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Weuse a generalized tanh function expansionmethod and a directmethod to study the analytical solutions of the (1+2)-dimensional
sine Gordon (2DsG) equation. We obtain some new interaction solutions among solitary waves and periodic waves, such as the
kink-periodic wave interaction solution, two-periodic solitoff solution, and two-toothed-solitoff solution. We also investigate the
propagation properties of these solutions.

1. Introduction

Sine-Gordon (sG) equation is one of the most famous partial
differential equations that have been investigated by many
physicists for decades years. The sG equation has played a
central role in lots of different scientific fields, such as in
differential geometry [1], plasma physics [2], nonlinear optics
[3], condensedmatter physics [4], quantumfield theory [5, 6],
and so forth. Researchers have been spending a great deal
of effort to generalize (1+1)-dimensional soliton equations to
(2+1)-dimensional equations. Remarkable of these equations,
in the 1980s, the Nizhnik-Novikov-Veselov (NNV) equation
[7–9] and the Davey-Stewartson (DS) equation [10–12] were
found. The NNV equation and the DS equation are (2+1)
dimensional generalizations of the Korteweg-de Vries (KdV)
equation and nonlinear Schrödinger (NLS) equation, respec-
tively. After that, in 1991, Konopelchenko and Rogers [13, 14]
proposed a significant symmetry to generalize the (1+1)-
dimensional sG equation to (2+1)-dimensional sG equation
through a reinterpretation and generalization of a class of
infinitesimal Bäcklund transformation.Thewell-known non-
integrable (2+1)-dimensional sine-Gordon (2DsG) equation
is as follows:
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Various methods have been used to study this equation
because of its rich symmetrical structure. The brief and
effective methods for solving the 2DsG equation include
the binary Darboux transformation [15, 16], the extensive
symmetry group analysis [17, 18], Hirota’s method [19],
Lamb’s method [20, 21], the Painlevé transcendents [22],
and the Bäcklund transformation [23]. And researchers have
found abundant types of solutions of 2DsG equation, such
as the multisoliton solutions and vortex-like solution [24],
line and ring solitons [25, 26], curve soliton, point instanton
soliton and doubly periodic wave solutions [27–29], Solitoff
structure solution, and snake-shape solitary wave solution
[30].

Recently, some new useful and powerful methods have
been proposed to search for the accurate solutions of non-
linear partial differential equations, such as the general
algebra method for the coupled Schrödinger-Boussinesq
equations [31], the general mapping deformation method for
the generalized variable-coefficient Gardner equation with
forcing term [32], the generalized tanh function expansion
method for the Abowitz-Kaup-Nwell-Segur system [33], the
bosonized supersymmetric KdV model [34], and the Broer-
Kaup system [35]. Significantly, the generalized tanh function
expansion method is an effective new technique for us to
obtain some new interaction solutions of 2DsG equation.
Also, we can solve the 2DsG equation by a direct method
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based on the mapping relations between 2DsG equation and
the cubic nonlinear Klein-Gordon (CNKG) equation. This
method can be also applied to solve the double sine-Gordon
equation, the triple sine-Gordon equation, and theGinzburg-
Landau equation [36], and so forth. In this paper, we want to
seek more interaction solutions of new types among solitary
waves and periodic waves of the 2DsG equation by the
generalized tanh function expansion method and the direct
method.

This paper is organized as follows. In Section 2, a kink-
periodic wave interaction solution of 2DsG equation is
obtained by using of the generalized tanh function expansion
method. In Section 3, two-periodic solitoff solution, periodic
soliton-periodic travelling wave interaction solution, two-
toothed-solitoff solution, and periodic solitoff-kink interac-
tion solution of 2DsG equation are obtained by using the
directmethod. In Section 4, a short summary and discussions
are given.

2. Kink-Periodic Wave Interaction Solutions

The 2DsG equation (1) cannot be solved directly by the
generalized tanh function expansion method [33–35], and
to find some soliton-periodic wave interaction solutions of
2DsG equation, we suppose

Φ = −𝑖 ln [𝑊 (𝑋, 𝑇)] , (2)

and take the following coordinates transformation:

𝑋 = 𝑥 + 𝛼
1
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2
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Then, we substitute (2) with (3) into (1) and arrive at
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It is worth noting that (4) can be solved by using the
generalized tanh function expansion method. Firstly, we set
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tanh (Ψ) + 𝑢

0
, (6)

where 𝑢
2
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1
, 𝑢
0
, and Ψ are functions of variables (𝑋, 𝑇).

In order to obtain some soliton-periodic wave interaction
solutions, let
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(7) into (4) and analyse the coefficients of function tanh(Ψ)
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Furthermore, 𝜓
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elliptic function equation:
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𝜔 and 𝛾 is a constant.

Now we choose the sine Jacobi elliptic function as a
solution of (10),
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Then substituting (12), (13), and (11) into (10), relationships of
these parameters are written as
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where 𝑛 is the modulus of the Jacobi elliptic function sn(𝑧) =
sn(𝑧, 𝑛).

Finally, the accurate expression of Φ is gained:
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where 𝑆 = sn(𝑏𝜉), 𝐶 = cn(𝑏𝜉), and 𝐷 = dn(𝑏𝜉). The solution
of (15) denotes a kink-periodic wave interaction solution of
2DsG equation. Velocities of these two travelling waves are
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Figure 1 shows the density distribution of a kink-
periodic wave interaction solution on the x-y plane given by
[− exp(𝑖Φ)] and (15) with these parameters
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at time 𝑡 = 1. This figure exhibits a special interaction
structure of a kink and a periodic wave. Figure 2 shows the
propagation of the kink-periodic wave solution at 𝑦 = 0 and
𝑡 = 1. In this figure, the soliton propagates along the negative
direction of the x-axis, and its velocity is quicker than the one
of the periodicwave,which also propagates along the negative
𝑥 direction.

3. Solitoff, Periodic Soliton-Periodic
Travelling Wave, and Periodic Solitoff-Kink
Interaction Solutions

In this section, we use the direct method to study the
2DsG equation. Based on the Lamb substitution [20, 21], the
solution of (1) can be set to the following form:

Φ(𝑥, 𝑦, 𝑡) = 4 arctan [𝑀 (𝑥, 𝑦, 𝑡)] , (17)

in which the function𝑀(𝑥, 𝑦, 𝑡) is the solution of the CNKG
equation [30, 36],
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with 𝑚 = 𝜆 − 𝜇. Function 𝑀(𝑥, 𝑦, 𝑡) can be various styles,
such as exp, tanh, sn, and dn [36]. Here we take

𝑀 = √𝑛sn (�̃�) , (20)
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Figure 1: The density distribution of a kink-periodic wave interac-
tion solution [− exp(𝑖Φ)] and (15) with (16) on the x-y plane at time
𝑡 = 1.
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Figure 2:The propagation of the kink-periodic interaction solution
[− exp(𝑖Φ)] and (15) with (16) at 𝑦 = 0 and 𝑡 = 1.

where function �̃� = (√|𝑚|𝑉)/(𝑛 + 1), in which 𝑉 is a func-
tion of variables (𝑥, 𝑦, 𝑡), and the constant 𝑛 is the modulus of
the Jacobi elliptic function. Then, we substitute (17) and (20)
into 2DsG equation and get
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Figure 3: A two-periodic solitoff solution of 2DsG equation (27)
with (28) at time 𝑡 = 0.
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then an arbitrary function V(𝜉) can be included in the
function 𝑉 by solving (22), namely,
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where the sign “±” in (22) and (25) takes “−” when𝑚 > 0 and
takes “+” when 𝑚 < 0. Due to the existence of the arbitrary
functions, abundant exact solutions of (1) will be obtained as
long as the function V(𝜉) is properly selected.

When we take

V (𝜉) = 𝜉 arctan (𝜉) , (26)

a (2+1)-dimensional two-periodic solitoff solution of 2DsG
equation can be obtained:
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Figure 4: The propagation of two-periodic solitoff solution (27)
with (28) along the 𝑦-axis when 𝑥 = 0 at (a) 𝑡 = −5 and (b) 𝑡 = 25.

We know that a solitoff is defined as a half line soliton.
The solution of (27) indicates a solitoff type solution con-
structed by two travelling waves that propagate in differ-
ent directions. Velocities of these two travelling waves are
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Figure 3 shows a two-periodic solitoff solution (27) with

these parameters
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at time 𝑡 = 0. The angle of the two-periodic solitoff in this
figure is actually an obtuse angle although it seems to be
orthogonal. It is because ⃗
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Figure 4 shows more details of the two-periodic solitoff
solution (27) with (28). The two-periodic solitoff solution
with different wavelength has the same amplitude and keeps
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Figure 5: (a) A periodic soliton-periodic travelling wave interaction solution (29) with (31) at time 𝑡 = 0. (b) The density of Φ on the x-y
plane.
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Figure 6: (a) A two-toothed-solitoff solution (33) with (31) at time 𝑡 = 1 except for the modulus 𝑛 = 1. (b)The density ofΦ on the x-y plane.

the peak unchanged during the propagation process. Their
phase velocities are different, but their travelling directions
are same; they propagate along the negative y-axis.

A periodic soliton-periodic travelling wave interaction
solution of 2DsG equation can be obtained:

Φ = 4 arctan(√𝑛sn(
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by choosing

V (𝜉) = 7sech2 (𝜉) + 3. (30)

Figure 5(a) shows the periodic soliton-periodic travelling
wave interaction solution (29) with these parameters
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at time 𝑡 = 0. The solitoff-type structure solution does not
appear, whereas these two travelling waves propagate in
the different directions. The graph is similar to the soliton-
periodic interaction wave in [33], but the soliton really has
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Figure 7: (a) A periodic solitoff-kink interaction solution (34) with (28) at time 𝑡 = 0 except for the modulus 𝑛 = 1. (b)–(d) show the
propagation of the periodic solitoff-kink interaction solution along the x-axis when 𝑦 = −1.3 at 𝑡 = −3, 𝑡 = −0.5, and 𝑡 = 1.

the periodicity and the peak of the soliton keeps periodically
changing. Figure 5(b) shows the density distribution ofΦ on
the x-y plane.

Furthermore, if we take

V (𝜉) = √𝜉
2
+ 1 +

5

4

sin3 (𝜉) ,

V (𝜉) = 3cos3 (𝜉) cn (𝜉) + 1,

(32)

then a two-sawtooth-solitoff solution and a periodic solitoff-
kink interaction solution of 2DsG equation can be written as

Φ = 4 arctan(√𝑛sn(
√|𝑚|

1 + 𝑛

(

5

4

sin3 (𝑘
11
𝑥 + 𝑘
12
𝑦 + 𝜔

1
𝑡)

+ 𝑘
01
𝑥 + 𝑘
02
𝑦 + 𝜔

0
𝑡

+√(𝑘
11
𝑥 + 𝑘
12
𝑦 + 𝜔

1
𝑡)
2

+ 1))) ,

(33)

Φ = 4 arctan(√𝑛sn(
√|𝑚|

1 + 𝑛

(𝑘
01
𝑥 + 𝑘
02
𝑦 + 𝜔

0
𝑡 + 1

+ 3cos3 (𝑘
11
𝑥 + 𝑘
12
𝑦 + 𝜔

1
𝑡)

×cn (𝑘
11
𝑥 + 𝑘
12
𝑦 + 𝜔

1
𝑡) ))) ,

(34)

respectively. Figure 6 shows a two-toothed-solitoff solution
(33) with (31) in the limit case of the modulus 𝑛 = 1.The two-
toothed-solitoff structure is constructed by a kink soliton and
an antikink soliton. Their travelling velocities are different,
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but group velocities are the same. And travelling directions
of these two solitoff waves construct a constant acute angle
during the propagation process.

Figure 7(a) displays a periodic solitoff-kink interaction
solution constructed by a bright soliton and a kink soliton.
Figures 7(b)–7(d) show that the bright soliton and the kink
soliton have different travelling velocities, and they propagate
along the negative x-axis.The peak of the bright soliton keeps
increasing until it is arriving at the same amplitude of the kink
soliton.

4. Summary and Discussion

First of all, we use the generalized tanh function expansion
method to solve the 2DsG equation; a special new kink-
periodic wave interaction solution is explicitly expressed
both analytically and graphically. This interaction solution
between tanh-type soliton and periodic wave of 2DsG equa-
tion is firstly obtained. Then, we use the direct method and
obtain more new interaction solutions of the 2DsG equation,
including the two-periodic solitoff solution (27), periodic
soliton-periodic travelling wave interaction solution (29),
two-toothed-solitoff solution (33), and periodic solitoff-kink
interaction solution (34).The solution (34) is a generalization
of a single straight-line kink soliton solution, while the
solution (33) is an alternative generalization of periodic
straight-line solitoff type of kink soliton solution. These
types of interaction solutions are also firstly found for the
2DsG equation. All of these solutions indicate the interaction
solution among solitary waves and periodic waves; their
travelling velocities are different, but group velocities are
same, and they propagate in different trajectories which
contain linear shape, curve shape, and saw-tooth shape. In
fact, the forms of (12) and (20) can be not only taken the sine
Jacobi elliptic function (sn), more functions can be selected
such as exp, cn, and cn/sn, and more explicit solutions
can be gained. The abundant solutions solved by these two
methods suggest that the rich structures of nonlinear systems
do not only exist in the integrable systems but also in the
nonintegrable systems. Furthermore, there are some types of
localized solutions decaying in all directions, for instance, the
dromions and ring solitons have not been found by these two
methods; those will be left for us to do more research.
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