
Research Article
Existence Results for a Coupled System of Nonlinear
Fractional Hybrid Differential Equations with Homogeneous
Boundary Conditions

Josefa Caballero,1 Mohamed Abdalla Darwish,2,3

Kishin Sadarangani,1 and Wafa M. Shammakh2

1 Department of Mathematics, University of Las Palmas de Gran Canaria, Campus de Tafira Baja,
35017 Las Palmas de Gran Canaria, Spain

2Department of Mathematics, Sciences Faculty for Girls, King Abdulaziz University, Jeddah, Saudi Arabia
3 Department of Mathematics, Faculty of Science, Damanhour University, Damanhour, Egypt

Correspondence should be addressed to Mohamed Abdalla Darwish; dr.madarwish@gmail.com

Received 7 April 2014; Accepted 16 June 2014; Published 14 July 2014

Academic Editor: Ljubisa Kocinac

Copyright © 2014 Josefa Caballero et al.This is an open access article distributed under theCreative CommonsAttribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We study an existence result for the following coupled system of nonlinear fractional hybrid differential equations with
homogeneous boundary conditions 𝐷

𝛼

0
+ [𝑥(𝑡)/𝑓(𝑡, 𝑥(𝑡), 𝑦(𝑡))] = 𝑔(𝑡, 𝑥(𝑡), 𝑦(𝑡)), 𝐷

𝛼

0
+ [𝑦(𝑡)/𝑓(𝑡, 𝑦(𝑡), 𝑥(𝑡))] = 𝑔(𝑡, 𝑦(𝑡), 𝑥(𝑡)), 0 <

𝑡 < 1, and 𝑥(0) = 𝑦(0) = 0, where 𝛼 ∈ (0, 1) and 𝐷
𝛼

0
+ denotes the Riemann-Liouville fractional derivative. The main tools in our

study are the techniques associated to measures of noncompactness in the Banach algebras and a fixed point theorem of Darbo
type.

1. Introduction

Fractional differential equations arise in many engineering
and scientific disciplines as the mathematical modelling of
a great number of processes which appear in physics, chem-
istry, aerodynamics, and so forth and involve also derivatives
of fractional order. For details, see [1–5] and the references
therein.

On the other hand, about the theory of hybrid differential
equations, we refer to the paper [6] where the authors studied
the hybrid differential equation of first order:

𝑑

𝑑𝑡
[

𝑥 (𝑡)

𝑓 (𝑡, 𝑥 (𝑡))
] = 𝑔 (𝑡, 𝑥 (𝑡)) , 𝑡 ∈ 𝐽 = [0, 𝑇) ,

𝑥 (𝑡
0
) = 𝑥
0

∈ R,

(1)

where 𝑓 ∈ 𝐶(𝐽 × R,R \ {0}) and 𝑔 ∈ 𝐶(𝐽 × R,R).

In [7], the authors studied the fractional version of the
abovementioned problem, that is,

𝐷
𝛼

0
+ [

𝑥 (𝑡)

𝑓 (𝑡, 𝑥 (𝑡))
] = 𝑔 (𝑡, 𝑥 (𝑡)) , 𝑡 ∈ 𝐽, 0 < 𝛼 < 1,

𝑥 (0) = 0,

(2)

under the same assumptions on 𝑓 and 𝑔 in [6].
Recently, in [8], the authors studied the following frac-

tional hybrid initial value problem with supremum:

𝐷
𝛼

0
+ [

𝑥 (𝑡)

𝑓 (𝑡, 𝑥 (𝑡) ,max
0≤𝜏≤𝑡

|𝑥 (𝜏)|)
] = 𝑔 (𝑡, 𝑥 (𝑡)) ,

0 < 𝑡 < 1,

𝑥 (0) = 0,

(3)

where 0 < 𝛼 < 1, 𝑓 ∈ 𝐶([0, 1] × R × R,R \ {0}), and 𝑔 ∈

𝐶([0, 1] × R,R).
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The coupled systems involving fractional differential
equations are very important because they occur in numerous
problems of applied nature; for instance, see [9–13].

In this paper, we consider the following coupled system:

𝐷
𝛼

0
+ [

𝑥 (𝑡)

𝑓 (𝑡, 𝑥 (𝑡) , 𝑦 (𝑡))
] = 𝑔 (𝑡, 𝑥 (𝑡) , 𝑦 (𝑡)) ,

𝐷
𝛼

0
+ [

𝑦 (𝑡)

𝑓 (𝑡, 𝑦 (𝑡) , 𝑥 (𝑡))
] = 𝑔 (𝑡, 𝑦 (𝑡) , 𝑥 (𝑡)) ,

0 < 𝑡 < 1,

𝑥 (0) = 𝑦 (0) = 0,

(4)

where 𝛼 ∈ (0, 1) and 𝐷
𝛼

0
+ is the standard Riemann-Liouville

fractional derivative.
The main tool in our study is a fixed point theorem of

Darbo type associated to measures of noncompactness.

2. Preliminaries

We begin this section with some definitions and results about
fractional calculus.

Let 𝛼 > 0 and 𝑛 = [𝛼] + 1, where [𝛼] denotes the integer
part of 𝛼. For a function 𝑓 : (0, ∞) → R, the Riemann-
Liouville fractional integral of order 𝛼 > 0 of 𝑓 is defined as

𝐼
𝛼

0
+𝑓 (𝑡) =

1

Γ (𝛼)
∫

𝑡

0

𝑓 (𝑠)

(𝑡 − 𝑠)
1−𝛼

𝑑𝑠, (5)

provided that the right side is pointwise defined on (0, ∞).
The Riemann-Liouville fractional derivative of order 𝛼 of

a continuous function 𝑓 is defined by

𝐷
𝛼

0
+𝑓 (𝑥) =

1

Γ (𝑛 − 𝛼)

𝑑
𝑛

𝑑𝑥𝑛
∫

𝑥

0

𝑓 (𝑠)

(𝑥 − 𝑠)
𝛼−𝑛+1

𝑑𝑠, (6)

provided that the right side is pointwise defined on (0, ∞).
The following lemma will be useful for our study, [14].

Lemma 1. Let ℎ ∈ 𝐿
1

(0, 1) and 0 < 𝛼 < 1. Then,

(a)

𝐷
𝛼

0
+𝐼
𝛼

0
+ℎ (𝑥) = ℎ (𝑥) ; (7)

(b)

𝐼
𝛼

0
+𝐷
𝛼

0
+ℎ (𝑥) = ℎ (𝑥) −

𝐼
1−𝛼

0
+ ℎ (𝑥)

󵄨󵄨󵄨󵄨󵄨𝑥=0

Γ (𝛼)
𝑥
𝛼−1

𝑎.𝑒. on (0, 1) .

(8)

Lemma 2. Let 0 < 𝛼 < 1 and suppose that 𝑓 ∈ 𝐶([0, 1],R \

{0}) and𝑦 ∈ 𝐶[0, 1].Then, the unique solution of the fractional
hybrid initial value problem

𝐷
𝛼

0
+ [

𝑥 (𝑡)

𝑓 (𝑡)
] = 𝑦 (𝑡) , 0 < 𝑡 < 1

𝑥 (0) = 0,

(9)

is given by

𝑥 (𝑡) =
𝑓 (𝑡)

Γ (𝛼)
∫

𝑡

0

𝑦 (𝑠)

(𝑡 − 𝑠)
1−𝛼

𝑑𝑠, 𝑡 ∈ [0, 1] . (10)

Proof. Suppose that 𝑥(𝑡) is a solution of problem (9). Using
the operator 𝐼

𝛼

0
+ and taking into account Lemma 1, we get

𝐼
𝛼

0
+𝐷
𝛼

0
+ [

𝑥 (𝑡)

𝑓 (𝑡)
] = 𝐼
𝛼

0
+𝑦 (𝑡) , (11)

or, equivalently,

𝑥 (𝑡)

𝑓 (𝑡)
−

𝐼
1−𝛼

0
+ (𝑥 (𝑡) /𝑓 (𝑡))

󵄨󵄨󵄨󵄨󵄨𝑡=0

Γ (𝛼)
𝑡
𝛼−1

= 𝐼
𝛼

0
+𝑦 (𝑡) . (12)

Since 𝑥(𝑡)/𝑓(𝑡)|
𝑡=0

= 𝑥(0)/𝑓(0) = 0/𝑓(0) = 0 (because
𝑓(0) ̸= 0), we have

𝑥 (𝑡) = 𝑓 (𝑡) 𝐼
𝛼

0
+𝑦 (𝑡) . (13)

This means that

𝑥 (𝑡) =
𝑓 (𝑡)

Γ (𝛼)
∫

𝑡

0

𝑦 (𝑠)

(𝑡 − 𝑠)
1−𝛼

𝑑𝑠. (14)

Conversely, suppose that 𝑥(𝑡) is given by

𝑥 (𝑡) =
𝑓 (𝑡)

Γ (𝛼)
∫

𝑡

0

𝑦 (𝑠)

(𝑡 − 𝑠)
1−𝛼

𝑑𝑠, 𝑡 ∈ [0, 1] . (15)

This means that

𝑥 (𝑡) = 𝑓 (𝑡) 𝐼
𝛼

0
+𝑦 (𝑡) , 𝑡 ∈ [0, 1] . (16)

Applying 𝐷
𝛼

0
+ and taking into account Lemma 1 and that

𝑓(𝑡) ̸= 0 for 𝑡 ∈ [0, 1], we obtain

𝐷
𝛼

0
+ [

𝑥 (𝑡)

𝑓 (𝑡)
] = 𝐷

𝛼

0
+𝐼
𝛼

0
+𝑦 (𝑡) = 𝑦 (𝑡) , 0 < 𝑡 < 1. (17)

Moreover, for 𝑡 = 0 in (16), we have 𝑥(0) = 𝑓(0) ⋅ 0 = 0. This
completes the proof.

In the sequel, we recall some definitions and basic facts
about measures of noncompactness.

Assume that 𝐸 is a real Banach space with norm ‖ ⋅ ‖

and zero element 𝜃. By 𝐵(𝑥, 𝑟) we denote the closed ball in 𝐸

centered at 𝑥with radius 𝑟. By 𝐵
𝑟
we denote the ball 𝐵(𝜃, 𝑟). If

𝑋 is a nonempty subset of𝐸, by the symbols𝑋 andConv𝑋we
denote the closure and the convex closure of 𝑋, respectively.
By ‖𝑋‖ we denote the quantity ‖𝑋‖ = sup{‖𝑥‖ : 𝑥 ∈ 𝑋}.
Finally, by M

𝐸
we will denote the family of all nonempty

and bounded subsets of 𝐸 and byN
𝐸
we denote its subfamily

consisting of all relatively compact subsets of 𝐸.

Definition 3. Amapping𝜇 : M
𝐸

→ R
+

= [0, ∞) is said to be
a measure of noncompactness in 𝐸 if it satisfies the following
conditions.

(a) The family ker 𝜇 = {𝑋 ∈ M
𝐸

: 𝜇(𝑋) = 0} is nonempty
and ker 𝜇 ⊂ N

𝐸
.
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(b) 𝑋 ⊂ 𝑌 ⇒ 𝜇(𝑋) ≤ 𝜇(𝑌).
(c) 𝜇(𝑋) = 𝜇(Conv𝑋) = 𝜇(𝑋).
(d) 𝜇(𝜆𝑋 + (1 − 𝜆)𝑌) ≤ 𝜆𝜇(𝑋) + (1 − 𝜆)𝜇(𝑌) for 𝜆 ∈ [0, 1].
(e) If (𝑋

𝑛
) is a sequence of closed subsets fromM

𝐸
such

that 𝑋
𝑛+1

⊂ 𝑋
𝑛

(𝑛 ≥ 1) and lim
𝑛→∞

𝜇(𝑋
𝑛
) = 0, then

𝑋
∞

= ∩
∞

𝑛=1
𝑋
𝑛

̸= 𝜙.

The family ker 𝜇 appearing in (a) is called the kernel of
the measure of noncompactness 𝜇. Notice that the set 𝑋

∞

appearing in (e) is an element of ker𝜇. Indeed, since 𝜇(𝑋
∞

) ≤

𝜇(𝑋
𝑛
) for 𝑛 = 1, 2, . . ., we infer that 𝜇(𝑋

∞
) = 0 and this says

that 𝑋
∞

∈ ker𝜇.
An important theorem about fixed point theorem in

the context of measures of noncompactness is the following
Darbo’s fixed point theorem [15].

Theorem4. Let𝐶 be a nonempty, bounded, closed, and convex
subset of a Banach space 𝐸 and let 𝑇 : 𝐶 → 𝐶 be a continuous
mapping. Suppose that there exists a constant 𝑘 ∈ [0, 1) such
that

𝜇 (𝑇 (𝑋)) ≤ 𝑘𝜇 (𝑋) , (18)

for any nonempty subset 𝑋 of 𝐶.
Then, 𝑇 has a fixed point.

A generalization of Theorem 4 which will be very useful
in our study is the following theorem, due to Sadovskǐı [16].

Theorem5. Let𝐶 be a nonempty, bounded, closed, and convex
subset of a Banach space 𝐸 and let 𝑇 : 𝐶 → 𝐶 be a continuous
operator satisfying

𝜇 (𝑇 (𝑋)) < 𝜇 (𝑋) , (19)

for any nonempty subset 𝑋 of 𝐶 with 𝜇(𝑋) > 0.
Then, 𝑇 has a fixed point.

Next, we will assume that the space 𝐸 has structure of
Banach algebra. By 𝑥𝑦 we will denote the product of two
elements 𝑥, 𝑦 ∈ 𝑋 and by 𝑋𝑌 we will denote the set defined
by 𝑋𝑌 = {𝑥𝑦 : 𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌}.

Definition 6. Let 𝐸 be a Banach algebra. We will say that
a measure of noncompactness 𝜇 defined on 𝐸 satisfies
condition (𝑚) if

𝜇 (𝑋𝑌) ≤ ‖𝑋‖ 𝜇 (𝑌) + ‖𝑌‖ 𝜇 (𝑋) , (20)

for any 𝑋, 𝑌 ∈ M
𝐸
.

This definition appears in [17].
In this paper, we will work in the space 𝐶[0, 1] consisting

of all real functions defined and continuous on [0, 1] with the
standard supremum norm

‖𝑥‖ = sup {|𝑥 (𝑡)| : 𝑡 ∈ [0, 1]} , (21)

for𝑥 ∈ 𝐶[0, 1]. It is clear that (𝐶[0, 1], ‖⋅‖) is a Banach algebra,
where the multiplication is defined as the usual product of
real functions.

Next, we present the measure of noncompactness in
𝐶[0, 1] which will be used later. Let us fix 𝑋 ∈ M

𝐶[0,1]
and

𝜀 > 0. For 𝑥 ∈ 𝑋, we denote by 𝜔(𝑥, 𝜀) the modulus of
continuity of 𝑥; that is,

𝜔 (𝑥, 𝜀) = sup {|𝑥 (𝑡) − 𝑥 (𝑠)| : 𝑡, 𝑠 ∈ [0, 1] , |𝑡 − 𝑠| ≤ 𝜀} . (22)

Put

𝜔 (𝑋, 𝜀) = sup {𝜔 (𝑥, 𝜀) : 𝑥 ∈ 𝑋} ,

𝜔
0

(𝑋) = lim
𝜀→0

𝜔 (𝑋, 𝜀) .
(23)

In [15], it is proved that 𝜔
0
(𝑋) is a measure of noncompact-

ness in 𝐶[0, 1].

Proposition 7. Themeasure of noncompactness 𝜔
0
on 𝐶[0, 1]

satisfies condition (𝑚).

Proof. Fix 𝑋, 𝑌 ∈ M
𝐶[0,1]

, 𝜀 > 0, and 𝑡, 𝑠 ∈ [0, 1] with |𝑡 − 𝑠| ≤

𝜀. Then, we have
󵄨󵄨󵄨󵄨𝑥 (𝑡) 𝑦 (𝑡) − 𝑥 (𝑠) 𝑦 (𝑠)

󵄨󵄨󵄨󵄨 ≤
󵄨󵄨󵄨󵄨𝑥 (𝑡) 𝑦 (𝑡) − 𝑥 (𝑡) 𝑦 (𝑠)

󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨𝑥 (𝑡) 𝑦 (𝑠) − 𝑥 (𝑠) 𝑦 (𝑠)

󵄨󵄨󵄨󵄨

= |𝑥 (𝑡)|
󵄨󵄨󵄨󵄨𝑦 (𝑡) − 𝑦 (𝑠)

󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨𝑦 (𝑠)

󵄨󵄨󵄨󵄨 |𝑥 (𝑡) − 𝑥 (𝑠)|

≤ ‖𝑥‖ 𝜔 (𝑦, 𝜀) +
󵄩󵄩󵄩󵄩𝑦

󵄩󵄩󵄩󵄩 𝜔 (𝑥, 𝜀) .

(24)

This means that

𝜔 (𝑥𝑦, 𝜀) ≤ ‖𝑥‖ 𝜔 (𝑦, 𝜀) +
󵄩󵄩󵄩󵄩𝑦

󵄩󵄩󵄩󵄩 𝜔 (𝑥, 𝜀) , (25)

and, therefore,

𝜔 (𝑋𝑌, 𝜀) ≤ ‖𝑋‖ 𝜔 (𝑌, 𝜀) + ‖𝑌‖ 𝜔 (𝑋, 𝜀) . (26)

Taking 𝜀 → 0, we get

𝜔
0

(𝑋𝑌) ≤ ‖𝑋‖ 𝜔
0

(𝑌) + ‖𝑌‖ 𝜔
0

(𝑋) . (27)

This completes the proof.

Proposition 7 appears in [17] and we have given the proof
for the paper is self-contained.

3. Main Results

We begin this section introducing the following class A of
functions:

A = { 𝜑 : R
+

󳨀→ R
+

: 𝜑 is nondecreasing

and lim
𝑛→∞

𝜑
𝑛

(𝑡) = 0 for any 𝑡 > 0} ,

(28)

where 𝜑
𝑛 denotes the 𝑛-iteration of 𝜑.
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Remark 8. Notice that if 𝜑 ∈ A, then 𝜑(𝑡) < 𝑡, for any 𝑡 > 0.
Indeed, in contrary case, we can find 𝑡

0
> 0 and 𝑡

0
≤ 𝜑(𝑡

0
).

Since 𝜑 is nondecreasing, we have

0 < 𝑡
0

≤ 𝜑 (𝑡
0
) ≤ 𝜑
2

(𝑡
0
) ≤ ⋅ ⋅ ⋅ ≤ 𝜑

𝑛

(𝑡
0
) ≤ ⋅ ⋅ ⋅ , (29)

and, therefore, 0 < 𝑡
0

≤ lim
𝑛→∞

𝜑
𝑛

(𝑡
0
) and this contradicts

the fact that 𝜑 ∈ A.
Moreover, the fact that 𝜑(𝑡) < 𝑡 for any 𝑡 > 0 proves that

if 𝜑 ∈ A, then 𝜑 is continuous at 𝑡
0

= 0.

Using Remark 8 and Theorem 5, we have the following
fixed point theorem.

Theorem9. Let𝐶 be a nonempty, bounded, closed, and convex
subset of a Banach space 𝐸 and let 𝑇 : 𝐶 → 𝐶 be a continuous
operator satisfying

𝜇 (𝑇 (𝑋)) ≤ 𝜑 (𝜇 (𝑋)) , (30)

for any nonempty subset 𝑋 of 𝐶, where 𝜑 ∈ A.
Then, 𝑇 has a fixed point.

Theorem 9 appears in [18], where the authors present a
proof without usingTheorem 5.

The following result which appears in [19] will be inter-
esting in our study.

Theorem 10. Let 𝜇
1
, 𝜇
2
, . . . , 𝜇

𝑛
be measures of noncompact-

ness in the Banach spaces 𝐸
1
, 𝐸
2
, . . . , 𝐸

𝑛
, respectively. Suppose

that 𝐹 : [0, ∞)
𝑛

→ [0, ∞) is a convex function such that
𝐹(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) = 0 if and only if 𝑥

𝑖
= 0 for 𝑖 = 1, 2, . . . , 𝑛.

Then,

𝜇 (𝑋) = 𝐹 (𝜇
1

(𝑋
1
) , 𝜇
2

(𝑋
2
) , . . . , 𝜇

𝑛
(𝑋
𝑛
)) (31)

defines a measure compactness in 𝐸
1

× 𝐸
2

× ⋅ ⋅ ⋅ × 𝐸
𝑛
, where 𝑋

𝑖

denotes the natural projection of 𝑋 into 𝐸
𝑖
, for 𝑖 = 1, 2, . . . , 𝑛.

Remark 11. As a consequence ofTheorem 10, we have that if 𝜇

is a measure of noncompactness on a Banach space 𝐸 and we
consider the function 𝐹 : [0, ∞) × [0, ∞) → [0, ∞) defined
by 𝐹(𝑥, 𝑦) = max(𝑥, 𝑦), then, since 𝐹 is convex and 𝐹(𝑥, 𝑦) =

0 if and only if 𝑥 = 𝑦 = 0, 𝜇(𝑋) = max{𝜇(𝑋
1
), 𝜇(𝑋

2
)} defines

a measure of noncompactness in the space 𝐸 × 𝐸.

Next, we present the definition of a coupled fixed point.

Definition 12. An element (𝑥, 𝑦) ∈ 𝑋 × 𝑋 is said to be a
coupled fixed point of a mapping 𝐺 : 𝑋 × 𝑋 → 𝑋 if
𝐺(𝑥, 𝑦) = 𝑥 and 𝐺(𝑦, 𝑥) = 𝑦.

The following result is crucial for our study.

Theorem 13. Let Ω be a nonempty, bounded, closed, and
convex subset of a Banach space 𝐸, and let 𝜇 be a measure of
noncompactness in 𝐸. Suppose that 𝐺 : Ω × Ω → Ω is a
continuous operator satisfying

𝜇 (𝐺 (𝑋
1

× 𝑋
2
)) ≤ 𝜑 (max (𝜇 (𝑋

1
) , 𝜇 (𝑋

2
))) (32)

for all nonempty subsets 𝑋
1
and 𝑋

2
of Ω, where 𝜑 ∈ A.

Then, 𝐺 has at least a coupled fixed point.

Proof. Notice that, by Remark 11, 𝜇(𝑋) = max{𝜇(𝑋
1
), 𝜇(𝑋

2
)}

is a measure of noncompactness in the space 𝐸 × 𝐸, where 𝑋
1

and 𝑋
2
are the projections of 𝑋 into 𝐸.

Now, we consider the mapping 𝐺 : Ω × Ω → Ω × Ω

defined by 𝐺(𝑥, 𝑦) = (𝐺(𝑥, 𝑦), 𝐺(𝑦, 𝑥)). It is easily seen that
Ω × Ω is a nonempty, bounded, closed, and convex subset
of 𝐸 × 𝐸. Since 𝐺 is continuous, it is clear that 𝐺 is also
continuous.

Next, we take a nonempty 𝑋 of Ω × Ω. Then,

𝜇 (𝐺 (𝑋)) = 𝜇 (𝐺 (𝑋
1

× 𝑋
2
))

= 𝜇 (𝐺 (𝑋
1

× 𝑋
2
) × 𝐺 (𝑋

2
× 𝑋
1
))

= max {𝜇 (𝐺 (𝑋
1

× 𝑋
2
)) , 𝜇 (𝐺 (𝑋

2
× 𝑋
1
))}

≤ max {𝜑 (max (𝜇 (𝑋
1
) , 𝜇 (𝑋

2
))) ,

𝜑 (max (𝜇 (𝑋
2
) , 𝜇 (𝑋

1
)))}

= 𝜑 (max (𝜇 (𝑋
1
) , 𝜇 (𝑋

2
)))

= 𝜑 (𝜇 (𝑋
1

× 𝑋
2
)) .

(33)

Since 𝜑 ∈ A, by Theorem 9, the mapping 𝐺 has at least one
fixed point.Thismeans that there exists (𝑥

0
, 𝑦
0
) ∈ Ω×Ω such

that 𝐺(𝑥
0
, 𝑦
0
) = (𝑥

0
, 𝑦
0
) or, equivalently, 𝐺(𝑥

0
, 𝑦
0
) = 𝑥
0
and

𝐺(𝑦
0
, 𝑥
0
) = 𝑦
0
. This proves that 𝐺 has at least a coupled fixed

point.

Now, we consider the coupled system of integral equa-
tions:

𝑥 (𝑡) =
𝑓 (𝑡, 𝑥 (𝑡) , 𝑦 (𝑡))

Γ (𝛼)
∫

𝑡

0

𝑔 (𝑠, 𝑥 (𝑠) , 𝑦 (𝑠))

(𝑡 − 𝑠)
1−𝛼

𝑑𝑠,

𝑦 (𝑡) =
𝑓 (𝑡, 𝑦 (𝑡) , 𝑥 (𝑡))

Γ (𝛼)
∫

𝑡

0

𝑔 (𝑠, 𝑦 (𝑠) , 𝑥 (𝑠))

(𝑡 − 𝑠)
1−𝛼

𝑑𝑠, 𝑡 ∈ [0, 1] .

(34)

Lemma 14. Assume that 𝑓 ∈ 𝐶([0, 1] × R × R,R \ {0}) and
𝑔 ∈ 𝐶([0, 1] × R × R,R). Then, (𝑥, 𝑦) ∈ 𝐶[0, 1] × 𝐶[0, 1] is
a solution of (34) if and only if (𝑥, 𝑦) ∈ 𝐶[0, 1] × 𝐶[0, 1] is a
solution of (4).

Proof. The proof is an immediate consequence of Lemma 2,
so we omit it.

Next, we will study problem (4) under the following
assumptions.

(H
1
) 𝑓 ∈ 𝐶([0, 1] × R × R,R \ {0}) and 𝑔 ∈ 𝐶([0, 1] × R ×

R,R).
(H
2
) The functions 𝑓 and 𝑔 satisfy

󵄨󵄨󵄨󵄨𝑓 (𝑡, 𝑥
1
, 𝑦
1
) − 𝑓 (𝑡, 𝑥

2
, 𝑦
2
)
󵄨󵄨󵄨󵄨

≤ 𝜑
1

(max (
󵄨󵄨󵄨󵄨𝑥1 − 𝑥

2

󵄨󵄨󵄨󵄨 ,
󵄨󵄨󵄨󵄨𝑦1 − 𝑦

2

󵄨󵄨󵄨󵄨)) ,

󵄨󵄨󵄨󵄨𝑔 (𝑡, 𝑥
1
, 𝑦
2
) − 𝑔 (𝑡, 𝑥

2
, 𝑦
2
)
󵄨󵄨󵄨󵄨

≤ 𝜑
2

(max (
󵄨󵄨󵄨󵄨𝑥1 − 𝑦

1

󵄨󵄨󵄨󵄨 ,
󵄨󵄨󵄨󵄨𝑥2 − 𝑦

2

󵄨󵄨󵄨󵄨)) ,

(35)
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respectively, for any 𝑡 ∈ [0, 1] and 𝑥
1
, 𝑥
2
, 𝑦
1
, 𝑦
2

∈ R,
where 𝜑

1
, 𝜑
2

∈ A and 𝜑
1
is continuous.

Notice that assumption (H
1
) gives us the existence

of two nonnegative constants 𝑘
1
and 𝑘

2
such that

|𝑓(𝑡, 0, 0)| ≤ 𝑘
1
and |𝑔(𝑡, 0, 0)| ≤ 𝑘

2
, for any 𝑡 ∈ [0, 1].

(H
3
) There exists 𝑟

0
> 0 satisfying the inequalities

(𝜑
1

(𝑟) + 𝑘
1
) ⋅ (𝜑
2

(𝑟) + 𝑘
2
) ≤ 𝑟Γ (𝛼 + 1) ,

𝜑
2

(𝑟) + 𝑘
2

≤ Γ (𝛼 + 1) .

(36)

Theorem 15. Under assumptions (𝐻
1
)–(𝐻
3
), problem (4) has

at least one solution in 𝐶[0, 1] × 𝐶[0, 1].

Proof. In virtue of Lemma 14, a solution (𝑥, 𝑦) ∈ 𝐶[0, 1] ×

𝐶[0, 1] of problem (4) satisfies

𝑥 (𝑡) =
𝑓 (𝑡, 𝑥 (𝑡) , 𝑦 (𝑡))

Γ (𝛼)
∫

𝑡

0

𝑔 (𝑠, 𝑥 (𝑠) , 𝑦 (𝑠))

(𝑡 − 𝑠)
1−𝛼

𝑑𝑠,

𝑦 (𝑡) =
𝑓 (𝑡, 𝑦 (𝑡) , 𝑥 (𝑡))

Γ (𝛼)
∫

𝑡

0

𝑔 (𝑠, 𝑦 (𝑠) , 𝑥 (𝑠))

(𝑡 − 𝑠)
1−𝛼

𝑑𝑠,

𝑡 ∈ [0, 1] .

(37)

We consider the space 𝐶[0, 1] × 𝐶[0, 1] equipped with the
norm ‖(𝑥, 𝑦)‖

𝐶[0,1]×𝐶[0,1]
= max{‖𝑥‖, ‖𝑦‖}, for any (𝑥, 𝑦) ∈

𝐶[0, 1] × 𝐶[0, 1].
In 𝐶[0, 1] × 𝐶[0, 1], we define the operator

𝐺 (𝑥, 𝑦) (𝑡) =
𝑓 (𝑡, 𝑥 (𝑡) , 𝑦 (𝑡))

Γ (𝛼)
∫

𝑡

0

𝑔 (𝑠, 𝑥 (𝑠) , 𝑦 (𝑠))

(𝑡 − 𝑠)
1−𝛼

𝑑𝑠,

𝑡 ∈ [0, 1] .

(38)

LetF andG be the operators given by

F (𝑥, 𝑦) (𝑡) = 𝑓 (𝑡, 𝑥 (𝑡) , 𝑦 (𝑡)) ,

G (𝑥, 𝑦) (𝑡) =
1

Γ (𝛼)
∫

𝑡

0

𝑔 (𝑠, 𝑥 (𝑠) , 𝑦 (𝑠))

(𝑡 − 𝑠)
1−𝛼

𝑑𝑠

(39)

for any (𝑥, 𝑦) ∈ 𝐶[0, 1] × 𝐶[0, 1] and any 𝑡 ∈ [0, 1]. Then,

𝐺 (𝑥, 𝑦) = F (𝑥, 𝑦) ⋅ G (𝑥, 𝑦) . (40)

Firstly, we will prove that 𝐺 applies 𝐶[0, 1] × 𝐶[0, 1] into
𝐶[0, 1]. To do this, it is sufficient to prove that F(𝑥, 𝑦),
G(𝑥, 𝑦) ∈ 𝐶[0, 1] for any (𝑥, 𝑦) ∈ 𝐶[0, 1] × 𝐶[0, 1] since the
product of continuous functions is continuous.

In virtue of assumption (H
1
), it is clear that F(𝑥, 𝑦) ∈

𝐶[0, 1] for (𝑥, 𝑦) ∈ 𝐶[0, 1] × 𝐶[0, 1]. In order to prove that
G(𝑥, 𝑦) ∈ 𝐶[0, 1] for (𝑥, 𝑦) ∈ 𝐶[0, 1] × 𝐶[0, 1], we fix 𝑡

0
∈

[0, 1] and we consider a sequence (𝑡
𝑛
) ∈ [0, 1] such that 𝑡

𝑛
→

𝑡
0
, and we have to prove that G(𝑥, 𝑦)(𝑡

𝑛
) → G(𝑥, 𝑦)(𝑡

0
).

Without loss of generality, we can suppose that 𝑡
𝑛

> 𝑡
0
. Then,

we have

󵄨󵄨󵄨󵄨G (𝑥, 𝑦) (𝑡
𝑛
) − G (𝑥, 𝑦) (𝑡

0
)
󵄨󵄨󵄨󵄨

=
1

Γ (𝛼)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝑡
𝑛

0

𝑔 (𝑠, 𝑥 (𝑠) , 𝑦 (𝑠))

(𝑡
𝑛

− 𝑠)
1−𝛼

𝑑𝑠

− ∫

𝑡
0

0

𝑔 (𝑠, 𝑥 (𝑠) , 𝑦 (𝑠))

(𝑡
0

− 𝑠)
1−𝛼

𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
1

Γ (𝛼)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝑡
𝑛

0

𝑔 (𝑠, 𝑥 (𝑠) , 𝑦 (𝑠))

(𝑡
𝑛

− 𝑠)
1−𝛼

𝑑𝑠

− ∫

𝑡
𝑛

0

𝑔 (𝑠, 𝑥 (𝑠) , 𝑦 (𝑠))

(𝑡
0

− 𝑠)
1−𝛼

𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+
1

Γ (𝛼)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝑡
𝑛

0

𝑔 (𝑠, 𝑥 (𝑠) , 𝑦 (𝑠))

(𝑡
0

− 𝑠)
1−𝛼

𝑑𝑠

− ∫

𝑡
0

0

𝑔 (𝑠, 𝑥 (𝑠) , 𝑦 (𝑠))

(𝑡
0

− 𝑠)
1−𝛼

𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
1

Γ (𝛼)
∫

𝑡
𝑛

0

󵄨󵄨󵄨󵄨󵄨
(𝑡
𝑛

− 𝑠)
𝛼−1

− (𝑡
0

− 𝑠)
𝛼−1󵄨󵄨󵄨󵄨󵄨

×
󵄨󵄨󵄨󵄨𝑔 (𝑠, 𝑥 (𝑠) , 𝑦 (𝑠))

󵄨󵄨󵄨󵄨 𝑑𝑠

+
1

Γ (𝛼)
∫

𝑡
𝑛

𝑡
0

󵄨󵄨󵄨󵄨󵄨
(𝑡
0

− 𝑠)
𝛼−1󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑔 (𝑠, 𝑥 (𝑠) , 𝑦 (𝑠))
󵄨󵄨󵄨󵄨 𝑑𝑠.

(41)

By assumption (H
1
), since 𝑔 ∈ 𝐶([0, 1] × R × R,R), 𝑔 is

bounded on the compact set [0, 1]×[−‖𝑥‖, ‖𝑥‖]×[−‖𝑦‖, ‖𝑦‖].
Denote by

𝑀 = sup {
󵄨󵄨󵄨󵄨𝑔 (𝑠, 𝑥

1
, 𝑦
1
)
󵄨󵄨󵄨󵄨 : 𝑠 ∈ [0, 1] , 𝑥

1
∈ [− ‖𝑥‖ , ‖𝑥‖] ,

𝑦
1

∈ [−
󵄩󵄩󵄩󵄩𝑦

󵄩󵄩󵄩󵄩 ,
󵄩󵄩󵄩󵄩𝑦

󵄩󵄩󵄩󵄩]} .

(42)

From the last estimate, we obtain

󵄨󵄨󵄨󵄨G (𝑥, 𝑦) (𝑡
𝑛
) − G (𝑥, 𝑦) (𝑡

0
)
󵄨󵄨󵄨󵄨

≤
𝑀

Γ (𝛼)
∫

𝑡
𝑛

0

󵄨󵄨󵄨󵄨󵄨
(𝑡
𝑛

− 𝑠)
𝛼−1

− (𝑡
0

− 𝑠)
𝛼−1󵄨󵄨󵄨󵄨󵄨

𝑑𝑠

+
𝑀

Γ (𝛼)
∫

𝑡
𝑛

𝑡
0

󵄨󵄨󵄨󵄨󵄨
(𝑡
0

− 𝑠)
𝛼−1󵄨󵄨󵄨󵄨󵄨

𝑑𝑠.

(43)
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As 0 < 𝛼 < 1 and 𝑡
𝑛

> 𝑡
0
, we infer that

󵄨󵄨󵄨󵄨G (𝑥, 𝑦) (𝑡
𝑛
) − G (𝑥, 𝑦) (𝑡

0
)
󵄨󵄨󵄨󵄨

≤
𝑀

Γ (𝛼)
[∫

𝑡
0

0

󵄨󵄨󵄨󵄨󵄨
(𝑡
𝑛

− 𝑠)
𝛼−1

− (𝑡
0

− 𝑠)
𝛼−1󵄨󵄨󵄨󵄨󵄨

𝑑𝑠

+ ∫

𝑡
𝑛

𝑡
0

󵄨󵄨󵄨󵄨󵄨
(𝑡
𝑛

− 𝑠)
𝛼−1

− (𝑡
0

− 𝑠)
𝛼−1󵄨󵄨󵄨󵄨󵄨

𝑑𝑠]

+
𝑀

Γ (𝛼)
∫

𝑡
𝑛

𝑡
0

1

(𝑠 − 𝑡
0
)
1−𝛼

𝑑𝑠

=
𝑀

Γ (𝛼)
[ ∫

𝑡
0

0

[(𝑡
0

− 𝑠)
𝛼−1

− (𝑡
𝑛

− 𝑠)
𝛼−1

] 𝑑𝑠

+ ∫

𝑡
𝑛

𝑡
0

𝑑𝑠

(𝑡
𝑛

− 𝑠)
1−𝛼

+ ∫

𝑡
𝑛

𝑡
0

𝑑𝑠

(𝑠 − 𝑡
0
)
1−𝛼

]

+
𝑀

Γ (𝛼)
∫

𝑡
𝑛

𝑡
0

1

(𝑠 − 𝑡
0
)
1−𝛼

𝑑𝑠

≤
𝑀

Γ (𝛼 + 1)
[(𝑡
𝑛

− 𝑡
0
)
𝛼

+ 𝑡
𝛼

0
− 𝑡
𝛼

𝑛

+ (𝑡
𝑛

− 𝑡
0
)
𝛼

+ (𝑡
𝑛

− 𝑡
0
)
𝛼

]

+
𝑀

Γ (𝛼 + 1)
(𝑡
𝑛

− 𝑡
0
)
𝛼

=
4𝑀

Γ (𝛼 + 1)
(𝑡
𝑛

− 𝑡
0
)
𝛼

+
𝑀

Γ (𝛼 + 1)
(𝑡
𝛼

0
− 𝑡
𝛼

𝑛
)

<
4𝑀

Γ (𝛼 + 1)
(𝑡
𝑛

− 𝑡
0
)
𝛼

,

(44)

where the last inequality has been obtained by using the fact
that 𝑡
𝛼

0
− 𝑡
𝛼

𝑛
< 0.

Therefore, since 𝑡
𝑛

→ 𝑡
0
, from the last estimate, we

deduce that G(𝑥, 𝑦)(𝑡
𝑛
) → G(𝑥, 𝑦)(𝑡

0
). This proves that

G(𝑥, 𝑦) ∈ 𝐶[0, 1]. Consequently, G : 𝐶[0, 1] × 𝐶[0, 1] →

𝐶[0, 1]. On the other hand, for (𝑥, 𝑦) ∈ 𝐶[0, 1] × 𝐶[0, 1] and
𝑡 ∈ 𝐶[0, 1], we have

󵄨󵄨󵄨󵄨𝐺 (𝑥, 𝑦) (𝑡)
󵄨󵄨󵄨󵄨

=
󵄨󵄨󵄨󵄨F (𝑥, 𝑦) (𝑡) ⋅ G (𝑥, 𝑦) (𝑡)

󵄨󵄨󵄨󵄨

=
󵄨󵄨󵄨󵄨𝑓 (𝑡, 𝑥 (𝑡) , 𝑦 (𝑡))

󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

Γ (𝛼)
∫

𝑡

0

𝑔 (𝑠, 𝑥 (𝑠) , 𝑦 (𝑠))

(𝑡 − 𝑠)
1−𝛼

𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ [
󵄨󵄨󵄨󵄨𝑓 (𝑡, 𝑥 (𝑡) , 𝑦 (𝑡)) − 𝑓 (𝑡, 0, 0)

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑓 (𝑡, 0, 0)

󵄨󵄨󵄨󵄨]

× [
1

Γ (𝛼)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝑡

0

𝑔 (𝑠, 𝑥 (𝑠) , 𝑦 (𝑠)) − 𝑔 (𝑠, 0, 0)

(𝑡 − 𝑠)
1−𝛼

𝑑𝑠

+ ∫

𝑡

0

𝑔 (𝑠, 0, 0)

(𝑡 − 𝑠)
1−𝛼

𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

]

≤
1

Γ (𝛼)
[𝜑
1

(max (|𝑥 (𝑡)| ,
󵄨󵄨󵄨󵄨𝑦 (𝑡)

󵄨󵄨󵄨󵄨)) + 𝑘
1
]

× [∫

𝑡

0

󵄨󵄨󵄨󵄨𝑔 (𝑠, 𝑥 (𝑠) , 𝑦 (𝑠)) − 𝑔 (𝑠, 0, 0)
󵄨󵄨󵄨󵄨

(𝑡 − 𝑠)
1−𝛼

𝑑𝑠

+ ∫

𝑡

0

󵄨󵄨󵄨󵄨𝑔 (𝑠, 0, 0)
󵄨󵄨󵄨󵄨

(𝑡 − 𝑠)
1−𝛼

𝑑𝑠]

≤
1

Γ (𝛼)
[𝜑
1

(max (‖𝑥‖ ,
󵄩󵄩󵄩󵄩𝑦

󵄩󵄩󵄩󵄩)) + 𝑘
1
]

× [∫

𝑡

0

𝜑
2

(max (|𝑥 (𝑠)| ,
󵄨󵄨󵄨󵄨𝑦 (𝑠)

󵄨󵄨󵄨󵄨))

(𝑡 − 𝑠)
1−𝛼

𝑑𝑠

+ 𝑘
2

∫

𝑡

0

𝑑𝑠

(𝑡 − 𝑠)
1−𝛼

]

≤
1

Γ (𝛼)
[𝜑
1

(max (‖𝑥‖ ,
󵄩󵄩󵄩󵄩𝑦

󵄩󵄩󵄩󵄩)) + 𝑘
1
]

⋅ [𝜑
2

(max (‖𝑥‖ ,
󵄩󵄩󵄩󵄩𝑦

󵄩󵄩󵄩󵄩)) + 𝑘
2
] ∫

𝑡

0

𝑑𝑠

(𝑡 − 𝑠)
1−𝛼

≤
1

Γ (𝛼 + 1)
(𝜑
1

(
󵄩󵄩󵄩󵄩(𝑥, 𝑦)

󵄩󵄩󵄩󵄩) + 𝑘
1
)

⋅ (𝜑
2

(
󵄩󵄩󵄩󵄩(𝑥, 𝑦)

󵄩󵄩󵄩󵄩) + 𝑘
2
) .

(45)

Now, taking into account assumption (H
3
), we infer that the

operator 𝐺 applies 𝐵
𝑟
0

× 𝐵
𝑟
0

into 𝐵
𝑟
0

. Moreover, from the last
estimates, it follows that

󵄩󵄩󵄩󵄩󵄩
F (𝐵
𝑟
0

× 𝐵
𝑟
0

)
󵄩󵄩󵄩󵄩󵄩

≤ 𝜑
1

(𝑟
0
) + 𝑘
1
,

󵄩󵄩󵄩󵄩󵄩
G (𝐵
𝑟
0

× 𝐵
𝑟
0

)
󵄩󵄩󵄩󵄩󵄩

≤
𝜑
2

(𝑟
0
) + 𝑘
2

Γ (𝛼 + 1)
.

(46)

Next, we will prove that the operators F and G are
continuous on the ball 𝐵

𝑟
0

× 𝐵
𝑟
0

and, consequently, 𝐺 will be
also continuous.

In fact, we fix 𝜀 > 0 and we take (𝑥
0
, 𝑦
0
), (𝑥, 𝑦) ∈ 𝐵

𝑟
0

× 𝐵
𝑟
0

with ‖(𝑥, 𝑦)−(𝑥
0
, 𝑦
0
)‖ = ‖(𝑥−𝑥

0
, 𝑦−𝑦
0
)‖ =max{‖𝑥−𝑥

0
‖, ‖𝑦−

𝑦
0
‖} ≤ 𝜀. Then, for 𝑡 ∈ [0, 1], we have

󵄨󵄨󵄨󵄨F (𝑥, 𝑦) (𝑡) − F (𝑥
0
, 𝑦
0
) (𝑡)

󵄨󵄨󵄨󵄨

=
󵄨󵄨󵄨󵄨𝑓 (𝑡, 𝑥 (𝑡) , 𝑦 (𝑡)) − 𝑓 (𝑡, 𝑥

0
(𝑡) , 𝑦
0

(𝑡))
󵄨󵄨󵄨󵄨

≤ 𝜑
1

(max (
󵄨󵄨󵄨󵄨𝑥 (𝑡) − 𝑥

0
(𝑡)

󵄨󵄨󵄨󵄨 ,
󵄨󵄨󵄨󵄨𝑦 (𝑡) , 𝑦

0
(𝑡)

󵄨󵄨󵄨󵄨))

≤ 𝜑
1

(max (
󵄩󵄩󵄩󵄩𝑥 − 𝑥

0

󵄩󵄩󵄩󵄩 ,
󵄩󵄩󵄩󵄩𝑦 − 𝑦

0

󵄩󵄩󵄩󵄩))

≤ 𝜑
1

(𝜀) < 𝜀,

(47)

where we have used Remark 8. This proves the continuity of
F on 𝐵

𝑟
0

× 𝐵
𝑟
0

.
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In order to prove the continuity ofG on 𝐵
𝑟
0

×𝐵
𝑟
0

, we have
󵄨󵄨󵄨󵄨G (𝑥, 𝑦) (𝑡) − G (𝑥

0
, 𝑦
0
) (𝑡)

󵄨󵄨󵄨󵄨

=
1

Γ (𝛼)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝑡

0

𝑔 (𝑠, 𝑥 (𝑠) , 𝑦 (𝑠))

(𝑡 − 𝑠)
1−𝛼

𝑑𝑠

− ∫

𝑡

0

𝑔 (𝑠, 𝑥
0

(𝑠) , 𝑦
0

(𝑠))

(𝑡 − 𝑠)
1−𝛼

𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
1

Γ (𝛼)
∫

𝑡

0

󵄨󵄨󵄨󵄨𝑔 (𝑠, 𝑥 (𝑠) , 𝑦 (𝑠)) − 𝑔 (𝑠, 𝑥
0

(𝑠) , 𝑦
0

(𝑠))
󵄨󵄨󵄨󵄨

(𝑡 − 𝑠)
1−𝛼

𝑑𝑠

≤
1

Γ (𝛼)
∫

𝑡

0

𝜑
2

(max (
󵄨󵄨󵄨󵄨𝑥 (𝑠) − 𝑥

0
(𝑠)

󵄨󵄨󵄨󵄨 ,
󵄨󵄨󵄨󵄨𝑦 (𝑠) − 𝑦

0
(𝑠)

󵄨󵄨󵄨󵄨))

(𝑡 − 𝑠)
1−𝛼

𝑑𝑠

≤
1

Γ (𝛼)
𝜑
2

(max (
󵄩󵄩󵄩󵄩𝑥 − 𝑥

0

󵄩󵄩󵄩󵄩 ,
󵄩󵄩󵄩󵄩𝑦 − 𝑦

0

󵄩󵄩󵄩󵄩)) ∫

𝑡

0

𝑑𝑠

(𝑡 − 𝑠)
1−𝛼

≤
1

Γ (𝛼 + 1)
𝜑
2

(𝜀)

<
𝜀

Γ (𝛼 + 1)
.

(48)

Therefore,
󵄩󵄩󵄩󵄩G (𝑥, 𝑦) − G (𝑥

0
, 𝑦
0
)
󵄩󵄩󵄩󵄩 <

𝜀

Γ (𝛼 + 1)
(49)

and, consequently,G is a continuous operator on 𝐵
𝑟
0

× 𝐵
𝑟
0

.
In order to prove that G satisfies assumptions of

Theorem 13, only we have to check the condition

𝜇 (𝐺 (𝑋
1

× 𝑋
2
)) ≤ 𝜑 (max (𝜇 (𝑋

1
) , 𝜇 (𝑋

2
))) (50)

for any subsets 𝑋
1
and 𝑋

2
of 𝐵
𝑟
0

.
To do this, we fix 𝜀 > 0, 𝑡

1
, 𝑡
2

∈ [0, 1] with |𝑡
1
− 𝑡
2
| ≤ 𝜀 and

(𝑥, 𝑦) ∈ 𝑋
1

× 𝑋
2
; then, we have

󵄨󵄨󵄨󵄨F (𝑥, 𝑦) (𝑡
1
) − F (𝑥, 𝑦) (𝑡

2
)
󵄨󵄨󵄨󵄨

=
󵄨󵄨󵄨󵄨𝑓 (𝑡
1
, 𝑥 (𝑡
1
) , 𝑦 (𝑡

1
)) − 𝑓 (𝑡

2
, 𝑥 (𝑡
2
) , 𝑦 (𝑡

2
))

󵄨󵄨󵄨󵄨

≤
󵄨󵄨󵄨󵄨𝑓 (𝑡
1
, 𝑥 (𝑡
1
) , 𝑦 (𝑡

1
)) − 𝑓 (𝑡

1
, 𝑥 (𝑡
2
) , 𝑦 (𝑡

2
))

󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨𝑓 (𝑡
1
, 𝑥 (𝑡
2
) , 𝑦 (𝑡

2
)) − 𝑓 (𝑡

2
, 𝑥 (𝑡
2
) , 𝑦 (𝑡

2
))

󵄨󵄨󵄨󵄨

≤ 𝜑
1

(max (
󵄨󵄨󵄨󵄨𝑥 (𝑡
1
) − 𝑥 (𝑡

2
)
󵄨󵄨󵄨󵄨 ,

󵄨󵄨󵄨󵄨𝑦 (𝑡
1
) − 𝑦 (𝑡

2
)
󵄨󵄨󵄨󵄨))

+ 𝜔 (𝑓, 𝜀)

≤ 𝜑
1

(max (𝜔 (𝑥, 𝜀) , 𝜔 (𝑦, 𝜀))) + 𝜔 (𝑓, 𝜀) ,

(51)

where 𝜔(𝑓, 𝜀) denotes the quantity

𝜔 (𝑓, 𝜀) = sup {
󵄨󵄨󵄨󵄨𝑓 (𝑡, 𝑥, 𝑦) − 𝑓 (𝑠, 𝑥, 𝑦)

󵄨󵄨󵄨󵄨 : 𝑡, 𝑠 ∈ [0, 1] ,

|𝑡 − 𝑠| ≤ 𝜀, 𝑥, 𝑦 ∈ [−𝑟
0
, 𝑟
0
]} .

(52)

From the last estimate, we infer that
𝜔 (F (𝑋

1
× 𝑋
2
) , 𝜀)

≤ 𝜑
1

(max (𝜔 (𝑋
1
, 𝜀) , 𝜔 (𝑋

2
, 𝜀))) + 𝜔 (𝑓, 𝜀) .

(53)

Since 𝑓(𝑡, 𝑥, 𝑦) is uniformly continuous on bounded subsets
of [0, 1] × R × R, we deduce that 𝜔(𝑓, 𝜀) → 0 as 𝜀 → 0 and,
therefore,

𝜔
0

(F (𝑋
1

× 𝑋
2
)) ≤ lim
𝜀→0

𝜑
1

(max (𝜔 (𝑋
1
, 𝜀) , 𝜔 (𝑋

2
, 𝜀))) .

(54)

By assumption (H
2
), since 𝜑

1
is continuous, we infer

𝜔
0

(F (𝑋
1

× 𝑋
2
)) ≤ 𝜑

1
(max (𝜔

0
(𝑋
1
) , 𝜔
0

(𝑋
2
))) . (55)

Now, we estimate the quantity 𝜔
0
(G(𝑋
1

× 𝑋
2
)).

Fix 𝜀 > 0, 𝑡
1
, 𝑡
2

∈ [0, 1] with |𝑡
1

− 𝑡
2
| ≤ 𝜀 and (𝑥, 𝑦) ∈ 𝑋

1
×

𝑋
2
. Without loss of generality, we can suppose that 𝑡

1
< 𝑡
2
;

then, we have
󵄨󵄨󵄨󵄨G (𝑥, 𝑦) (𝑡

2
) − G (𝑥, 𝑦) (𝑡

1
)
󵄨󵄨󵄨󵄨

=
1

Γ (𝛼)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝑡
2

0

𝑔 (𝑠, 𝑥 (𝑠) , 𝑦 (𝑠))

(𝑡
2

− 𝑠)
1−𝛼

𝑑𝑠

− ∫

𝑡
1

0

𝑔 (𝑠, 𝑥 (𝑠) , 𝑦 (𝑠))

(𝑡
1

− 𝑠)
1−𝛼

𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
1

Γ (𝛼)
[∫

𝑡
1

0

󵄨󵄨󵄨󵄨󵄨
(𝑡
2

− 𝑠)
𝛼−1

− (𝑡
1

− 𝑠)
𝛼−1󵄨󵄨󵄨󵄨󵄨

×
󵄨󵄨󵄨󵄨𝑔 (𝑠, 𝑥 (𝑠) , 𝑥 (𝜎𝑠))

󵄨󵄨󵄨󵄨 𝑑𝑠

+ ∫

𝑡
2

𝑡
1

(𝑡
2

− 𝑠)
𝛼−1 󵄨󵄨󵄨󵄨𝑔 (𝑠, 𝑥 (𝑠) , 𝑦 (𝑠))

󵄨󵄨󵄨󵄨 𝑑𝑠]

≤
1

Γ (𝛼)
[∫

𝑡
1

0

[(𝑡
1

− 𝑠)
𝛼−1

− (𝑡
2

− 𝑠)
𝛼−1

]

×
󵄨󵄨󵄨󵄨𝑔 (𝑠, 𝑥 (𝑠) , 𝑥 (𝜎𝑠))

󵄨󵄨󵄨󵄨 𝑑𝑠

+ ∫

𝑡
2

𝑡
1

(𝑡
2

− 𝑠)
𝛼−1 󵄨󵄨󵄨󵄨𝑔 (𝑠, 𝑥 (𝑠) , 𝑦 (𝑠))

󵄨󵄨󵄨󵄨 𝑑𝑠] .

(56)

Since 𝑔 ∈ 𝐶([0, 1] × R × R, ×R) is bounded on the compact
subsets of [0, 1] × R × R, particularly, on [0, 1] × [−𝑟

0
, 𝑟
0
] ×

[−𝑟
0
, 𝑟
0
]. Put 𝐿 = sup{|𝑔(𝑡, 𝑥, 𝑦)| : 𝑡 ∈ [0, 1], 𝑥, 𝑦 ∈ [−𝑟

0
, 𝑟
0
]}.

Then, from the last inequality, we infer that
󵄨󵄨󵄨󵄨G (𝑥, 𝑦) (𝑡

2
) − G (𝑥, 𝑦) (𝑡

1
)
󵄨󵄨󵄨󵄨

≤
𝐿

Γ (𝛼)
[∫

𝑡
1

0

[(𝑡
1

− 𝑠)
𝛼−1

− (𝑡
2

− 𝑠)
𝛼−1

] 𝑑𝑠

+ ∫

𝑡
2

𝑡
1

(𝑡
2

− 𝑠)
𝛼−1

𝑑𝑠]

≤
𝐿

Γ (𝛼 + 1)
[(𝑡
2

− 𝑡
1
)
𝛼

+ 𝑡
𝛼

1
− 𝑡
𝛼

2
+ (𝑡
2

− 𝑡
1
)
𝛼

]

≤
2𝐿

Γ (𝛼 + 1)
(𝑡
2

− 𝑡
1
)
𝛼

≤
2𝐿

Γ (𝛼 + 1)
𝜀
𝛼

,

(57)
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where we have used the fact that 𝑡
𝛼

1
− 𝑡
𝛼

2
≤ 0. Therefore,

𝜔 (G (𝑋
1

× 𝑋
2
) , 𝜀) ≤

2𝐿

Γ (𝛼 + 1)
𝜀
𝛼

. (58)

From this, it follows that

𝜔
0

(G (𝑋
1

× 𝑋
2
)) = 0. (59)

Next, by Proposition 7, (46), (55), and (59), we have

𝜔
0

(𝐺 (𝑋
1

× 𝑋
2
))

= 𝜔
0

(F (𝑋
1

× 𝑋
2
) ⋅ G (𝑋

1
× 𝑋
2
))

≤
󵄩󵄩󵄩󵄩F (𝑋

1
× 𝑋
2
)
󵄩󵄩󵄩󵄩 𝜔
0

(G (𝑋
1

× 𝑋
2
))

+
󵄩󵄩󵄩󵄩G (𝑋

1
× 𝑋
2
)
󵄩󵄩󵄩󵄩 𝜔
0

(F (𝑋
1

× 𝑋
2
))

≤
󵄩󵄩󵄩󵄩󵄩
F (𝐵
𝑟
0

× 𝐵
𝑟
0

)
󵄩󵄩󵄩󵄩󵄩

𝜔
0

(G (𝑋
1

× 𝑋
2
))

+
󵄩󵄩󵄩󵄩󵄩
G (𝐵
𝑟
0

× 𝐵
𝑟
0

)
󵄩󵄩󵄩󵄩󵄩

𝜔
0

(F (𝑋
1

× 𝑋
2
))

≤
𝜑
2

(𝑟
0
) + 𝑘
2

Γ (𝛼 + 1)
𝜑
1

(max (𝜔
0

(𝑋
1
) , 𝜔
0

(𝑋
2
))) .

(60)

By assumption (H
3
), since 𝜑

2
(𝑟
0
) + 𝑘
2

≤ Γ(𝛼 + 1) and since it
is easily proved that if 𝛼 ∈ [0, 1] and 𝜑 ∈ A, then 𝛼𝜑 ∈ A, we
deduce that

𝜔
0

(𝐺 (𝑋
1

× 𝑋
2
)) ≤ 𝜑 (max (𝜔

0
(𝑋
1
) , 𝜔
0

(𝑋
2
))) , (61)

where 𝜑 ∈ A.
Finally, by Theorem 13, the operator G has at least a

coupled fixed point and this is the desired result. This
completes the proof.

The nonoscillary character of the solutions of problem
(4) seems to be an interesting question from the practical
point of view. This means that the solutions of problem (4)
have a constant sign on the interval (0, 1). In connection with
this question, we notice that if 𝑓(𝑡, 𝑥, 𝑦) and 𝑔(𝑡, 𝑥, 𝑦) have
constant sign and are equal (this means that 𝑓(𝑡, 𝑥, 𝑦) > 0

and 𝑔(𝑡, 𝑥, 𝑦) ≥ 0 or 𝑓(𝑡, 𝑥, 𝑦) < 0 and 𝑔(𝑡, 𝑥, 𝑦) ≤ 0

for any 𝑡 ∈ [0, 1] and 𝑥, 𝑦 ∈ R) and under assumptions
of Theorem 15, then the solution (𝑥, 𝑦) ∈ 𝐶[0, 1] × 𝐶[0, 1]

of problem (4) given by Theorem 15 satisfies 𝑥(𝑡) ≥ 0 and
𝑦(𝑡) ≥ 0 for 𝑡 ∈ [0, 1], since the solution (𝑥, 𝑦) satisfies the
system of integral equations

𝑥 (𝑡) =
𝑓 (𝑡, 𝑥 (𝑡) , 𝑦 (𝑡))

Γ (𝛼)
∫

𝑡

0

𝑔 (𝑠, 𝑥 (𝑠) , 𝑦 (𝑠))

(𝑡 − 𝑠)
1−𝛼

𝑑𝑠,

𝑦 (𝑡) =
𝑓 (𝑡, 𝑦 (𝑡) , 𝑥 (𝑡))

Γ (𝛼)
∫

𝑡

0

𝑔 (𝑠, 𝑦 (𝑠) , 𝑥 (𝑠))

(𝑡 − 𝑠)
1−𝛼

𝑑𝑠, 0 ≤ 𝑡 ≤ 1.

(62)

On the other hand, if we perturb the data function in problem
(4) of the following manner:

𝐷
𝛼

0
+ [

𝑥 (𝑡)

𝑓 (𝑡, 𝑥 (𝑡) , 𝑦 (𝑡))
] = 𝑔 (𝑡, 𝑥 (𝑡) , 𝑦 (𝑡)) + 𝜂 (𝑡) ,

𝐷
𝛼

0
+ [

𝑦 (𝑡)

𝑓 (𝑡, 𝑦 (𝑡) , 𝑥 (𝑡))
] = 𝑔 (𝑡, 𝑦 (𝑡) , 𝑥 (𝑡)) + 𝜂 (𝑡) ,

0 < 𝑡 < 1,

(63)

where 0 < 𝛼 < 1, 𝑓 ∈ 𝐶([0, 1] × R × R,R \ {0}),
𝑔 ∈ 𝐶([0, 1] × R × R,R), and 𝜂 ∈ 𝐶[0, 1], then, under
assumptions of Theorem 15, problem (63) can be studied
by using Theorem 15, where assumptions (H

1
) and (H

2
) are

automatically satisfied and we only have to check assumption
(H
3
). This fact gives a great applicability to Theorem 15.
Before presenting an example illustrating our results, we

need some facts about the functions involving this example.
The following lemma appears in [18].

Lemma 16. Let 𝜑 : R
+

→ R
+
be a nondecreasing and upper

semicontinuous function. Then, the following conditions are
equivalent:

(i) lim
𝑛→∞

𝜑
𝑛

(𝑡) = 0 for any 𝑡 ≥ 0;

(ii) 𝜑(𝑡) < 𝑡 for any 𝑡 > 0.

Particularly, the functions 𝛼
1
, 𝛼
2

: R
+

→ R
+
given by

𝛼
1
(𝑡) = arctan 𝑡 and 𝛼

2
(𝑡) = 𝑡/(1 + 𝑡) belong to the class

A, since they are nondecreasing and continuous, and, as it
is easily seen, they satisfy (ii) of Lemma 16.

On the other hand, since the function 𝛼
1
(𝑡) = arctan 𝑡 is

concave (because 𝛼
󸀠󸀠

(𝑡) ≤ 0) and 𝛼
1
(0) = 0, we infer that 𝛼

1

is subadditive and, therefore, for any 𝑡, 𝑡
󸀠

∈ R
+
, we have

󵄨󵄨󵄨󵄨󵄨
𝛼
1

(𝑡) − 𝛼
1

(𝑡
󸀠

)
󵄨󵄨󵄨󵄨󵄨

=
󵄨󵄨󵄨󵄨󵄨
arctan 𝑡 − arctan 𝑡

󸀠
󵄨󵄨󵄨󵄨󵄨

≤ arctan 󵄨󵄨󵄨󵄨󵄨
𝑡 − 𝑡
󸀠
󵄨󵄨󵄨󵄨󵄨
.

(64)

Moreover, it is easily seen that max(𝛼
1
, 𝛼
2
) is a nondecreasing

and continuous function because 𝛼
1
and 𝛼

2
are nondecreas-

ing and continuous andmax(𝛼
1
, 𝛼
2
) satisfies (ii) of Lemma 16.

Therefore, max(𝛼
1
, 𝛼
2
) ∈ A.

Now,we are ready to present an examplewhere our results
can be applied.

Example 17. Consider the following coupled system of frac-
tional hybrid differential equations:

𝐷
1/2

0
+ [𝑥 (𝑡) × (

1

4
+ (

1

10
) arctan |𝑥 (𝑡)|

+(
1

20
) (

󵄨󵄨󵄨󵄨𝑦 (𝑡)
󵄨󵄨󵄨󵄨

(1 +
󵄨󵄨󵄨󵄨𝑦 (𝑡)

󵄨󵄨󵄨󵄨)
))

−1

]

=
1

7
+

1

9
𝑥 (𝑡) +

1

10
𝑦 (𝑡) ,
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𝐷
1/2

0
+ [𝑦 (𝑡) × (

1

4
+ (

1

10
) arctan 󵄨󵄨󵄨󵄨𝑦 (𝑡)

󵄨󵄨󵄨󵄨

+ (
1

20
) (

|𝑥 (𝑡)|

(1 + |𝑥 (𝑡)|)
))

−1

]

=
1

7
+

1

9
𝑦 (𝑡) +

1

10
𝑥 (𝑡) ,

0 < 𝑡 < 1,

𝑥 (0) = 𝑦 (0) = 0.

(65)

Notice that problem (17) is a particular case of problem (4),
where 𝛼 = 1/2, 𝑓(𝑡, 𝑥, 𝑦) = 1/4 + (1/10) arctan |𝑥| +

(1/20)(|𝑦|/(1 + |𝑦|)), and 𝑔(𝑡, 𝑥, 𝑦) = 1/7 + (1/9)𝑥 + (1/10)𝑦.
It is clear that 𝑓 ∈ 𝐶([0, 1] × R × R,R \ {0}) and 𝑔 ∈

𝐶([0, 1] × R × R,R) and, moreover, 𝑘
1

= sup{|𝑓(𝑡, 0, 0)| : 𝑡 ∈

[0, 1]} = 1/4 and 𝑘
2

= sup{|𝑔(𝑡, 0, 0)| : 𝑡 ∈ [0, 1]} = 1/7.
Therefore, assumption (H

1
) of Theorem 15 is satisfied.

Moreover, for 𝑡 ∈ [0, 1] and 𝑥
1
, 𝑥
2
, 𝑦
1
, 𝑦
2

∈ R, we have
󵄨󵄨󵄨󵄨𝑓 (𝑡, 𝑥

1
, 𝑦
1
) − 𝑓 (𝑡, 𝑥

2
, 𝑦
2
)
󵄨󵄨󵄨󵄨

≤
1

10

󵄨󵄨󵄨󵄨arctan
󵄨󵄨󵄨󵄨𝑥1

󵄨󵄨󵄨󵄨 − arctan 󵄨󵄨󵄨󵄨𝑥2
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨

+
1

20

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑦1
󵄨󵄨󵄨󵄨

1 +
󵄨󵄨󵄨󵄨𝑦1

󵄨󵄨󵄨󵄨

−

󵄨󵄨󵄨󵄨𝑦2
󵄨󵄨󵄨󵄨

1 +
󵄨󵄨󵄨󵄨𝑦2

󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
1

10
arctan 󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑥1
󵄨󵄨󵄨󵄨 −

󵄨󵄨󵄨󵄨𝑥2
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨

+
1

20

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑦1
󵄨󵄨󵄨󵄨 −

󵄨󵄨󵄨󵄨𝑦2
󵄨󵄨󵄨󵄨

(1 +
󵄨󵄨󵄨󵄨𝑦1

󵄨󵄨󵄨󵄨) (1 +
󵄨󵄨󵄨󵄨𝑦2

󵄨󵄨󵄨󵄨)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
1

10
arctan (

󵄨󵄨󵄨󵄨𝑥1 − 𝑥
2

󵄨󵄨󵄨󵄨)

+
1

20

󵄨󵄨󵄨󵄨𝑦1 − 𝑦
2

󵄨󵄨󵄨󵄨

1 +
󵄨󵄨󵄨󵄨𝑦1 − 𝑦

2

󵄨󵄨󵄨󵄨

=
1

10
𝛼
1

(
󵄨󵄨󵄨󵄨𝑥1 − 𝑥

2

󵄨󵄨󵄨󵄨)

+
1

20
𝛼
2

(
󵄨󵄨󵄨󵄨𝑦1 − 𝑦

2

󵄨󵄨󵄨󵄨)

≤
1

10
max (𝛼

1
, 𝛼
2
) (

󵄨󵄨󵄨󵄨𝑥1 − 𝑥
2

󵄨󵄨󵄨󵄨)

+
1

10
max (𝛼

1
, 𝛼
2
) (

󵄨󵄨󵄨󵄨𝑦1 − 𝑦
2

󵄨󵄨󵄨󵄨)

≤
1

10
[2max (𝛼

1
, 𝛼
2
)

× max (
󵄨󵄨󵄨󵄨𝑥1 − 𝑥

2

󵄨󵄨󵄨󵄨 ,
󵄨󵄨󵄨󵄨𝑦1 − 𝑦

2

󵄨󵄨󵄨󵄨)]

=
1

5
max (𝛼

1
, 𝛼
2
) (max (

󵄨󵄨󵄨󵄨𝑥1 − 𝑥
2

󵄨󵄨󵄨󵄨 ,
󵄨󵄨󵄨󵄨𝑦1 − 𝑦

2

󵄨󵄨󵄨󵄨)) .

(66)

Therefore, 𝜑
1
(𝑡) = (1/5)max(𝛼

1
(𝑡), 𝛼
2
(𝑡)) and 𝜑

1
∈ A.

On the other hand,
󵄨󵄨󵄨󵄨𝑔 (𝑡, 𝑥

1
, 𝑦
1
) − 𝑔 (𝑡, 𝑥

2
, 𝑦
2
)
󵄨󵄨󵄨󵄨

≤
1

9

󵄨󵄨󵄨󵄨𝑥1 − 𝑥
2

󵄨󵄨󵄨󵄨 +
1

10

󵄨󵄨󵄨󵄨𝑥2 − 𝑦
2

󵄨󵄨󵄨󵄨

≤
1

9
(
󵄨󵄨󵄨󵄨𝑥1 − 𝑦

1

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑦2 − 𝑦

2

󵄨󵄨󵄨󵄨)

≤
1

9
(2max (

󵄨󵄨󵄨󵄨𝑥1 − 𝑦
1

󵄨󵄨󵄨󵄨 ,
󵄨󵄨󵄨󵄨𝑦2 − 𝑦

2

󵄨󵄨󵄨󵄨))

=
2

9
max (

󵄨󵄨󵄨󵄨𝑥1 − 𝑦
1

󵄨󵄨󵄨󵄨 ,
󵄨󵄨󵄨󵄨𝑦2 − 𝑦

2

󵄨󵄨󵄨󵄨) ,

(67)

and 𝜑
2
(𝑡) = (2/9)𝑡. It is clear that 𝜑

2
∈ A. Therefore,

assumption (H
2
) of Theorem 15 is satisfied.

In our case, the inequality appearing in assumption (H
3
)

of Theorem 15 has the expression

[
1

5
max(arctan 𝑟,

𝑟

1 + 𝑟
) +

1

4
] [

2

9
𝑟 +

1

7
] ≤ 𝑟Γ (

3

2
) . (68)

It is easily seen that 𝑟
0

= 1 satisfies the last inequality.
Moreover,

2

9
𝑟
0

+
1

7
=

2

9
+

1

7
≤ Γ (

3

2
) ≅ 0.88623. (69)

Finally, Theorem 15 says that problem (17) has at least one
solution (𝑥, 𝑦) ∈ 𝐶[0, 1] such that max(‖𝑥‖, ‖𝑦‖) ≤ 1.
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