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This paper investigates the problem of output feedback adaptive stabilization control design for a class of nonholonomic chained
systems with uncertainties, involving virtual control coefficients, unknown nonlinear parameters, and unknown time delays. The
objective is to design a robust nonlinear output-feedback switching controller, which can guarantee the stabilization of the closed
loop systems. An observer and an estimator are employed for states and parameters estimates, respectively. A constructive controller
design procedure is proposed by applying input-state scaling transformation, parameter separation technique, and backstepping
recursive approach. Simulation results are provided to show the effectiveness of the proposed method.

1. Introduction

The control and feedback stabilization problems of nonholo-
nomic systems have beenwidely studied bymany researchers.
It is well known that control of nonholonomic systems is
extremely challenging, largely due to the impossibility of
asymptotically stabilizing nonholonomic systems via smooth
time-invariant state feedback, a well-recognized fact pointed
out in [1, 2]. In order to overcome this obstruction, a number
of approaches have been proposed for the problem, which
mainly include discontinuous feedback, time-varying feed-
back, and hybrid stabilization. The discontinuous feedback
stabilization was first proposed by [3], and then further
discussion was made in [4–7]; especially an elegant discon-
tinuous coordinate transformation approach is proposed in
[5] for the stabilization problem of nonholonomic systems.
Meanwhile, the smooth time-varying feedback control strate-
gies also have drawn much attention [8–11].

As pointed out in [9], many nonlinear mechanical sys-
tems with nonholonomic constraints can be transformed,
either locally or globally, to the nonholonomic systems in

the so-called chained form. So far, there have been a number
of controller design approaches [8–25] for such chained
nonholonomic systems. Recently, adaptive control strategies
have been proposed to stabilize the nonholonomic systems.
For instance, the problem of adaptive state-feedback control
is studied in [15–19], while output feedback controller design
in [20–24]. Considering the actual modeling perspective,
time delay should be taken into account. The problem
of state feedback stabilization is studied for the delayed
nonholonomic systems in [25, 26]. However, the virtual
control coefficients and unknown parameter vector are not
considered in its system models. Here, an iterative controller
design method will be proposed for the output feedback
adaptive stabilization of the concerned delayed nonholomic
systems.

In this paper, we study a class of chained nonholonomic
systems with strong nonlinear drifts, and the problem of
adaptive output-feedback stabilization for the concerned
nonholonomic systems is investigated. The constructive
design method proposed in this note is based on a combined
application of the input scaling technique, the backstepping

Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2014, Article ID 650835, 17 pages
http://dx.doi.org/10.1155/2014/650835

http://dx.doi.org/10.1155/2014/650835


2 Abstract and Applied Analysis

recursive approach, and the novel Lyapunov-Krasovskii func-
tionals. The switching control strategy for the first subsystem
is employed to achieve the asymptotic stabilization.

The rest of this paper is organized as follows. In Section 2,
the problem formulation and some preliminary knowledge
are given. Section 3 presents the controller design procedure
and stability analysis. Section 4 gives the switching control
strategy. In Section 5, numerical simulations testify to the
effectiveness of the proposed method, and Section 6 summa-
rizes the paper.

2. Problem Formulation and Preliminaries

In this paper, we deal with a class of nonholonomic systems
described by
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are known smooth nonnegative nonlinear

functions.

Remark 4. Compared with some existing literatures in recent
years, the structure of our concerned system (1) is more
general. For instance, in [15], it is assumed that not only the
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It can be seen that the above inequality condition is used in
some existing literatures, such as [20, 21], and so on.

Our object of this paper is to design adaptive output
feedback control laws under Assumptions 1–3, such that
the system states (𝑥

0
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signals of the closed-loop system are bounded. The designed
control laws can be expressed in the following form:
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Next, we list some lemmas which will be applied in the
coming controller design.

Lemma 6 (see [27]). For any real-valued continuous function
𝑓(𝑥, 𝑦), where 𝑥 ∈ 𝑅

𝑛
, 𝑦 ∈ 𝑅

𝑚, there are smooth functions
𝑎(𝑥) ≥ 0, 𝑏(𝑦) ≥ 0, 𝑐(𝑥) ≥ 1, 𝑑(𝑦) ≥ 1 such that

󵄨

󵄨

󵄨

󵄨

𝑓 (𝑥, 𝑦)

󵄨

󵄨

󵄨

󵄨

≤ 𝑎 (𝑥) + 𝑏 (𝑦) ,

󵄨

󵄨

󵄨

󵄨

𝑓 (𝑥, 𝑦)

󵄨

󵄨

󵄨

󵄨

≤ 𝑐 (𝑥) 𝑑 (𝑦) . (6)

Lemma 7 (see [19]). For any continuous function 𝜇
0
(𝑡) there

exist two strictly positive real numerates 𝑝min and 𝑝max such
that the unique solution𝑃(𝑡) of the followingmatrix differential
equation:



Abstract and Applied Analysis 3

̇

𝑃 = 𝑃(𝐴 − 𝜇

0 (
𝑡) 𝐿)

𝑇
+ (𝐴 − 𝜇

0 (
𝑡) 𝐿) 𝑃 − 𝑃𝐶

𝑇
𝐶𝑃 + 𝐼,

𝑃 (0) = 𝑃

0
> 0,

(7)

satisfies 𝑝min𝐼 ≤ 𝑃(𝑡) ≤ 𝑝max𝐼, 𝑡 ≥ 0.

By Lemma 6 and Assumption 1, we know that there exist
smooth functions 𝜔

𝑖
≥ 1, and 𝜁

𝑖
≥ 1 such that

󵄨

󵄨

󵄨

󵄨

𝜙

𝑖
(𝑡, 𝑢

0
(𝑡) , 𝑥

0
(𝑡) , 𝑥 (𝑡) , 𝜃)

󵄨

󵄨

󵄨

󵄨

≤

󵄨

󵄨

󵄨

󵄨

𝑥

1

󵄨

󵄨

󵄨

󵄨

𝜔

𝑖
(𝑢

0
(𝑡) , 𝑥

0
(𝑡) , 𝑥

1
(𝑡)) 𝜁

𝑖
(𝜃) .

(8)

Furthermore, we denote 𝜗 = ∑𝑛
𝑖=1
𝜁

𝑖
(𝜃); then it yields

󵄨

󵄨

󵄨

󵄨

𝜙

𝑖
(𝑡, 𝑢

0
(𝑡) , 𝑥

0
(𝑡) , 𝑥 (𝑡) , 𝜃)

󵄨

󵄨

󵄨

󵄨

≤

󵄨

󵄨

󵄨

󵄨

𝑥

1

󵄨

󵄨

󵄨

󵄨

𝜔

𝑖
(𝑢

0
(𝑡) , 𝑥

0
(𝑡) , 𝑥

1
(𝑡)) 𝜗.

(9)

3. Output Feedback Adaptive Stabilization
Control Design
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Lemma 9. For every 1 ≤ 𝑖 ≤ 𝑛, there exist smooth nonnegative
functions ̃𝜓

𝑖
, 𝜑

𝑖
, 𝑓

𝑖1
, 𝑓

𝑖2
such that

󵄨

󵄨

󵄨

󵄨

Ψ

𝑖

󵄨

󵄨

󵄨

󵄨

≤

󵄨

󵄨

󵄨

󵄨

󵄨

𝑑

𝑖−1

󵄨

󵄨

󵄨

󵄨

󵄨

⋅

󵄨

󵄨

󵄨

󵄨

𝑧

1
(𝑡) 𝑧

1
(𝑡 − 𝜏

𝑖
)

󵄨

󵄨

󵄨

󵄨

× 𝜑

𝑖
(𝑢

0
(𝑡) , 𝑢

0
(𝑡 − 𝜏

𝑖
) , 𝑦 (𝑡) , 𝑦 (𝑡 − 𝜏

𝑖
))

+

󵄨

󵄨

󵄨

󵄨

󵄨

𝑑

𝑖−1

󵄨

󵄨

󵄨

󵄨

󵄨

⋅

󵄨

󵄨

󵄨

󵄨

𝑧

1
(𝑡)

󵄨

󵄨

󵄨

󵄨

̃
𝜓

𝑖
(𝑢

0
(𝑡) , 𝑦 (𝑡))

≤

󵄨

󵄨

󵄨

󵄨

󵄨

𝑑

𝑖−1

󵄨

󵄨

󵄨

󵄨

󵄨

⋅

󵄨

󵄨

󵄨

󵄨

𝑧

1
(𝑡) 𝑧

1
(𝑡 − 𝜏

𝑖
)

󵄨

󵄨

󵄨

󵄨

𝑓

𝑖1
(𝑢

0
(𝑡) , 𝑦 (𝑡))
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× 𝑓

𝑖2
(𝑢

0
(𝑡 − 𝜏

𝑖
) , 𝑦 (𝑡 − 𝜏

𝑖
))

+

󵄨

󵄨

󵄨

󵄨

󵄨

𝑑

𝑖−1

󵄨

󵄨

󵄨

󵄨

󵄨

⋅

󵄨

󵄨

󵄨

󵄨

𝑧

1
(𝑡)

󵄨

󵄨

󵄨

󵄨

̃
𝜓

𝑖
(𝑢

0
(𝑡) , 𝑦 (𝑡)) .

(18)

Remark 10. By lemmas and assumptions before, Lemmas 8
and 9 can be derived easily, and then the proof is omitted.

3.2. Observer Design. Define the following filter/estimator:

̇

𝜉

0 (
𝑡) = (𝐴0

− 𝐿

𝑢̇

0
(𝑡)

𝑢

0
(𝑡)

) 𝜉

0 (
𝑡) + 𝑃𝐶

𝑇
(𝑦 (𝑡) − 𝐶𝜉0 (

𝑡)) , (19)

̇𝜐 (𝑡) = (𝐴

0
− 𝐿

𝑢̇

0
(𝑡)

𝑢

0 (
𝑡)

) 𝜐 (𝑡) + 𝑒

𝑛
𝑢

1
(𝑡) , (20)

̇

𝑃 = 𝑃(𝐴

0
− 𝐿

𝑢̇

0
(𝑡)

𝑢

0
(𝑡)

)

𝑇

+ (𝐴

0
− 𝐿

𝑢̇

0
(𝑡)

𝑢

0
(𝑡)

) 𝑃 − 𝑃𝐶

𝑇
𝐶𝑃 + 𝐼,

(21)

where 𝑦(𝑡) = 𝑧

1
(𝑡), 𝑒

𝑛
= [0, . . . , 1]

𝑇
, 𝜉

0
= [𝜉

01
, . . . , 𝜉

0𝑛
]

𝑇
, 𝜐 =

[𝜐

1
, . . . , 𝜐

𝑛
]

𝑇, 𝐴
0

= 𝐴 − 𝐾𝐶,𝐶 = [1, 0, . . . , 0], 𝐾 =

[𝑘

1
, . . . , 𝑘

𝑛
]

𝑇, and 𝑘
𝑖
(1 ≤ 𝑖 ≤ 𝑛) are design parameters to be

determined later. Let 𝑧̂(𝑡) = 𝜉

0
(𝑡) + 𝑑

𝑛
𝜐, 𝜎(𝑡) = 𝑧(𝑡) − 𝑑

𝑛
𝜐(𝑡);

then, the estimation error 𝜀(𝑡) = 𝑧(𝑡) − 𝑧̂(𝑡) and the newly
defined parameter 𝜎(𝑡) satisfy the dynamical equations

̇𝜀 (𝑡) = (𝐴

0
− 𝐿

𝑢̇

0
(𝑡)

𝑢

0
(𝑡)

− 𝑃𝐶

𝑇
𝐶) 𝜀 (𝑡)

+ (𝐾 − 𝑃𝐶

𝑇
) 𝑧

1
(𝑡) + 𝑃𝐶

𝑇
𝐶𝜎 (𝑡) + Ψ + Φ,

𝜎̇ (𝑡) = (𝐴

0
− 𝐿

𝑢̇

0
(𝑡)

𝑢

0 (
𝑡)

) 𝜎 (𝑡) + 𝐾𝑧

1
(𝑡) + Ψ + Φ.

(22)

3.3. Control Design. In this section, the intergrator back-
stepping approach will be used to design the control laws
𝑢

0
(𝑡) and 𝑢

1
(𝑡) subject to 𝑥

0
(𝑡

0
) ̸= 0. The case that the initial

condition 𝑥
0
(𝑡

0
) = 0 will be treated in Section 4.

𝑆𝑡𝑒𝑝 0. At this step, control law 𝑢

0
(𝑡) will be designed, which

is essential to guarantee the effectiveness of the subsequent
steps. For the 𝑥

0
(𝑡)-subsystem, choose the control 𝑢

0
(𝑡) as

follows:

𝑢

0
(𝑡) = −𝜆

0
𝑥

0
(𝑡) − 𝜆

0
𝑥

0
(𝑡) 𝜙

0
(𝑥

0
(𝑡)) ,

(23)

where 𝜆
0
is a constant satisfying 𝜆

0
𝑑

0
> 1. Introduce the

Lyapunov function candidate 𝑉
0
= (1/2)𝑥

2

0
(𝑡), and the time

derivative of 𝑉
0
satisfies

̇

𝑉

0
= −𝜆

0
𝑑

0
𝑥

2

0
(𝑡) − 𝜆

0
𝑑

0
𝑥

2

0
(𝑡) 𝜙

0
(𝑥

0
(𝑡))

+ 𝑥

0 (
𝑡) 𝜙0

(𝑡, 𝑥

0 (
𝑡))

≤ −𝜆

0
𝑑

0
𝑥

2

0
(𝑡) ≜ −𝑐

0
𝑥

2

0
(𝑡) ,

(24)

where 𝑐
0
= 𝜆

0
𝑑

0
> 1. This indicates that 𝑥

0
(𝑡) converges to

zero exponentially.

Since 𝜙
0
(𝑥

0
(𝑡)) is a smooth function, then there exist a

constant𝑀
0
> 1, such that |𝜙

0
(𝑥

0
(𝑡))| ≤ 𝑀

0
for |𝑥
0
(𝑡)| ≤ 1.

Therefore, the following inequality is true with |𝑥
0
(𝑡)| ≤ 1:

̇

𝑉

0
≥ − (𝜆

0
𝑑

0
+ 𝜆

0
𝑑

0
𝑀

0
+𝑀

0
) 𝑥

2

0
(𝑡) ≜ −𝜌𝑥

2

0
(𝑡) , (25)

which implies that when |𝑥
0
(𝑡)| ≤ 1, the state 𝑥

0
(𝑡) converges

to zero with a rate less than a certain constant 𝜌. It is 𝑥
0
(𝑡)

which does not become zero in any time instant. Therefore,
the adopted input-state scaling discontinuous transformation
in (12) is effective.

According to the design of control law 𝑢

0
(𝑡) in (23), it can

be computed that

𝑢̇

0
(𝑡)

𝑢

0 (
𝑡)

= −𝜆

0
𝑑

0
− (𝜆

0
𝑑

0
− 1) 𝜙

0
(𝑥

0
(𝑡))

− 𝜆

0
𝑑

0
𝑥

0 (
𝑡)

𝜕𝜙

0
(𝑥

0 (
𝑡))

𝜕𝑥

0
(𝑡)

+

𝑥

0
(𝑡) 𝜙

0
(𝑥

0
(𝑡))

1 + 𝜙

0
(𝑥

0 (
𝑡))

𝜕𝜙

0
(𝑥

0
(𝑡))

𝜕𝑥

0
(𝑡)

≜ 𝛽 +

̃

𝜙

0
(𝑥

0
(𝑡)) ,

(26)

where 𝛽 = −𝜆

0
𝑑

0
and ̃

𝜙

0
= −(𝜆

0
𝑑

0
− 1)𝜙

0
(𝑥

0
(𝑡)) −

𝜆

0
𝑑

0
𝑥

0
(𝑡)(𝜕𝜙

0
(𝑥

0
(𝑡))/𝜕𝑥

0
(𝑡)) + (𝑥

0
(𝑡)𝜙

0
(𝑥

0
(𝑡))/(1 +

𝜙

0
(𝑥

0
(𝑡))))(𝜕𝜙

0
(𝑥

0
(𝑡))/𝜕𝑥

0
(𝑡)).

Remark 11. From (26), we know that 𝛽 is a constant and
̃

𝜙

0
(𝑥

0
(𝑡)) is a function with respect to 𝑥

0
(𝑡). Moreover, we

can conclude that ̃𝜙
0
(𝑥

0
(𝑡)) is smooth because 𝜙

0
(𝑥

0
(𝑡)) is a

nonnegative smooth function.
Denote 𝐴

1
= 𝐴

0
− 𝐾𝐶 − 𝐿𝛽; we can choose appropriate

design parameters 𝑘
𝑖
(1 ≤ 𝑖 ≤ 𝑛) such that 𝐴

1
is Hurwitz.

Then there exists a positive definitematrix𝑄 satisfying𝑄𝐴
1
+

𝐴

𝑇

1
𝑄 = −𝜇𝐼, and 𝜇 is a positive constant.

𝑆𝑡𝑒𝑝 1. For 𝑧
1
(𝑡)-subsystem in (13),

𝑧̇

1 (
𝑡) = 𝑧2 (

𝑡) − (𝑛 − 1)

𝑢̇

0 (
𝑡)

𝑢

0
(𝑡)

𝑧

1 (
𝑡)

+

1

𝑢

𝑛−1

0
(𝑡)

(𝜑

1
+ 𝜙

1
)

= 𝜀

2 (
𝑡) + 𝜉02 (

𝑡) + 𝑑𝑛
𝜐

2 (
𝑡)

− (𝑛 − 1)

𝑢̇

0
(𝑡)

𝑢

0 (
𝑡)

𝑧

1
(𝑡) + Ψ

1
+ Φ

1
,

(27)

let 𝜂
1
(𝑡) = 𝑧

1
(𝑡), and 𝜂

2
(𝑡) = 𝜐

2
(𝑡) − 𝛼

1
. Introduce the

following Lyapunov functional:

𝑉

1
= 𝑉

1
+

̃

𝑉

1
, (28)
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where

𝑉

1
= 𝜀

𝑇
(𝑡) 𝑃

−1
𝜀 (𝑡) + 𝜎

𝑇
(𝑡) 𝑄𝜎 (𝑡)

+

1

2

𝜂

2

1
(𝑡) +

󵄨

󵄨

󵄨

󵄨

󵄨

𝑑

𝑛

󵄨

󵄨

󵄨

󵄨

󵄨

2

̃

Θ

𝑇

1
̃

Θ

1

̃

𝑉

1
= (4ℓ

1
+ 𝛿

2‖
𝑄‖

2
)

𝑛

∑

𝑗=1

∫

𝑡

𝑡−𝜏𝑗

𝜂

4

1
(𝜎) 𝑓

4

𝑗2
(𝑢

0
(𝜎) , 𝑦 (𝜎)) 𝑑𝜎

+

𝑛

2

∫

𝑡

𝑡−𝜏1

𝜂

2

1
(𝜎) 𝑓

2

12
(𝑢

0
(𝜎) , 𝑦 (𝜎)) 𝑑𝜎,

(29)

with ℓ
1
, 𝛿

2
being positive constants to be designed; ̃Θ

1
= Θ

1
−

̂

Θ

1
, whereΘ

1
is an unknown parameter vector to be specified

later, and ̂Θ
1
is an estimate of Θ

1
.

Associated with (22) and (27), the time derivatives of 𝑉
1

and ̃𝑉
1
can be calculated, respectively, that

̇

𝑉

1
= 2𝜀

𝑇
(𝑡) 𝑃

−1
(𝐴

0
− 𝐿

𝑢̇

0
(𝑡)

𝑢

0
(𝑡)

− 𝑃𝐶

𝑇
𝐶) 𝜀 (𝑡)

+ 2𝜀

𝑇
(𝑡) 𝑃

−1
(𝐾 − 𝑃𝐶

𝑇
) 𝑧

1 (
𝑡)

+ 2𝜀

𝑇
(𝑡) 𝐶

𝑇
𝐶𝜎 (𝑡) + 2𝜀

𝑇
(𝑡) 𝑃

−1
Ψ

+ 2𝜀

𝑇
(𝑡) 𝑃

−1
Φ + 2𝜎

𝑇
(𝑡) 𝑄(𝐴

0
− 𝐿

𝑢̇

0
(𝑡)

𝑢

0 (
𝑡)

) 𝜎 (𝑡)

+ 2𝜎

𝑇
(𝑡) 𝑄𝐾𝑧

1
(𝑡) + 2𝜎

𝑇
(𝑡) 𝑄Ψ

+ 2𝜎

𝑇
(𝑡) 𝑄Φ − 2𝜀

𝑇
(𝑡) (𝐴

0
− 𝐿

𝑢̇

0
(𝑡)

𝑢

0
(𝑡)

)

𝑇

𝑃

−1
𝜀 (𝑡)

+ 2𝜀

𝑇
(𝑡) 𝐶

𝑇
𝐶𝜀 (𝑡) − 𝜀

𝑇
(𝑡) 𝑃

−2
𝜀 (𝑡)

+ 𝜂

1
(𝑡) [𝜀

2
(𝑡) + 𝜉

02
(𝑡) + 𝑑

𝑛
𝜐

2
(𝑡) − (𝑛 − 1)

𝑢̇

0
(𝑡)

𝑢

0
(𝑡)

𝑧

1
(𝑡)

+ Ψ

1
+ Φ

1
] −

󵄨

󵄨

󵄨

󵄨

󵄨

𝑑

𝑛

󵄨

󵄨

󵄨

󵄨

󵄨

̃

Θ

𝑇

1

̇

̂

Θ

1

= −𝜀

𝑇
(𝑡) 𝑃

−2
𝜀 (𝑡) − 𝜇𝜎

𝑇
(𝑡) 𝜎 (𝑡)

+ 2𝜀

𝑇
(𝑡) 𝑃

−1
(𝐾 − 𝑃𝐶

𝑇
) 𝑧

1
(𝑡) + 2𝜀

𝑇
(𝑡) 𝑃

−1
Ψ

+ 2𝜀

𝑇
(𝑡) 𝑃

−1
Φ + 2𝜀

𝑇
(𝑡) 𝐶

𝑇
𝐶𝜎 (𝑡)

− 2𝜎

𝑇
(𝑡) 𝑄𝐿

̃

𝜙 (𝑥

0 (
𝑡)) 𝜎 (𝑡) + 2𝜎

𝑇
(𝑡) 𝑄𝐾𝑧1 (

𝑡)

+ 2𝜎

𝑇
(𝑡) 𝑄Ψ + 2𝜎

𝑇
(𝑡) 𝑄Φ + 𝜂

1
(𝑡) Ψ

1
+ 𝜂

1
(𝑡) Φ

1

− (𝑛 − 1)

𝑢̇

0 (
𝑡)

𝑢

0
(𝑡)

𝜂

2

1
(𝑡) + 𝜂1 (

𝑡) 𝜀2 (
𝑡) − 𝜀

𝑇
(𝑡) 𝐶

𝑇
𝐶𝜀 (𝑡)

+ 𝜂

1 (
𝑡) [𝜉02 (

𝑡) + 𝑑𝑛
𝜐

2 (
𝑡)] −

󵄨

󵄨

󵄨

󵄨

󵄨

𝑑

𝑛

󵄨

󵄨

󵄨

󵄨

󵄨

̃

Θ

𝑇

1

̇

̂

Θ

1
,

(30)

̇

̃

𝑉

1
= (4ℓ

1
+ 𝛿

2‖
𝑄‖

2
)

𝑛

∑

𝑗=1

𝜂

4

1
(𝑡) 𝑓

4

𝑗2
(𝑢

0
(𝑡) , 𝑦 (𝑡)) +

𝑛

2

𝜂

2

1
(𝑡)

× 𝑓

2

12
(𝑢

0 (
𝑡) , 𝑦 (𝑡)) − (4ℓ1

+ 𝛿

2‖
𝑄‖

2
)

𝑛

∑

𝑗=1

𝜂

4

1
(𝑡 − 𝜏

𝑗
)

× 𝑓

4

𝑗2
(𝑢

0
(𝑡 − 𝜏

𝑗
) , 𝑦 (𝑡 − 𝜏

𝑗
)) −

𝑛

2

𝜂

2

1
(𝑡 − 𝜏

1
)

× 𝑓

2

12
(𝑢

0
(𝑡 − 𝜏

1
) , 𝑦 (𝑡 − 𝜏

1
)) .

(31)

For some terms on the right-hand side of (30), the
following estimations (32)–(34) should be conducted. Firstly,
by Lemma 8 and Young’s inequality, we can obtain that
there exist positive constants ℓ

1
, 𝛿

1
to make the following

inequalities hold:

𝜂

1 (
𝑡) Φ1

≤ 𝜂

2

1
(𝑡) +

1

4

𝜂

2

1
(𝑡) 𝜔̃

2

1
(𝑢

0 (
𝑡) , 𝑥0 (

𝑡) , 𝑧1 (
𝑡)) 𝜗

2

≤ 𝜂

2

1
(𝑡) +

1

4

𝜂

2

1
(𝑡) 𝜔̃

2

1
(𝑢

0
(𝑡) , 𝑥

0
(𝑡) , 𝑧

1
(𝑡)) 𝜗

1
,

2𝜀

𝑇
(𝑡) 𝑃

−1
Φ ≤

1

4ℓ

1

𝜀

𝑇
(𝑡) 𝑃

−2
𝜀 (𝑡)

+ 4ℓ

1

𝑛

∑

𝑗=1

𝜂

2

1
(𝑡) 𝜔̃

2

𝑗
(𝑢

0
(𝑡) , 𝑥

0
(𝑡) , 𝑧

1
(𝑡)) 𝑑

2

𝑗−1
𝜗

2

≤

1

4ℓ

1

𝜀

𝑇
(𝑡) 𝑃

−2
𝜀 (𝑡) + 4ℓ1

𝑛

∑

𝑗=1

𝜂

2

1
(𝑡)

× 𝜔̃

2

𝑗
(𝑢

0
(𝑡) , 𝑥

0
(𝑡) , 𝑧

1
(𝑡)) 𝜗

1
,

2𝜎

𝑇
(𝑡) 𝑄Φ ≤

1

𝛿

1

𝜎

𝑇
(𝑡) 𝜎 (𝑡)

+ 𝛿

1‖
𝑄‖

2

𝑛

∑

𝑗=1

𝜂

2

1
(𝑡) 𝜔̃

2

𝑗
(𝑢

0 (
𝑡) , 𝑥0 (

𝑡) , 𝑧1 (
𝑡)) 𝜗1

,

(32)

where 𝜗
1
= 𝜗

2
+ ∑

𝑛−1

𝑗=1
𝑑

2

𝑗
𝜗

2. Next, employ Lemma 9 and
Young’s inequality, and we have

𝜂

1
(𝑡) Ψ

1

≤ 𝜂

2

1
(𝑡)

̃
𝜓

1
(𝑢

0
(𝑡) , 𝑦 (𝑡)) +

1

2

𝜂

4

1
(𝑡) 𝑓

2

11
(𝑢

0
(𝑡) , 𝑦 (𝑡))

+

1

2

𝜂

2

1
(𝑡 − 𝜏

1
) 𝑓

2

12
(𝑢

0
(𝑡 − 𝜏

1
) , 𝑦 (𝑡 − 𝜏

1
)) ,

2𝜀

𝑇
(𝑡) 𝑃

−1
Ψ

≤

1

4ℓ

1

𝜀

𝑇
(𝑡) 𝑃

−2
𝜀 (𝑡) + 4ℓ1

𝑛

∑

𝑗=1

Ψ

2

𝑗

≤

1

4ℓ

1

𝜀

𝑇
(𝑡) 𝑃

−2
𝜀 (𝑡)
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+ 8ℓ

1

𝑛

∑

𝑗=1

𝜂

2

1
(𝑡)

̃
𝜓

2

𝑗
(𝑢

0
(𝑡) , 𝑦 (𝑡)) 𝑑

2

𝑗−1

+ 4ℓ

1

𝑛

∑

𝑗=1

𝜂

4

1
(𝑡 − 𝜏

𝑗
) 𝑓

4

𝑗2
(𝑢

0
(𝑡 − 𝜏

𝑗
) , 𝑦 (𝑡 − 𝜏

𝑗
))

+ 4ℓ

1

𝑛

∑

𝑗=1

𝜂

4

1
(𝑡) 𝑓

4

𝑗1
(𝑢

0
(𝑡) , 𝑦 (𝑡)) 𝑑

4

𝑗−1

≤

1

4ℓ

1

𝜀

𝑇
(𝑡) 𝑃

−2
𝜀 (𝑡)

+ 8ℓ

1

𝑛

∑

𝑗=1

𝜂

2

1
(𝑡)

̃
𝜓

2

𝑗
(𝑢

0
(𝑡) , 𝑦 (𝑡)) 𝑑

+ 4ℓ

1

𝑛

∑

𝑗=1

𝜂

4

1
(𝑡 − 𝜏

𝑗
) 𝑓

4

𝑗2
(𝑢

0
(𝑡 − 𝜏

𝑗
) , 𝑦 (𝑡 − 𝜏

𝑗
))

+ 4ℓ

1

𝑛

∑

𝑗=1

𝜂

4

1
(𝑡) 𝑓

4

𝑗1
(𝑢

0 (
𝑡) , 𝑦 (𝑡)) 𝑑,

2𝜎

𝑇
(𝑡) 𝑄Ψ

≤

1

𝛿

2

𝜎

𝑇
(𝑡) 𝜎 (𝑡) + 2𝛿2‖

𝑄‖

2

𝑛

∑

𝑗=1

𝜂

2

1
(𝑡)

̃
𝜓

2

𝑗
(𝑢

0 (
𝑡) , 𝑦 (𝑡)) 𝑑

+ 𝛿

2‖
𝑄‖

2

𝑛

∑

𝑗=1

𝜂

4

1
(𝑡 − 𝜏

𝑗
) 𝑓

4

𝑗2
(𝑢

0
(𝑡 − 𝜏

𝑗
) , 𝑦 (𝑡 − 𝜏

𝑗
))

+ 𝛿

2‖
𝑄‖

2

𝑛

∑

𝑗=1

𝜂

4

1
(𝑡) 𝑓

4

𝑗1
(𝑢

0
(𝑡) , 𝑦 (𝑡)) 𝑑,

(33)

where 𝑑 = 1+∑𝑛−1
𝑗=1

𝑑

2

𝑗
+∑

𝑛−1

𝑗=1
𝑑

4

𝑗
, and 𝛿

2
is a positive constant.

By completing the square, the following estimations are
also true:

𝜂

1
(𝑡) 𝜀

2
(𝑡) ≤

1

4ℓ

1

𝜀

𝑇
(𝑡) 𝑃

−2
𝜀 (𝑡) + ℓ

1
𝑃

2

max𝜂
2

1
(𝑡) ,

2𝜀

𝑇
(𝑡) 𝑃

−1
𝐾𝑧

1
(𝑡) ≤

1

4ℓ

1

𝜀

𝑇
(𝑡) 𝑃

−2
𝜀 (𝑡) + 4ℓ

1
𝐾

𝑇
𝐾𝜂

2

1
(𝑡) ,

−2𝜀

𝑇
(𝑡) 𝐶

𝑇
𝑧

1 (
𝑡) ≤

1

2

𝜀

𝑇
(𝑡) 𝐶

𝑇
𝐶𝜀 (𝑡) + 2𝜂

2

1
(𝑡) ,

2𝜀

𝑇
(𝑡) 𝐶

𝑇
𝐶𝜎 (𝑡) ≤

1

2

𝜀

𝑇
(𝑡) 𝐶

𝑇
𝐶𝜀 (𝑡) + 2𝜎

𝑇
(𝑡) 𝜎 (𝑡) ,

2𝜎

𝑇
(𝑡) 𝑄𝐾𝑧

1
(𝑡) ≤ 𝜎

𝑇
(𝑡) 𝜎 (𝑡) + 𝐾

𝑇
𝑄

𝑇
𝑄𝐾𝜂

2

1
(𝑡) .

(34)

Substitute (31)–(34) into ̇

𝑉

1
, it yields

̇

𝑉

1
=

̇

𝑉

1
+

̇

̃

𝑉

1

≤ −(1 −

1

ℓ

1

) 𝜀

𝑇
(𝑡) 𝑃

−2
𝜀 (𝑡)

− 𝑐

1
𝜂

2

1
(𝑡) − (𝑛 − 1)

̃

𝜙 (𝑥

0
(𝑡)) 𝜂

2

1
(𝑡)

− 𝜇𝜎

𝑇
(𝑡) 𝜎 (𝑡) −

̃

𝜙 (𝑥

0 (
𝑡)) 𝜎

𝑇
(𝑡) [𝑄𝐿 + 𝐿𝑄] 𝜎 (𝑡)

−

󵄨

󵄨

󵄨

󵄨

󵄨

𝑑

𝑛

󵄨

󵄨

󵄨

󵄨

󵄨

̃

Θ

𝑇

1

̇

̂

Θ

1

−

𝑛 − 1

2

𝜂

2

1
(𝑡 − 𝜏

1
) 𝑓

2

12
(𝑢

0
(𝑡 − 𝜏

1
) , 𝑦 (𝑡 − 𝜏

1
))

+ 𝑑

𝑛
𝜂

1
(𝑡) [Θ

𝑇

1
Υ

1
+ 𝜐

2
(𝑡)] ,

(35)

where 𝜇 = 𝜇 − 1/𝛿

1
− 1/𝛿

2
− 3, 𝑐

1
= 𝑐

1
− 3 − 𝐾

𝑇
𝑄

𝑇
𝑄𝐾 −

4ℓ

1
𝐾

𝑇
𝐾 − ℓ

1
𝑃

2

max + (𝑛 − 1)𝛽, Θ
𝑇

1
= (1/𝑑

𝑛
)[1, 𝑑, 𝜗

1
], and Υ

1
=

[Υ

11
, Υ

12
, Υ

13
]

𝑇 with

Υ

11
= 𝑐

1
𝜂

1 (
𝑡) + 𝜉02 (

𝑡)

+ 𝜂

1 (
𝑡)
̃
𝜓

1
(𝑢

0 (
𝑡) , 𝑦 (𝑡)) +

1

2

𝜂

3

1
(𝑡) 𝑓

2

11
(𝑢

0 (
𝑡) , 𝑦 (𝑡))

+ (4ℓ

1
+ 𝛿

2‖
𝑄‖

2
)

𝑛

∑

𝑗=1

𝜂

3

1
(𝑡) 𝑓

4

𝑗2
(𝑢

0
(𝑡) , 𝑦 (𝑡))

+

𝑛

2

𝜂

1
(𝑡) 𝑓

2

12
(𝑢

0
(𝑡) , 𝑦 (𝑡)) ,

Υ

12
= 8ℓ

1

𝑛

∑

𝑗=1

𝜂

1
(𝑡)

̃
𝜓

2

𝑗
(𝑢

0
(𝑡) , 𝑦 (𝑡))

+ (4ℓ

1
+ 𝛿

2‖
𝑄‖

2
)

𝑛

∑

𝑗=1

𝜂

3

1
(𝑡) 𝑓

4

𝑗1
(𝑢

0 (
𝑡) , 𝑦 (𝑡)) ,

Υ

13
= (4ℓ

1
+ 𝛿

1‖
𝑄‖

2
)

𝑛

∑

𝑗=1

𝜂

1
(𝑡) 𝜔̃

2

𝑗
(𝑢

0
(𝑡) , 𝑥

0
(𝑡) , 𝑧

1
(𝑡))

+

1

4

𝜂

1
(𝑡) 𝜔̃

2

1
(𝑢

0
(𝑡) , 𝑥

0
(𝑡) , 𝑧

1
(𝑡)) .

(36)

Choose the virtual control function 𝛼
1
and the adaptation

law of ̂Θ
1
as follows:

𝛼

1
= −

̂

Θ

𝑇

1
Υ

1
, (37)

̇

̂

Θ

1
= sign (𝑑

𝑛
) Υ

1
𝜂

1 (
𝑡) .

(38)
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Notice that 𝑑
𝑛
𝜂

1
(𝑡)𝜂

2
(𝑡) ≤ 𝜂

2

1
(𝑡) + (𝑑

2

𝑛
/4)𝜂

2

2
(𝑡), then it

follows from (35)–(38) that

̇

𝑉

1
≤ −(1 −

1

ℓ

1

) 𝜀

𝑇
(𝑡) 𝑃

−2
𝜀 (𝑡) − 𝜇𝜎

𝑇
(𝑡) 𝜎 (𝑡)

− (𝑐

1
− 1) 𝜂

2

1
(𝑡) − (𝑛 − 1)

̃

𝜙 (𝑥

0
(𝑡)) 𝜂

2

1
(𝑡)

−

̃

𝜙 (𝑥

0
(𝑡)) 𝜎

𝑇
(𝑡) [𝑄𝐿 + 𝐿𝑄] 𝜎 (𝑡) −

𝑛 − 1

2

× 𝜂

2

1
(𝑡 − 𝜏

1
) 𝑓

2

12
(𝑢

0
(𝑡 − 𝜏

1
) , 𝑦 (𝑡 − 𝜏

1
)) +

𝑑

2

𝑛

4

𝜂

2

2
(𝑡) .

(39)

𝑆𝑡𝑒𝑝 2. Introduce the newvariable 𝜂
3
(𝑡) = 𝜐

3
(𝑡)−𝛼

2
, where𝛼

2

is regarded as the virtual control input, and take the Lyapunov
functional as

𝑉

2
= 𝑉

1
+

1

2

𝜂

2

2
(𝑡) +

1

2

̃

Θ

𝑇

2
̃

Θ

2
, (40)

where ̃Θ
2
= Θ

2
−

̂

Θ

2
, Θ
2
is an unknown parameter vector to

be defined later, and ̂Θ
2
is an estimate ofΘ

2
. Then, combined

with (20), (37), and (39), we have

̇

𝑉

2
=

̇

𝑉

1
+ 𝜂

2 (
𝑡) { − 𝑘2

𝜐

1 (
𝑡) − (𝑛 − 2) 𝛽𝜐2 (

𝑡)

− (𝑛 − 2)

̃

𝜙

0
(𝑥

0
(𝑡)) 𝜐

2
(𝑡) + 𝜂

3
(𝑡) + 𝛼

2

−

𝜕𝛼

1

𝜕

̂

Θ

𝑇

1

̇

̂

Θ

1
−

𝜕𝛼

1

𝜕𝜉

02

̇

𝜉

02
−

𝜕𝛼

1

𝜕𝑥

0

𝑥̇

0
−

𝜕𝛼

1

𝜕𝑢

0

𝑢̇

0

−

𝜕𝛼

1

𝜕𝑧

1

[𝜉

02
− (𝑛 − 1)

𝑢̇

0 (
𝑡)

𝑢

0
(𝑡)

𝑧

1 (
𝑡)]

−

𝜕𝛼

1

𝜕𝑧

1

𝜀

2
(𝑡) −

𝜕𝛼

1

𝜕𝑧

1

Ψ

1
−

𝜕𝛼

1

𝜕𝑧

1

Φ

1

−

𝜕𝛼

1

𝜕𝑧

1

𝑑

𝑛
𝜐

2
(𝑡)} −

̃

Θ

𝑇

2

̇

̂

Θ

2
.

(41)

Using Lemmas 8 and 9 and Young’s inequality, the
following inequalities hold:

−

𝜕𝛼

1

𝜕𝑧

1

𝜂

2
(𝑡) Ψ

1

≤

1

2

𝜂

2

1
(𝑡) +

1

2

(

𝜕𝛼

1

𝜕𝑧

1

)

2

̃
𝜓

2

1
(𝑢

0
(𝑡) , 𝑥

0
(𝑡) , 𝑧

1
(𝑡)) 𝜂

2

2
(𝑡)

+

1

2

(

𝜕𝛼

1

𝜕𝑧

1

)

2

𝜂

2

1
(𝑡) 𝑓

2

11
(𝑢

0
(𝑡) , 𝑦 (𝑡)) 𝜂

2

2
(𝑡)

+

1

2

𝜂

2

1
(𝑡 − 𝜏

1
) 𝑓

2

12
(𝑢

0
(𝑡 − 𝜏

1
) , 𝑦 (𝑡 − 𝜏

1
)) ,

−

𝜕𝛼

1

𝜕𝑧

1

𝜂

2 (
𝑡) Φ1

≤

1

2

𝜂

2

1
(𝑡) +

1

2

(

𝜕𝛼

1

𝜕𝑧

1

)

2

𝜔̃

2

1
(𝑢

0 (
𝑡) , 𝑥0 (

𝑡) , 𝑧1 (
𝑡)) 𝜂

2

2
(𝑡) 𝜗

2
,

−

𝜕𝛼

1

𝜕𝑧

1

𝜂

2 (
𝑡) 𝜀2 (

𝑡)

≤

1

ℓ

2

𝜀

𝑇
(𝑡) 𝑃

−2
𝜀 (𝑡) +

ℓ

2

4

𝑝

2

max(
𝜕𝛼

1

𝜕𝑧

1

)

2

𝜂

2

2
(𝑡) .

(42)

By the above inequalities, we get

̇

𝑉

2
≤ −(1 −

1

ℓ

1

−

1

ℓ

2

) 𝜀

𝑇
(𝑡) 𝑃

−2
𝜀 (𝑡)

− 𝜇𝜎

𝑇
(𝑡) 𝜎 (𝑡) − (𝑐1

− 2) 𝜂

2

1
(𝑡)

− (𝑛 − 1)

̃

𝜙 (𝑥

0
(𝑡)) 𝜂

2

1
(𝑡)

−

̃

𝜙 (𝑥

0
(𝑡)) 𝜎

𝑇
(𝑡) [𝑄𝐿 + 𝐿𝑄] 𝜎 (𝑡)

−

𝑛 − 2

2

𝜂

2

1
(𝑡 − 𝜏

1
) 𝑓

2

12
(𝑢

0
(𝑡 − 𝜏

1
) , 𝑦 (𝑡 − 𝜏

1
)) + 𝜂

2
(𝑡)

× { − 𝑘

2
𝜐

1 (
𝑡) − (𝑛 − 2) 𝛽𝜐2 (

𝑡) − (𝑛 − 2)

̃

𝜙 (𝑥

0 (
𝑡))

× 𝜐

2 (
𝑡) −

𝜕𝛼

1

𝜕

̂

Θ

1

̇

̂

Θ

1
−

𝜕𝛼

1

𝜕𝜉

02

̇

𝜉

02
−

𝜕𝛼

1

𝜕𝑥

0

𝑥̇

0
+ 𝜂

3 (
𝑡)

−

𝜕𝛼

1

𝜕𝑢

0

𝑢̇

0
−

𝜕𝛼

1

𝜕𝑧

1

[𝜉

02
− (𝑛 − 1)

𝑢̇

0
(𝑡)

𝑢

0
(𝑡)

𝑧

1
(𝑡)]

+

1

2

(

𝜕𝛼

1

𝜕𝑧

1

)

2

𝜂

2

1
(𝑡) 𝑓

2

11
(𝑢

0
(𝑡) , 𝑦 (𝑡)) 𝜂

2
(𝑡)

+ 𝛼

2
+

1

2

(

𝜕𝛼

1

𝜕𝑧

1

)

2

̃
𝜓

2

1
(𝑢

0
(𝑡) , 𝑥

0
(𝑡) , 𝑧

1
(𝑡)) 𝜂

2
(𝑡)

+

ℓ

2

4

𝑝

2

max(
𝜕𝛼

1

𝜕𝑧

1

)

2

𝜂

2
(𝑡) + Θ

𝑇

2
Υ

2
} −

̃

Θ

𝑇

2

̇

̂

Θ

2
,

(43)

where Θ

𝑇

2
= [𝜗

2
, 𝑑

2

𝑛
, 𝑑

𝑛
] and Υ

2
= [(1/2)(𝜕𝛼

1
/𝜕𝑧

1
)

2

𝜔̃

2

1
𝜂

2
(𝑡), 𝜂

2
(𝑡)/4, −(𝜕𝛼

1
/𝜕𝑧

1
)𝜐

2
(𝑡)]

𝑇. By taking the adaptation
law ̇

̂

Θ

2
= Υ

2
𝜂

2
(𝑡) and the virtual control function 𝛼

2
as

𝛼

2
= −𝑐

2
𝜂

2
(𝑡) + 𝑘

2
𝜐

1
(𝑡)

+ (𝑛 − 2) 𝛽𝜐

2
(𝑡) + (𝑛 − 2)

̃

𝜙 (𝑥

0
(𝑡)) 𝜐

2
(𝑡)

+

𝜕𝛼

1

𝜕𝑧

1

[𝜉

02
− (𝑛 − 1)

𝑢̇

0
(𝑡)

𝑢

0 (
𝑡)

𝑧

1
(𝑡)] +

𝜕𝛼

1

𝜕𝑥

0

𝑥̇

0

+

𝜕𝛼

1

𝜕𝑢

0

𝑢̇

0
+

𝜕𝛼

1

𝜕

̂

Θ

1

̇

̂

Θ

1
+

𝜕𝛼

1

𝜕𝜉

02

̇

𝜉

02
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−

1

2

(

𝜕𝛼

1

𝜕𝑧

1

)

2

𝜂

2

1
(𝑡) 𝑓

2

11
(𝑢

0 (
𝑡) , 𝑦 (𝑡)) 𝜂2 (

𝑡)

−

̂

Θ

𝑇

2
Υ

2
−

ℓ

2

4

𝑝

2

max(
𝜕𝛼

1

𝜕𝑧

1

)

2

𝜂

2 (
𝑡)

−

1

2

(

𝜕𝛼

1

𝜕𝑧

1

)

2

̃
𝜓

2

1
(𝑢

0
(𝑡) , 𝑥

0
(𝑡) , 𝑧

1
(𝑡)) 𝜂

2
(𝑡) ,

(44)

we can obtain

̇

𝑉

2
≤ −(1 −

1

ℓ

1

−

1

ℓ

2

) 𝜀

𝑇
(𝑡) 𝑃

−2
𝜀 (𝑡)

− 𝜇𝜎

𝑇
(𝑡) 𝜎 (𝑡) − (𝑐

1
− 2) 𝜂

2

1
(𝑡) − 𝑐

2
𝜂

2

2
(𝑡)

− (𝑛 − 1)

̃

𝜙 (𝑥

0 (
𝑡)) 𝜂

2

1
(𝑡)

−

̃

𝜙 (𝑥

0
(𝑡)) 𝜎

𝑇
(𝑡) [𝑄𝐿 + 𝐿𝑄] 𝜎 (𝑡) + 𝜂2

(𝑡) 𝜂

3
(𝑡)

−

𝑛 − 2

2

𝜂

2

1
(𝑡 − 𝜏

1
) 𝑓

2

12
(𝑢

0
(𝑡 − 𝜏

1
) , 𝑦 (𝑡 − 𝜏

1
) .

(45)

𝑆𝑡𝑒𝑝 3. Define that 𝜂
4
(𝑡) = 𝜐

4
(𝑡) − 𝛼

3
, where 𝛼

3
is the

virtual control input, and consider the following Lyapunov
functional:

𝑉

3
= 𝑉

2
+

1

2

𝜂

2

3
(𝑡) +

1

2

̃

Θ

𝑇

3
̃

Θ

3
. (46)

The time derivative of 𝑉
3
along the estimator system (20)

satisfies

̇

𝑉

3
=

̇

𝑉

2
+ 𝜂

3 (
𝑡)

× { − 𝑘

3
𝜐

1
(𝑡) − (𝑛 − 3) 𝛽𝜐

3
(𝑡)

− (𝑛 − 3)

̃

𝜙 (𝑥

0 (
𝑡)) 𝜐3 (

𝑡) + 𝜂4 (
𝑡)

+ 𝛼

3
−

𝜕𝛼

2

𝜕

̂

Θ

1

̇

̂

Θ

1
−

𝜕𝛼

2

𝜕

̂

Θ

2

̇

̂

Θ

2
−

𝜕𝛼

2

𝜕𝜉

02

̇

𝜉

02
−

𝜕𝛼

2

𝜕𝑥

0

𝑥̇

0

−

𝜕𝛼

2

𝜕𝑢

0

𝑢̇

0
−

𝜕𝛼

1

𝜕𝑧

1

[𝜉

02
− (𝑛 − 1)

𝑢̇

0 (
𝑡)

𝑢

0
(𝑡)

𝑧

1 (
𝑡)]

−

𝜕𝛼

2

𝜕𝜐

1

̇𝜐

1
−

𝜕𝛼

2

𝜕𝜐

2

̇𝜐

2
−

𝜕𝛼

1

𝜕𝑧

1

𝜀

2 (
𝑡) −

𝜕𝛼

2

𝜕𝑧

1

Ψ

1
−

𝜕𝛼

2

𝜕𝑧

1

Φ

1

−

𝜕𝛼

2

𝜕𝑧

1

𝑑

𝑛
𝜐

2 (
𝑡)} −

̃

Θ

𝑇

3

̇

̂

Θ

3
.

(47)

By similar conduction method in (42), we have

−

𝜕𝛼

2

𝜕𝑧

1

𝜂

3 (
𝑡) Ψ1

≤

1

2

𝜂

2

1
(𝑡) +

1

2

(

𝜕𝛼

2

𝜕𝑧

1

)

2

̃
𝜓

2

1
(𝑢

0 (
𝑡) , 𝑥0 (

𝑡) , 𝑧1 (
𝑡)) 𝜂

2

3
(𝑡)

+

1

2

(

𝜕𝛼

2

𝜕𝑧

1

)

2

𝜂

2

1
(𝑡) 𝑓

2

11
(𝑢

0 (
𝑡) , 𝑦 (𝑡)) 𝜂

2

3
(𝑡)

+

1

2

𝜂

2

1
(𝑡 − 𝜏

1
) 𝑓

2

12
(𝑢

0
(𝑡 − 𝜏

1
) , 𝑦 (𝑡 − 𝜏

1
)) ,

−

𝜕𝛼

2

𝜕𝑧

1

𝜂

3
(𝑡) Φ

1

≤

1

2

𝜂

2

1
(𝑡) +

1

2

(

𝜕𝛼

2

𝜕𝑧

1

)

2

𝜔̃

2

1
(𝑢

0
(𝑡) , 𝑥

0
(𝑡) , 𝑧

1
(𝑡)) 𝜂

2

3
(𝑡) 𝜗

2
,

−

𝜕𝛼

2

𝜕𝑧

1

𝜂

3
(𝑡) 𝜀

2
(𝑡)

≤

1

ℓ

3

𝜀

𝑇
(𝑡) 𝑃

−2
𝜀 (𝑡) +

ℓ

3

4

𝑝

2

max(
𝜕𝛼

2

𝜕𝑧

1

)

2

𝜂

2

3
(𝑡) ,

(48)

where ℓ
3
> 0 is a scalar. Based on (48), it yields

̇

𝑉

3
≤ −(1 −

1

ℓ

1

−

1

ℓ

2

−

1

ℓ

3

) 𝜀

𝑇
(𝑡) 𝑃

−2
𝜀 (𝑡) − 𝜇𝜎

𝑇
(𝑡) 𝜎 (𝑡)

− (𝑐

1
− 3) 𝜂

2

1
(𝑡) − (𝑛 − 1)

̃

𝜙 (𝑥

0
(𝑡)) 𝜂

2

1
(𝑡)

−

̃

𝜙 (𝑥

0
(𝑡)) 𝜎

𝑇
(𝑡) [𝑄𝐿 + 𝐿𝑄] 𝜎 (𝑡)

−

𝑛 − 3

2

𝜂

2

1
(𝑡 − 𝜏

1
) 𝑓

2

12
(𝑦 (𝑡 − 𝜏

1
))

+ 𝜂

3 (
𝑡) {𝜂2 (

𝑡) − 𝑘3
𝜐

1 (
𝑡) − (𝑛 − 3) 𝛽𝜐3 (

𝑡) − (𝑛 − 3)

×

̃

𝜙 (𝑥

0
(𝑡)) 𝜐

3
(𝑡) + 𝜂

4
(𝑡) + 𝛼

3
−

𝜕𝛼

2

𝜕

̂

Θ

1

̇

̂

Θ

1

−

𝜕𝛼

2

𝜕

̂

Θ

2

̇

̂

Θ

2
−

𝜕𝛼

1

𝜕𝜉

02

̇

𝜉

02
−

𝜕𝛼

1

𝜕𝑥

0

𝑥̇

0
−

𝜕𝛼

1

𝜕𝑢

0

𝑢̇

0

−

𝜕𝛼

1

𝜕𝑧

1

[𝜉

02
− (𝑛 − 1)

𝑢̇

0
(𝑡)

𝑢

0
(𝑡)

𝑧

1
(𝑡)]

−

𝜕𝛼

2

𝜕𝜐

1

̇𝜐

1
−

𝜕𝛼

2

𝜕𝜐

2

̇𝜐

2
+

ℓ

3

4

𝑝

2

max(
𝜕𝛼

2

𝜕𝑧

1

)

2

𝜂

3 (
𝑡)

+

1

2

(

𝜕𝛼

2

𝜕𝑧

1

)

2

𝜂

2

1
(𝑡) 𝑓

2

11
(𝑢

0 (
𝑡) , 𝑦 (𝑡)) 𝜂3 (

𝑡)
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+

1

2

(

𝜕𝛼

2

𝜕𝑧

1

)

2

̃
𝜓

2

1
(𝑢

0 (
𝑡) , 𝑥0 (

𝑡) , 𝑧1 (
𝑡))

× 𝜂

3 (
𝑡) +Θ

𝑇

3
Υ

3
} −

̃

Θ

𝑇

3

̇

̂

Θ

3
,

(49)

where Θ𝑇
3

= [𝜗

2
, 𝑑

𝑛
] and Υ

3
= [(1/2)(𝜕𝛼

2
/𝜕𝑧

1
)

2
𝜔̃

2

1
𝜂

3
(𝑡),

−(𝜕𝛼

2
/𝜕𝑧

1
)𝜐

2
(𝑡)]

𝑇. Choose the tuning function 𝜋

3
Υ

3
𝜂

3
(𝑡),

and the virtual control function 𝛼
3
as follows:

𝛼

3
= −𝑐

3
𝜂

3 (
𝑡) − 𝜂2 (

𝑡) + 𝑘3
𝜐

1 (
𝑡)

+ (𝑛 − 3) 𝛽𝜐

3
(𝑡) + (𝑛 − 3)

̃

𝜙 (𝑥

0
(𝑡)) 𝜐

3
(𝑡) +

𝜕𝛼

2

𝜕

̂

Θ

1

̇

̂

Θ

1

+

𝜕𝛼

2

𝜕

̂

Θ

2

̇

̂

Θ

2
+

𝜕𝛼

2

𝜕𝜉

02

̇

𝜉

02
+

𝜕𝛼

2

𝜕𝑥

0

𝑥̇

0
+

𝜕𝛼

2

𝜕𝑢

0

𝑢̇

0

+

𝜕𝛼

2

𝜕𝑧

1

[𝜉

02
− (𝑛 − 1)

𝑢̇

0 (
𝑡)

𝑢

0
(𝑡)

𝑧

1 (
𝑡)] +

𝜕𝛼

2

𝜕𝜐

1

̇𝜐

1

+

𝜕𝛼

2

𝜕𝜐

2

̇𝜐

2
−

ℓ

3

4

𝑝

2

max(
𝜕𝛼

2

𝜕𝑧

1

)

2

𝜂

3 (
𝑡)

−

1

2

(

𝜕𝛼

2

𝜕𝑧

1

)

2

𝜂

2

1
(𝑡) 𝑓

2

11
(𝑢

0 (
𝑡) , 𝑦 (𝑡)) 𝜂3 (

𝑡) −

̂

Θ

𝑇

3
Υ

3

−

1

2

(

𝜕𝛼

2

𝜕𝑧

1

)

2

̃
𝜓

2

1
(𝑢

0 (
𝑡) , 𝑥0 (

𝑡) , 𝑧1 (
𝑡)) 𝜂3 (

𝑡) .

(50)

Under the virtual control function 𝛼

3
and the tuning

function 𝜋
3
defined above, the derivative of 𝑉

3
becomes that

̇

𝑉

3
≤ −(1 −

1

ℓ

1

−

1

ℓ

2

−

1

ℓ

3

) 𝜀

𝑇
(𝑡) 𝑃

−2
𝜀 (𝑡)

− (𝑐

1
− 3) 𝜂

2

1
(𝑡) − 𝑐

2
𝜂

2

2
(𝑡) − 𝑐

3
𝜂

2

3
(𝑡)

− 𝜇𝜎

𝑇
(𝑡) 𝜎 (𝑡) −

̃

𝜙 (𝑥

0 (
𝑡)) 𝜎

𝑇
(𝑡) [𝑄𝐿 + 𝐿𝑄] 𝜎 (𝑡)

− (𝑛 − 1)

̃

𝜙 (𝑥

0 (
𝑡)) 𝜂

2

1
(𝑡) + 𝜂3 (

𝑡) 𝜂4 (
𝑡) −

̃

Θ

𝑇

3
(

̇

Θ

3
− 𝜋

3
)

−

𝑛 − 3

2

𝜂

2

1
(𝑡 − 𝜏

1
) 𝑓

2

12
(𝑢

0
(𝑡 − 𝜏

1
) , 𝑦 (𝑡 − 𝜏

1
) .

(51)

Step i (4 ≤ 𝑖 ≤ 𝑛). Assume that, at Step i−1, a virtual
control function 𝛼

𝑖−1
, a tuning function 𝜋

𝑖−1
, and a Lyapunov

functional 𝑉
𝑖−1

have been designed in such a way that

̇

𝑉

𝑖−1
≤ −(1 −

𝑖−1

∑

𝑗=1

1

ℓ

𝑗

)𝜀

𝑇
(𝑡) 𝑃

−2
𝜀 (𝑡)

− (𝑐

1
− 𝑖 + 1) 𝜂

2

1
(𝑡) −

𝑖−1

∑

𝑗=2

𝑐

𝑗
𝜂

2

𝑗
(𝑡)

− 𝜇𝜎

𝑇
(𝑡) 𝜎 (𝑡) + 𝜂

𝑖−1
(𝑡) 𝜂

𝑖
(𝑡) −

̃

𝜙 (𝑥

0
(𝑡)) 𝜎

𝑇
(𝑡)

× [𝑄𝐿 + 𝐿𝑄] 𝜎 (𝑡) −

𝑛 − 𝑖 + 1

2

× 𝜂

2

1
(𝑡 − 𝜏

1
) 𝑓

2

12
(𝑢

0
(𝑡 − 𝜏

1
) , 𝑦 (𝑡 − 𝜏

1
))

−

̃

Θ

𝑇

3
(

̇

Θ

3
− 𝜋

𝑖−1
) − (𝑛 − 1)

̃

𝜙 (𝑥

0 (
𝑡)) 𝜂

2

1
(𝑡)

−

𝑖−2

∑

𝑗=3

𝜕𝛼

𝑗

𝜕

̂

Θ

3

(

̇

̂

Θ

3
− 𝜋

𝑖−1
) 𝜂

𝑗+1
(𝑡) .

(52)

Let 𝜂
𝑖+1
(𝑡) = 𝜐

𝑖+1
(𝑡)−𝛼

𝑖
, where𝛼

𝑖
is regarded as the virtual

control input, and choose Lyapunov functional as

𝑉

𝑖
= 𝑉

𝑖−1
+

1

2

𝜂

2

𝑖
(𝑡) . (53)

Based on (52), the time derivative of 𝑉
𝑖
satisfies

̇

𝑉

𝑖
=

̇

𝑉

𝑖−1
+ 𝜂

𝑖
(𝑡) { − 𝑘

𝑖
𝜐

1
(𝑡) − (𝑛 − 𝑖) 𝛽𝜐

𝑖
(𝑡)

− (𝑛 − 𝑖)

̃

𝜙 (𝑥

0 (
𝑡)) 𝜐𝑖 (

𝑡) + 𝜂𝑖+1 (
𝑡)

−

𝜕𝛼

𝑖−1

𝜕

̂

Θ

1

̇

̂

Θ

1
−

𝜕𝛼

𝑖−1

𝜕

̂

Θ

2

̇

̂

Θ

2
−

𝜕𝛼

𝑖−1

𝜕

̂

Θ

3

̇

̂

Θ

3

−

𝜕𝛼

𝑖−1

𝜕𝑧

1

[𝜉

02
− (𝑛 − 1)

𝑢̇

0 (
𝑡)

𝑢

0
(𝑡)

𝑧

1 (
𝑡)]

+ 𝛼

𝑖
−

𝜕𝛼

𝑖−1

𝜕𝑢

0

𝑢̇

0
−

𝜕𝛼

𝑖−1

𝜕𝜉

02

̇

𝜉

02

−

𝑖−1

∑

𝑗=1

𝜕𝛼

𝑖−1

𝜕𝜐

𝑗

̇𝜐

𝑗
−

𝜕𝛼

𝑖−1

𝜕𝑧

1

𝜀

2
(𝑡) −

𝜕𝛼

𝑖−1

𝜕𝑧

1

Ψ

1

−

𝜕𝛼

𝑖−1

𝜕𝑥

0

𝑥̇

0
−

𝜕𝛼

𝑖−1

𝜕𝑧

1

Φ

1
−

𝜕𝛼

𝑖−1

𝜕𝑧

1

𝑑

𝑛
𝜐

2
(𝑡)} .

(54)

Next, we estimate the following terms in the right-hand
side of (53) by Lemmas 8 and 9 and Young’s inequality as
follows:

−

𝜕𝛼

𝑖−1

𝜕𝑧

1

𝜂

𝑖
(𝑡) Ψ

1

≤

1

2

𝜂

2

1
(𝑡) +

1

2

(

𝜕𝛼

𝑖−1

𝜕𝑧

1

)

2

̃
𝜓

2

1
(𝑢

0 (
𝑡) , 𝑥0 (

𝑡) , 𝑧1 (
𝑡)) 𝜂

2

𝑖
(𝑡)

+

1

2

(

𝜕𝛼

𝑖−1

𝜕𝑧

1

)

2

𝜂

2

1
(𝑡) 𝑓

2

11
(𝑢

0
(𝑡) , 𝑦 (𝑡)) 𝜂

2

𝑖
(𝑡)

+

1

2

𝜂

2

1
(𝑡 − 𝜏

1
) 𝑓

2

12
(𝑢

0
(𝑡 − 𝜏

1
) , 𝑦 (𝑡 − 𝜏

1
)) ,

−

𝜕𝛼

𝑖−1

𝜕𝑧

1

𝜂

𝑖 (
𝑡) Φ1
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≤

1

2

𝜂

2

1
(𝑡) +

1

2

(

𝜕𝛼

𝑖−1

𝜕𝑧

1

)

2

𝜔̃

2

1
𝜂

2

𝑖
(𝑡) 𝜗

2
,

−

𝜕𝛼

𝑖−1

𝜕𝑧

1

𝜂

𝑖 (
𝑡) 𝜀2 (

𝑡)

≤

1

ℓ

𝑖

𝜀

𝑇
(𝑡) 𝑃

−2
𝜀 (𝑡) +

ℓ

𝑖

4

𝑝

2

max(
𝜕𝛼

𝑖−1

𝜕𝑧

1

)

2

𝜂

2

𝑖
(𝑡) .

(55)

Choosing the virtual control function 𝛼
𝑖
as

𝛼

𝑖
= −𝑐

𝑖
𝜂

𝑖 (
𝑡) − 𝜂𝑖−1 (

𝑡) + 𝑘𝑖
𝜐

1 (
𝑡)

+ (𝑛 − 𝑖) 𝛽𝜐𝑖 (
𝑡) + (𝑛 − 𝑖)

̃

𝜙 (𝑥

0 (
𝑡)) 𝜐𝑖 (

𝑡)

+

𝑖−1

∑

𝑗=1

𝜕𝛼

𝑖−1

𝜕𝜐

𝑗

̇𝜐

𝑗
+

𝜕𝛼

𝑖−1

𝜕

̂

Θ

1

̇

̂

Θ

1
+

𝜕𝛼

𝑖−1

𝜕

̂

Θ

2

̇

̂

Θ

2

+

𝜕𝛼

𝑖−1

𝜕𝑥

0

𝑥̇

0
+

𝑖−2

∑

𝑗=3

𝜕𝛼

𝑗

𝜕

̂

Θ

3

Υ

𝑖
𝜂

𝑗+1 (
𝑡) +

𝜕𝛼

𝑖−1

𝜕𝑢

0

𝑢̇

0

+

𝜕𝛼

𝑖−1

𝜕𝑧

1

[𝜉

02
− (𝑛 − 1)

𝑢̇

0 (
𝑡)

𝑢

0
(𝑡)

𝑧

1 (
𝑡)]

−

ℓ

𝑖

4

𝑝

2

max(
𝜕𝛼

𝑖−1

𝜕𝑧

1

)

2

𝜂

𝑖 (
𝑡) +

𝜕𝛼

𝑖−1

𝜕

̂

Θ

3

𝜋

𝑖

−

1

2

(

𝜕𝛼

𝑖−1

𝜕𝑧

1

)

2

𝜂

2

1
(𝑡) 𝑓

2

11
(𝑦 (𝑡)) 𝜂

𝑖
(𝑡) +

𝜕𝛼

𝑖−1

𝜕𝜉

02

̇

𝜉

02
−

̂

Θ

𝑇

3
Υ

𝑖
,

(56)

and the tuning function 𝜋

𝑖
= 𝜋

𝑖−1
+ Υ

𝑖
𝜂

𝑖
(𝑡) with Υ

𝑖
=

[(1/2)(𝜕𝛼

𝑖−1
/𝜕𝑧

1
)

2
𝜔̃

2

1
𝜂

𝑖
(𝑡), −(𝜕𝛼

𝑖−1
/𝜕𝑧

1
)𝜐

2
(𝑡)]

𝑇.Then,we can
show that

̇

𝑉

𝑖
≤ −(1 −

𝑖

∑

𝑗=1

1

ℓ

𝑗

)𝜀

𝑇
(𝑡) 𝑃

−2
𝜀 (𝑡)

− (𝑐

1
− 𝑖) 𝜂

2

1
(𝑡) −

𝑖

∑

𝑗=2

𝑐

𝑗
𝜂

2

𝑗
(𝑡)

− 𝜇𝜎

𝑇
(𝑡) 𝜎 (𝑡) −

̃

𝜙 (𝑥

0
(𝑡)) 𝜎

𝑇
(𝑡) [𝑄𝐿 + 𝐿𝑄] 𝜎 (𝑡)

− (𝑛 − 1) ×

̃

𝜙 (𝑥

0 (
𝑡)) 𝜂

2

1
(𝑡)

−

̃

Θ

𝑇

3
(

̇

Θ

3
− 𝜋

𝑖
) −

𝑖−1

∑

𝑗=3

𝜕𝛼

𝑗

𝜕

̂

Θ

3

𝜂

𝑗+1 (
𝑡) (

̇

̂

Θ

3
− 𝜋

𝑖
)

−

𝑛 − 𝑖

2

𝜂

2

1
(𝑡 − 𝜏

1
) 𝑓

2

12
(𝑢

0
(𝑡 − 𝜏

1
) , 𝑦 (𝑡 − 𝜏

1
))

+ 𝜂

𝑖 (
𝑡) 𝜂𝑖+1 (

𝑡) .

(57)

At the last step (𝑖 = 𝑛), the true input 𝑢
1
(𝑡) will be

designed on the basis of the virtual control 𝛼󸀠
𝑖
𝑠 and the

Lyapunov function 𝑉
𝑛−1

introduced before.

The actual control input 𝑢
1
(𝑡) can be designed as

𝑢

1
(𝑡) = −𝑐

𝑛
𝜂

𝑛
(𝑡) − 𝜂

𝑛−1
(𝑡) + 𝑘

𝑛
𝜐

1
(𝑡)

+

𝜕𝛼

𝑛−1

𝜕

̂

Θ

1

̇

̂

Θ

1
+

𝜕𝛼

𝑛−1

𝜕

̂

Θ

2

̇

̂

Θ

2
+

𝜕𝛼

𝑛−1

𝜕𝜉

02

̇

𝜉

02

+

𝜕𝛼

𝑛−1

𝜕𝑥

0

𝑥̇

0
+

𝜕𝛼

𝑛−1

𝜕𝑢

0

𝑢̇

0

+

𝜕𝛼

𝑛−1

𝜕𝑧

1

[𝜉

02
− (𝑛 − 1)

𝑢̇

0 (
𝑡)

𝑢

0
(𝑡)

𝑧

1 (
𝑡)] −

̂

Θ

𝑇

3
Υ

𝑛

+

𝜕𝛼

𝑛−1

𝜕

̂

Θ

3

𝜋

𝑛
−

1

2

(

𝜕𝛼

𝑛−1

𝜕𝑧

1

)

2

𝜂

2

1
(𝑡) 𝑓

2

11
(𝑦 (𝑡)) 𝜂

𝑛
(𝑡)

−

ℓ

𝑛

4

𝑝

2

max(
𝜕𝛼

𝑛−1

𝜕𝑧

1

)

2

𝜂

𝑛
(𝑡)

+

𝑛−1

∑

𝑗=1

𝜕𝛼

𝑛−1

𝜕𝜐

𝑗

̇𝜐

𝑗
+

𝑛−2

∑

𝑗=3

𝜕𝛼

𝑗

𝜕

̂

Θ

3

Υ

𝑛
𝜂

𝑗+1
(𝑡) ,

(58)

and the update law ̂

Θ

3
= 𝜋

𝑛
with 𝜋

𝑛
= 𝜋

𝑛−1
+ Υ

𝑛
𝜂

𝑛
(𝑡)

and Υ

𝑛
= [(1/2)(𝜕𝛼

𝑛−1
/𝜕𝑧

1
)

2
𝜔̃

2

1
𝜂

𝑛
(𝑡), −(𝜕𝛼

𝑛−1
/𝜕𝑧

1
)𝜐

2
(𝑡)]

𝑇.
Eventually, it can be achieved that

̇

𝑉

𝑛
≤ −(1 −

𝑛

∑

𝑗=1

1

ℓ

𝑗

)𝜀

𝑇
(𝑡) 𝑃

−2
𝜀 (𝑡)

− 𝜇𝜎

𝑇
(𝑡) 𝜎 (𝑡) − (𝑐1

− 𝑛) 𝜂

2

1
(𝑡) −

𝑛

∑

𝑗=2

𝑐

𝑗
𝜂

2

𝑗
(𝑡) − (𝑛 − 1)

×

̃

𝜙 (𝑥

0
(𝑡)) 𝜂

2

1
(𝑡) −

̃

𝜙 (𝑥

0
(𝑡)) 𝜎

𝑇
(𝑡) [𝑄𝐿 + 𝐿𝑄] 𝜎 (𝑡) .

(59)

3.4. Stability Analysis. Notice that ̃𝜙(𝑥
0
(𝑡)) tends to zero as

𝑥

0
(𝑡) converges to origin, and 𝛿

1
, 𝛿

2
, ℓ

𝑖
, 𝑐

𝑖
(1 ≤ 𝑖 ≤ 𝑛) in (59)

are positive design parameters. Therefore, by an appropriate
parameter choice, there exist positive constants 𝜆

𝑖
> 0 (1 ≤

𝑖 ≤ 𝑛 + 2) such that

̇

𝑉

𝑛
≤ −

𝑛

∑

𝑗=1

𝜆

𝑗
𝜂

2

𝑗
(𝑡) − 𝜆

𝑛+1
𝜀

𝑇
(𝑡) 𝑃

−2
𝜀 (𝑡)

− 𝜆

𝑛+2
𝜎

𝑇
(𝑡) 𝜎 (𝑡) .

(60)

It can be seen that 𝜂
𝑖
(𝑡), 𝜀(𝑡), 𝜎(𝑡),

̃

Θ

1
,

̃

Θ

2
,

̃

Θ

3
are bounded.

Since 𝜃 and 𝑑
𝑖
are unknown bounded parameters, ̂Θ

1
,

̂

Θ

2
,

̂

Θ

1

are bounded. According to estimator equations (19)–(21),
it can be deduced that the boundedness of 𝑧

1
(𝑡) = 𝜂

1
(𝑡)

guarantees the boundedness of 𝜉
0
(𝑡), and then 𝜐

1
(𝑡) =

(1/𝑑

𝑛
)(𝑧

1
(𝑡) − 𝜎

1
(𝑡)) and 𝛼

1
are also bounded. By similar

analysis, we can conclude that all signals of the closed loop
system are bounded.

By LaSalle invariant Theorem, it further achieves that
𝜂

𝑖
(𝑡), 𝜀(𝑡), 𝜎(𝑡),

̃

Θ

1
,

̃

Θ

2
,

̃

Θ

3
→ 0 as 𝑡 → ∞. By the controller
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design procedure, we get that 𝜉
0
(𝑡), 𝜐(𝑡), 𝛼

𝑖
, 𝑢

1
(𝑡) asymptoti-

cally tend to zero. Then, the definitions 𝑧̂(𝑡) = 𝜉

0
(𝑡) + 𝑑

𝑛
𝜐(𝑡)

and 𝑧(𝑡) = 𝜀(𝑡) + 𝑧̂(𝑡) show the asymptotical convergence
of 𝑧̂(𝑡) and 𝑧(𝑡). Finally, from the transformations (10) and
(12), we know 𝑥

𝑖
(𝑡) = (1/𝑑

𝑛
)𝑢

𝑛−𝑖

0
(𝑡)𝑧

𝑖
(𝑡), which indicates that

the states 𝑥
𝑖
(𝑡) asymptotically converge to zerowith the initial

condition 𝑥
0
(𝑡

0
) ̸= 0.

For purposes of analysis, we can rewrite the system (14)
as follows:

𝑧̇ (𝑡) = (𝐴

1
− 𝐿𝜙

0
(𝑥

0
(𝑡))) 𝑧 (𝑡) + 𝐾𝑧

1
(𝑡) + 𝐵𝑢

1
(𝑡) + Ψ + Φ.

(61)

To solve the above differential equation, we have

𝑧 (𝑡)

= 𝑒

(𝐴1−𝐿𝜙0(𝑥0(𝑡)))𝑡
𝑧 (𝑡

0
)

+ ∫

𝑡

𝑡0

𝑒

(𝐴1−𝐿𝜙0(𝑥0(𝑡)))(𝑡−𝑠)
[𝐾𝑧

1
(𝑠) + 𝐵𝑢

1
(𝑠) + Ψ + Φ] 𝑑𝑠.

(62)

Notice that 𝐴
1
= 𝐴 −𝐾𝐶 − 𝐿𝛽 is𝐻𝑢𝑟𝑤𝑖𝑡𝑧, and 𝜙

0
(𝑥

0
(𝑡))

tends to zero as 𝑥
0
(𝑡) → 0, then by Lemmas 8 and 9, there

exist constants 󰜚
1
> 0, 󰜚

2
> 0 such that

|𝑧 (𝑡)| ≤ 󰜚1
𝑒

−󰜚2𝑡 󵄨
󵄨

󵄨

󵄨

𝑧 (𝑡

0
)

󵄨

󵄨

󵄨

󵄨

+ ∫

𝑡

𝑡0

󰜚

1
𝑒

−󰜚2(𝑡−𝑠)
[‖𝐾‖ ⋅

󵄨

󵄨

󵄨

󵄨

𝑧

1
(𝑠)

󵄨

󵄨

󵄨

󵄨

+ ‖𝐵‖

⋅

󵄨

󵄨

󵄨

󵄨

𝑢

1
(𝑠)

󵄨

󵄨

󵄨

󵄨

+ ‖Ψ‖ + ‖Φ‖] 𝑑𝑠

≤ 󰜚

1
𝑒

−󰜚2𝑡 󵄨
󵄨

󵄨

󵄨

𝑧 (𝑡

0
)

󵄨

󵄨

󵄨

󵄨

+ 󰜚

1
𝑒

−󰜚2𝑡
∫

𝑡

𝑡0

𝑒

󰜚2𝑠
[ ‖𝐾‖ ⋅

󵄨

󵄨

󵄨

󵄨

𝑧

1
(𝑠)

󵄨

󵄨

󵄨

󵄨

+ ‖𝐵‖ ⋅

󵄨

󵄨

󵄨

󵄨

𝑢

1
(𝑠)

󵄨

󵄨

󵄨

󵄨

+

󵄨

󵄨

󵄨

󵄨

𝑧

1 (
𝑠)

󵄨

󵄨

󵄨

󵄨

̃

𝐺

1
+

󵄨

󵄨

󵄨

󵄨

𝑧

1 (
𝑠)

󵄨

󵄨

󵄨

󵄨

̃

𝐺

2
] 𝑑𝑠,

(63)

where ̃𝐺
1
is a nonnegative smooth function of 𝑑

𝑖
, 𝑢

0
(𝑠), 𝑢

0
(𝑠−

𝜏

𝑖
), 𝑦(𝑠), 𝑦(𝑠 − 𝜏

𝑖
), and ̃

𝐺

2
is a nonnegative smooth function

of 𝑑
𝑖
, 𝑢

0
(𝑠), 𝑥

0
(𝑠), 𝑧

1
(𝑠), 𝜗.

Since 𝑥
0
(𝑡), 𝑥

1
(𝑡), 𝑢

0
(𝑡) and the system parameters are all

bounded, then ̃

𝐺

1
,

̃

𝐺

2
in (63) are also bounded. Employing

the convergence of 𝑥
0
(𝑡), 𝑧

1
(𝑡), 𝑢

1
(𝑡), we can get that 𝑧(𝑡)-

system is globally asymptotically convergent. From the intro-
duced transformations before, it can be deduced that system
(1) is also asymptotically convergent. Now, we can express the
following theorem.

Theorem 12. For system (1), under Assumptions 1–3, if the
control strategies (23) and (58) are applied with an appropriate
choice of the design parameters, the global asymptotic stabiliza-
tion of the closed loop system is achieved for 𝑥

0
(𝑡

0
) ̸= 0.

In the next section, we will deal with the stability analysis
of the closed loop as long as the initial condition𝑥

0
(𝑡

0
) is zero.

4. Switching Controller

Several switching controllers have been proposed in some
existing literatures. As well known, the choice of a constant
feedback for 𝑢

0
(𝑡) may lead to a finite escape. In this note,

the following switching category can be designed for the
stabilization of system (1) with the initial sate 𝑥

0
(𝑡

0
) = 0.

Choosing controller 𝑢
0
(𝑡) as

𝑢

0
(𝑡) = sign (𝑑

0
) 𝑢

∗

0
, when 󵄨

󵄨

󵄨

󵄨

𝑥

0
(𝑡)

󵄨

󵄨

󵄨

󵄨

≤ 󰜚

3
< 𝑥

∗

0
, (64)

where 𝑢∗
0
> 0 and 󰜚

3
> 0 are constants.

Since 𝑥
0
(𝑡

0
) = 0, then 𝑥̇

0
(𝑡

0
) with 𝑢

0
(𝑡) can be deduced

𝑥̇

0
(𝑡

0
) =

󵄨

󵄨

󵄨

󵄨

𝑑

0

󵄨

󵄨

󵄨

󵄨

𝑢

∗

0
+ 𝜙 (𝑡, 𝑥

0
(𝑡

0
)) =

󵄨

󵄨

󵄨

󵄨

𝑑

0

󵄨

󵄨

󵄨

󵄨

𝑢

∗

0
> 0, (65)

then during the initial small time period, 𝑥
0
(𝑡) is increasing

and satisfies |𝑥
0
(𝑡)| + |𝑥

0
(𝑡)|𝜙

0
(𝑥

0
(𝑡)) < |𝑑

0
|𝑢

∗

0
.

Choose 𝑥∗
0
that satisfy

󵄨

󵄨

󵄨

󵄨

𝑥

∗

0

󵄨

󵄨

󵄨

󵄨

+

󵄨

󵄨

󵄨

󵄨

𝑥

∗

0

󵄨

󵄨

󵄨

󵄨

𝜙

0
(𝑥

∗

0
) =

󵄨

󵄨

󵄨

󵄨

𝑑

0

󵄨

󵄨

󵄨

󵄨

𝑢

∗

0
. (66)

Obviously, 𝑥
0
(𝑡) is increasing when 𝑥

0
(𝑡) ≤ 𝑥

∗

0
. When

|𝑥

0
(𝑡)| ≤ 󰜚 < 𝑥

∗

0
, choose the controller 𝑢

0
(𝑡) = sign(𝑑

0
)𝑢

∗

0
,

and the controller 𝑢
1
(𝑡) can be designed according to the sim-

ple nonlinear backstepping iterative approach. Since |𝑥
0
(𝑡)| >

󰜚

3
, at 𝑡
𝑠
, we switch the control laws 𝑢

0
(𝑡) and 𝑢

1
(𝑡) into (23)

and (58), respectively.

Theorem 13. For system (1), under Assumptions 1–3, if above
switching control strategy is applied with an appropriate choice
of the design parameters, then the closed-loop system is globally
asymptotic regulated at the origin for 𝑥

0
(𝑡

0
) = 0.

5. Simulation Example

In this section, a numerical example will be given to illustrate
that the proposed systematic control law design method is
effective. Consider the following system:

𝑥̇

0
(𝑡) = 𝑑

0
𝑢

0
(𝑡) + 𝑥

0
(𝑡)

3
,

𝑥̇

1
(𝑡) = 𝑑

1
𝑢

0
(𝑡) 𝑥

2
(𝑡) +

1

2

ln (1 + 𝑥2
1
(𝑡)) 𝑒

𝑥0(𝑡)

× 𝑥

2

1
(𝑡 − 0.3) + 𝑥1 (

𝑡) 𝜃

𝑥1(𝑡)

1
,

𝑥̇

2
(𝑡) = 𝑑

2
𝑢

1
(𝑡) + 𝑥

1
(𝑡) 𝑒

𝑥0(𝑡−0.2)

× 𝑥

3

1
(𝑡 − 0.2) + ln (1 + (𝜃

2
𝑥

2 (
𝑡))

2
) ,

𝑦 (𝑡) = [𝑥

0
(𝑡) , 𝑥

1
(𝑡)]

𝑇
,

(67)

where 𝑑

0
, 𝑑

1
, 𝑑

2
are virtual control directions with 𝑑

1
, 𝑑

2

unknown and 𝑑

0
known, and the sign of 𝑑

2
= 𝑑

1
𝑑

2

is also known. 𝜃
1
, 𝜃

2
are unknown bounded parameters.

Next, we consider to design the controller 𝑢
0
(𝑡) and 𝑢

1
(𝑡)

to asymptotically stabilize system (67) by the measurable
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Figure 1: States 𝑥
0
(𝑡), 𝑥

1
(𝑡), 𝑥

2
(𝑡).

output. We assume that 𝑥
0
(𝑡

0
) ̸= 0 and make the following

estimation for some nonlinear terms in system (67):

𝑥

1
(𝑡) 𝜃

𝑥1(𝑡)

1
≤

󵄨

󵄨

󵄨

󵄨

𝑥

1
(𝑡)

󵄨

󵄨

󵄨

󵄨

𝑒

(1/2)𝑥
2
1(𝑡)
𝜗,

ln (1 + (𝜃
2
𝑥

2
(𝑡))

2
) ≤

󵄨

󵄨

󵄨

󵄨

𝑥

1
(𝑡)

󵄨

󵄨

󵄨

󵄨

𝜗,

(68)

where 𝜗 = 𝑒(1/2)ln
2
𝜃1
+ |𝜃

2
|.

Firstly, we introduce the following transformation:

𝑥

1
(𝑡) = 𝑥

1
(𝑡) , 𝑥

2
(𝑡) = 𝑑

1
𝑥

2
(𝑡) , (69)

and then the system (67) can be rewritten as

𝑥̇

0
(𝑡) = 𝑑

0
𝑢

0
(𝑡) + 𝑥

0
(𝑡)

3
,

̇

𝑥

1
(𝑡) = 𝑢

0
(𝑡) 𝑥

2
(𝑡) +

1

2

ln (1 + 𝑥2
1
(𝑡)) 𝑒

𝑥0(𝑡)

× 𝑥

2

1
(𝑡 − 0.3) + 𝑥

1
(𝑡) 𝜃

𝑥1(𝑡)

1
,

̇

𝑥

2
(𝑡) = 𝑑

2
𝑢

1
(𝑡) + 𝑑

1
𝑥

1
(𝑡) 𝑒

𝑥0(𝑡−0.2)

× 𝑥

3

1
(𝑡 − 0.2) + 𝑑1

ln (1 + (𝜃
2
𝑥

2 (
𝑡))

2
) ,

(70)

where 𝑑
2
= 𝑑

1
𝑑

2
, and assume that the sign of 𝑑

2
is known.
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Figure 2: Controllers 𝑢
0
(𝑡) and 𝑢

1
(𝑡).

Next,make the following input scaling transformation for
𝑥(𝑡)-system:

𝑧

1
(𝑡) =

𝑥

1
(𝑡)

𝑢

0 (
𝑡)

, 𝑧

2
(𝑡) = 𝑥

2
(𝑡) , (71)

and then the transformed system is

𝑧̇ (𝑡) = (𝐴 − 𝐿

𝑢̇

0
(𝑡)

𝑢

0
(𝑡)

) 𝑧 (𝑡) + 𝐵𝑢

1
(𝑡) + Ψ + Φ, (72)

where

𝐴 = [

0 1

0 0

] , 𝐿 = [

1 0

0 0

] ,

𝐵 = [

0

𝑑

2

] , Ψ = [

Ψ

1

Ψ

2

] , Φ = [

Φ

1

Φ

2

] ,

Ψ

1
=

ln (1 + 𝑥2
1
(𝑡)) 𝑒

𝑥0(𝑡)
𝑥

2

1
(𝑡 − 0.3)

2𝑢

0
(𝑡)

,

Ψ

𝑖
= 𝑑

1
𝑥

1
(𝑡) 𝑒

𝑥0(𝑡−0.2)
𝑥

3

1
(𝑡 − 0.2) ,

Φ

1
=

𝑥

1
(𝑡) 𝜃

𝑥1(𝑡)

1

𝑢

0
(𝑡)

,

Φ

2
= 𝑑

1
ln (1 + (𝜃

2
𝑥

2 (
𝑡))

2
) .

𝑢̇

0 (
𝑡)

𝑢

0
(𝑡)

.

(73)

Design the following controller 𝑢
0
(𝑡):

𝑢

0
(𝑡) = −𝑐

0
𝑥

0
(𝑡) − 𝑐

0
𝑥

0
(𝑡)

3
, (74)

and then 𝑢̇
0
(𝑡)/𝑢

0
(𝑡) can be calculated as follows:

𝑢̇

0 (
𝑡)

𝑢

0
(𝑡)

= −𝑐

0
𝑑

0
− 3𝑐

0
𝑑

0
𝑥

0
(𝑡) +

𝑥

2

0
(𝑡) + 3𝑥

4

0
(𝑡)

1 + 𝑥

2

0
(𝑡)

. (75)

For system (72), constructing the following estimator:

̇

𝜉

0
(𝑡) = (𝐴

0
− 𝐿

𝑢̇

0
(𝑡)

𝑢

0
(𝑡)

) 𝜉

0
(𝑡) + 𝑃𝐶

T
(𝑦 (𝑡) − 𝐶𝜉

0
(𝑡)) ,

̇𝜐 (𝑡) = (𝐴0
− 𝐿

𝑢̇

0 (
𝑡)

𝑢

0
(𝑡)

) 𝜐 (𝑡) + 𝑒𝑛
𝑢

1 (
𝑡) ,

̇

𝑃 = 𝑃(𝐴

0
− 𝐿

𝑢̇

0 (
𝑡)

𝑢

0
(𝑡)

)

𝑇

+ (𝐴

0
− 𝐿

𝑢̇

0 (
𝑡)

𝑢

0
(𝑡)

) 𝑃 − 𝑃𝐶

𝑇
𝐶𝑃 + 𝐼,

(76)

where 𝑦(𝑡) = 𝑧
1
(𝑡), 𝑒

𝑛
= [0, 1]

𝑇
, 𝜉

0
= [𝜉

01
, 𝜉

02
]

𝑇
, 𝜐 = [𝜐

1
, 𝜐

2
]

𝑇,
𝐴

0
= 𝐴 − 𝐾𝐶, 𝐶 = [1, 0], and 𝐾 = [𝑘

1
, 𝑘

2
]

𝑇. The design of
𝑘

1
, 𝑘

2
can guarantee that 𝐴

1
= 𝐴

0
− 𝐾𝐶 − 𝐿𝛽 is𝐻𝑢𝑟𝑤𝑖𝑡𝑧. It

is further achieved that there exists plosive definite matrix 𝑄
satisfying 𝑄𝐴

1
+ 𝐴

𝑇

1
𝑄 = −𝜇𝐼, in which 𝜇 > 0 is a constant.

Denote 𝑧̂(𝑡) = 𝜉

0
(𝑡) + 𝑑

𝑛
𝜐, 𝜎(𝑡) = 𝑧(𝑡) − 𝑑

𝑛
𝜐(𝑡) and 𝜀(𝑡) =

𝑧(𝑡)− 𝑧̂(𝑡), and then the observation error 𝜀(𝑡) and parameter
invariable 𝜎(𝑡) satisfy

̇𝜀 (𝑡) = (𝐴

0
− 𝐿

𝑢̇

0
(𝑡)

𝑢

0
(𝑡)

− 𝑃𝐶

𝑇
𝐶) 𝜀 (𝑡)

+ (𝐾 − 𝑃𝐶

𝑇
) 𝑧

1
(𝑡) + 𝑃𝐶

𝑇
𝐶𝜎 (𝑡) + Ψ + Φ,

𝜎̇ (𝑡) = (𝐴

0
− 𝐿

𝑢̇

0
(𝑡)

𝑢

0
(𝑡)

) 𝜎 (𝑡) + 𝐾𝑧

1
(𝑡) + Ψ + Φ.

(77)
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Figure 3: Parameters ̂Θ
11
,

̂

Θ

12
,

̂

Θ

13
.

Define the invariable that 𝜂
1
(𝑡) = 𝑧

1
(𝑡), 𝜂

2
(𝑡) = 𝜐

2
(𝑡) −

𝛼

1
. According to the iterative procedure in Section 3, we can

design the virtual control function and controller 𝑢
1
(𝑡) as

𝛼

1
= −

̂

Θ

𝑇
Υ

1
= − [

̂

Θ

11
,

̂

Θ

12
,

̂

Θ

13
] [Υ

11
, Υ

12
, Υ

13
]

𝑇
,

𝑢

1 (
𝑡) = −𝑐2

𝜂

2 (
𝑡) + 𝑘2

𝜐

1 (
𝑡) +

𝜕𝛼

1

𝜕

̂

Θ

𝑇

1

̇

̂

Θ

1
+

𝜕𝛼

1

𝜕𝜉

02

̇

𝜉

02

+

𝜕𝛼

1

𝜕𝑢

0
(𝑡)

𝑢̇

0
(𝑡) +

𝜕𝛼

1

𝜕𝑧

1
(𝑡)

[𝜉

02
−

𝑢̇

0
(𝑡)

𝑢

0
(𝑡)

𝑧

1
(𝑡)]

−

ℓ

2

4

(𝑃

2

12
+ 𝑃

2

22
) (

𝜕𝛼

1

𝜕𝑧

1 (
𝑡)

)

2

𝜂

2
(𝑡)

−

1

2

(

𝜕𝛼

1

𝜕𝑧

1
(𝑡)

)

2

𝑒

2𝑥0(𝑡)
𝜂

2

1
(𝑡) 𝜂

2
(𝑡) −

̂

Θ

𝑇

2
Υ

2
,

(78)
where

Υ

11
= 𝑐

1
𝜂

1
(𝑡) + 𝜉

02
(𝑡) +

1

2

𝜂

3

1
(𝑡) 𝑒

2𝑥0(𝑡)

+ [

ℓ

1

8

+

𝛿

1

32

‖𝑄‖

2
] 𝜂

7

1
(𝑡) 𝑢

8

0
(𝑡)
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Figure 4: Parameters ̂Θ
21
,

̂

Θ

22
,

̂

Θ

23
.

+ [2ℓ

1
+

𝛿

1

2

‖𝑄‖

2
] 𝜂

11

1
(𝑡) 𝑒

4𝑥0(𝑡)
𝑢

12

0
(𝑡) +

1

4

𝜂

3

1
(𝑡) 𝑢

4

0
(𝑡) ,

Υ

12
= 2ℓ

1
𝜂

3

1
(𝑡) 𝑒

4𝑥0(𝑡)
+ 2ℓ

1
𝜂

3

1
(𝑡) 𝑢

4

0
(𝑡)

+

𝛿

1

2

‖𝑄‖

2
𝜂

3

1
(𝑡) 𝑒

4𝑥0(𝑡)
+

𝛿

1

2

‖𝑄‖

2
𝜂

3

1
(𝑡) 𝑢

4

0
(𝑡) ,

Υ

13
= [

1

4

+ 4ℓ

1
+ 𝛿

2‖
𝑄‖

2
] 𝜂

1
(𝑡) 𝑒

𝑧
2
1(𝑡)𝑢
2
0(𝑡)

+ [4ℓ

1
+ 𝛿

2‖
𝑄‖

2
] 𝜂

1
(𝑡) 𝑢

2

0
(𝑡) ,

̂

Θ

𝑇

2
= [

̂

Θ

21
,

̂

Θ

22
,

̂

Θ

23
] ,

Υ

2
= [

1

4

(

𝜕𝛼

1

𝜕𝑧

1
(𝑡)

)

2

𝑒

𝑧
2
1(𝑡)𝑢
2
0(𝑡)
𝜂

2
(𝑡) ,

1

4

𝜂

2
(𝑡) , −

𝜕𝛼

1

𝜕𝑧

1
(𝑡)

𝜐

2
(𝑡)]

𝑇

.

(79)

The adaption laws of the parameter invariable in con-
troller 𝑢

1
(𝑡) are chosen as

̇

̂

Θ

1
= sign (𝑑

2
) Υ

1
𝜂

1 (
𝑡) ,

̇

̂

Θ

2
= Υ

2
𝜂

2 (
𝑡) .

(80)
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For simulation use, we pick the unknown parameters
𝑑

1
= 1.5, 𝑑

2
= 2.5, 𝜃

1
= 𝜃

2
= 0.5. In addition, we take

the other controller design parameters as 𝑐
0

= 1, 𝑐

1
=

130, 𝑐

2
= 2, 𝑘

1
= 4, 𝑘

2
= 1, ℓ

1
= 2, ℓ

2
= 3, 𝛿

1
=

𝛿

2
= 4.Moreover,The initial state condition is [0.2, 0, −0.1]𝑇.

Simulation results are shown in Figures 1, 2, 3, and 4. It is
obvious that the states 𝑥

0
(𝑡), 𝑥

1
(𝑡), 𝑥

2
(𝑡) and control input

𝑢

0
(𝑡), 𝑢

1
(𝑡) converge to zero, and the parameters estimation

invariable tend to constants.

6. Conclusion

The output-feedback adaptive stabilization was investigated
for a class of nonholonomic systems with unknown virtual
control coefficients, nonlinear uncertainties, and unknown
time delays. In order to overcome the difficulties, we intro-
duce suitable transformation and novel Lyapunov-Krasovskii
functionals, and then a recursive technique is given to design
the adaptive controller. To make the input-state scaling
transformation effective, the switching control strategy is
employed to achieve the asymptotic stabilization.
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