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We define a new hypercomplex structure of R* and a regular function with values in that structure. From the properties of regular
functions, we research the exponential function on the reduced quaternion field and represent the corresponding Cauchy-Riemann

equations in hypercomplex structures of R>.

1. Introduction

Meglihzon [1], Sudbery [2], and Fueter [3] demonstrated that
there are three possible approaches (the Cauchy approach,
Weierstrass approach, and Riemann approach) in the theories
of functions that would generalize holomorphic functions
with respect to several complex variables. Sudbery [2], Soucek
[4], and Sommen [5] attempted to research the Cauchy
approach using differential forms and differential operators
in Clifford analysis. Fueter [3] and Naser [6] studied the
properties of quaternionic differential equations as a gen-
eralization of the extended Cauchy-Riemann equations in
the complex holomorphic function theory. Néno [7-9] and
Sudbery [2] gave a definition and the development of regular
functions over the quaternion field. Ryan [10, 11] developed
the theories of regular functions in a complex Clifford analy-
sis using a generalization of the Cauchy-Riemann equation.
Malonek [12] considered analogously the function theory
of hypercomplex variables. He defined the hypercomplex
differentiability for the existence of a function over the
Clifford algebra and monogenicity based on a generalized
Cauchy-Riemann system. Gotd and Nono [13] and Koriyama
et al. [14] dealt with differential operators with the derivative
of regular functions in quaternion.

We shall denote by C, R, and Z, respectively, the field
of complex numbers, the field of real numbers, and the
set of all integers. We [15, 16] showed that any complex-
valued harmonic function f; in a pseudoconvex domain

D of C* x C* has a hyperconjugate harmonic function f,
in D such that the quaternion-valued function f; + f,j is
hyperholomorphic in D and gave a regeneration theorem
in quaternion analysis in the view of complex and Clifford
analysis. Further, we [17, 18] investigated the existence of the
hyperconjugate harmonic functions of the octonion number
system and some properties of dual quaternion functions.

In this paper, we introduce the Fueter variables on R* and
investigate a hypercomplex structure of R*. We define regular
functions and obtain the representation of the corresponding
Cauchy-Riemann equations for regular functions in the
reduced quaternion field.

2. Preliminaries

A three-dimensional, noncommutative, and associative real
field, called a ternary number system, is constructed by three
base elements e, e,, and e, which satisfy

2
e, =1, e, =¢e =-1, "

€y = €p» €, =€

In addition, let e, be the identity of a ternary number system
and e, identifies the imaginary unit V-1 in the complex field,
and

C(M) :={z=ez, +e,2, | 21,2, € C}, )
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where z, = x, — (1/2)e,x, (r = 1,2) and x,,, (m = 0,1,2) are
real variables. They satisfy the equations

(r#k), (3)

where z, = x, + (1/2)e,x, (r = 1,2), w, = ¥ — (1/2)er vy,
Wi = Y+ (1/2)ery, (k=1,2),and y,, im = 0,1,2) are real
variables.

For any two elements z = e,z, +e,z, and w = e,w, +e,w,
of C(T), their product is given by

Z, Wy = Wiz,

ZW=zeeW+zZ0O W, (4)
where the corresponding commutative inner product e satis-
fies

1
Zew = z(zw+wz)

©)

2
1 _ _ _ _
= —erwr e (ziw, — Wy2, + Wiz, — Zyw,)
r=1

and the corresponding noncommutative outer product ©
satisfies

1
zZOwW = E(zw—wz)

1 — . 6
= 53162 (ziw, + W2, - W, 2, — Zw, ) ©)

=-woz.

The conjugation z*, the corresponding norm |z|, and the
inverse z~' of z in C(T) are given by

.
z =ez| +ez,

2
|z =zz" =zez" = Zzz_
r=1 nr (7)
*
-1 —
|z|*

For any element z in C(T), we have the corresponding
exponential function e denoted by

(z#0).

exp (2) = exp (e;2; +€,2,) . (8)
Theorem 1. Let z be an arbitrary number in C(T). Then the
corresponding exponential function exp(z) of z in C(T) is given
as
(D exp (xp) exp (e,%,),  if x, = K,
exp (2) = ©)
(=1)" exp (x,) exp (e;x,)
where k,t € Z.
Furthermore, as hyperbolic functions, one has

if x, = tm,

exp (z)

(-1)F exp (e,x,) (cosh (x,) — sinh (x,)), if x; = k7,

(=1)" exp (e, x,) (cosh (x,) — sinh (x,)), if x, = tm,
(10)

wherek,t € Z.
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Proof. For any element z = e,z; + e,2, of C(T),
exp (2) = exp (e,2; +€,2,) = exp (e;2;) exp (e,2,) . (1)

Since a scalar part of e, z; is (1/2)x,, a vector part of e, z, is
e;x;,and |e;| = 1, by [19],

= ﬁ) ax g
exp (e,2;) exp( 5 {Cosqelxll) + ey | Sm(lelxll)]’
X )
= exp <?> {cos (x;) + e; sin (x;)}

(12)

and, similarly, we have

X, €)X .
exp (e,z,) = exp( 0) {cos (leax,|) + —272_in (|ezx2|)]>

2 e, x|

= exp (%) {cos (x,) + e, sin(x,)}.
(13)

Then we have
exp (z) = exp (%) {cos (x;) + e; sin (x;)}
X exp (%) {cos (x,) + e, sin (x,)}

exp (x,) {cos (x,) + e, sin (x;)}

x {cos (x,) + e, sin (x,)} )

exp (o) feos (x,) cos (x,) + ¢, cos (x,)
x sin (x,) + e, sin (x;) cos (x,)}
+exp (x,) e;e, sin (x;) sin (x,) .
Also, we obtain
exp (z) = exp (e,2, + €,2,)
= exp (e,2,) exp (e,2,)
= exp (x) {cos (x,) + e, sin (x,)}
x {cos (x;) + e, sin (x;)} (15)
= exp (xo) {cos (x;) cos (x,) + e, cos (x,)
x sin (x,) + e, sin (x;) cos (x,)}
+exp (x,) e,e; sin (x;) sin (x,) .

Since (15) has to be equal to (14), sin (x;) sin (x,) = 0, that is,
sin (x;) = 0 or sin (x,) = 0. Therefore, x; = k7 or x, = i,
and then cos (x;) = (—1)k or cos (x,) = (-1)', where k, t € Z.
If x; = kn (k € Z), then

exp (2) = exp (xo) {(-1)" (cos (x,) + e, sin (x,))} »
16
= (—l)k exp (x,) exp (e,,) .
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Similarly, if x, =t (t € Z), then

exp (2) = exp (xp) {(-1)' (cos (x,) + ey sin (x,))} W
= (=1)" exp (x,) exp (e1x,)..

Further, by the Euler formula and the addition rule of
trigonometric functions,

exp (z) = exp (e;z; + €,2,) = exp (e;z;) exp (e,2,)

= (cos(z,) + ¢, sin (2,)) (cos (23) + & sin (2,))
_ {cos (x,) cos <e1%> +sin (x,) sin (61%)
+eq (sin () cos (22
antepon(e2))
: {cos (x,) cos (ez%> +sin (x,) sin (62%)
‘e, (sin (x,) cos <62%>

—cos (x,) sin <ez%>>} :

Since cos (e,(x,/2)) = cosh(x,/2) and sin(e,(x,/2)) =
e, sinh (x,/2) (r = 1,2), we have

(18)

exp (2) = feos () cosh (22 ) + ¢, sin (x,) sinh (22
e, (sin (x,) cosh (%)
o)
Jeos (r2) cosh (22) + s (x,) sinh (22
e, (m (x,) cosh (%)
oo (2)
= { (cos (x,) + ey sin ()
() - ()

X { (cos(x,) + e, sin (x,))

(eom () s ()]

= (cos (x;) +e; sin (x;)) (cos (x,) + e, sin (x;))

(o) -om(2)

(19)

Since
X0 . % \\?
(cosh <—> — sinh <—>)
2 2
= cosh’ <ﬁ) + sinh? <ﬁ> — 2cosh? (ﬁ> sinh® <ﬁ)
2 2 2 2

cosh (xp) — 1

=1+2 — sinh (x,)

= cosh (x,) — sinh (x;),
(20)

we obtain

exp (z) = exp (e;2;) exp (e,2,) = (cos (x;) + e, sin (x;))
x (cos (x,) + e, sin (x,)) (cosh (x,) — sinh (x,))
(21

and, similarly,

exp (z) = exp (e,2,) exp (e;2,) = (cos (x,) + e, sin (x,))

x (cos (x;) + e; sin (x;)) (cosh (x,) — sinh (x,)) .
(22)

Since (22) has to be equal to (21), sin (x;) sin (x,) = 0, that is,
sin (x;) = 0 or sin (x,) = 0. Therefore, x; = km or x, = i,
and then cos (x;) = (—1)k or cos (x,) = (-1)", where k,t € Z.
If x, = knr (k € Z), then

exp (2) = (cos (x,) + e, sin (x,))
x (~1)* (cosh (x,) — sinh (x,)) (23)
= (1) exp (e,x,) (cosh (xy) — sinh (x,)).
Similarly, if x, = t7 (t € Z), then
exp (2) = (cos (x;) + e, sin (x,))
x (=1)" (cosh (x,) — sinh (x,)) (24)

= (-1)" exp (e, x,) (cosh (x,) — sinh (x,)) . -

Remark 2. By Theorem1 and the properties of the Euler
formula, if x; = k, then we can write

exp (2) = (=1)" exp (e, ) (cosh (x,) — sinh (x,)) :
25
= (=1)* exp (e,x, — x,) = (~1)F exp (621:‘_‘2) ,



also, if x, = t7m, then

(-1 exp (e,3,) (cosh () — sinh (xo))

= (-1)" exp (e;, — x,) = (-1)" exp (elfl) ,

exp (z) = 06
26

where k,t € Zand F, = x, +e,x, (r = 1,2) are the conjugate
Fueter variables of F, = x, —e,x, (r = 1,2) (see [20]).

Let Q) be an open subset of R? and let a function f(a) be
defined by the following form on Q with values in C(T):

f:Q—C(), (27)
satisfying

a = (xp,x1,%,) € Qv f(a) = e, f; (xp, %, %3)

+e,f, (X0, X1, %) € C(T),

(28)

where f, = u, — (1/2)e,uy, f, = u, + (1/2)e,u, (r = 1,2) and
u,, (m =0, 1,2) are real-valued functions.

From the chain rule, we use the following differential
operators:

9. _,90 12 1 9 _ 0 _0
0A " Tox, 2 'Ox, 2 ’0ox, 'Oz, ‘0z,
9 —Zi+lei+lei—e g +e 9
0A*  “Ox, 2 ‘ox, 2 ’ox, ‘0z ‘oz,
(29)
where
o 1o ,,0 2 10 . 0
0z, 20x, ‘0x, dz, 20x, ‘0x,
(30)
Qo _1o 90 9 138 0
0z, 20x, 0x, 0z, 20x, ‘0x,

in C(T). We have the following equations:

9 9df, of, _
f’azr "oz, ffaz 0z, (r=12),
— 0 _(ofy _a_af2>
flaz2 B (az—2>’ fzaz1 - <az—1 ’ (3D

and then, the operator 0/0A operates to f as follows:

g_i :< elail "9y, >(61f1+62f2)

S A A

= = tee| —-==
162
0z, 0z,

oz, 0z,
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9] 0 0
aAf* = (ela_z_l +eza_z—2> (erfi +exfs)

S SO € A

0z, az2+ . a_zl_azz

f aA =(efi+ef) <_elaiz1 _ezaizz>
i oo e (B o)
for = (efiveafs) (ai— " ai)

Thus, we have a corresponding Laplacian in the reduced
quaternion C(T):

(32)

0* 0* 2 1 10

Ajm=—eo = =g -2 - (33
= Ga0A" T A A ‘ow Taoe Taad Y

Remark 3. Let Q be an open set of R*. From the definition of
the differential operators in C(T), we have

i'f (afl = flazl f28z>

0A 0z, 822
9 9df af1 - >
J’zelez<fzaz1 oz | oz, flaz2
9fy  9f
" 3z, az2+zele2

1 (9f, afz >
of—2< flazl fzaz
1 o of, of, —d >
+zelez<f1az2+az—2 oz 5,
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o . <af1 of,

0A* 0z, 0z, flaz1 fzaz2>

Q77

0z, 0z,
ofy _ 9

+ e1e2
0z, Oz,

A% (%) ()2}

O Jr_L( 9 9 .0 i)
aA*Qf_z< oz z>z2+flaz—1+f2az—2
1 f2 —i_%>
+2eleZ<a . fZa—l flaz—2 az2
o 8- G
2720z, \oz 0z,) 0z,
(34)
and, therefore,
of 2 d of
A -t aA* f+aA* (f')
35

Similarly, we have

o 1/. 0
f'aA_5<f1£

oh 9
thg Yo, 8z2>

— 0 —20 O0fy afl)
+6162<.flaz2 fZBZl +az—1 872
o 9f; |1

0z, " 0z, " 2419
y <%>_<%>+%_%
0z,) \oz ) oz o,

0 1 0
fGa—A—5<f1a—Z1

9 =9 If af1>
oz, 13z "oz T om,

e {(L)-(2)- L 24}

1 —
+ —e €
212<f1

1 o —a of afl)
+zelez<f1a— foazt o "o,
afl afZ 1
T oz oz, 20%

1 3 —0 o, af1>
’Lze"ez(fla—2 foom "2, Vo,
Lo f(Z)-(B)-2. 2
2 "% |\oz, 0z, 0z, 822
(36)
and, therefore,
0 0 0
At 'a” %
5 (37)
faA*"f BA* fGaA*'

Definition 4. Let Q be an open set in R* and for any element
ain Q. A function f(a) is said to be L(R)-regular on Q if the
following conditions are satisfied:
(i) f, (r = 1,2) are continuously differential functions
on , and

(i) 9f (a)/0A™ =0 (f(a)(0/0A™) = 0) on Q.

In particular, the equation 0f /0A™ = 0 of Definition 4 is

equivalent to

e f@=sr 0 @ (39)
Moreover, (38) is equivalent to the following system:
%h _ %
9z, 0z,
(39)
o _of
0z, 0z,

The above system is a corresponding Cauchy-Riemann sys-
tem in C(T).

Remark 5. From the multiplications of C(T), the equation
f(0/0A") = 0 of Definition 4 is equivalent to

aA* @)= aA*
Also, the above equation (40) is equivalent to the following
system:

o f(a). (40)

oh _ %

oz, 0z,

— 0 —=0 of, of,

Tz T = 5) - (52)

Further, the above system (41) is also a corresponding
Cauchy-Riemann system in C(T). Since the system (39) is
equivalent to the system (41), we say that f(a) of Definition 4
is a regular function on Q ¢ R>. When the function f(a)
is either an L-regular function or an R-regular function on
Q ¢ R’ we simply say that f(a) is a regular function on

Qc R

(41)



3. Properties of Regular Functions with
Values in C(T)

We define the derivative f'(a) of f(a) by the following:

S = L9 (42)

Proposition 6. Let Q be an open set in R* and let a function
f(a) be a regular function defined on Q. Then

of of \_,o
(2
=25 "5z) Yox
of of )
= e — ey =1,2).
. 0x, ezax2 r )
Proof. From the definition of a regular function
(: (0f J0A™) = 0), we have
of _ 9 ofy _ 9
oz, 0z, 0z, 0z, (44)
Therefore,
0 Iy ou, auo sz Ju,  Ouy
— e = 2 -— 2
2 T om e, Yo, T oz T %0k, T ox,
1 — 0 ou, ou, Bf2>
516 <f2 o7 + 2e, o, +e,e; ox, 9z,
1 ou, ou, af1 ou,
Z De, —2 _ 0 — e, —L
i e1e2< o, %x, "oz, ox,
ouy — 0
+ezela_xz fla_zz
ou, au())
) -0
e2a ) 1 26x0
of afz) 1 <af1)
=4 — —= | - — - |,
axg zelez<az1 24\ 52,
0
3% of= 66
- ofi o ofy _ 9f
+2 —2e, 2L - 22
8 (f 195, T 0%, T 9z,  “ox, 0z
of afz)
2 —-2e
5%, fzaz1 “19x,
ofy _ Of _ 9 afz)
=2 1 L J2 22
‘162 <elax0 elaxo Z0x, 0x,

(45)
Hence, we obtain the equation

of 0 0 of
—_ = — e R = 4—'
0z 0z fr 0z °f 0x, (46)
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Similarly, by calculating the derivative f'(z) of f(z),

9,;.% 9
0z 0x; 0x,

e {(3)-(2) 230
(47)
0 ®f=< of Ofy af1 %)

e € € € 2
0x, axl ax2 0x,

0z
1 d d
- z(aﬁ ) . z(af;)

Therefore, we have the equation

of o B 9f af2>
ozl ®f el( 3%, T “3x,

_ez<625f2 ei)_ of _,of

1 e
X, 0x, 0x4

Further, using the same procedure, we obtain the equations

of _ of _of _
Eyl —26r<azr az—,> (r=12). (49)

O

Proposition 7. Let Q be an open set in R>. If f(a) is a regular
function on Q, then we have
f _ m9f

= 4 N
0A" 0x}, (50)

where n is a positive integer.

Proof. Since f is a regular function on Q with values in C(T),
by Definition 4,

of of >_
aA*< ax0> 4ax0<aA* =0 5D

Hence, 0f /0x,, is a regular function with values in C(T). From
Proposition 6, we have

az_f_i(g>_4zaz_f
0A2  0A\0A/) = ox?

0

(52)

By repeating the above process, we can obtain the equation

"f _ x9S
— =4 —.
aar o (53)
O
We let
2 2 2 2
0 d 1 0 1 o0
=) =22 sl 1. 54
~0z,0z,  0x} " 4elax% "% 0x3 (54)

on an open set Q in R>.
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Theorem 8. Let Q be an open set in R>. If f is a regular
function on Q, then the following equation holds true:

2
0.f @)= g ;g“). (55)

Proof. Since f is a regular function on (), we have the
following system:

Qug _ Oy | Oy Oy _ Oy
Ox, 0x, 0x, 0x, O0x,
0 0 36
U, Uy
4= =20 (r=1,2).
0x, ox, (r )

By the definition of 0, we have

(., 1 9 1 &
Daf = Za—x(z) + é_lela_x% + L_Leza_x% (MO +eu; + ezuz)
*u, ) u, ) u, 9y,
e e -
0x2 ' ox, 20x2 0xy0x;

0
*u,

0x,0x,

ou,
+e
0x,0x;

2 2
0”u, 0°u,

=-2 —2e —2e = .
ox; ! ox; 2 9x2 ox?

(57)

From Proposition 7, we have 0’ f JOA? = 4%(9° fl 8x§). Hence,
by calculating and comparing the above polynomials, we
obtain that O, f is equal to —(1/8)(82/8A2)f. O

Next, we consider a differential form
w = 4dx, Ndx, — e dxy Ndx, + eydxy Adx. (58)

Theorem 9. Let Q be an open set in R and let U be any
domain on Q with a smooth distinguished boundary bU such
thatU c Q. If f is a regular function on Q), then one has

j wf =0, (59)
bU

where wf is the reduced quaternionic product of the form w on
the function f(a).

Proof. Since wf = 4 fdx, Ndx,—e, fdx,Ndx,+e, fdx,Ndx,,
we have

g o
d(wf) = 46—){0de Adxy Ndx, + ela—}{ldxo Adx, Ndx,

+ ez%dxo Ndx, ANdx,
2

7
:4a(elfl +62f2)d1+e (e f, +€2f2)d1
0x, ! 0x;
0
re, (e1falx+ezf2)d1
2

ou, Ou, > <au2 ou, >}
240 —2 _ bl
e ( 0x, i 0x, el 0x, 0x, d
(60)

where dI = dx, A dx; A dx, in U. From the corresponding
Cauchy-Riemann system (39) for f(a) in C(T), we have the
system (56). Hence, d(wf) = 0 and, therefore, by Stokes
theorem, we obtain the following result:

LU wf = Ld (wf) = 0. (1)
O
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