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This paper extends laws of large numbers under upper probability to sequences of stochastic processes generated by linear
interpolation. This extension characterizes the relation between sequences of stochastic processes and subsets of continuous
function space in the framework of upper probability. Limit results for sequences of functional random variables and some useful
inequalities are also obtained as applications.

1. Introduction

Laws of large numbers are the cornerstones of theory of
probability and statistics. As we know, under appropriate
assumptions, the well-known strong law of large numbers
(SLLN for short) states that for a sequence of random vari-
ables {𝑋

𝑛
}
∞

𝑛=1
, its sample mean 𝑆

𝑛
/𝑛 := ∑

𝑛

𝑖=1
𝑋
𝑖
/𝑛 converges

to a unique constant almost surely in the framework of
probability. But many empirical analyses and theoretical
works show us that nonadditive probability and nonlinear
expectation are very probably faced in economics, finance,
number theory, statistics, and many other fields, such as
capacity, Choquet integral (see Choquet [1]), (nontrivial)
𝑔-probability, (nontrivial) 𝑔-expectation (see El Karoui et
al. [2]), and 𝐺-expectation (see Peng [3]). And for each
nonadditive probability, say 𝑐, we can define many different
expectations related to 𝑐, denoted by 𝐸

𝑐. For nonlinear
𝐸
𝑐, random variables 𝑋

𝑛
may have mean uncertainty; that

is, 𝐸𝑐[𝑋
𝑛
] ̸= − 𝐸

𝑐

[−𝑋
𝑛
], or variance uncertainty; that is,

𝐸
𝑐

[𝑋
2

𝑛
] ̸= − 𝐸

𝑐

[−𝑋
2

𝑛
]. In such cases, there are many scholars

that investigate the limit theorems under 𝐸𝑐 or 𝑐, such as the
laws of large numbers, laws of iterated logarithm, central limit
theorems under either 𝐸𝑐 or 𝑐, and other related problems.
One can refer to Peng [4, 5], Chen and Hu [6], Wu and
Chen [7], the papers mentioned in the following, and some
references therein.

When {𝑋
𝑛
}
∞

𝑛=1
has mean uncertainty, sample mean 𝑆

𝑛
/𝑛

probably cannot converge to a unique constant almost every-
where (shortly a.e., which should be well defined) under a
nonadditive probability or a set of probabilities. Marinacci
[8], Teran [9], and some of the references therein investi-
gate the SLLN via Choquet integrals related to completely
monotone capacity 𝑐.They suppose that {𝑋

𝑛
}
∞

𝑛=1
is a sequence

of independent and identically distributed random variables
under capacity 𝑐 and prove that all the limit points of
convergent subsequences of sample mean 𝑆

𝑛
/𝑛 belong to

an interval [𝐸𝑐[𝑋
1
], −𝐸
𝑐

[−𝑋
1
]] with probability 1 (w.p. 1 for

short) under 𝑐; that is,

𝑐 (𝐸
𝑐

[𝑋
1
] ≤ lim inf
𝑛→∞

𝑆
𝑛

𝑛
≤ lim sup
𝑛→∞

𝑆
𝑛

𝑛
≤ −𝐸
𝑐

[−𝑋
1
] ) = 1.

(1)

Recently, Chen [10] and Chen et al. [11] prove the SLLN
via a sublinear expectation E. They suppose that {𝑋

𝑛
}
∞

𝑛=1
is a

sequence of independent randomvariables underE (see Peng
[4]) and prove that

V(𝜇 ≤ lim inf
𝑛→∞

𝑆
𝑛

𝑛
≤ lim sup
𝑛→∞

𝑆
𝑛

𝑛
≤ 𝜇) = 1, (2)

where V is the lower probability (see Halpern [12]) corre-
sponding to E, 𝜇 := −E[−𝑋

1
] and 𝜇 := E[𝑋

1
]. It is obvious
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that [𝜇, 𝜇] is a subset of [𝐸𝑐[𝑋
1
], −𝐸
𝑐

[−𝑋
1
]]. On the other

hand, Chen [10] and Chen [13] prove that any element of
[𝜇, 𝜇] is the limit of certain convergent subsequence of sample
mean w.p. 1 under upper probability 𝑉 corresponding to E.

This paper is motivated by the problem of limit theorems
of sequences of stochastic processes in the framework of
nonadditive probabilities and the estimation of expectations
of functionals of stock prices with ambiguity. If there is
no mean uncertainty, they are trivial. But if there is mean
uncertainty, then as the SLLN of random variables under
nonadditive probability behaves, limit theorems related to
stochastic processes become interesting and different from
classical case. Chen [14] investigates a limit theorem for
𝐺-quadratic variational process in the framework of 𝐺-
expectation. More generally, for random variables {𝑋

𝑛
}
∞

𝑛=1

with mean uncertainty, in the framework of upper and
lower probabilities (𝑉, V), we consider a simple sequence of
stochastic processes {𝜂

𝑛
(𝑡); 𝑡 ∈ [0, 1]}

∞

𝑛=1
generated by linearly

interpolating 𝑆
𝑖
/𝑛 at 𝑖/𝑛. X. Chen and Z. Chen [15] prove that

all the limit points of subsequences of {𝜂
𝑛
}
∞

𝑛=1
are elements of

𝐽(𝜇, 𝜇) w.p. 1 under lower probability V; namely,

V (Clust {𝜂
𝑛
} ⊂ 𝐽 (𝜇, 𝜇)) = 1, (3)

where 𝐽(𝜇, 𝜇) is a subset of continuous function space on
[0, 1] (see Section 2). Conversely, for any element of 𝐽(𝜇, 𝜇),
is it a limit point of certain subsequence of {𝜂

𝑛
}
∞

𝑛=1
w.p. 1

under upper probability𝑉? In otherwords, does the following
statement

𝑉 (𝑥 ∈ Clust {𝜂
𝑛
}) = 1? (4)

hold true?
In this paper we will employ the independence condition

of Peng [4] to investigate this problem and prove that
under certain conditions it holds true. We will see that this
strong form can be implied by a weak form (see Section 4).
Under continuous upper probability our strong limit theorem
becomes weaker than our weak one. From the face of this
meaning it is different from classical framework. But in fact,
it coincides with the classical case. We also extend our strong
limit theorem to functional random variables and show some
useful inequalities under continuous upper probability 𝑉.

The remaining part of this paper is organized as follows.
In Section 2 we recall some basic definitions and properties
of lower and upper probabilities. And we will also give
basic assumptions for all of the subsequent sections. Some
auxiliary lemmas are proved in Section 3. In Section 4, we
prove a weak limit theorem under general upper probability.
Section 5 mainly presents a strong limit theorem under
continuous upper probability and its extension to functional
random variables. In Section 6 we give a simple example as
applications in finance.

2. Basic Settings

LetΩ be a nonempty set.F denotes a 𝜎-algebra of subsets of
Ω. Let (𝑉, V) be a pair of nonadditive probabilities, related to
a set of probabilitiesP onmeasurable space (Ω,F), given by

𝑉 (𝐴) = sup
𝑄∈P

𝑄 (𝐴) , V (𝐴) = inf
𝑄∈P

𝑄 (𝐴) , ∀𝐴 ∈ F.

(5)

It is obvious that upper probability 𝑉 and lower prob-
ability V are conjugate capacities (see Choquet [1]); that
is, (1) normalization: 𝑉(Ω) = V(Ω) = 1, 𝑉(0) = V(0) =

0; (2) monotonicity: for all 𝐴, 𝐵 ∈ F, if 𝐴 ⊆ 𝐵, then 𝑉(𝐴) ≤
𝑉(𝐵) and V(𝐴) ≤ V(𝐵); (3) conjugation: for all𝐴 ∈ F, V(𝐴) =
1 − 𝑉(𝐴

𝑐

), where 𝐴𝑐 denotes the complementary set of 𝐴.
Moreover, we can easily get the following properties

which are useful in this paper (see also Chen et al. [11]).

Proposition 1. For any sequence of sets 𝐴
𝑛
∈ F, 𝑛 ≥ 1, we

have the following.

(i) Subadditivity of 𝑉:𝑉(∑∞
𝑛=1

𝐴
𝑛
) ≤ ∑
∞

𝑛=1
𝑉(𝐴
𝑛
).

(ii) Lower continuity of 𝑉: if 𝐴
𝑛

↑ 𝐴, then 𝑉(𝐴) =

lim
𝑛→∞

𝑉(𝐴
𝑛
).

(iii) Upper continuity of V: if 𝐴
𝑛

↓ 𝐴, then V(𝐴) =

lim
𝑛→∞

V(𝐴
𝑛
).

(iv) If V(𝐴
𝑛
) = 1 for all 𝑛 ≥ 1, then V(⋂∞

𝑛=1
𝐴
𝑛
) = 1.

We say upper probability 𝑉 (resp., lower probability V) is
continuous if and only if it is upper and lower continuous.
Obviously, upper probability 𝑉 is continuous if and only if
lower probability V is continuous.

The corresponding pair of upper and lower expectations
(E,E) of (𝑉, V) is given as follows:

E [𝑋] = sup
𝑄∈P

𝐸
𝑄
[𝑋] , E [𝑋] = inf

𝑄∈P
𝐸
𝑄
[𝑋] , ∀𝑋 ∈ M,

(6)

whereM denotes the set of all real-valued random variables
𝑋 on (Ω,F) such that sup

𝑄∈P𝐸𝑄[𝑋] < ∞. Obviously, E is a
sublinear expectation (see Peng [16]).

Definition 2 (see Peng [16]). Let {𝑋
𝑛
}
∞

𝑛=1
be a sequence of

random variables on (Ω,F) inM. We say it is a sequence of
independent random variables under upper expectation E, if
for all real-valued continuous functions 𝜑 on R𝑛, denoted by
𝜑 ∈ 𝐶(R𝑛), with linear growth condition; that is, there exists
a constant 𝐶 > 0 s.t.

𝜑 (𝑥)
 ≤ 𝐶 (1 + |𝑥|) , ∀𝑥 ∈ R

𝑛

, (7)

we have

E [𝜑 (𝑋
1
, 𝑋
2
, . . . , 𝑋

𝑛
)]

= E [E[𝜑 (𝑦,𝑋
𝑛
)]
𝑦=(𝑋

1
,𝑋
2
,...,𝑋
𝑛−1
)
] , ∀𝑛 ≥ 2.

(8)
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Throughout this paper we assume (unless otherwise
specified) that {𝑋

𝑛
}
∞

𝑛=1
is a sequence of independent random

variables under upper expectation E satisfying

E [𝑋
𝑛
] = 𝜇, E [𝑋

𝑛
] = 𝜇, E[sup

𝑛≥1

𝑋𝑛

2

] < ∞, (9)

for all 𝑛 ≥ 1, respectively, where −∞ < 𝜇 ≤ 𝜇 < ∞.
Set 𝑆
0

= 0 and 𝑆
𝑛

= ∑
𝑛

𝑖=1
𝑋
𝑖
for any 𝑛 ≥ 1. We

define a sequence of stochastic processes {𝜂
𝑛
}
∞

𝑛=1
by linearly

interpolating 𝑆
𝑖
/𝑛 at 𝑖/𝑛 for each 𝑛 ≥ 1 and 1 ≤ 𝑖 ≤ 𝑛; that is,

𝜂
𝑛
(𝑡) =

1

𝑛
(1 + [𝑛𝑡] − 𝑛𝑡) 𝑆

[𝑛𝑡]
+
1

𝑛
(𝑛𝑡 − [𝑛𝑡]) 𝑆

[𝑛𝑡]+1
,

∀𝑡 ∈ [0, 1] ,

(10)

where [𝑥] denotes the greatest integer which is less or equal
to a nonnegative number 𝑥.

Let 𝐶[0, 1] be a linear space of all real-valued continuous
functions on [0, 1] with supremum as its norm, denoted by
‖⋅‖. Let 𝐽(𝜇, 𝜇) be a subset of𝐶[0, 1] such that all the functions
𝑥 ∈ 𝐽(𝜇, 𝜇) are absolutely continuous on [0, 1] with 𝑥(0) = 0

and 𝜇 ≤ 𝑥


(𝑡) ≤ 𝜇 almost everywhere on [0, 1]. Thus, we can
easily have the following.

Proposition 3. 𝐽(𝜇, 𝜇) is compact.

3. Auxiliary Lemmas

Before investigating the convergence problem of sequence
{𝜂
𝑛
}
∞

𝑛=1
under upper probability, in this section we first give

some useful lemmas.

Definition 4. A set𝐴 ∈ F is said to be a polar set if𝑉(𝐴) = 0.
We say an event holds quasisurely (q.s. for short) if it holds
outside a polar set.

We first give the following property.

Lemma 5. The sequence {𝜂
𝑛
}
∞

𝑛=1
of functions on [0, 1] is

relatively compact w.p. 1 under lower probability V.

Proof. For each 𝑛 ≥ 1, function 𝜂
𝑛
can be rewritten as

𝜂
𝑛
(𝑡) = {

𝑆
𝑖−1

𝑛
+ (𝑆
𝑖
− 𝑆
𝑖−1
) (𝑡 −

𝑖 − 1

𝑛
)}

× 𝐼
[(𝑖−1)/𝑛, 𝑖/𝑛)

(𝑡) +
𝑆
𝑛

𝑛
𝐼
{1}
(𝑡) , ∀𝑡 ∈ [0, 1] .

(11)

Obviously, for each 𝑛 ≥ 1, 𝜂
𝑛
(0) = 0, and for any 1 ≤ 𝑖 ≤

𝑛, the first-order derivative of 𝜂
𝑛
with respect to 𝑡 for every

𝜔 ∈ Ω is

𝜂


𝑛
(𝑡) = 𝑆

𝑖
− 𝑆
𝑖−1

= 𝑋
𝑖
, ∀𝑡 ∈ (

𝑖 − 1

𝑛
,
𝑖

𝑛
) . (12)

Then the difference of 𝜂
𝑛
with respect to 𝑡 follows that for

any 𝑠, 𝑡 ∈ [0, 1] with 𝑠 ≤ 𝑡,

𝜂
𝑛
(𝑡) − 𝜂

𝑛
(𝑠) = ∫

𝑡

𝑠

𝜂


(𝑟) 𝑑𝑟

= ∫
[𝑛𝑡]/𝑛

[𝑛𝑠]/𝑛

𝜂


(𝑟) 𝑑𝑟 + ∫
𝑡

[𝑛𝑡]/𝑛

𝜂


(𝑟) 𝑑𝑟

− ∫
𝑠

[𝑛𝑠]/𝑛

𝜂


(𝑟) 𝑑𝑟

=
𝑆
[𝑛𝑡]

− 𝑆
[𝑛𝑠]

𝑛
+ 𝑋
[𝑛𝑡]+1

(𝑡 −
[𝑛𝑡]

𝑛
)

− 𝑋
[𝑛𝑠]+1

(𝑠 −
[𝑛𝑠]

𝑛
) .

(13)

From E[sup
𝑛≥1

|𝑋
𝑛
|
2

] < ∞, we have 𝑀 := sup
𝑛≥1

|𝑋
𝑛
| <

∞, 𝑞.𝑠. Thus, we can get an upper bound of the norm of 𝜂
𝑛

as follows:

𝜂𝑛
 = sup
𝑡∈[0,1]

𝜂𝑛 (𝑡)
 ≤

∑
𝑛

𝑖=1

𝑋𝑖


𝑛
≤ 𝑀, 𝑞.𝑠. (14)

In addition, for any 𝑠, 𝑡 ∈ [0, 1] such that |𝑡 − 𝑠| ≤ 1/𝑛, we
can get from (13) that

𝜂𝑛 (𝑡) − 𝜂𝑛 (𝑠)
 ≤ 𝑀 |𝑡 − 𝑠| , 𝑞.𝑠. (15)

In fact, without loss of generality, we assume that 𝑠 ≤ 𝑡, if
[𝑛𝑡] > 𝑛𝑠; thus, [𝑛𝑡] = [𝑛𝑠] + 1; then from (13) it follows that
𝜂𝑛 (𝑡) − 𝜂𝑛 (𝑠)



=


𝑋
[𝑛𝑡]

𝑛
+ 𝑋
[𝑛𝑡]+1

(𝑡 −
[𝑛𝑡]

𝑛
) − 𝑋

[𝑛𝑠]+1
(𝑠 −

[𝑛𝑠]

𝑛
)


=

𝑋
[𝑛𝑡]

(
[𝑛𝑡]

𝑛
− 𝑠)+𝑋

[𝑛𝑡]+1
(𝑡−

[𝑛𝑡]

𝑛
)

≤𝑀 (𝑡 − 𝑠) , 𝑞.𝑠.

(16)

Otherwise if [𝑛𝑡] ≤ 𝑛𝑠, thus [𝑛𝑠] ≤ [𝑛𝑡] < [𝑛𝑠] + 1 ≤

[𝑛𝑡] + 1, which implies that [𝑛𝑡] = [𝑛𝑠]; then from (13) we
have

𝜂𝑛 (𝑡) − 𝜂𝑛 (𝑠)


=

𝑋
[𝑛𝑡]+1

(𝑡 −
[𝑛𝑡]

𝑛
) − 𝑋

[𝑛𝑠]+1
(𝑠 −

[𝑛𝑠]

𝑛
)


=
𝑋[𝑛𝑡]+1

 (𝑡 − 𝑠) ≤ 𝑀 (𝑡 − 𝑠) , 𝑞.𝑠.

(17)

Hence, from (16) and (17) we know that (15) holds true.
Thus, we can easily get that {𝜂

𝑛
}
∞

𝑛=1
is equicontinuous with

respect to 𝑡w.p. 1 under lower probability V from property (iv)
of Proposition 1. Together with (14) this sequence {𝜂

𝑛
}
∞

𝑛=1
is

relatively compact in𝐶[0, 1]w.p. 1 under V.We get the desired
result.

The following lemma is very useful in the proofs of our
main theorems and its proof is similar as Theorem 3.1 of Hu
[17]. Here we omit its proof.
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Lemma 6. Given a sequence of independent random variables
{𝑌
𝑛
}
∞

𝑛=1
underE, we assume that there exist two constants 𝑎 < 𝑏

such that E[𝑌
𝑛
] = 𝑎 and E[𝑌

𝑛
] = 𝑏 for all 𝑛 ≥ 1, and we

also assume that sup
𝑛≥1

E[|𝑌
𝑛
|
2

] < ∞. Then for any increasing
subsequence {𝑛

𝑘
}
∞

𝑘=1
of N satisfying 𝑛

𝑘
− 𝑛
𝑘−1

converges to ∞
as 𝑛 tends to∞, and for any 𝜑 ∈ 𝐶(𝑅) with linear growth, we
have

lim
𝑘→∞

E [𝜑(
𝑆
𝑛
𝑘

− 𝑆
𝑛
𝑘−1

𝑛
𝑘
− 𝑛
𝑘−1

)] = sup
𝑎≤𝑢≤𝑏

𝜑 (𝑢) , (18)

where 𝑆
𝑚
= ∑
𝑚

𝑖=1
𝑌
𝑖
for all𝑚 ≥ 1.

4. Weak Limit Theorem

In this section we will investigate the weak convergence
problem of {𝜂

𝑛
}
∞

𝑛=1
under general upper probability.

Theorem 7. For any 𝑥 ∈ 𝐽(𝜇, 𝜇) and 𝜖 > 0, there exists a
subsequence {𝜂

𝑛
𝑚

}
∞

𝑚=1
such that

lim
𝑚→∞

𝑉(

𝜂
𝑛
𝑚

− 𝑥

≤ 𝜖) = 1, (19)

where {𝑛
𝑚
}
∞

𝑚=1
is an increasing subsequence of N and depends

on 𝜇, 𝜇, and 𝜖.

Proof. For any 𝑥 ∈ 𝐽(𝜇, 𝜇) and 𝜖 > 0, by Lemma 5 we only
need to find a subsequence {𝜂

𝑛
𝑚

}
∞

𝑚=1
satisfying (19). Set

𝐴
𝑚
= {𝜔 ∈ Ω :


𝜂
𝑛
𝑚

− 𝑥

≤ 𝜖} , ∀𝑚 ≥ 1. (20)

Note that for any integer 𝑙 ≥ 1,

𝑉 (𝐴
𝑚
)

= 𝑉( sup
𝑡∈[(𝑖−1)/𝑙, 𝑖/𝑙], 1≤𝑖≤𝑙


{𝜂
𝑛
𝑚
(𝑡) − 𝜂

𝑛
𝑚

(
𝑖 − 1

𝑙
)}

+ {𝜂
𝑛
𝑚

(
𝑖 − 1

𝑙
) − 𝑥 (

𝑖 − 1

𝑙
)}

+ {𝑥(
𝑖 − 1

𝑙
) − 𝑥 (𝑡)}


≤ 𝜖)

≥ 𝑉( sup
𝑡∈[(𝑖−1)/𝑙, 𝑖/𝑙], 1≤𝑖≤𝑙


{𝜂
𝑛
𝑚
(𝑡) − 𝜂

𝑛
𝑚

(
𝑖 − 1

𝑙
)}

+ {𝜂
𝑛
𝑚

(
𝑖 − 1

𝑙
) − 𝑥 (

𝑖 − 1

𝑙
)}


+ sup
𝑡∈[(𝑖−1)/𝑙, 𝑖/𝑙],1≤𝑖≤𝑙


𝑥 (

𝑖 − 1

𝑙
) − 𝑥 (𝑡)


≤ 𝜖) .

(21)

Denoting𝐷 = max{|𝜇|, |𝜇|}, since 𝑥 ∈ 𝐽(𝜇, 𝜇), thus, for all
1 ≤ 𝑖 ≤ 𝑙, |𝑥((𝑖 − 1)/𝑙) − 𝑥(𝑡)| ≤ 𝐷/𝑙, for all 𝑡 ∈ [(𝑖 − 1)/𝑙, 𝑖/𝑙].
Hence, taking 𝑙 ≥ 3𝐷/𝜖 we have

𝑉 (𝐴
𝑚
) ≥ 𝑉(


{𝜂
𝑛
𝑚

(
𝑖 − 1

𝑙
) − 𝜂
𝑛
𝑚

(
𝑖 − 2

𝑙
)}

− {𝑥(
𝑖 − 1

𝑙
) − 𝑥 (

𝑖 − 2

𝑙
)}

≤

𝜖

3𝑙
, 2 ≤ 𝑖 ≤ 𝑙) .

(22)

Let 𝑛
𝑚
/𝑙 be a positive integer for any 𝑚 ≥ 1; then by the

definition of 𝜂
𝑛
𝑚

(see (10)), it follows that for 2 ≤ 𝑖 ≤ 𝑙, 𝑙 ≥
3𝐷/𝜖 and𝑚 ≥ 1,

𝜂
𝑛
𝑚

(
𝑖 − 1

𝑙
) − 𝜂
𝑛
𝑚

(
𝑖 − 2

𝑙
) =

𝑆
(𝑖−1)𝑛

𝑚
/𝑙
− 𝑆
(𝑖−2)𝑛

𝑚
/𝑙

𝑛
𝑚

. (23)

In addition, since 𝑥 ∈ 𝐽(𝜇, 𝜇), we know that

𝑎
𝑖

𝑙
≜ 𝑥 (

𝑖 − 1

𝑙
) − 𝑥 (

𝑖 − 2

𝑙
) ∈ [

𝜇

𝑙
,
𝜇

𝑙
] ,

∀2 ≤ 𝑖 ≤ 𝑙, 𝑙 ≥
3𝐷

𝜖
.

(24)

Then it follows that

𝑉 (𝐴
𝑚
) ≥ 𝑉(

𝑙

⋂
𝑖=2

{



𝑆
(𝑖−1)𝑛

𝑚
/𝑙
− 𝑆
(𝑖−2)𝑛

𝑚
/𝑙

𝑛
𝑚
/𝑙

− 𝑎
𝑖


≤
𝜖

3
}) ,

∀𝑚 ≥ 1.

(25)

For 2 ≤ 𝑖 ≤ 𝑙 and 𝛿 ∈ (0, 𝜖/3), we set

𝑔
𝛿

(𝑦) =

{{{{{{{{{{{{

{{{{{{{{{{{{

{

1, 𝑦 ∈ [−
𝜖

3
+ 𝛿,

𝜖

3
− 𝛿] ;

𝑦 + (𝜖/3)

𝛿
, 𝑦 ∈ (−

𝜖

3
, −

𝜖

3
+ 𝛿) ;

(𝜖/3) − 𝛿 − 𝑦

𝛿
, 𝑦 ∈ (

𝜖

3
− 𝛿,

𝜖

3
) ;

0, 𝑦 ∈ [
𝜖

3
, +∞) ∪ (−∞, −

𝜖

3
] .

(26)

Obviously, Π𝑙
𝑖=2
𝑔
𝛿

(𝑦
𝑖
) is a continuous function on R𝑙−1

satisfying linear growth condition. Since {𝑋
𝑛
}
∞

𝑛=1
is indepen-

dent under E (see Definition 2), from (25), we have

𝑉 (𝐴
𝑚
) ≥ E[

𝑙

∏
𝑖=2

𝑔
𝛿

(
𝑆
(𝑖−1)𝑛

𝑚
/𝑙
− 𝑆
(𝑖−2)𝑛

𝑚
/𝑙

𝑛
𝑚
/𝑙

− 𝑎
𝑖
)]

=

𝑙

∏
𝑖=2

E [𝑔
𝛿

(
𝑆
(𝑖−1)𝑛

𝑚
/𝑙
− 𝑆
(𝑖−2)𝑛

𝑚
/𝑙

𝑛
𝑚
/𝑙

− 𝑎
𝑖
)] .

(27)
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Since, for all 2 ≤ 𝑖 ≤ 𝑙 with 𝑙 ≥ 3𝐷/𝜖 and 𝑛 ≥ 1, E[𝑋
𝑛
−

𝑎
𝑖
] = 𝜇−𝑎

𝑖
,E[𝑋

𝑛
−𝑎
𝑖
] = 𝜇−𝑎

𝑖
and sup

𝑛≥1
E[|𝑋
𝑛
−𝑎
𝑖
|
2

] < ∞,
let 𝑛
𝑚
tend to∞ as𝑚 tends to∞; then by Lemma 6 we have

lim
𝑚→∞

E [𝑔
𝛿

(
𝑆
(𝑖−1)𝑛

𝑚
/𝑙
− 𝑆
(𝑖−2)𝑛

𝑚
/𝑙

𝑛
𝑚
/𝑙

− 𝑎
𝑖
)]

= sup
𝜇−𝑎
𝑖
≤𝑢≤𝜇−𝑎

𝑖

𝑔
𝛿

(𝑢) = 1,

(28)

since 𝑎
𝑖
∈ [𝜇, 𝜇] for 2 ≤ 𝑖 ≤ 𝑙. Thus from (27) and (28) it fol-

lows that lim inf
𝑚→∞

𝑉(𝐴
𝑚
) ≥ 1. Obviously, 𝑉(𝐴

𝑚
) ≤ 1 for

all𝑚 ≥ 1. Hence this theorem follows.

Corollary 8. Let 𝜑 be a real-valued continuous functional on
𝐶[0, 1]; then for any 𝑥 ∈ 𝐽(𝜇, 𝜇) and 𝜖 > 0, there exists a sub-
sequence {𝜂

𝑛
𝑚

}
∞

𝑚=1
such that

lim
𝑚→∞

𝑉(

𝜑 (𝜂
𝑛
𝑚

) − 𝜑 (𝑥)

≤ 𝜖) = 1, (29)

where {𝑛
𝑚
}
∞

𝑚=1
is an increasing subsequence of N and depends

on 𝜇, 𝜇, and 𝜖.
In particular, if we assume that 𝜑(𝑥) = 𝑥(1) for all 𝑥 ∈

𝐶[0, 1], then we have

lim
𝑚→∞

𝑉(



𝑆
𝑛
𝑚

𝑛
𝑚

− 𝑥 (1)


≤ 𝜖) = 1, (30)

where 𝑥(1) ∈ [𝜇, 𝜇].

5. Strong Limit Theorem under
Continuous Upper Probability

In the previous Sections 2–4, we consider the general upper
probability 𝑉. For the sake of technique, in this section we
further assume that 𝑉 is continuous and investigate a strong
limit theorem of {𝜂

𝑛
}
∞

𝑛=1
under such a continuous upper

probability 𝑉 and its extension.

5.1. Strong Limit Theorem

Theorem 9. Any 𝑥 ∈ 𝐽(𝜇, 𝜇) is a limit point of some
subsequence of {𝜂

𝑛
}
∞

𝑛=1
w.p. 1 under 𝑉; that is,

𝑉 (𝑥 ∈ Clust {𝜂
𝑛
}) = 1, (31)

where Clust{𝑥
𝑛
} denotes the cluster set of all the limit points of

real sequence {𝑥
𝑛
}
∞

𝑛=1
.

Proof. From Lemma 5, since 𝑉 is continuous, we only need
to prove that for any 𝑥 ∈ 𝐽(𝜇, 𝜇) and any 𝜖 > 0,

𝑉(lim inf
𝑛→∞

𝜂𝑛 − 𝑥
 ≤ 𝜖)

= 𝑉(

∞

⋂
𝑛=1

∞

⋃
𝑚=𝑛

{
𝜂𝑚 − 𝑥

 ≤ 𝜖}) = 1.

(32)

Let {𝐴
𝑚
}
∞

𝑚=1
and 𝐷 be defined the same as in the proof

of Theorem 7. Then it is sufficient to prove that for any fixed
𝜖 > 0 we can find a subsequence {𝑛

𝑚
}
∞

𝑚=1
of N such that

𝑉(lim inf
𝑚→∞

‖ 𝜂
𝑛
𝑚

− 𝑥 ‖≤ 𝜖) = 𝑉(

∞

⋂
𝑚=1

∞

⋃
𝑗=𝑚

𝐴
𝑗
) = 1. (33)

Take 𝑛
𝑚
= 𝑙
𝑚 for 𝑚 ≥ 1, where 𝑙 ≥ 3𝐷/𝜖 is an integer.

FromTheorem 7 and the continuity of 𝑉 we can get

𝑉(

∞

⋂
𝑚=1

∞

⋃
𝑗=𝑚

𝐴
𝑗
) = lim
𝑚→∞

𝑉(

∞

⋃
𝑗=𝑚

𝐴
𝑗
) ≥ lim
𝑚→∞

𝑉 (𝐴
𝑚
) = 1.

(34)

Thus this theorem is proved.

Remark 10. From the proof of Theorem 9 we can see that
it is implied by weak limit Theorem 7 under continuous
upper probability. It seems that “weak limit theorem” is
stronger than “strong limit theorem” under continuous upper
probability. IfP is a singleton, thus we have 𝜇 = 𝜇. Then our
“strong limit theorem” is not the same form as the strong law
of large numbers for sequences of random variables, since the
former form is related to inferior limit and the latter one is
related to limit.

5.2. Extension to Functional Random Variables. By
Theorem 9 we can easily get the following limit result
for functional random variables.

Corollary 11. Let 𝜑 be a real-valued continuous functional
defined on 𝐶[0, 1]; then we have, for any 𝑥 ∈ 𝐽(𝜇, 𝜇),

𝑉 (𝜑 (𝑥) ∈ Clust {𝜑 (𝜂
𝑛
)}) = 1. (35)

In particular,

𝑉( sup
𝑥∈𝐽(𝜇,𝜇)

𝜑 (𝑥) ≤ lim sup
𝑛→∞

𝜑 (𝜂
𝑛
))

= 𝑉( inf
𝑥∈𝐽(𝜇,𝜇)

𝜑 (𝑥) ≥ lim inf
𝑛→∞

𝜑 (𝜂
𝑛
)) = 1.

(36)

From the proof ofTheorem 3.1 and Corollary 3.2 of Chen
et al. [11] the following lemma can be easily obtained.

Lemma 12. Supposing 𝑓 is a real-valued continuous function
on R, then

V( inf
𝑦∈[𝜇,𝜇]

𝑓 (𝑥) ≤ lim inf
𝑛→∞

𝑓(
𝑆
𝑛

𝑛
)

≤ lim sup
𝑛→∞

𝑓(
𝑆
𝑛

𝑛
) ≤ sup
𝑦∈[𝜇,𝜇]

𝑓 (𝑥)) = 1.

(37)
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Corollary 13. Let 𝑓 be defined the same as Lemma 12, then

𝑉(lim sup
𝑛→∞

𝑓(
𝑆
𝑛

𝑛
) = sup
𝑦∈[𝜇,𝜇]

𝑓 (𝑥))

= 𝑉(lim inf
𝑛→∞

𝑓(
𝑆
𝑛

𝑛
) = inf
𝑦∈[𝜇,𝜇]

𝑓 (𝑥)) = 1.

(38)

Especially, if we assume 𝑓(𝑥) = 𝑥, for all 𝑥 ∈ R, then

𝑉(lim sup
𝑛→∞

𝑆
𝑛

𝑛
= 𝜇) = 𝑉(lim inf

𝑛→∞

𝑆
𝑛

𝑛
= 𝜇) = 1. (39)

Proof. Take 𝜑(𝑥) = 𝑓(𝑥(1)), ∀𝑥 ∈ 𝐶[0, 1]. It is easy to check
that 𝜑 is a continuous functional on 𝐶[0, 1], and obviously
𝜑(𝑥) ∈ [𝜇, 𝜇]. For any 𝑛 ≥ 1, 𝜑(𝜂

𝑛
) = 𝑓(𝜂

𝑛
(1)) = 𝑓(𝑆

𝑛
/𝑛).

Thus, from Corollary 11 it follows that

𝑉(lim sup
𝑛→∞

𝑓 (
𝑆
𝑛

𝑛
) ≥ sup
𝑦∈[𝜇,𝜇]

𝑓 (𝑥))

= 𝑉(lim inf
𝑛→∞

𝑓(
𝑆
𝑛

𝑛
) ≤ inf
𝑦∈[𝜇,𝜇]

𝑓 (𝑥)) = 1.

(40)

Then this corollary follows from (37) of Lemma 12 and
(40).

5.3. Inequalities. In this subsection we will give some useful
examples as applications in inequalities.

Example 14. Let 𝑓 be a Lebesgue integrable function defined
from [0, 1] to R; we denote 𝐹(𝑡) = ∫

1

𝑡

𝑓(𝑠)𝑑𝑠, 𝑡 ∈ [0, 1]. Then

lim inf
𝑛→∞

𝑛

∑
𝑖=1

𝑓(
𝑖

𝑛
)
𝑆
𝑖

𝑛2
≤ ∫
1

0

𝐹 (𝑡) 𝑔
1
(𝐹 (𝑡)) 𝑑𝑡, (41)

lim sup
𝑛→∞

𝑛

∑
𝑖=1

𝑓(
𝑖

𝑛
)
𝑆
𝑖

𝑛2
≥ ∫
1

0

𝐹 (𝑡) 𝑔
2
(𝐹 (𝑡)) 𝑑𝑡 (42)

hold w.p. 1 under 𝑉, respectively, where

𝑔
1
(𝑦) = {

𝜇, 𝑦 ≥ 0;

𝜇, 𝑦 < 0;
𝑔
2
(𝑦) = {

𝜇, 𝑦 ≥ 0;

𝜇, 𝑦 < 0.
(43)

Especially for 𝑓 ≡ 1, we have w.p. 1 under 𝑉, respectively,

lim inf
𝑛→∞

𝑛

∑
𝑖=1

𝑆
𝑖

𝑛2
≤
𝜇

2
, lim sup

𝑛→∞

𝑛

∑
𝑖=1

𝑆
𝑖

𝑛2
≥
𝜇

2
. (44)

Proof. Observe that 𝜑(𝑥) = ∫
1

0

𝑓(𝑡)𝑥(𝑡)𝑑𝑡 for all 𝑥 ∈ 𝐶[0, 1]

is a continuous functional defined from 𝐶[0, 1] to R. And it
is easy to check that w.p. 1 under V,

lim inf
𝑛→∞

𝜑 (𝜂
𝑛
) = lim inf
𝑛→∞

∫
1

0

𝑓 (𝑡) 𝜂
𝑛
(𝑡) 𝑑𝑡

= lim inf
𝑛→∞

𝑛

∑
𝑖=1

𝑓(
𝑖

𝑛
)
𝑆
𝑖

𝑛2
.

(45)

By Corollary 11 we know that w.p. 1 under 𝑉

lim inf
𝑛→∞

𝜑 (𝜂
𝑛
) ≤ inf
𝑥∈𝐽(𝜇,𝜇)

∫
1

0

𝑓 (𝑡) 𝑥 (𝑡) 𝑑𝑡. (46)

Since for any 𝑥 ∈ 𝐽(𝜇, 𝜇), 𝑥(𝑡) ∈ [𝜇, 𝜇] almost
everywhere for 𝑡 ∈ [0, 1], then note that, for all 𝑥 ∈ 𝐽(𝜇, 𝜇),

inf
𝑥∈𝐽(𝜇,𝜇)

∫
1

0

𝑓 (𝑡) 𝑥 (𝑡) 𝑑𝑡 = inf
𝑥∈𝐽(𝜇,𝜇)

∫
1

0

𝐹 (𝑡) 𝑥


(𝑡) 𝑑𝑡

≤ ∫
1

0

𝐹 (𝑡) 𝑔
1
(𝑡) 𝑑𝑡.

(47)

Thus, inequality (41) holds w.p. 1 under 𝑉. The proof of
inequality (42) is similar to inequality (41) and inequalities
(44) are obvious. We complete the whole proof.

Example 15. For any integer 𝑘 ≥ 1, we have that

lim inf
𝑛→∞

𝑆𝑖

𝑘

𝑘 + 1
≤

min {𝜇


𝑘

,
𝜇

𝑘

}

𝑘 + 1
,

lim sup
𝑛→∞

𝑆𝑖

𝑘

𝑘 + 1
≥

max {𝜇


𝑘

,
𝜇

𝑘

}

𝑘 + 1

(48)

hold w.p. 1 under 𝑉, respectively.

Proof. It is easy to check that 𝜑(𝑥) = ∫
1

0

|𝑥(𝑡)|
𝑘

𝑑𝑡 is a
continuous functional on 𝐶[0, 1]. Thus, this example can be
similarly proved as Example 14.

6. Applications in Finance

We consider a capital market with ambiguity which is
characterized by a set of probabilities, denoted the same as
previous sections by P such that the corresponding upper
probability𝑉 is continuous. For simplicity, let risk free rate be
zero. We will investigate the stock price 𝑆

𝑡
over time interval

[0, 1] on themeasurable space (Ω,F), andwe assume that the
increments Δ𝑆

𝑡
:= 𝑆
𝑡+Δ𝑡

− 𝑆
𝑡
of stock price 𝑆

𝑡
in time period

[𝑡, 𝑡 + Δ𝑡] is independent from 𝑆
𝑡
for all 𝑡, 𝑡 + Δ𝑡 ∈ [0, 1];

that is, for each probability 𝑄 ∈ P, Δ𝑆
𝑡
and 𝑆

𝑡
are mutually

independent under𝑄 for all 𝑡, 𝑡+Δ𝑡 ∈ [0, 1]. We also assume
that the price of the stock is uniformly bounded with respect
to (𝑡, 𝜔) ∈ [0, 1] × Ω and the largest and smallest expected
average return of this stock over time interval [𝑡, 𝑡 + Δ𝑡] are
𝜇 and 𝜇, respectively; that is,

E[
Δ𝑆
𝑡

Δ𝑡
] = sup
𝑄∈P

𝐸
𝑄
[
Δ𝑆
𝑡

Δ𝑡
] = 𝜇,

−E[−
Δ𝑆
𝑡

Δ𝑡
] = inf
𝑄∈P

𝐸
𝑄
[
Δ𝑆
𝑡

Δ𝑡
] = 𝜇,

(49)

where −∞ < 𝜇 ≤ 𝜇 < ∞, and 𝑡, 𝑡 + Δ𝑡 ∈ [0, 1].
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For any 𝑛 ≥ 1, take Δ𝑡 = 1/𝑛, and let 𝑋
𝑘
= (Δ𝑆

(𝑘−1)/𝑛
)/

(1/𝑛) and 𝑆
𝑘
= ∑
𝑘

𝑖=1
𝑋
𝑖
for 1 ≤ 𝑘 ≤ 𝑛. Then it is obvious that

{𝑋
𝑘
}
𝑛

𝑘=1
is a sequence of independent random variables inM

under upper probability E, with supermean E[𝑋
𝑘
] = 𝜇 and

submean −E[−𝑋
𝑘
] = 𝜇 for all 1 ≤ 𝑘 ≤ 𝑛. Denote the average

stock price of {𝑆
𝑘/𝑛
}
𝑛

𝑘=1
by ∫1
0

𝑆
𝑛

𝑡
𝑑𝑡; then

∫
1

0

𝑆
𝑛

𝑡
(𝜔) 𝑑𝑡 :=

𝑛

∑
𝑘=1

𝑆
𝑘/𝑛

(𝜔)

𝑛
=

𝑛

∑
𝑘=1

∑
𝑘

𝑖=1
Δ𝑆
(𝑖−1)/𝑛

(𝜔)

𝑛

=

𝑛

∑
𝑘=1

∑
𝑘

𝑖=1
𝑋
𝑖
(𝜔)

𝑛2
=

𝑛

∑
𝑘=1

𝑆
𝑘
(𝜔)

𝑛2
, ∀𝜔 ∈ Ω.

(50)

Then by inequalities (41) and (42) it follows that

lim inf
𝑛→∞

∫
1

0

𝑆
𝑛

𝑡
𝑑𝑡 ≤

𝜇

2
, lim sup

𝑛→∞

∫
1

0

𝑆
𝑛

𝑡
𝑑𝑡 ≥

𝜇

2
(51)

hold, respectively, w.p. 1 under continuous upper probability
𝑉. (Together with X. Chen and Z. Chen [15] we will see that
these two inequalities can become equalities in the future.)

7. Concluding Remarks

This paper proves that any element of subset 𝐽(𝜇, 𝜇) of
continuous function space on [0, 1] is a limit point of certain
subsequence of stochastic processes 𝜂

𝑛
in upper probability

𝑉 and with probability 1 under continuous upper probability.
It is an extension of strong law of large numbers from
random variables to stochastic processes in the framework of
upper probability. The limit theorem for functional random
variables also is proved. It is very useful in finance when
there is ambiguity. But the constraint conditions in this paper
are very strong, such as the condition E[sup

𝑛≥1
𝑋
2

𝑛
] < ∞

and independence under sublinear expectation. How can
we weaken the constraint conditions? Does the strong limit
theoremunder upper probability still holdwithout continuity
of 𝑉?We will investigate them in the future work.
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