and 𝑞-Genocchi polynomi-
als, respectively:

B
𝑛,𝑞
(𝑥) =

𝑛

∑

𝑘=0

[
𝑛

𝑘
]

𝑞

(−1, 𝑞)
𝑛−𝑘

2𝑛−𝑘
b
𝑘,𝑞
𝑥
𝑛−𝑘
,

E
𝑛,𝑞
(𝑥) =

𝑛

∑

𝑘=0

[
𝑛

𝑘
]

𝑞

(−1, 𝑞)
𝑛−𝑘

2𝑛−𝑘
e
𝑘,𝑞
𝑥
𝑛−𝑘
,

(37)

G
𝑛,𝑞 (𝑥) =

𝑛

∑

𝑘=0

[
𝑛

𝑘
]

𝑞

(−1, 𝑞)
𝑛−𝑘

2𝑛−𝑘
g
𝑘,𝑞
𝑥
𝑛−𝑘
. (38)

Setting 𝑦 = 1 in (35), we get

B
𝑛,𝑞
(𝑥, 1) =

𝑛

∑

𝑘=0

[
𝑛

𝑘
]

𝑞

(−1, 𝑞)
𝑛−𝑘

2𝑛−𝑘
B
𝑘,𝑞
(𝑥) ,

E
𝑛,𝑞
(𝑥, 1) =

𝑛

∑

𝑘=0

[
𝑛

𝑘
]

𝑞

(−1, 𝑞)
𝑛−𝑘

2𝑛−𝑘
E
𝑘,𝑞
(𝑥) ,

G
𝑛,𝑞
(𝑥, 1) =

𝑛

∑

𝑘=0

[
𝑛

𝑘
]

𝑞

(−1, 𝑞)
𝑛−𝑘

2𝑛−𝑘
G
𝑘,𝑞
(𝑥) .

(39)

Clearly (39) is 𝑞-analogues of

𝐵
𝑛 (𝑥 + 1) =

𝑛

∑

𝑘=0

(
𝑛

𝑘
)𝐵
𝑘 (𝑥) ,

𝐸
𝑛
(𝑥 + 1) =

𝑛

∑

𝑘=0

(
𝑛

𝑘
)𝐸
𝑘
(𝑥) ,

𝐺
𝑛
(𝑥 + 1) =

𝑛

∑

𝑘=0

(
𝑛

𝑘
)𝐺
𝑘
(𝑥) ,

(40)

respectively.

Lemma 9. The odd coefficients of the 𝑞-Bernoulli numbers,
except the first one, are zero. That means b

𝑛,𝑞
= 0 where

𝑛 = 2𝑟 + 1 (𝑟 ∈ N).

Proof. It follows from the fact that the function

𝑓 (𝑡) =

∞

∑

𝑛=0

b
𝑛,𝑞

𝑡
𝑛

[𝑛]𝑞!
− b
1,𝑞
𝑡

=
𝑡

E
𝑞 (𝑡) − 1

+
𝑡

2
=
𝑡

2
(
E
𝑞 (𝑡) + 1

E
𝑞 (𝑡) − 1

) ,

(41)

By using 𝑞-derivative we obtain the next lemma.

Lemma 10. One has

𝐷
𝑞,𝑥
B
𝑛,𝑞 (𝑥) = [𝑛]𝑞

B
𝑛−1,𝑞 (𝑥) +B

𝑛−1,𝑞
(𝑞𝑥)

2
,

𝐷
𝑞,𝑥
E
𝑛,𝑞
(𝑥) = [𝑛]𝑞

E
𝑛−1,𝑞

(𝑥) + E
𝑛−1,𝑞

(𝑞𝑥)

2
,

𝐷
𝑞,𝑥
G
𝑛,𝑞 (𝑥) = [𝑛]𝑞

G
𝑛−1,𝑞

(𝑥) +G
𝑛−1,𝑞

(𝑞𝑥)

2
.

(42)

Lemma 11 (difference equations). One has

B
𝑛,𝑞
(𝑥, 1) −B

𝑛,𝑞
(𝑥) =

(−1; 𝑞)
𝑛−1

2𝑛−1
[𝑛]𝑞𝑥
𝑛−1
, 𝑛 ≥ 1, (43)

E
𝑛,𝑞 (𝑥, 1) + E

𝑛,𝑞 (𝑥) = 2
(−1; 𝑞)

𝑛

2𝑛
𝑥
𝑛
, 𝑛 ≥ 0, (44)

G
𝑛,𝑞
(𝑥, 1) +G

𝑛,𝑞
(𝑥) = 2

(−1; 𝑞)
𝑛−1

2𝑛−1
[𝑛]𝑞𝑥
𝑛−1
, 𝑛 ≥ 1. (45)

Proof. Weprove the identity for the 𝑞-Bernoulli polynomials.
From the identity

𝑡E
𝑞
(𝑡)

E
𝑞
(𝑡) − 1

E
𝑞 (𝑡𝑥) = 𝑡E𝑞 (𝑡𝑥) +

𝑡

E
𝑞
(𝑡) − 1

E
𝑞 (𝑡𝑥) , (46)

it follows that
∞

∑

𝑛=0

𝑛

∑

𝑘=0

[
𝑛

𝑘
]

𝑞

(−1, 𝑞)
𝑛−𝑘

2𝑛−𝑘
B
𝑘,𝑞 (𝑥)

𝑡
𝑛

[𝑛]𝑞!

=

∞

∑

𝑛=0

(−1, 𝑞)
𝑛

2𝑛
𝑥
𝑛 𝑡
𝑛+1

[𝑛]𝑞!
+

∞

∑

𝑛=0

B
𝑛,𝑞
(𝑥)

𝑡
𝑛

[𝑛]𝑞!
.

(47)
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From (43) and (37), (44) and (38), we obtain the following
formulae.

Lemma 12. One has

𝑥
𝑛
=

2
𝑛

(−1; 𝑞)
𝑛
[𝑛]𝑞

𝑛

∑

𝑘=0

[
𝑛 + 1

𝑘
]

𝑞

(−1; 𝑞)
𝑛+1−𝑘

2𝑛+1−𝑘
B
𝑘,𝑞
(𝑥) ,

𝑥
𝑛
=

2
𝑛−1

(−1; 𝑞)
𝑛

(

𝑛

∑

𝑘=0

[
𝑛

𝑘
]

𝑞

(−1; 𝑞)
𝑛−𝑘

2𝑛−𝑘
E
𝑘,𝑞 (𝑥) + E

𝑛,𝑞 (𝑥)) ,

𝑥
𝑛
=

2
𝑛−1

(−1; 𝑞)
𝑛
[𝑛 + 1]𝑞

× (

𝑛+1

∑

𝑘=0

[
𝑛 + 1

𝑘
]

𝑞

(−1; 𝑞)
𝑛+1−𝑘

2𝑛+1−𝑘
G
𝑘,𝑞
(𝑥) +G

𝑛+1,𝑞
(𝑥)) .

(48)

The above formulae are 𝑞-analogues of the following
familiar expansions:

𝑥
𝑛
=

1

𝑛 + 1

𝑛

∑

𝑘=0

(
𝑛 + 1

𝑘
)𝐵
𝑘
(𝑥) ,

𝑥
𝑛
=
1

2
[

𝑛

∑

𝑘=0

(
𝑛

𝑘
)𝐸
𝑘 (𝑥) + 𝐸𝑛 (𝑥)] ,

𝑥
𝑛
=

1

2 (𝑛 + 1)
[

𝑛+1

∑

𝑘=0

(
𝑛 + 1

𝑘
)𝐸
𝑘
(𝑥) + 𝐸

𝑛+1
(𝑥)] ,

(49)

respectively.

Lemma 13. The following identities hold true:

𝑛

∑

𝑘=0

[
𝑛

𝑘
]

𝑞

(−1, 𝑞)
𝑛−𝑘

2𝑛−𝑘
B
𝑘,𝑞
(𝑥, 𝑦) −B

𝑛,𝑞
(𝑥, 𝑦)

= [𝑛]𝑞(𝑥 ⊕𝑞 𝑦)
𝑛−1

,

𝑛

∑

𝑘=0

[
𝑛

𝑘
]

𝑞

(−1, 𝑞)
𝑛−𝑘

2𝑛−𝑘
E
𝑘,𝑞
(𝑥, 𝑦) + E

𝑛,𝑞
(𝑥, 𝑦) = 2(𝑥 ⊕

𝑞
𝑦)
𝑛

,

𝑛

∑

𝑘=0

[
𝑛

𝑘
]

𝑞

(−1, 𝑞)
𝑛−𝑘

2𝑛−𝑘
G
𝑘,𝑞
(𝑥, 𝑦) +G

𝑛,𝑞
(𝑥, 𝑦)

= 2[𝑛]𝑞(𝑥 ⊕𝑞 𝑦)
𝑛−1

.

(50)

Proof. We prove the identity for the 𝑞-Bernoulli polynomi-
als. From the identity

𝑡E
𝑞
(𝑡)

E
𝑞
(𝑡) − 1

E
𝑞 (𝑡𝑥)E𝑞 (𝑡𝑦)

= 𝑡E
𝑞
(𝑡𝑥)E

𝑞
(𝑡𝑦) +

𝑡

E
𝑞 (𝑡) − 1

E
𝑞
(𝑡𝑥)E

𝑞
(𝑡𝑦) ,

(51)

it follows that
∞

∑

𝑛=0

𝑛

∑

𝑘=0

[
𝑛

𝑘
]

𝑞

(−1, 𝑞)
𝑛−𝑘

2𝑛−𝑘
B
𝑘,𝑞
(𝑥, 𝑦)

𝑡
𝑛

[𝑛]𝑞!

=

∞

∑

𝑛=0

𝑛

∑

𝑘=0

[
𝑛

𝑘
]

𝑞

(−1, 𝑞)
𝑘
(−1, 𝑞)

𝑛−𝑘

2𝑛
𝑥
𝑘
𝑦
𝑛−𝑘 𝑡
𝑛+1

[𝑛]𝑞!

+

∞

∑

𝑛=0

B
𝑛,𝑞
(𝑥, 𝑦)

𝑡
𝑛

[𝑛]𝑞!
.

(52)

3. Some New Formulae

The classical Cayley transformation 𝑧 →Cay(𝑧, 𝑎) := (1 +

𝑎𝑧)/(1−𝑎𝑧)motivated us to derive the formula forE
𝑞
(𝑞𝑡). In

addition, by substituting Cay(𝑧, (𝑞 − 1)/2) in the generating
formula we have

B̂
𝑞
(𝑞𝑡) B̂

𝑞 (𝑡) = (B̂q (𝑞𝑡) − 𝑞B̂𝑞 (𝑡) (1 + (1 − 𝑞)
𝑡

2
))

×
1

1 − 𝑞
×

2

E
𝑞 (𝑡) + 1

.

(53)

The right hand side can be presented by 𝑞-Euler numbers.
Now equating coefficients of 𝑡𝑛 we get the following identity.
In the case that 𝑛 = 0, we find the first improved 𝑞-Euler
number which is exactly 1.

Proposition 14. For all 𝑛 ≥ 1,
𝑛

∑

𝑘=0

[
𝑛

𝑘
]

𝑞

B
𝑘,𝑞
B
𝑛−𝑘,𝑞

𝑞
𝑘

= −𝑞

𝑛

∑

𝑘=0

[
𝑛

𝑘
]

𝑞

(−1, 𝑞)
𝑛−𝑘

2𝑛−𝑘
B
𝑘,𝑞
E
𝑛−𝑘,𝑞[𝑘 − 1]𝑞

−
𝑞

2

𝑛−1

∑

𝑘=0

[
𝑛 − 1

𝑘
]

𝑞

(−1, 𝑞)
𝑛−𝑘−1

2𝑛−𝑘−1
B
𝑘,𝑞
E
𝑛−𝑘−1,𝑞[𝑛]𝑞.

(54)

Let us take a 𝑞-derivative from the generating function,
after simplifying the equation, by knowing the quotient rule
for quantum derivative, and also using

E
𝑞
(𝑞𝑡) =

1 − (1 − 𝑞) (𝑡/2)

1 + (1 − 𝑞) (𝑡/2)
E
𝑞
(𝑡) ,

𝐷
𝑞
(Eq (𝑡)) =

E
𝑞
(𝑞𝑡) +E

𝑞 (𝑡)

2
,

(55)

one has

B̂
𝑞
(𝑞𝑡) B̂

𝑞
(𝑡) =

2 + (1 − 𝑞) 𝑡

2E
𝑞 (𝑡) (𝑞 − 1)

(𝑞B̂
𝑞
(𝑡) − B̂

𝑞
(𝑞𝑡)) . (56)

It is clear that E−1
𝑞
(𝑡) = E

𝑞
(−𝑡). Now, by equating

coefficients of 𝑡𝑛 we obtain the following identity.
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Proposition 15. For all 𝑛 ≥ 1,

2𝑛

∑

𝑘=0

[
2𝑛

𝑘
]

𝑞

B
𝑘,𝑞
B
2𝑛−𝑘,𝑞

𝑞
𝑘

= −𝑞

2𝑛

∑

𝑘=0

[
2𝑛

𝑘
]

𝑞

(−1, 𝑞)
2𝑛−𝑘

22𝑛−𝑘
B
𝑘,𝑞[𝑘 − 1]𝑞(−1)

𝑘

+
𝑞 (1 − 𝑞)

2

2𝑛−1

∑

𝑘=0

[
2𝑛 − 1

𝑘
]

𝑞

(−1, 𝑞)
2𝑛−1−𝑘

22𝑛−1−𝑘
B
𝑘,𝑞

× [𝑘 − 1]𝑞(−1)
𝑘
,

2𝑛+1

∑

𝑘=0

[
2𝑛 + 1

𝑘
]

𝑞

B
𝑘,𝑞
B
2𝑛−𝑘+1,𝑞

𝑞
𝑘

= 𝑞

2𝑛+1

∑

𝑘=0

[
2𝑛 + 1

𝑘
]

𝑞

(−1, 𝑞)
2𝑛+1−𝑘

22𝑛+1−𝑘
B
𝑘,𝑞[𝑘 − 1]𝑞(−1)

𝑘

−
𝑞 (1 − 𝑞)

2

2𝑛

∑

𝑘=0

[
2𝑛

𝑘
]

𝑞

(−1, 𝑞)
2𝑛−𝑘

22𝑛−𝑘
B
𝑘,𝑞[𝑘 − 1]𝑞(−1)

𝑘
.

(57)

We may also derive a differential equation for B̂
𝑞
(𝑡). If

we differentiate both sides of the generating function with
respect to 𝑡, after a little calculation we find that

𝜕

𝜕𝑡
B̂
𝑞
(𝑡)

= B̂
𝑞 (𝑡) (

1

𝑡
−
(1 − 𝑞)E

𝑞
(𝑡)

E
𝑞
(𝑡) − 1

(

∞

∑

𝑘=0

4𝑞
𝑘

4 − (1 − 𝑞)
2
𝑞2𝑘

)) .

(58)

If we differentiate B̂
𝑞
(𝑡) with respect to 𝑞, we obtain,

instead,

𝜕

𝜕𝑞
B̂
𝑞
(𝑡) = −B̂

2

𝑞
(𝑡)E
𝑞
(𝑡)

∞

∑

𝑘=0

4𝑡 (𝑘𝑞
𝑘−1

− (𝑘 + 1) 𝑞
𝑘
)

4 − (1 − 𝑞)
2
𝑞2𝑘

. (59)

Again, using the generating function and combining this
with the derivative we get the partial differential equation.

Proposition 16. Consider the following:

𝜕

𝜕𝑡
B̂
𝑞
(𝑡) −

𝜕

𝜕𝑞
B̂
𝑞
(𝑡)

=
B̂
𝑞
(𝑡)

𝑡
+

B̂2
𝑞
(𝑡)E
𝑞
(𝑡)

𝑡

×

∞

∑

𝑘=0

4𝑡 (𝑘𝑞
𝑘−1

− (𝑘 + 1) 𝑞
𝑘
) − 𝑞
𝑘
(1 − 𝑞)

4 − (1 − 𝑞)
2
𝑞2𝑘

.

(60)

4. Explicit Relationship between the
𝑞-Bernoulli and 𝑞-Euler Polynomials

In this section, we give some explicit relationship between
the 𝑞-Bernoulli and 𝑞-Euler polynomials.We also obtain new
formulae and some special cases for them.These formulae are
extensions of the formulae of Srivastava and Pintér, Cheon,
and others.

We present natural 𝑞-extensions of themain results in the
papers [9, 11]; see Theorems 17 and 19.

Theorem 17. For 𝑛 ∈ N
0
, the following relationships hold true:

B
𝑛,𝑞
(𝑥, 𝑦)

=
1

2

𝑛

∑

𝑘=0

[
𝑛

𝑘
]

𝑞

𝑚
𝑘−𝑛 [

[

B
𝑘,𝑞 (𝑥) +

𝑘

∑

𝑗=0

[
𝑛

𝑗
]

𝑞

(−1, 𝑞)
𝑘−𝑗

B
𝑗,𝑞 (𝑥)

2𝑘−𝑗𝑚𝑘−𝑗
]

]

× E
𝑛−𝑘,𝑞

(𝑚𝑦)

=
1

2

𝑛

∑

𝑘=0

[
𝑛

𝑘
]

𝑞

𝑚
𝑘−𝑛

[B
𝑘,𝑞
(𝑥) +B

𝑘,𝑞
(𝑥,

1

𝑚
)]E
𝑛−𝑘,𝑞

(𝑚𝑦) .

(61)

Proof. Using the following identity

𝑡

E
𝑞
(𝑡) − 1

E
𝑞
(𝑡𝑥)E

𝑞
(𝑡𝑦)

=
𝑡

E
𝑞
(𝑡) − 1

E
𝑞 (𝑡𝑥)

⋅
E
𝑞 (𝑡/𝑚) + 1

2
⋅

2

E
𝑞
(𝑡/𝑚) + 1

E
𝑞
(
𝑡

𝑚
𝑚𝑦)

(62)

we have

∞

∑

𝑛=0

B
𝑛,𝑞
(𝑥, 𝑦)

𝑡
𝑛

[𝑛]𝑞!

=
1

2

∞

∑

𝑛=0

E
𝑛,𝑞
(𝑚𝑦)

𝑡
𝑛

𝑚𝑛[𝑛]𝑞!

∞

∑

𝑛=0

(−1, 𝑞)
𝑛

𝑚𝑛2𝑛

𝑡
𝑛

[𝑛]𝑞!

∞

∑

𝑛=0

B
𝑛,𝑞
(𝑥)

𝑡
𝑛

[𝑛]𝑞!

+
1

2

∞

∑

𝑛=0

E
𝑛,𝑞
(𝑚𝑦)

𝑡
𝑛

𝑚𝑛[𝑛]𝑞!

∞

∑

𝑛=0

B
𝑛,𝑞 (𝑥)

𝑡
𝑛

[𝑛]𝑞!

=: 𝐼
1
+ 𝐼
2
.

(63)

It is clear that

𝐼
2
=
1

2

∞

∑

𝑛=0

E
𝑛,𝑞
(𝑚𝑦)

𝑡
𝑛

𝑚𝑛[𝑛]𝑞!

∞

∑

𝑛=0

B
𝑛,𝑞
(𝑥)

𝑡
𝑛

[𝑛]𝑞!

=
1

2

∞

∑

𝑛=0

𝑛

∑

𝑘=0

[
𝑛

𝑗
]

𝑞

𝑚
𝑘−𝑛

B
𝑘,𝑞 (𝑥)E𝑛−𝑘,𝑞 (𝑚𝑦)

𝑡
𝑛

[𝑛]𝑞!
.

(64)



8 Abstract and Applied Analysis

On the other hand

𝐼
1
=
1

2

∞

∑

𝑛=0

E
𝑛,𝑞
(𝑚𝑦)

𝑡
𝑛

𝑚𝑛[𝑛]𝑞!

×

∞

∑

𝑛=0

𝑛

∑

𝑗=0

[
𝑛

𝑗
]

𝑞

B
𝑗,𝑞 (𝑥)

(−1, 𝑞)
𝑛−𝑗

𝑚𝑛−𝑗2𝑛−𝑗

𝑡
𝑛

[𝑛]𝑞!

=
1

2

∞

∑

𝑛=0

𝑛

∑

𝑘=0

[
𝑛

𝑘
]

𝑞

E
𝑛−𝑘,𝑞

(𝑚𝑦)

×

𝑘

∑

𝑗=0

[
𝑛

𝑗
]

𝑞

B
𝑗,𝑞
(𝑥) (−1, 𝑞)

𝑘−𝑗

𝑚𝑛−𝑘𝑚𝑘−𝑗2𝑘−𝑗

𝑡
𝑛

[𝑛]𝑞!
.

(65)

Therefore
∞

∑

𝑛=0

B
𝑛,𝑞
(𝑥, 𝑦)

𝑡
𝑛

[𝑛]𝑞!

=
1

2

∞

∑

𝑛=0

𝑛

∑

𝑘=0

[
𝑛

𝑘
]

𝑞

𝑚
𝑘−𝑛

× [

[

B
𝑘,𝑞 (𝑥) +

𝑘

∑

𝑗=0

[
𝑛

𝑗
]

𝑞

(−1, 𝑞)
𝑘−𝑗

B
𝑗,𝑞
(𝑥)

2𝑘−𝑗𝑚𝑘−𝑗
]

]

× E
𝑛−𝑘,𝑞

(𝑚𝑦)
𝑡
𝑛

[𝑛]𝑞!
.

(66)

It remains to equate the coefficients of 𝑡𝑛.

Next we discuss some special cases of Theorem 17.

Corollary 18. For 𝑛 ∈ N
0
the following relationship holds true:

B
𝑛,𝑞
(𝑥, 𝑦)

=

𝑛

∑

𝑘=0

[
𝑛

𝑘
]

𝑞

(B
𝑘,𝑞 (𝑥) +

(−1; 𝑞)
𝑘−1

2𝑘
[𝑘]𝑞𝑥
𝑘−1
)E
𝑛−𝑘,𝑞

(𝑦) .

(67)

The formula (67) is a 𝑞-extension of the Cheon’s main
result [23].

Theorem 19. For 𝑛 ∈ N
0
, the following relationships

E
𝑛,𝑞
(𝑥, 𝑦)

=
1

[𝑛 + 1]𝑞

×

𝑛+1

∑

𝑘=0

1

𝑚𝑛+1−𝑘
[
𝑛 + 1

𝑘
]

𝑞

× (

𝑘

∑

𝑗=0

[
𝑘

𝑗
]

𝑞

(−1, 𝑞)
𝑘−𝑗

𝑚𝑘−𝑗2𝑘−𝑗
E
𝑗,𝑞
(𝑦) − E

𝑘,𝑞
(𝑦))

×B
𝑛+1−𝑘,𝑞 (𝑚𝑥)

(68)

hold true between the 𝑞-Bernoulli polynomials and 𝑞-Euler
polynomials.

Proof. The proof is based on the following identity:
2

E
𝑞
(𝑡) + 1

E
𝑞 (𝑡𝑥)E𝑞 (𝑡𝑦)

=
2

E
𝑞 (𝑡) + 1

E
𝑞
(𝑡𝑦)

⋅
E
𝑞
(𝑡/𝑚) − 1

𝑡
⋅

𝑡

E
𝑞
(𝑡/𝑚) − 1

E
𝑞
(
𝑡

𝑚
𝑚𝑥) .

(69)

Indeed
∞

∑

𝑛=0

E
𝑛,𝑞
(𝑥, 𝑦)

𝑡
𝑛

[𝑛]𝑞!

=

∞

∑

𝑛=0

E
𝑛,𝑞
(𝑦)

𝑡
𝑛

[𝑛]𝑞!

∞

∑

𝑛=0

(−1, 𝑞)
𝑛

𝑚𝑛2𝑛

𝑡
𝑛−1

[𝑛]𝑞!

×

∞

∑

𝑛=0

B
𝑛,𝑞
(𝑚𝑥)

𝑡
𝑛

𝑚𝑛[𝑛]𝑞!

−

∞

∑

𝑛=0

E
𝑛,𝑞
(𝑦)

𝑡
𝑛−1

[𝑛]𝑞!

∞

∑

𝑛=0

B
𝑛,𝑞
(𝑚𝑥)

𝑡
𝑛

𝑚𝑛[𝑛]𝑞!

=: 𝐼
1
− 𝐼
2
.

(70)

It follows that

𝐼
2
=
1

𝑡

∞

∑

𝑛=0

E
𝑛,𝑞
(𝑦)

𝑡
𝑛

[𝑛]𝑞!

∞

∑

𝑛=0

B
𝑛,𝑞
(𝑚𝑥)

𝑡
𝑛

𝑚𝑛[𝑛]𝑞!

=
1

𝑡

∞

∑

𝑛=0

𝑛

∑

𝑘=0

[
𝑛

𝑘
]

𝑞

1

𝑚𝑛−𝑘
E
𝑘,𝑞
(𝑦)B

𝑛−𝑘,𝑞 (𝑚𝑥)
𝑡
𝑛

[𝑛]𝑞!

=

∞

∑

𝑛=0

1

[𝑛 + 1]𝑞

×

𝑛+1

∑

𝑘=0

[
𝑛 + 1

𝑘
]

𝑞

1

𝑚𝑛+1−𝑘
E
𝑘,𝑞
(𝑦)B

𝑛+1−𝑘,𝑞 (𝑚𝑥)
𝑡
𝑛

[𝑛]𝑞!
,

𝐼
1
=
1

𝑡

∞

∑

𝑛=0

B
𝑛,𝑞
(𝑚𝑥)

𝑡
𝑛

𝑚𝑛[𝑛]𝑞!

×

∞

∑

𝑛=0

𝑛

∑

𝑘=0

[
𝑛

𝑘
]

𝑞

(−1, 𝑞)
𝑛−𝑘

𝑚𝑛−𝑘2𝑛−𝑘
E
𝑘,𝑞
(𝑦)

𝑡
𝑛

[𝑛]𝑞!

=
1

𝑡

∞

∑

𝑛=0

𝑛

∑

𝑘=0

[
𝑛

𝑘
]

𝑞

1

𝑚𝑛−𝑘
B
𝑛−𝑘,𝑞

(𝑚𝑥)

×

𝑘

∑

𝑗=0

[
𝑘

𝑗
]

𝑞

(−1, 𝑞)
𝑘−𝑗

𝑚𝑘−𝑗2𝑘−𝑗
E
𝑗,𝑞
(𝑦)

𝑡
𝑛−1

[𝑛]𝑞!
.

(71)

Next we give an interesting relationship between the 𝑞-
Genocchi polynomials and the 𝑞-Bernoulli polynomials.
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Theorem 20. For 𝑛 ∈ N
0
, the following relationship

G
𝑛,𝑞
(𝑥, 𝑦)

=
1

[𝑛 + 1]𝑞

×

𝑛+1

∑

𝑘=0

1

𝑚𝑛−𝑘
[
𝑛 + 1

𝑘
]

𝑞

× (

𝑘

∑

𝑗=0

[
𝑘

𝑗
]

𝑞

(−1, 𝑞)
𝑘−𝑗

𝑚𝑘−𝑗2𝑘−𝑗
G
𝑗,𝑞
(𝑥) −G

𝑘,𝑞
(𝑥))

×B
𝑛+1−𝑘,𝑞

(𝑚𝑦) ,

B
𝑛,𝑞
(𝑥, 𝑦)

=
1

2[𝑛 + 1]𝑞

×

𝑛+1

∑

𝑘=0

1

𝑚𝑛−𝑘
[
𝑛 + 1

𝑘
]

𝑞

× (

𝑘

∑

𝑗=0

[
𝑘

𝑗
]

𝑞

(−1, 𝑞)
𝑘−𝑗

𝑚𝑘−𝑗2𝑘−𝑗
B
𝑗,𝑞
(𝑥) +B

𝑘,𝑞
(𝑥))

×G
𝑛+1−𝑘,𝑞

(𝑚𝑦)

(72)

holds true between the 𝑞-Genocchi and the 𝑞-Bernoulli polyno-
mials.

Proof. Using the following identity

2𝑡

E
𝑞
(𝑡) + 1

E
𝑞
(𝑡𝑥)E

𝑞
(𝑡𝑦)

=
2𝑡

E
𝑞 (𝑡) + 1

E
𝑞
(𝑡𝑥) ⋅ (E

𝑞
(
𝑡

𝑚
) − 1)

𝑚

𝑡

⋅
𝑡/𝑚

E
𝑞
(𝑡/𝑚) − 1

⋅E
𝑞
(
𝑡

𝑚
𝑚𝑦)

(73)

we have

∞

∑

𝑛=0

G
𝑛,𝑞
(𝑥, 𝑦)

𝑡
𝑛

[𝑛]𝑞!

=
𝑚

𝑡

∞

∑

𝑛=0

G
𝑛,𝑞
(𝑥, 𝑦)

𝑡
𝑛

[𝑛]𝑞!

×

∞

∑

𝑛=0

(−1, 𝑞)
𝑛

𝑚𝑛2𝑛

𝑡
𝑛

[𝑛]𝑞!

∞

∑

𝑛=0

B
𝑛,𝑞
(𝑚𝑦)

𝑡
𝑛

𝑚𝑛[𝑛]𝑞!

−
𝑚

𝑡

∞

∑

𝑛=0

G
𝑛,𝑞
(𝑥, 𝑦)

𝑡
𝑛

[𝑛]𝑞!

∞

∑

𝑛=0

B
𝑛,𝑞
(𝑚𝑦)

𝑡
𝑛

𝑚𝑛[𝑛]𝑞!

=
𝑚

𝑡

∞

∑

𝑛=0

(

𝑛

∑

𝑘=0

[
𝑛

𝑘
]

𝑞

(−1, 𝑞)
𝑛−𝑘

𝑚𝑛−𝑘2𝑛−𝑘
G
𝑘,𝑞 (𝑥) −G

𝑛,𝑞 (𝑥))
𝑡
𝑛

[𝑛]𝑞!

×

∞

∑

𝑛=0

B
𝑛,𝑞
(𝑚𝑦)

𝑡
𝑛

𝑚𝑛[𝑛]𝑞!

=
𝑚

𝑡

∞

∑

𝑛=0

𝑛

∑

𝑘=0

1

𝑚𝑛−𝑘
[
𝑛

𝑘
]

𝑞

× (

𝑘

∑

𝑗=0

[
𝑘

𝑗
]

𝑞

(−1, 𝑞)
𝑘−𝑗

𝑚𝑘−𝑗2𝑘−𝑗
G
𝑗,𝑞
(𝑥) −G

𝑘,𝑞
(𝑥))

×B
𝑛−𝑘,𝑞

(𝑚𝑦)
𝑡
𝑛

[𝑛]𝑞!

=

∞

∑

𝑛=0

1

[𝑛 + 1]𝑞

𝑛+1

∑

𝑘=0

1

𝑚𝑛−𝑘
[
𝑛 + 1

𝑘
]

𝑞

× (

𝑘

∑

𝑗=0

[
𝑘

𝑗
]

𝑞

(−1, 𝑞)
𝑘−𝑗

𝑚𝑘−𝑗2𝑘−𝑗
G
𝑗,𝑞
(𝑥) −G

𝑘,𝑞
(𝑥))

×B
𝑛+1−𝑘,𝑞

(𝑚𝑦)
𝑡
𝑛

[𝑛]𝑞!
.

(74)

The second identity can be proved in a like manner.
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