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We study twononlinear partial differential equations, namely, the symmetric regularized longwave equation and theKlein-Gordon-
Zakharov equations. The Lie symmetry approach along with the simplest equation and exp-function methods are used to obtain
solutions of the symmetric regularized long wave equation, while the travelling wave hypothesis approach along with the simplest
equation method is utilized to obtain new exact solutions of the Klein-Gordon-Zakharov equations.

1. Introduction

The investigation of exact travelling wave solutions of non-
linear partial differential equations (NLPDEs) is important
for the understanding ofmost nonlinear physical phenomena
that appear in many areas of scientific fields such as plasma
physics, solid state physics, fluid dynamics, optical fibers,
mathematical biology, and chemical kinetics [1, 2]. A number
of methods have been developed for finding travelling wave
solutions to NLPDEs. These include the homogeneous bal-
ance method [3], the ansatz method [4, 5], variable separa-
tion approach [6], inverse scattering transform method [2],
Bäcklund transformation [7], Darboux transformation [8],
Hirota bilinear method [9], the (𝐺/𝐺)-expansion method
[10], the reduction mKdV equation method [11], the trifunc-
tion method [12, 13], the projective Riccati equation method
[14], the sine-cosine method [15, 16], the Jacobi elliptic
function expansionmethod [17, 18], the 𝐹-expansionmethod
[19], the exp-function expansion method [20], dynamical
system method [21–23], and Lie symmetry method [24–28].

In this paper we study two nonlinear partial differential
equations, namely, the symmetric regularized long wave
equation and the Klein-Gordon-Zakharov equations. The
Lie symmetry approach along with the simplest equation
and exp-function methods are used to obtain solutions of
the symmetric regularized long wave equation, while the

travelling wave hypothesis approach along with the simplest
equation method is utilized to obtain new exact solutions of
the Klein-Gordon-Zakharov equations.

2. The Symmetric Regularized Long
Wave Equation

We first consider that the symmetric regularized long wave
equation (SRLW) as given by

𝑢
𝑡𝑡
− 𝑢
𝑥𝑥
+
1

2
(𝑢
2
)
𝑥𝑡
− 𝑢
𝑥𝑥𝑡𝑡

= 0 (1)

is a nonlinear evolution equation which arises in several
physical applications, for example in soundwaves in a plasma
[29]. Exact travelling wave solutions of this equation were
obtained using the (𝐺/𝐺)-expansion method [29]. In the
present work, Lie symmetry method along with the simplest
equation method and the exp-function method are used to
construct exact solutions for this equation. First the Lie point
symmetries of the SRLW equation (1) are found using the
Lie algorithm [25]. These Lie point symmetries are then used
to transform (1) into an ordinary differential equation. The
simplest equation method [30] and the exp-function method
[20] are then used to construct exact solutions of the ordinary
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differential equation, which leads to the exact solutions of the
SRLW equation.

2.1. Lie Point Symmetries of (1) and Symmetry Reduction. The
symmetry group of the SRLW equation (1) is generated by the
vector field

𝑋 = 𝜉
1

(𝑡, 𝑥, 𝑢)
𝜕

𝜕𝑡
+ 𝜉
2

(𝑡, 𝑥, 𝑢)
𝜕

𝜕𝑥
+ 𝜂 (𝑡, 𝑥, 𝑢)

𝜕

𝜕𝑢
. (2)

Applying the fourth prolongation of 𝑋 to (1) and solving the
resultant overdetermined system of linear partial differential
equations, we obtain the following two translation symme-
tries:

𝑋
1
=

𝜕

𝜕𝑡
,

𝑋
2
=

𝜕

𝜕𝑥
.

(3)

Now taking the linear combination of these translation
symmetries𝑋

1
= 𝜕/𝜕𝑡 and𝑋

2
= 𝜕/𝜕𝑥, namely, the symmetry

𝑋 = 𝑋
1
+ ]𝑋
2
, where ] is a constant, leads to the two

invariants

𝑧 = 𝑥 − ]𝑡, 𝑢 = 𝐹 (𝑧) . (4)

Treating 𝐹 as the new dependent variable and 𝑧 as the new
independent variable and then substituting the value of 𝑢
into the SRLW equation (1) transform (1) into a fourth-order
nonlinear ordinary differential equation:

(]2 − 1) 𝐹 (𝑧) − ]𝐹 (𝑧) 𝐹 (𝑧) − ](𝐹 (𝑧))
2

+ ]2𝐹(𝑧) = 0.
(5)

2.2. Exact Solutions of (1) Using Simplest Equation Method.
Now the simplest equationmethod [30, 31] is used to solve (5),
and henceforth one obtains the exact solutions of the SRLW
equation (1).The Bernoulli and Riccati equations will be used
as the simplest equations.TheBernoulli andRiccati equations
are well-known equations whose solutions can be expressed
in terms of elementary functions [28].

The Bernoulli equation which we use here is given by

𝐻


(𝑧) = 𝑐𝐻 (𝑧) + 𝑑𝐻
2

(𝑧) , (6)

where 𝑐 and 𝑑 are constants. Its solution is given by

𝐻(𝑧) = 𝑐 {
cosh [𝑐 (𝑧 + 𝐶)] + sinh [𝑐 (𝑧 + 𝐶)]

1 − 𝑑 cosh [𝑐 (𝑧 + 𝐶)] − 𝑑 sinh [𝑐 (𝑧 + 𝐶)]
} ,

(7)

where 𝐶 is a constant of integration [28].
For the Riccati equation

𝐺


(𝑧) = 𝑐𝐺
2

(𝑧) + 𝑑𝐺 (𝑧) + 𝑒, (8)

where 𝑐, 𝑑, and 𝑒 are constants, the solutions to be used are

𝐻(𝑧) = −
𝑑

2𝑐
−
𝜃

2𝑐
tanh [1

2
𝜃 (𝑧 + 𝐶)] ,

𝐻 (𝑧) = −
𝑑

2𝑐
−
𝜃

2𝑐
tanh(1

2
𝜃𝑧)

+
sech (𝜃𝑧/2)

𝐶 cosh (𝜃𝑧/2) − (2𝑐/𝜃) sinh (𝜃𝑧/2)
,

(9)

with 𝜃2 = 𝑑2 − 4𝑐𝑒 > 0 and 𝐶 being a constant of integration
[28].

2.2.1. Solutions of (1)Using Bernoulli as the Simplest Equation.
The solutions of the ODE (5) are considered to be in the form

𝐹 (𝑧) =

𝑀

∑
𝑖=0

A
𝑖
(𝐻 (𝑧))

𝑖
, (10)

where 𝐻(𝑧) satisfies the Bernoulli or Riccati equations, 𝑀
is a positive integer that can be determined by balancing
the highest order derivative term with the highest order
nonlinear term [31], andA

𝑖
, (𝑖 = 0, 1, . . . ,𝑀) are parameters

to be determined.
The balancing procedure yields 𝑀 = 2, so the solutions

of (5) are of the form

𝐹 (𝑧) = A
0
+A
1
𝐻 +A

2
𝐻
2
. (11)

Substituting (11) into (5), making use of the Bernoulli equa-
tion (6), and then equating all coefficients of the function𝐻𝑖
to zero, we obtain the following algebraic system of equations
in terms ofA

0
,A
1
, andA

2
:

− 10]A2
2
𝑑
2
− 120]2A

2
𝑑
4
= 0,

− 24]2A
1
𝑑
4
− 12]A

1
𝑑
2
A
2

− 336]2A
2
𝑑
3
𝑐 − 18]A2

2
𝑑𝑐 = 0,

− ]A
0
A
1
𝑐
2
−A
1
𝑐
2
− ]2A

1
𝑐
4
+ ]2A

1
𝑐
2
= 0,

− 8]A2
2
𝑐
2
− 6A
2
𝑑
2
+ 6]2A

2
𝑑
2
− 21]A

1
𝑑A
2
𝑐 − 3]A2

1
𝑑
2

− 60]2A
1
𝑑
3
𝑐 − 6]A

0
A
2
𝑑
2
− 330]2A

2
𝑑
2
𝑐
2
= 0,

− 3A
1
𝑑𝑐 + 3]2A

1
𝑑𝑐 − 4]A

0
A
2
𝑐
2
− 4A
2
𝑐
2
+ 4]2A

2
𝑐
2

− 3]A
0
A
1
𝑑𝑐 − 2]A2

1
𝑐
2

− 16]2A
2
𝑐
4
− 15]2A

1
𝑑𝑐
3
= 0,

− 2A
1
𝑑
2
− 50]2A

1
𝑑
2
𝑐
2
+ 10]2A

2
𝑑𝑐 − 5]A2

1
𝑑𝑐

− 130]2A
2
𝑑𝑐
3
+ 2]2A

1
𝑑
2
− 9]A

1
𝑐
2
A
2

− 2]A
0
A
1
𝑑
2
− 10]A

0
A
2
𝑑𝑐 − 10A

2
𝑑𝑐 = 0.

(12)
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Solving this system, with the aid of Maple, we obtain the
following values for the constants:

A
0
=
−𝑐2]2 + ]2 − 1

]
,

A
1
= − 12𝑐𝑑],

A
2
= − 12]𝑑2.

(13)

As a result a solution of the symmetric regularized long wave
equation (1) using the Bernoulli equation as the simplest
equation is

𝑢 (𝑡, 𝑥)

= A
0
+A
1
𝑐 {

cosh [𝑐 (𝑧 + 𝐶)] + sinh [𝑐 (𝑧 + 𝐶)]
1 − 𝑑 cosh [𝑐 (𝑧 + 𝐶)] − 𝑑 sinh [𝑐 (𝑧 + 𝐶)]

}

+A
2
𝑐
2
{

cosh [𝑐 (𝑧 + 𝐶)] + sinh [𝑐 (𝑧 + 𝐶)]
1 − 𝑑 cosh [𝑐 (𝑧 + 𝐶)] − 𝑑 sinh [𝑐 (𝑧 + 𝐶)]

}

2

,

(14)

where 𝑧 = 𝑥 − ]𝑡 and 𝐶 is a constant of integration.

2.2.2. Solutions of (1) Using Ricatti as the Simplest Equation.
The balancing procedure yields𝑀 = 2, so the solutions of (5)
are of the form

𝐹 (𝑧) = A
0
+A
1
𝐺 (𝑧) +A

2
𝐺
2

(𝑧) . (15)

Substituting (15) into (5), making use of the Ricatti equation
(8), and then equating all coefficients of the function 𝐺𝑖 to
zero, we obtain an algebraic system of equations in terms of
A
0
,A
1
, andA

2
. Solving the resultant algebraic equations, we

obtain the following set of values:

A
0
= −

8𝑐𝑒]2 + 𝑑2]2 − ]2 + 1
]

,

A
1
= − 12𝑐𝑑],

A
2
= − 12𝑐

2].

(16)

It follows that the solutions for the symmetric regularized
long wave equation (1) using the Ricatti equation as the
simplest equation are

𝑢 (𝑡, 𝑥) = A
0
+A
1
{−

𝑑

2𝑐
−
𝜃

2𝑐
tanh [1

2
𝜃 (𝑧 + 𝐶)]}

+A
2
{−

𝑑

2𝑐
−
𝜃

2𝑐
tanh [1

2
𝜃 (𝑧 + 𝐶)]}

2

,

𝑢 (𝑡, 𝑥) = A
0
+A
1
{ −

𝑑

2𝑐
−
𝜃

2𝑐
tanh(1

2
𝜃𝑧)

+
sech (𝜃𝑧/2)

𝐶 cosh (𝜃𝑧/2) − (2𝑐/𝜃) sinh (𝜃𝑧/2)
}

+A
2
{ −

𝑑

2𝑐
−
𝜃

2𝑐
tanh(1

2
𝜃𝑧)

+
sech (𝜃𝑧/2)

𝐶 cosh (𝜃𝑧/2) − (2𝑐/𝜃) sinh (𝜃𝑧/2)
}

2

,

(17)

where 𝑧 = 𝑥 − ]𝑡 with 𝜃2 = 𝑑2 − 4𝑐𝑒 > 0 and 𝐶 is a constant
of integration.

2.3. Solution of (1) Using the Exp-Function Method. In this
section we use the exp-function method [20] to solve the
symmetric regularized long wave equation (1). We consider
solutions of (5) in the form

𝐹 (𝑧) =
∑
𝑐

𝑛=−𝑏
𝑎
𝑛
𝑒𝑛𝑧

∑
𝑞

𝑚=−𝑝
𝑏
𝑚
𝑒𝑚𝑧

, (18)

where 𝑏, 𝑐, 𝑝, and 𝑞 are positive integers to be determined
and 𝑎

𝑛
and 𝑏

𝑚
are arbitrary constants [20]. The balancing

procedure of the exp-function method produces 𝑝 = 𝑏 and
𝑞 = 𝑐. For simplicity, we set 𝑝 = 𝑏 = 1 and 𝑞 = 𝑐 = 1 so that
(18) is reduced to

𝐹 (𝑧) =
𝑎
1
𝑒𝑧 + 𝑎

0
+ 𝑎
−1
𝑒−𝑧

𝑏
1
𝑒𝑧 + 𝑏
0
+ 𝑏
−1
𝑒−𝑧

. (19)

Substituting (19) into (5) and solving the resultant ODE, with
the help of Maple, one possible set of values of the constants
is

𝑎
−1
= −

𝑏
−1

]
,

𝑎
0
=
𝑏
0
(6]2 − 1)

]
,

𝑎
1
=

−𝑏2
0

4]𝑏
−1

,

𝑏
1
=

𝑏2
0

4𝑏
−1

.

(20)

As a result we obtain the solution

𝑢 (𝑡, 𝑥) =
𝑎
1
𝑒𝑥−]𝑡 + 𝑎

0
+ 𝑎
−1
𝑒−(𝑥−]𝑡)

𝑏
1
𝑒𝑥−]𝑡 + 𝑏

0
+ 𝑏
−1
𝑒−(𝑥−]𝑡)

. (21)

3. The Klein-Gordon-Zakharov Equations

The Klein-Gordon-Zakharov (KGZ) equations [32]

𝑢
𝑡𝑡
− 𝑢
𝑥𝑥
+ 𝑢 + 𝑢V + |𝑢|2𝑢 = 0, (22a)

V
𝑡𝑡
− V
𝑥𝑥
− (|𝑢|

2
)
𝑥𝑥
= 0, (22b)
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are a coupled system of nonlinear partial differential equa-
tions of two functions𝑢(𝑥, 𝑡) and V(𝑥, 𝑡).Thismodel describes
the interaction of the Langmuir wave and the ion acoustic
wave in plasma. The function 𝑢(𝑥, 𝑡) denotes the fast time
scale component of electric field raised by electrons and the
function V(𝑥, 𝑡) denotes the deviation of ion density from its
equilibrium. Here 𝑢(𝑥, 𝑡) is a complex function and V(𝑥, 𝑡) is
a real function. Note that if we remove the term |𝑢|

2
𝑢, then

this system reduces to the classical Klein-Gordon-Zakharov
system [33]

𝑢
𝑡𝑡
− 𝑢
𝑥𝑥
+ 𝑢 + 𝑢V = 0, (23a)

V
𝑡𝑡
− V
𝑥𝑥
− (|𝑢|

2
)
𝑥𝑥
= 0. (23b)

A number of studies have been conducted for this system
((23a) and (23b)) in different time space [34–38]. However,
for the KGZ equations (22a) and (22b), Chen [39] consid-
ered orbital stability of solitary waves, while Shi et al. [33]
employed the sine-cosine method and the extended tanh
method to construct exact solutions of the KGZ equations
(22a) and (22b).

In this paper, we employ an entirely different approach,
namely, the travelling wave variable approach along with the
simplest equation method to obtain exact solutions of the
KGZ equations (22a) and (22b).

3.1. Solution of (22a) and (22b) Using the Travelling Wave
Variable Approach. The travelling wave variable approach
converts the system of nonlinear partial differential equations
into a system of nonlinear ordinary differential equations,
which we then solve to obtain exact solutions of the system.

In order to solve the KGZ equations (22a) and (22b),
we first transform it into a system of nonlinear ordinary
differential equations which can then be solved in order to
obtain its exact solutions.

We make the wave variable transformation
𝑢 = 𝑒
𝑖𝜙
𝑢 (𝑧) , V = V (𝑧) ,

𝜙 = 𝑝𝑥 + 𝑟𝑡, 𝑧 = 𝑘𝑥 + 𝑑𝑡,
(24)

where 𝑝, 𝑟, 𝑘, and 𝑑 are real constants and 𝑑 ̸= 𝑘. Using this
transformation, (22a) and (22b) transform into

(𝑝
2
− 𝑟
2
+ 1) 𝑢 + 𝑖 (2𝑟𝑑 − 2𝑝𝑘) 𝑢



+ (𝑑
2
− 𝑘
2
) 𝑢

+ 𝑢V + 𝑢3 = 0,

(25a)

(𝑑
2
− 𝑘
2
) V − (𝑢2)



= 0. (25b)

Integrating (25b) twice and taking the constants of integra-
tion to be zero, we obtain

V =
𝑢
2

𝑑2 − 𝑘2
. (26)

Now substituting (26) into (25a), we get

𝑢

= (

𝑟2 − 𝑝2 − 1

𝑑2 − 𝑘2
)𝑢 + (

𝑑2 − 𝑘2 + 1

(𝑑2 − 𝑘2)
2
)𝑢
3
, (27)

which can be written in the form

𝑢

= 𝑃𝑢 + 𝑄𝑢

3
, (28)

where

𝑃 =
𝑟2 − 𝑝2 − 1

𝑑2 − 𝑘2
, 𝑄 =

𝑑2 − 𝑘2 + 1

(𝑑2 − 𝑘2)
2
. (29)

Solving (28), with the aid of Mathematica, we obtain the
solution

𝑢 (𝑧) = ±
1

𝐻
𝑖sn (𝐹 | 𝜔) , (30)

where sn(𝐹 | 𝜔) is a Jacobian elliptic function of the sine
amplitude [40],

𝐹 =

√(√𝑃2 − 2𝑄𝑐
1
− 𝑃) (𝑧 + 𝑐

2
)
2

√2
,

𝐻 = √
𝑄

√𝑃2 − 2𝑄𝑐
1
+ 𝑃

,

𝜔 =

−𝑄𝑐
1
+ 𝑃(√𝑃2 − 2𝑄𝑐

1
+ 𝑃)

𝑄𝑐
1

(31)

is the modulus of the elliptic function with 0 < 𝜔 < 1. Here
𝑐
1
and 𝑐
2
are constants of integration. Reverting back to our

original variables, we can nowwrite the solution of our Klein-
Gordon-Zakharov equations as

𝑢 (𝑥, 𝑡) = ±
1

𝐻
𝑖sn (𝐹 | 𝜔) , (32)

where

𝐹 =

√(√𝑃2 − 2𝑄𝑐
1
− 𝑃) (𝑘𝑥 + 𝑑𝑡 + 𝑐

2
)
2

√2
,

(33)

and 𝜔 and𝐻 are as above.
Now V(𝑥, 𝑡) can be obtained from (26).
It should be noted that the solution (32) is valid for 0 <

𝜔 < 1, as𝜔 approaches zero, the solution becomes the normal
sine function, sin 𝑧, and as 𝜔 approaches 1, the solution tends
to the tanh function, tanh 𝑧.

The profile of the solution (32) is given in Figure 1.

3.2. Solutions of (22a) and (22b) Using the Simplest Equation
Method. We consider the solutions of (27) in the form

𝑢 (𝑧) =

𝑀

∑
𝑖=0

𝐴
𝑖
(𝐺 (𝑧))

𝑖
, (34)

where 𝐺(𝑧) satisfies the Bernoulli or the Riccati equation.
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Figure 1: Profile of solution (32).

3.2.1. Solutions of (22a) and (22b) Using Bernoulli as the
Simplest Equation. We consider the Bernoulli equation

𝐺


(𝑧) = 𝑎𝐺 (𝑧) + 𝑏𝐺
2

(𝑧) , (35)

where 𝑎 and 𝑏 are constants.
The balancing procedure yields𝑀 = 1, so the solution of

(27) is of the form

𝑢 (𝑧) = 𝐴
0
+ 𝐴
1
𝐻(𝑧) . (36)

Substituting (36) into (27), making use of the Bernoulli
equation (35), and then equating all coefficients of the
function𝐻𝑖 to zero, we obtain the following algebraic system
of equations:

2𝐴
1
𝑘
4
𝑏
2
− 𝑘
2
𝐴
3

1
+ 𝑑
2
𝐴
3

1
− 4𝐴
1
𝑑
2
𝑘
2
𝑏
2

+ 𝐴
3

1
+ 2𝐴
1
𝑑
4
𝑏
2
= 0,

3𝐴
1
𝑘
4
𝑎𝑏 + 3𝑑

2
𝐴
0
𝐴
2

1
− 3𝑘
2
𝐴
0
𝐴
2

1
− 6𝐴
1
𝑑
2
𝑘
2
𝑎𝑏

+ 3𝐴
0
𝐴
2

1
+ 3𝐴
1
𝑑
4
𝑎𝑏 = 0,

𝑝
2
𝐴
0
𝑑
2
− 𝑝
2
𝐴
0
𝑘
2
− 𝑟
2
𝐴
0
𝑑
2
+ 𝑟
2
𝐴
0
𝑘
2
− 𝐴
0
𝑘
2

+ 𝑑
2
𝐴
3

0
− 𝑘
2
𝐴
3

0
+ 𝐴
0
𝑑
2
+ 𝐴
3

0
= 0,

𝐴
1
𝑑
2
+ 3𝑑
2
𝐴
2

0
𝐴
1
− 𝑝
2
𝐴
1
𝑘
2
+ 𝑟
2
𝐴
1
𝑘
2
+ 𝑝
2
𝐴
1
𝑑
2

+ 𝐴
1
𝑑
4
𝑎
2
− 3𝑘
2
𝐴
2

0
𝐴
1
+ 𝐴
1
𝑘
4
𝑎
2
+ 3𝐴
2

0
𝐴
1

− 2𝐴
1
𝑑
2
𝑘
2
𝑎
2
− 𝑟
2
𝐴
1
𝑑
2
− 𝐴
1
𝑘
2
= 0.

(37)

Solving this system, with the aid of Maple, we obtain the
following values for the constants:

𝐴
0
=

𝑎 (𝑑2 − 𝑘2)

√2 (𝑘2 − 𝑑2 − 1)

,

𝐴
1
=
√2𝑏 (𝑑2 − 𝑘2)

𝑘2 − 𝑑2 − 1
,

𝑝 = √ 𝑟2𝑑2 − 𝑟2𝑘2 + 𝑘2 − 𝑑2𝐴2
0
+ 𝑘2𝐴2

0
− 𝑑2 − 𝐴2

0

𝑑2 − 𝑘2
.

(38)

As a result, a solution of the Klein-Gordon-Zakharov equa-
tions (22a) and (22b), using the Bernoulli equation as the
simplest equation, is

𝑢 (𝑥, 𝑡)

= 𝑒
𝑖(𝑝𝑥+𝑟𝑡) [

[

[

( (√2𝑎𝑏 (𝑑
2
− 𝑘
2
) (cosh (𝑎 (𝑘𝑥 + 𝑑𝑡 + 𝑐))

+ sinh (𝑎 (𝑘𝑥 + 𝑑𝑡 + 𝑐))) )

× (√𝑘2 − 𝑑2 − 1 (1 − 𝑏 cosh (𝑎 (𝑘𝑥 + 𝑑𝑡 + 𝑐))

−𝑏 sinh (𝑎 (𝑘𝑥 + 𝑑𝑡 + 𝑐))) )
−1

)

+
𝑎 (𝑑2 − 𝑘2)

√2 (𝑘2 − 𝑑2 − 1)

]
]

]

,

(39)

where 𝑐 is a constant of integration.

3.2.2. Solutions of (22a) and (22b)Using Riccati as the Simplest
Equation. We use the Riccati equation given by

𝐺


(𝑧) = 𝑎𝐺
2

(𝑧) + 𝑏𝐺 (𝑧) + 𝑐, (40)

where 𝑎, 𝑏, and 𝑐 are constants. The balancing procedure
yields𝑀 = 1, so the solution of (27) is of the form

𝑢 (𝑧) = 𝐴
0
+ 𝐴
1
𝐺 (𝑧) . (41)

Similar calculations yield the following set of values:

𝐴
0
=

𝑏 (𝑑2 − 𝑘2)

√2 (𝑘2 − 𝑑2 − 1)

,

𝐴
1
= −

√2𝑎 (𝑑2 − 𝑘2)√𝑘2 − 𝑑2 − 1

𝑑2 − 𝑘2 + 1
,

𝑐 = −
√2 (𝑘2 − 𝑑2 − 1) (𝑑2𝑏2 − 𝑘2𝑏2 − 2 − 2𝑝2 + 2𝑟2)

4𝐴
1
(𝑑2 − 𝑘2 + 1)

.

(42)
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As a result the two solutions of (22a) and (22b) are

𝑢 (𝑥, 𝑡) = 𝑒
𝑖𝜙
[𝐴
0
+ 𝐴
1
{−

𝑏

2𝑎
−
𝜃

2𝑎
tanh [1

2
𝜃 (𝑧 + 𝐶)]}] ,

𝑢 (𝑥, 𝑡)

= 𝑒
𝑖𝜙
[𝐴
0

+ 𝐴
1
{ −

𝑏

2𝑎
−
𝜃

2𝑎
tanh(1

2
𝜃𝑧)

+
sech (𝜃𝑧/2)

𝐶 cosh (𝜃𝑧/2) − (2𝑎/𝜃) sinh (𝜃𝑧/2)
} ] ,

(43)

where 𝜙 = 𝑝𝑥 + 𝑟𝑡 and 𝑧 = 𝑘𝑥 + 𝑑𝑡. 𝜃 is given by √𝑏2 − 4𝑎𝑐,
𝐶 is a constant of integration, and 𝐴

0
and 𝐴

1
are as obtained

above.
It should be noted that by substituting the above value

of 𝑢(𝑥, 𝑡) into (26), one can now obtain the solution for the
variable V(𝑥, 𝑡).

4. Conclusion

In this paper we studied two nonlinear partial differential
equations. Firstly, Lie symmetry approach along with the
simplest equation and the Exp-functionmethod were used to
obtain travelling wave solutions of the symmetric regularized
long wave equation. Secondly, the travelling wave hypothesis
approach along with the simplest equationmethod is utilized
to obtain new exact solutions of the Klein-Gordon-Zakharov
equations.
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