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Application process of variational iteration method is presented in order to solve the Volterra functional integrodifferential
equations which have multi terms and vanishing delays where the delay function 0(¢) vanishes inside the integral limits such that
0(t) = gt for 0 < g < 1,t > 0. Either the approximate solutions that are converging to the exact solutions or the exact solutions
of three test problems are obtained by using this presented process. The numerical solutions and the absolute errors are shown in

figures and tables.

1. Introduction

Nowadays, understanding also from the work of Brunner [1],
we are faced with some important problems including the
numerical analysis of Volterra functional equations with van-
ishing delays. He exposed open problems about numerical
analysis of kth-order Volterra functional integrodifferential
equations (VFIDE):
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as well as the multidelay pantograph-type VFIDE in [1].
During 1990s, Brunner et al. [2] and Hu [3] introduced

geometric mesh concept in collocation methods in order to
obtain the collocation solutions of the problems. On the other
hand, the pantograph differential equations are employed
for their numerical solutions by using various methods such
as Taylor matrix method [4], variational iteration method
[5, 6], differential transform method [7], and methods in
other papers [8-12]. In [5], the process of VIM is given
for the first order multipantograph equations. In [6], the
variational iteration method is applied to some examples
in order to obtain the numerical or exact solutions of the
multipantograph equation where the coefficient a, (t) of u(t)
is a constant and additionally the Lagrange multiplier is given
for (1) without terms (2) and (3), that is, only for the extended
multipantograph equation.

The variational iteration method which obtains the
analytical or numerical solutions of a wide spectrum of
differential equations, as well as integral equations, was
proposed in the late 90s by He [13-15] and has been used
in hundreds of papers by many authors in order to solve the
well-known famous equations and to show the effectiveness,
straightness, and convergence of that powerful method [16-
20]. Furthermore, since it is a useful mathematical tool
that ensures its reliability, the method has been developed
according to the needs [21-24] and has also been extended
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for fractional differential and fractional integrodifferential
equations [25-28].

The basic idea behind variational iteration method is to
construct an iteration formula for the considered equation.
After finding optimized Lagrange multiplier for constructed
correction functional (i.e., iteration formula), the method
takes into account that corrected iteration formula and starts
to iterate with an initial function. In most cases the method
provides exact solutions or the series form of exact solu-
tions.

In addition to [28], in this paper, the procedure of the
variational iteration method is presented for the Volterra
functional integrodifferential equations with vanishing delays
(1), where the Volterra integral terms are as in (2) and
the delayed Volterra integral terms are as in (3); then
this extended scheme is applied to three test problems for
showing the applicability of the procedure and the convergent
numerical solutions to the exact solutions. The numerical
data for different parameter values are also given by tables and
figures.

2. The Application Process of Variational
Iteration Method to VFIDE

Now the process how to apply the method for (1) is given.
Firstly, for the basic idea of the method, let us consider the
following nonlinear equation:

Lu(t)+ Nu()=g(t), (4)

where L is a linear operator, N is a nonlinear operator, and
g(t) is a known analytical function. According to variational
iteration method, we can construct the following correction
functional:

Uy () = u, () + Lt A[Lu, () + Nu,, (1) — g ()] d1,
(5)

forn >0,

where A is a general Lagrange multiplier which can be iden-
tified by variational theory, u(¢) is an initial approximation
with possible unknowns, and #,, is considered as restricted
variation, that is, 7, = 0 [14].

Now the above idea can be extended as follows. Consider-
ing kth-order Volterra functional integrodifferential equation
(1) with (2) and (3), the correction functional according to
relation (5) can be written as
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where except the name of the variable ¢ involved for | =
0,....k — 1 (V'u,)(r) and (Vju,)(r) are as in (2) and (3),
respectively. In order to specify the iteration, the Lagrange
multiplier has to be found. The form of the Lagrange mul-
tiplier that will be determined by transferring the derivation
from u to A can be either a linear or a nonlinear function of

7 and t. Supposing all the functions on the right hand side of
the kth-order derivation in (6) as a function such that
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the correction functional (6) can be written as
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fort € I k > 1,n > 0. Making the above correction functional
stationary and noticing that 8f = 0 which represents all
variables to be restricted, we obtain
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In order to find the conditions on A, highest order derivative
appearing in the integrand in (10) is transferred from u to A
and so (10) becomes
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¢ (1)
—J A (6 u® D (1) dr.
0



Journal of Applied Mathematics

After repeating this process k — 1 times, we will eventually
obtain an expression which uff) (0 <1 < k-1)can be
decomposed from and their coeflicients yield the stationary
conditions. Thus, as it is indicated by using the analogue
way in [22], the Lagrange multiplier is calculated as the
polynomial type

k(T -t

I (12)
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Therefore, on account of (12) the iteration functional is
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where0<I<k-1,tel,k>1,andn>0.
Nevertheless, for k = 1 the correction functional becomes
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and Lagrange multiplier is evaluated as A(7; ) = —1 from (12).
But it can also be chosen as a nonlinear function in order to
accelerate the convergent rate of correction functional (14) so

that the function f can be modified as f, by excepting the
function u,,(t) with its coefficients. Now we have
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Making (15) stationary and noticing that 8f; = 0, it is
obviously obtained that
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and then we have the following stationary conditions:
Su, (t): 1+ A(13t)|,— =0,
17)
Su, (1) : X' (13t) + a; (1) A (131) = 0,

which are the same conditions obtained in [5], so the
Lagrange multiplier is found:

A(538) = —eh @@= a®d _ _ Jla®d ()
Accordingly, the correction functional for k = 1 is
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By using formulae (13) and (19), with the given initial term
u,, the sequence (u,) is identified and the nth term of the
sequence should be the approximate solution of problem (1).

3. Numerical Examples

In this section we show how the method can be applied
to such problems so we give some examples that are the
modifications of (1) for the numerical verification of the
presented method in Section 2.

Example 1. Firstly, we have
t
) =u@)+(t-1 (—)

u)=u@®+(t-£)u 5

+ Lt teu(s)ds + J:/Z (t2 - 25— 2) u(s)ds, (20)

u(0) =1,
where the functions are considered ask = 1,a,(t) = 1,b,(t) =

t—12,0(t) = t/2, g(t) = 0, Ky, (t,5) = te™*, Ky, (t,s) = £* -
2s — 2 in (1) with (2) and (3).

In order to solve the problem (20) by means of VIM,
we use the proposed procedure in Section 2. Considering



the nonlinear Lagrange multiplier (18), since a,(t) = 1, the

t
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Starting with n = 0 and since the initial function is u,(t) = 1,
from iteration formula (21)
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The other terms of the sequences (u,,) can be found by using
the iteration formula with the previous terms and for the large
values of t, because the exact solution of (20) is €', u,,(t) for
n = 3,4,5 have more terms than previous ones and are not
necessary to write here, but we can give these limitations

t t
tim 20 o012, tim 48 o130,
t—oo g t—oo ¢
(23)
t
tim %1 _ 1 0007,
t—oo ¢

It is obviously seen that using this iteration formula (21),
the approximate solution ug(t) of the problem (20) that is
convergent to the exact solution even for the large values of x
is found in the beginning terms of the sequence (u,,). Tables 1
and 2 show the values of solutions for comparison purposes
and Figures 1 and 2 support the efficiency and the accuracy of
the method.
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FIGURE 1: Approximate solutions u;(t) i =
solution of Example 1.

1,2,3,4 and exact

8.00E - 02
7.00E - 02
6.00E - 02
__5.00E - 02
$ 4.00E - 02
3.00E - 02
200E-021 o
1.00E - 02 :
0.00E + 00

0204 0.6 038

I

02 03 04 05 06 07 08 09 1
t

0 0.1

—u— e (t) e3(t)

) t) —— 64(1')

F1GURE 2: Comparison of errors of the approximate solutions where
the absolute errors are ;(t) = [u(t) —u,(t)|, i = 1,2,3,4.

Example 2. Now, we have

u(t):u(t)+u<£>—§t4+4t+2

t t/
+ J- 3su(s)ds + J ’ 2tu(s)ds (24)
0 0

u(0) =-1,

where the functions are considered as k = 1, a;(t) = 1,
b(t) = 1,0(t) = t/2, g(t) = —(5/3)t" + 4t + 2, Ky, (t,s) = 3s,
K, (t,s) = 2t in (1) with (2) and (3).

To solve the problem (24) by means of VIM, we consider
the linear Lagrange multiplier evaluated from (12) for this
problem. Since k = 1, the Lagrange multiplier is directly
calculated A(t;t) = —1 so that the correction functional is

Uy, q () =u, (1)

_Lt u;(r)—un(‘r)—u<§)+214—41—2

T /2
- J 3su (s) ds—J 2tu(s)ds | dr
0

0

(25)
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TABLE 1: Numerical results of Example 1 for the approximate solution u;(t),i = 1,2, 3, 4.
t Exact solution e’ u, (t) u,(t) u, () u,(t)
0.0 1 1 1 1 1
0.1 1.1051709180756476248 1.1050857910809950277  1.1051709006185340780 1.1051709180747629519 1.1051709180753588641
0.2 1.2214027581601698339 1.2207119694376757768 1.2214021515886701535 1.2214027580088591109 1.2214027581601910911
0.3 1.3498588075760031040 1.3475096053186941304 1.3498539189718694827  1.3498588043837122657  1.3498588075750836373
0.4 1.4918246976412703178 1.4862495904088959004  1.4918032466172082472  1.4918246696710125717 1.4918246976250816793
0.5 1.6487212707001281468 1.6378881889316050424  1.6486542210674227886  1.6487211208887711166 1.6487212705453547801
0.6 1.8221188003905089749 1.8036137007303597314 1.8219504259837133523 1.8221182162906284352 1.8221187994271196311
0.7 2.0137527074704765216 1.9848947740834178825  2.0133904299751254578  2.0137508858816475851  2.0137527030209720537
0.8 2.2255409284924676046  2.1835309157842461447 2.2248469229147350931  2.2255361192359802622  2.2255409120307558656
0.9 2.4596031111569496638 2.4017057619215561218  2.4583899838348527939  2.4595919593157148094  2.4596030598388968997
1.0 2.7182818284590452354  2.6420436949114335208  2.7163148376495047572  2.7182585386203368168  2.7182816889366104589
as in (13). To be more accurate in finding the solution, it is  the desired multiplier as A(7;¢) = —1 so that the correction
obvious to start the initial function as a polynomial type of =~ functional is
order two because of the structure of the equation in (24).
Starting with n = 0 and since the initial function is u,(t) = , .
2 . . _
at” + bt + ¢, from iteration formula (25) U, (t)=u, ) - _L [u; (1) + 3 (1+e™)
1 1 5 5 5
u (t) = <——+—a>t5+—bt4+<—c+—a>t3 ’ 1 (7
3 6 16 6 12 - | u,(s)ds+ = u, (s)ds|dr.
(26) 0 2 Jo
3 29
+<2+Zb>t2+(2+2c)t+c (29)
is found. From the condition 11(0) = -1, ¢ = —1 so (25) is Startlpg w1.th n = 0 and since the initial function is u,(t) = 1,
from iteration formula (29)
1 1 5 5. 4 5 5\ 3
u, (t) = ——+—at+—bt+<—a——>t -
1 ® < 36 ) 16 12 6 2+2qt —2¢7" - 2qt* + g*t*
;3 (27) u (q) =1~ 1q >
+ (2 + —b) -1
4
u, (:9)

and because this must correspond to the initial polynomial
function, a = 2, b = 0. Thus the first iteration solution of the
problem (24) is (27) with substituting a = 2, b = 0 which is
the exact solution.

Example 3. Finally, we have

) 1 ot t 1 qt
u(t)=—§(1+eq)+JOu(s)ds—EJ-O u(s)ds, 08)

u(0) =1,

where the functions are considered ask = 1, a,(t) = 0, b, (¢) =
0,0(t) =qtfor0<q<1,g@t)=—-(1/2)(1+e %), Ky, (t,s) =
1, Ky, (t,s) = —=1/2 in (1) with (2) and (3).

This example is different from other two examples and
now it is not important which formula of the Lagrange
multiplier will be used, because the coeflicient g, (t) is zero
and both of the linear form (12) and nonlinear form (18) give

_ 2 +2qt —2e7% - 2qt* + g*t
= rw

30
+(24- 489 + 124" + 247t - 24 (30)

-8t°q" +48qe " + 4t*q* - 2q°t" + 4t ¢°

—24e_qzt - 2q7t4 + q8t4) X (96(14)71

are obtained. The other terms of the sequences (u,,) can be
found by using the iteration formula with substituting the
previous terms. The fourth iteration solution u,(t;q) coin-
cides with the exact solution e of (28), and the approximate
solution u,(t; q) is changed infinitesimally by the parameter
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FIGURE 3: Comparison of approximate solutions for g = 0.5 and g = 0.9 in Example 3.

q (0 < g < 1)inthe0 <t < 2. For example, for g = 0.5 the
fourth iteration solution is

u, (t) = —0.5104166667t° — 5.079365079 * 10 "'¢*

+0.00001709908248¢° + 108.5¢

5 —0.0625¢t

+85¢ %% — 4096e + 5440 1% (31)

—0.25¢

— 1428e —0.00008343590628t”

+0.003531901041£° + 5 * 10 3¢,

So it is clearly seen from Figure 3 that the fourth iteration
solution is the approximate solution with the errors indicated
in Tables 3 and 4.

4. Conclusion

In this study, the process of variational iteration method
for the Volterra functional integrodifferential equations with
vanishing delays (1), where the Volterra integral terms are
as in (2), the delayed Volterra integral terms are as in (3),
and 0(t) = gt for 0 < g < 1,t > 0 is the linear delay
function, is constructed and it is applied to the problems
that are the different types of problem (1). In Section 2, two
types of Lagrange multiplier are given, that is, linear one
and nonlinear one. From also the previous papers [19, 26],
it is understood that sometimes the nonlinear multiplier
yields the more accurate approach than the linear one. The
method is applicable also in the pantograph-type differential
equations and Volterra integrodifferential equations with
linear delay functions.
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