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This paper presents a global optimization algorithm for solving globally the generalized nonlinear multiplicative programming
(MP) with a nonconvex constraint set. The algorithm uses a branch and bound scheme based on an equivalently reverse convex
programming problem. As a result, in the computation procedure the main work is solving a series of linear programs that do not
grow in size from iterations to iterations. Further several key strategies are proposed to enhance solution production, and some of
them can be used to solve a general reverse convex programming problem.Numerical results show that the computational efficiency
is improved obviously by using these strategies.

1. Introduction

Consider the following generalized nonlinear multiplicative
programming problem:

(MP)

{{{{{{{

{{{{{{{

{

min 𝑓
0
(𝑦)

s.t. 𝑓
𝑗
(𝑦) ≤ 1, 𝑗 = 1, . . . , 𝑝,

𝑓
𝑝+1

(𝑦) ≥ 1,

𝑦 ∈ Ω
0
= {𝑦 | 0 < 𝑦𝐿

𝑖
≤ 𝑦
𝑖
≤ 𝑦𝑈
𝑖
< ∞,

𝑖 = 1, . . . , 𝑛} ,

(1)

where

𝑓
𝑗
(𝑦) =

𝑇𝑗

∏
𝑘=1

{

𝑚𝑗

∑
𝑙=1

𝛽
𝑗𝑘𝑙

𝑛

∏
𝑖=1

𝑦
𝛼𝑗𝑘𝑙𝑖

𝑖
}

𝛾𝑗𝑘

,

𝑗 = 0, 1, . . . , 𝑝 + 1,

(2)

and 𝛾
𝑗𝑘
, 𝛽
𝑗𝑘𝑙
, and 𝛼

𝑗𝑘𝑙𝑖
are all real numbers with 𝛾

𝑗𝑘
> 0 and

𝛽
𝑗𝑘𝑙

> 0.
Problem (MP) is worth studying because it frequently

appears in many applications, including engineering design
[1–6], economics and statistics [7–12], manufacturing [13, 14],
chemical equilibrium [15, 16], financial optimization [17],
plant layout design [18]. On the other hand, many other

nonlinear problems, such as quadratic programming (QP),
bilinear programming (BLP), linear multiplication program-
ming (LMP), polynomial programming, and generalized
geometric programming, fall into the category of (MP).

Problem (MP) usually poses significant theoretical and
computational difficulties; that is, it is known to generally
possess multiple local optima that are not globally optimal.
For example, the problems (LMP), (BLP), and (QP) are
multiextremal. Both (LMP) and (MP) are known to be NP-
hard problems [19, 20] and global optimization ones. So, it
evoked interest of researchers and practitioners. During the
past years, many solution algorithms have been proposed to
solve special forms of the problem (MP). The methods can
be classified as parameter-based methods [21–23], branch-
and-bound methods [24–28], outer-approximation methods
[29, 30], mixed branch-and-bound and outer-approximation
method [31], vertex enumeration methods [32, 33], outcome-
space cutting plane methods [34], and heuristic methods
[35, 36].

Up to now, although there has been significant progress
in the development of deterministic algorithms for finding
global optimal solutions of generalized linear multiplicative
programming problem, to our knowledge, little work has
been done for globally solving generalized nonlinear mul-
tiplicative programming (MP). The purpose of this paper
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is to develop a reliable and effective algorithm for solving
problem (MP). In the algorithm, by making use of a variable
transformation the original problem (MP) is first equivalently
reformulated as a reverse convex programming (RCP).Then,
a linear relaxation programming is generated for a lower
bound of the optimal value to problem (RCP) in the branch-
and-bound search by using the exponent and logarithmic
functions. Compared with other methods reviewed above,
the mathematical model considered in this paper is an
important extension for the model given in [24, 26, 37], and
the presented linear relaxation technique can be looked upon
as an extension application for the one proposed in [24, 26,
37]. Moreover, an upper bound updating strategy is given
to provide a better bound than the standard branch-and-
bound methods (e.g., [24, 26–28, 37]) based on the proposed
global solution location rule. Also, the reduction cut given in
this paper offers a possibility to cut away a large part of the
currently investigated region in which the globally optimal
solution of (MP) does not exist. And finally, the numerical
results show that the proposed algorithm is feasible and the
computational advantages are indicated.

The content of this paper is as follows. In Section 2, we
present the problem (RCP) that is equivalent to problem
(MP). The four key strategies of the algorithm are detailed in
Section 3. A precise algorithm statement and its convergence
are given in Section 4. Section 5 reports the numerical results
of some sample problems by using the algorithm. Some
concluding remarks are given in Section 6.

2. Equivalent Reformulation

In this section, we show that any (MP) problem can be trans-
formed into an equivalent reverse convex programming
problem with one reverse convex constraint. To see how such
a reformulation is possible, some notationswill be introduced
as follows:

𝐼 = {1, . . . , 𝑛} ,

𝐽 = {0, 1, . . . , 𝑝 + 1} ,

𝑏
𝑗𝑘𝑙

= ln (𝛽
𝑗𝑘𝑙
) , ∀𝑗 ∈ 𝐽, 𝑘 = 1, . . . , 𝑇

𝑗
, 𝑙 = 1, . . . , 𝑚

𝑗
,

𝑥
𝑖
= ln (𝑦

𝑖
) , 𝑖 ∈ 𝐼,

𝐿
𝑖
= ln (𝑦

𝐿

𝑖
) , 𝑈

𝑖
= ln (𝑦

𝑈

𝑖
) , ∀𝑖 ∈ 𝐼,

exp (𝑧) = exp (𝑧
1
) + ⋅ ⋅ ⋅ + exp (𝑧

𝑚𝑗
) ,

∀𝑧 = (𝑧
1
, . . . , 𝑧

𝑚𝑗
)
𝑇

∈ 𝑅
𝑚𝑗 .

(3)

Thus, one can convert (MP) into the following equivalent
reverse convex programming problem (RCP):

(RCP)

{{{{

{{{{

{

min 𝐹
0
(𝑥)

s.t. 𝐹
𝑗 (𝑥) ≤ 0, 𝑗 = 1, . . . , 𝑝,

𝐹
𝑝+1 (𝑥) ≥ 0,

𝑥 ∈ Ω = {𝑥 | 𝐿
𝑖
≤ 𝑥
𝑖
≤ 𝑈
𝑖
, 𝑖 ∈ 𝐼} ,

(4)

where for each 𝑗 ∈ 𝐽,

𝐹
𝑗 (𝑥) =

𝑇𝑗

∑
𝑘=1

𝛾
𝑗𝑘
ln(

𝑚𝑗

∑
𝑙=1

exp(
𝑛

∑
𝑖=1

𝛼
𝑗𝑘𝑙𝑖

𝑥
𝑖
+ 𝑏
𝑗𝑘𝑙
)) (5)

are all convex functions. Furthermore, let 𝐴
𝑗𝑘

∈ 𝑅𝑚𝑗×𝑛 be a
matrix with

𝐴
𝑗𝑘

≜
[
[
[

[

𝛼
𝑗𝑘11

𝛼
𝑗𝑘12

⋅ ⋅ ⋅ 𝛼
𝑗𝑘1𝑛

𝛼
𝑗𝑘21

𝛼
𝑗𝑘22

⋅ ⋅ ⋅ 𝛼
𝑗𝑘2𝑛

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

𝛼
𝑗𝑘𝑚𝑗1

𝛼
𝑗𝑘𝑚𝑗2

⋅ ⋅ ⋅ 𝛼
𝑗𝑘𝑚𝑗𝑛

]
]
]

]

≜ (

𝑑
𝑗𝑘1

𝑑
𝑗𝑘2

...
𝑑
𝑗𝑘𝑚𝑗

),

(6)

and let 𝑏
𝑗𝑘

∈ 𝑅𝑛 be a vector with 𝑏
𝑗𝑘

= (ln(𝛽
𝑗𝑘1

), ln(𝛽
𝑗𝑘2

),

. . . , ln (𝛽
𝑗𝑘𝑚𝑗

)
𝑇
). Then, by using (3) 𝐹

𝑗
(𝑦) can be rewritten in

the form

𝐹
𝑗 (𝑥) =

𝑇𝑗

∑
𝑘=1

𝛾
𝑗𝑘
ln(

𝑚𝑗

∑
𝑙=1

exp (𝑑
𝑗𝑘𝑙
𝑥 + 𝑏
𝑗𝑘𝑙
))

=

𝑇𝑗

∑
𝑘=1

𝛾
𝑗𝑘
ln (exp (𝐴

𝑗𝑘
𝑥 + 𝑏
𝑗𝑘
)) , 𝑗 ∈ 𝐽.

(7)

The key equivalent result for problems (MP) and (RCP) is
given by the following theorem.

Theorem 1. If 𝑥∗ is a global optimal solution to problem
(RCP), then 𝑦∗ with 𝑦∗

𝑖
= exp(𝑥∗

𝑖
), ∀𝑖 ∈ 𝐼, is a global optimal

solution for problem (MP). If 𝑦∗ is a global optimal solution for
problem (MP), then 𝑥∗ with 𝑥∗

𝑖
= ln(𝑦∗

𝑖
), ∀𝑖 ∈ 𝐼, is a global

optimal solution for problem (RCP).

Proof. The proof of this theorem follows easily from the def-
initions of problems (MP) and (RCP); therefore, it is omit-
ted.

3. Key Strategies of the Algorithm

FromTheorem 1, to globally solve problem (MP), the branch-
and-bound algorithm to be presented concentrates on glob-
ally solving the equivalent problem (RCP). To present the
algorithm, we first explain several processes: branching,
lower and upper bounding, and reduction cut.

Thebranching process consists in a successive rectangular
partition of the initial boxΩ = [𝐿, 𝑈] following in an exhaus-
tive subdivision rule; that is, any infinite nested sequence of
partition sets generated through the algorithm shrinks to a
singleton. A strategy called the bisection of ratio 𝛼 will be
used in the branching process.

The lower bounding process consists in deriving a linear
relaxation programming of problem (RCP) via a two-part
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linearization method. A lower bound for the objective func-
tion value 𝐹

0
(𝑥) can be found by solving the linear relaxation

programming.
The upper bounding process consists in estimating an

upper bound 𝑈
∗ for the objective function value 𝐹

0
(𝑥) by

adopting a newmethod in this paper.Thismethod is different
from the generalmethod, which is to update the upper bound
𝑈∗ by enclosing all feasible points 𝑥𝑘 found while computing
the lower bounds of the optimum of the primal problem
(RCP).

The reduction cut process consists in applying valid cuts
(referred to as reduction cuts) to reduce the size of the current
partition set Ω = [𝐿, 𝑈] ⊆ Ω = [𝐿, 𝑈]. The cuts aim at tight-
ening the box containing the feasible portion currently still of
interest.

Next, we will give the four key strategies for forming the
corresponding processes, respectively.

3.1. Bisection of Ratio 𝛼. The algorithm performs a branching
process in 𝑅

𝑛 that iteratively subdivides the 𝑛-dimensional
rectangleΩ of problem (RCP) into smaller rectangles that are
also of dimension 𝑛.This process helps the algorithm identify
a location inΩ of a point that is a global optimal solution for
problem (RCP). At each stage of the process, the subdivision
yields a more refined partition [28] of a portion of Ω that is
guaranteed to contain a global optimal solution. The initial
partition 𝑄

0
consists simply ofΩ.

During a typical iteration 𝑘 of the algorithm, 𝑘 ≥ 1, a
rectangleΩ𝑘−1 available from iteration 𝑘−1, is subdivided into
two 𝑛-dimensional rectangles by a process called bisection
of ratio 𝛼, where 𝛼 is a prechosen parameter that satisfies
0.0 < 𝛼 ≤ 0.5. Let Ω𝑘−1 = {𝑥 ∈ 𝑅𝑛 | 𝐿𝑘−1

𝑖
≤ 𝑥
𝑖
≤ 𝑈𝑘−1
𝑖

, 𝑖 ∈ 𝐼},
where 𝐿𝑘−1

𝑖
< 𝑈𝑘−1
𝑖

for all 𝑖 ∈ 𝐼. The procedure for forming a
bisection of ratio 𝛼 of Ω𝑘−1 into two subrectangles Ω𝑘−1 and

Ω
𝑘−1

2
can be described as follows.

(1) Let

𝑗 = argmax {𝑈𝑘−1
𝑖

− 𝐿
𝑘−1

𝑖
, 𝑖 ∈ 𝐼} . (8)

(2) Let 𝑡
𝑗
satisfy

min {𝑡
𝑗
− 𝐿
𝑘−1

𝑗
, 𝑈
𝑘−1

𝑗
− 𝑡
𝑗
} = 𝛼 (𝑈

𝑘−1

𝑗
− 𝐿
𝑘−1

𝑗
) , 0 < 𝛼 ≤ 0.5.

(9)

(3) Let

Ω
𝑘−1

= {𝑥 ∈ 𝑅
𝑛
| 𝐿
𝑘−1

𝑖
≤ 𝑥
𝑖
≤ 𝑈
𝑘−1

𝑖
,

𝑖 ̸= 𝑗, 𝐿
𝑘−1

𝑗
≤ 𝑥
𝑗
≤ 𝑡
𝑗
, 𝑖 ∈ 𝐼} ,

Ω
𝑘−1

= {𝑥 ∈ 𝑅
𝑛
| 𝐿
𝑘−1

𝑖
≤ 𝑥
𝑖
≤ 𝑈
𝑘−1

𝑖
,

𝑖 ̸= 𝑗, 𝑡
𝑗
≤ 𝑥
𝑗
≤ 𝑈
𝑘−1

𝑗
, 𝑖 ∈ 𝐼} .

(10)

Clearly, if 𝛼 = 0.5, then the bisection of ratio 𝛼 is the standard
bisection rule.

3.2. Linearization Strategy. For each rectangle Ω = {𝑥 ∈ 𝑅
𝑛 |

𝐿
𝑖
≤ 𝑥
𝑖
≤ 𝑈
𝑖
, 𝑖 ∈ 𝐼} ⊆ 𝑅𝑛 created by the branching process,

the purpose of this linearization strategy is to obtain a lower
bound LB(Ω) for the optimal value of the problem (RCP(Ω)).

For each rectangle Ω created by the branching process,
the lower bound LB(Ω) is found by solving a single linear
relaxation programming (LRP(Ω)) of problem (RCP(Ω)).
To derive the (LRP(Ω)), we adopt two-part linearization
method. In the first part, we will derive the lower bounding
functions and the upper bounding function of each function
ln(exp(𝐴

𝑗𝑘
𝑥 + 𝑏
𝑗𝑘
)). Then, in the second part, we will derive

the linear lower bounding function (LLBF) and linear upper
bounding function (LUBF) for each sum term of exp(𝑑

𝑗𝑘𝑙
𝑥 +

𝑏
𝑗𝑘𝑙
). All the details of this procedure will be given below.
First-part linearization: it is well known that the function

ln(𝑌) is a concave function about the single variable 𝑌 ∈

[𝑌, 𝑌]. Let 𝐿(ln(𝑌)) and 𝑈(ln(𝑌)) denote the (LLBF) and
(LUBF) of ln(𝑌) over the interval [𝑌, 𝑌], respectively. Then,
from the concavity of ln(𝑌), it follows that

𝐿 (ln (𝑌)) = 𝐾
1
(𝑌 − 𝑌) + ln (𝑌) ≤ ln (𝑌) , (11)

𝑈 (ln (𝑌)) = 𝐾
1
𝑌 − 1 − ln𝐾

1
≥ ln (𝑌) , (12)

where𝐾
1
= (ln𝑌 − ln𝑌)/(𝑌 − 𝑌).

Next, to help to derive the (LLBF) and the (LUBF) of each
function 𝐹

𝑗
(𝑥), we need to introduce some notations. For any

𝑥 ∈ Ω, let

𝑌
Ω

𝑗𝑘𝑙
= 𝑑
𝑗𝑘𝑙
𝑥 + 𝑏
𝑗𝑘𝑙

(13)

with 𝑑𝑇
𝑗𝑘𝑙

= (𝑎
𝑗𝑘𝑙𝑖

, . . . , 𝑎
𝑗𝑘𝑙𝑛

)
𝑇
∈ 𝑅𝑛; then we have 𝑌Ω

𝑗𝑘𝑙
∈ [𝑌Ω
𝑗𝑘𝑙
,

𝑌
Ω

𝑗𝑘𝑙
], where

𝑌
Ω

𝑗𝑘𝑙
=

𝑛

∑
𝑖=1

min {𝑎
𝑗𝑘𝑙𝑖

𝐿
𝑖
, 𝑎
𝑗𝑘𝑙𝑖

𝑈
𝑖
} + 𝑏
𝑗𝑘𝑙
,

𝑌
Ω

𝑗𝑘𝑙
=

𝑛

∑
𝑖=1

max {𝑎
𝑗𝑘𝑙𝑖

𝐿
𝑖
, 𝑎
𝑗𝑘𝑙𝑖

𝑈
𝑖
} + 𝑏
𝑗𝑘𝑙
.

(14)

Moreover, let

𝜂
Ω

𝑗𝑘
=

𝑚𝑗

∑
𝑙=1

exp (𝑌Ω
𝑗𝑘𝑙
) = exp (𝐴

𝑗𝑘
𝑥 + 𝑏
𝑗𝑘
) ; (15)

this will imply 𝜂Ω
𝑗𝑘

∈ [𝜂Ω
𝑗𝑘
, 𝜂
Ω

𝑗𝑘
], where 𝜂Ω

𝑗𝑘
= ∑
𝑚𝑗

𝑙=1
exp(𝑌Ω

𝑗𝑘𝑙
)

and 𝜂
Ω

𝑗𝑘
= ∑
𝑚𝑗

𝑙=1
exp(𝑌Ω

𝑗𝑘𝑙
). Denote

𝐾
Ω

𝑗𝑘
=

ln 𝜂
Ω

𝑗𝑘
− ln 𝜂Ω

𝑗𝑘

𝜂
Ω

𝑗𝑘
− 𝜂Ω
𝑗𝑘

. (16)
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Thus, from (11), it follows that the lower bounding function
of ln(exp(𝐴

𝑗𝑘
𝑥 + 𝑏

𝑗𝑘
)) over Ω, denoted as 𝐿𝐿

𝑗𝑘
(𝑥), has the

following form:

𝐿
𝐿

𝑗𝑘
(𝑥) = 𝐾

Ω

𝑗𝑘
(exp (𝐴

𝑗𝑘
𝑥 + 𝑏
𝑗𝑘
) − 𝜂
Ω

𝑗𝑘
) + ln(𝜂

Ω

𝑗𝑘
)

= 𝐾
Ω

𝑗𝑘
(

𝑚𝑗

∑
𝑙=1

exp (𝑑
𝑗𝑘𝑙
𝑥 + 𝑏
𝑗𝑘𝑙
) − 𝜂
Ω

𝑗𝑘
) + ln(𝜂

Ω

𝑗𝑘
) .

(17)

Similarly, from (12) the upper bounding function of
ln(exp(𝐴

𝑗𝑘
𝑥 + 𝑏
𝑗𝑘
)) overΩ, denoted as 𝐿𝑈

𝑗𝑘
(𝑥), is as follows:

𝐿
𝑈

𝑗𝑘
(𝑥) = 𝐾

Ω

𝑗𝑘
exp (𝐴

𝑗𝑘
𝑥 + 𝑏
𝑗𝑘
) − 1 − ln (𝐾

Ω

𝑗𝑘
)

= 𝐾
Ω

𝑗𝑘

𝑚𝑗

∑
𝑙=1

exp (𝑑
𝑗𝑘𝑙
𝑥 + 𝑏
𝑗𝑘𝑙
) − 1 − ln (𝐾

Ω

𝑗𝑘
) .

(18)

Based on the previous results, we have

𝐿
𝐿

𝑗𝑘
(𝑥) ≤ ln (exp (𝐴

𝑗𝑘
𝑥 + 𝑏
𝑗𝑘
)) ≤ 𝐿

𝑈

𝑗𝑘
(𝑥) , ∀𝑥 ∈ Ω. (19)

Therefore, for each 𝑗 ∈ {0, 1, . . . , 𝑝}, the first-part lower
bounding function of 𝐹

𝑗
(𝑥) in (7), denoted by 𝐿

𝑗
(𝑥), can be

given by

𝐿
𝑗
(𝑥) =

𝑇𝑗

∑
𝑘=1

𝛾
𝑗𝑘
[𝐾
Ω

𝑗𝑘
(

𝑚𝑗

∑
𝑙=1

exp (𝑑
𝑗𝑘𝑙
𝑥 + 𝑏
𝑗𝑘𝑙
) − 𝜂
Ω

𝑗𝑘
)

+ ln(𝜂
Ω

𝑗𝑘
)] ,

(20)

and the first-part upper bounding function of 𝐹
𝑝+1

(𝑥) in (7),
denoted by 𝑈

𝑝+1
(𝑥), is as follows:

𝑈
𝑝+1

(𝑥) =

𝑇𝑝+1

∑
𝑘=1

𝛾
𝑝+1,𝑘

[𝐾
Ω

𝑝+1,𝑘

𝑚𝑝+1

∑
𝑙=1

exp (𝑑
𝑝+1,𝑘𝑙

𝑥 + 𝑏
𝑝+1,𝑘𝑙

)

− 1 − ln (𝐾
Ω

𝑝+1,𝑘
) ] .

(21)

Second-part linearization: with a similar method, we can
derive the corresponding (LLBF) and (LUBF) of the function
exp(𝑌) over the interval [𝑌𝐿, 𝑌𝑈] such that

𝐾
2
(1 + 𝑌 − ln𝐾

2
) ≤ exp (𝑌) ≤ 𝐾

2
(𝑌 − 𝑌

𝐿
) + exp (𝑌𝐿) ,

(22)

where

𝐾
2
=
exp (𝑌𝑈) − exp (𝑌𝐿)

𝑌𝑈 − 𝑌𝐿
. (23)

From (22), we can derive the (LLBF) and (LUBF) of exp(𝑌
𝑗𝑘𝑙
)

overΩ as follows:

exp (𝑌
𝑗𝑘𝑙
) = exp (𝑑

𝑗𝑘𝑙
𝑥 + 𝑏
𝑗𝑘𝑙
)

≥ 𝐵
Ω

𝑗𝑘𝑙
(1 − ln (𝐵

Ω

𝑗𝑘𝑙
) + 𝑑
𝑗𝑘𝑙
𝑥 + 𝑏
𝑗𝑘𝑙
) ,

exp (𝑌
𝑗𝑘𝑙
) = exp (𝑑

𝑗𝑘𝑙
𝑥 + 𝑏
𝑗𝑘𝑙
)

≤ 𝐶
Ω

𝑗𝑘𝑙
+ 𝐵
Ω

𝑗𝑘𝑙
(𝑑
𝑗𝑘𝑙
𝑥 + 𝑏
𝑗𝑘𝑙
) ,

(24)

where

𝐵
Ω

𝑗𝑘𝑙
=
exp (𝑌Ω

𝑗𝑘𝑙
) − exp (𝑌Ω

𝑗𝑘𝑙
)

𝑌
Ω

𝑗𝑘𝑙
− 𝑌Ω
𝑗𝑘𝑙

,

𝐶
Ω

𝑗𝑘𝑙
=

𝑌
Ω

𝑗𝑘𝑙
exp (𝑌Ω

𝑗𝑘𝑙
) − 𝑌Ω
𝑗𝑘𝑙

exp (𝑌Ω
𝑗𝑘𝑙
)

𝑌
Ω

𝑗𝑘𝑙
− 𝑌Ω
𝑗𝑘𝑙

.

(25)

Then, for each 𝑗 ∈ {0, 1, . . . , 𝑝}, substitute each term
exp(𝑑

𝑗𝑘𝑙
𝑥+ 𝑏
𝑗𝑘𝑙
) in (20) by 𝐵Ω

𝑗𝑘𝑙
(1 − ln(𝐵Ω

𝑗𝑘𝑙
) + 𝑑
𝑗𝑘𝑙
𝑥+ 𝑏
𝑗𝑘𝑙
). We

may derive the (LLBF) of 𝐹
𝑗
(𝑥) over Ω, denoted as LF

𝑗
(𝑥),

being the following form:

LF
𝑗 (𝑥)

=

𝑇𝑗

∑
𝑘=1

𝛾
𝑗𝑘
{𝐾
Ω

𝑗𝑘
[

𝑚𝑗

∑
𝑙=1

𝐵
Ω

𝑗𝑘𝑙
(1 − ln (𝐵

Ω

𝑗𝑘𝑙
) + 𝑑
𝑗𝑘𝑙
𝑥 + 𝑏
𝑗𝑘𝑙
)]

−𝐾
Ω

𝑗𝑘
𝜂
Ω

𝑗𝑘
+ ln(𝜂

Ω

𝑗𝑘
)} ,

(26)

and it follows that LF
𝑗
(𝑥) ≤ 𝐹

𝑗
(𝑥) for all 𝑥 ∈ Ω, 𝑗 =

0, 1, . . . , 𝑝.
If 𝑗 = 𝑝 + 1, substitute the terms exp(𝑑

𝑝+1,𝑘𝑙
𝑥 + 𝑏
𝑝+1,𝑘𝑙

)

in (21) by 𝐶Ω
𝑝+1,𝑘𝑙

+ 𝐵Ω
𝑝+1,𝑘𝑙

(𝑑
𝑝+1,𝑘𝑙

𝑥 + 𝑏
𝑝+1,𝑘𝑙

). We can get the
(LUBF) of 𝐹

𝑝+1
(𝑥) overΩ, denoted as UF

𝑝+1
(𝑥), as follows:

UF
𝑝+1 (𝑥)

=

𝑇𝑝+1

∑
𝑘=1

𝛾
𝑝+1,𝑘

× [𝐾
Ω

𝑝+1,𝑘

𝑚𝑝+1

∑
𝑙=1

(𝐶
Ω

𝑝+1,𝑘𝑙
+ 𝐵
Ω

𝑝+1,𝑘𝑙
(𝑑
𝑝+1,𝑘𝑙

𝑥 + 𝑏
𝑝+1,𝑘𝑙

))

− 1 − ln (𝐾
Ω

𝑝+1,𝑘
) ] ,

(27)

and it follows that UF
𝑝+1

(𝑥) ≥ 𝐹
𝑝+1

(𝑥) for all 𝑥 ∈ Ω.
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From the above discussion for the two kinds of con-
straints, respectively, we can construct the corresponding lin-
ear relaxation programming (LRP(Ω)) of problem (RCP(Ω))

as follows:

(LRP (Ω))

{{{{

{{{{

{

min LF
0
(𝑥)

s.t. LF
𝑗 (𝑥) ≤ 0, 𝑗 = 1, . . . , 𝑝,

UF
𝑝+1 (𝑥) ≥ 0,

𝑥 ∈ Ω = {𝑥 | 𝐿
𝑖
≤ 𝑥
𝑖
≤ 𝑈
𝑖
, 𝑖 ∈ 𝐼} .

(28)

Obviously, after the functions are replaced by the correspond-
ing linear functions, the feasible region of problem (RCP(Ω))

will be contained in the new feasible region of the (LRP(Ω)),
and we can have the following lemma.
Lemma 2. Assume that 𝐿𝐵(Ω) is the minimum of the problem
(𝐿𝑅𝑃(Ω)); then 𝐿𝐵(Ω) provides a lower bound for the optimal
value of the problem (𝑅𝐶𝑃(Ω)).

3.3. Global Solution Location and Upper Bound Updating. As
is known, in the general branch-and-bound algorithm, to
update the upper bound𝑈

∗ of the optimal value for problem
(RCP), the usual method is enclosing all feasible points found
while computing the lower bounds of the optimum of the
primal problem (RCP). In this paper, we will adopt a new
method to update the upper bounds, which is different from
the usual method. Toward this end, firstly, we will give the
global solution location.

Let 𝑆 = {𝑥 | 𝐹
𝑗
(𝑥) ≤ 0, 𝑗 = 1, . . . , 𝑝} and 𝐺 = {𝑥 |

𝐹
𝑝+1

(𝑥) < 0}. Since the function 𝐹
𝑗
(𝑥), 𝑗 = 1, . . . , 𝑝 + 1, are

all convex, both sets 𝑆 and 𝐺 are convex. It is clear that the
feasible region of the problem (RCP) lies in the set 𝑆 \ 𝐺. In
the problem (RCP), there are two cases at the global solution
denoted by 𝑥∗.
Case 1. We have 𝐹

𝑝+1
(𝑥∗) > 0.

Case 2. We have 𝐹
𝑝+1

(𝑥
∗
) = 0.

In the case 1, the reverse convex constraint at the global
solution 𝑥∗ is called a nonactive constraint; this nonactive
constraint can vanish in the primal problem, so the problem
(RCP) is equivalent to the following problem:

(RCP1)
{{

{{

{

min 𝐹
0 (𝑥)

s.t. 𝐹
𝑗
(𝑥) ≤ 0, 𝑗 = 1, . . . , 𝑝,

𝑥 ∈ Ω = {𝑥 | 𝐿
𝑖
≤ 𝑥
𝑖
≤ 𝑈
𝑖
, 𝑖 ∈ 𝐼} ,

(29)

which is a convex programming and can be solved by many
effective algorithms. Obviously, if the optimal solution 𝑥∗ to
the above problem satisfies the constraint 𝐹

𝑝+1
(𝑥∗) ≥ 0, then

it will solve (RCP).
In the case 2, the problem (RCP) is equivalent to the

following problem:

(RCP2)

{{{{

{{{{

{

min 𝐹
0
(𝑥)

s.t. 𝐹
𝑗 (𝑥) ≤ 0, 𝑗 = 1, . . . , 𝑝,

𝐹
𝑝+1

(𝑥) = 0,

𝑥 ∈ Ω = {𝑥 | 𝐿
𝑖
≤ 𝑥
𝑖
≤ 𝑈
𝑖
, 𝑖 ∈ 𝐼} .

(30)

In this case, we will always have the following assumption.

Assumption 1. A point 𝑥
󸀠 is available such that 𝑥󸀠 ∈ 𝑆,

𝐹
𝑝+1

(𝑥󸀠) < 0, 𝐹
0
(𝑥󸀠) < min{𝐹

0
(𝑥) : 𝑥 ∈ 𝑆 \ 𝐺}.

Clearly, if point 𝑥󸀠 does not exist, then we only need to
solve the problem (RCP1) to obtain the solution of the primal
problem (RCP).

In this paper, we will make our efforts to solve the
problem in Case 2. It is expedient to indicate some immediate
consequences of the above assumption which will locate the
solution of (RCP).

Let 𝜕𝐺 denote the bounding of 𝐺; that is, 𝜕𝐺 = {𝑥 |

𝐹
𝑝+1

(𝑥) = 0}.
For every 𝑥 ∈ (𝑆 ∩ Ω) \ 𝐺, we can find the point 𝑥 where

the line segment [𝑥󸀠; 𝑥]meets 𝜕𝐺. Clearly it is as follows: 𝑥 =

𝑡𝑥 + (1 − 𝑡)𝑥
󸀠 with 𝑡 ∈ (0, 1], which can be determined from

the following equation:

𝐹
𝑝+1

(𝑥) = 0, that is 𝐹
𝑝+1

(𝑡𝑥 + (1 − 𝑡) 𝑥
󸀠
) = 0. (31)

Because of the convexity of 𝑆, and both the points 𝑥 and
𝑥󸀠 are in the set 𝑆, 𝑥 is in the set 𝑆 too.

Lemma 3. For every 𝑥 ∈ 𝑆 ∩Ω such that 𝐹
𝑝+1

(𝑥) > 0, one has
𝐹
0
(𝑥) < 𝐹

0
(𝑥).

Proof. Since 𝐹
0
(𝑥󸀠) < 0, and 𝑥 = 𝑡𝑥 + (1 − 𝑡)𝑥󸀠, from the

convexity of 𝐹
0
(𝑥) and Assumption 1, we have

𝐹
0 (𝑥) ≤ 𝑡𝐹

0 (𝑥) + (1 − 𝑡) 𝐹0 (𝑥
󸀠
)

< 𝑡𝐹
0
(𝑥) + (1 − 𝑡) 𝐹

0
(𝑥) = 𝐹

0
(𝑥) .

(32)

Corollary 4. Under Assumption 1, if 𝑥∗ is the optimal solution
of problem (RCP), it lies on 𝑆 ∩ 𝜕𝐺.

According to the discussion of Lemma 3 and Corollary 4,
we know that the optimal solution must lie on the boundary,
so once a feasible point 𝑥 is found, we will firstly compute the
point 𝑥 which lies on 𝑆 ∩ 𝜕𝐺 and satisfying 𝐹

0
(𝑥) < 𝐹

0
(𝑥),

then the upper bound 𝑈∗ of the optimal value for problem
(RCP) is updated as

𝑈
∗
= min {𝑈

∗
, 𝐹
0 (𝑥)} . (33)

Hence, once a better upper bound𝑈∗ is updated, the number
of the deleted nodes will increase, and the unnecessary
branching and bounding on some regions where the global
solution does not exist will decrease greatly.

3.4. ReductionCut. In this subsection,we pay our attention to
how to form the bound reduction technique to accelerate the
convergence of the proposed global optimization algorithm.

Assume that 𝑈∗ is a current known upper bound of the
optimal objective value of the problem (RCP). For any Ω =

(Ω
𝑖
)
𝑛×1

⊆ Ω with Ω
𝑖

= [𝐿
𝑖
, 𝑈
𝑖
], consider the problem

(LRP(Ω)). For the sake of convenience, let the objective
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function and linear constraint functions of (LRP(Ω)) be
expressed as

LF
0
(𝑥) =

𝑛

∑
𝑖=1

𝑐
𝑖
𝑥
𝑖
+ 𝐷,

LF
𝑗 (𝑥) =

𝑛

∑
𝑖=1

𝑞
𝑗𝑖
𝑥
𝑖
− 𝑟
𝑗
, 𝑗 = 1, . . . , 𝑝,

− UF
𝑝+1

=

𝑛

∑
𝑖=1

𝑞
𝑝+1,𝑖

𝑥
𝑖
− 𝑟
𝑝+1

.

(34)

Then, from (26) and (27) it follows that

(𝑐
1
, . . . , 𝑐

𝑛
)
𝑇
=

𝑇0

∑
𝑘=1

𝛾
0𝑘
𝐾
Ω

0𝑘

𝑚0

∑
𝑙=1

𝐵
Ω

0𝑘𝑙
𝑑
0𝑘𝑙
,

𝐷 =

𝑇0

∑
𝑘=1

𝛾
0𝑘
{𝐾
Ω

0𝑘
[

𝑚0

∑
𝑙=1

𝐵
Ω

0𝑘𝑙
(1 − ln (𝐵

Ω

0𝑘𝑙
) + 𝑏
0𝑘𝑙
)]

−𝐾
Ω

0𝑘
𝜂
Ω

0𝑘
+ ln (𝜂

Ω

0𝑘
)} ,

𝑟
𝑗
=

𝑇𝑗

∑
𝑘=1

𝛾
𝑗𝑘
{−𝐾
Ω

𝑗𝑘
[

𝑚𝑗

∑
𝑙=1

𝐵
Ω

𝑗𝑘𝑙
(1 − ln (𝐵

Ω

𝑗𝑘𝑙
) + 𝑏
𝑗𝑘𝑙
)]

+𝐾
Ω

𝑗𝑘
𝜂
Ω

𝑗𝑘
− ln(𝜂

Ω

𝑗𝑘
)} , 𝑗 = 1, . . . , 𝑝,

𝑟
𝑝+1

=

𝑇𝑝+1

∑
𝑘=1

𝛾
𝑝+1,𝑘

[𝐾
Ω

𝑝+1,𝑘

𝑚𝑝+1

∑
𝑙=1

(𝐶
Ω

𝑝+1,𝑘𝑙
+ 𝐵
Ω

𝑝+1,𝑘𝑙
𝑏
𝑝+1,𝑘𝑙

)

−1 − ln (𝐾
Ω

𝑝+1,𝑘
) ] ,

(𝑞
𝑗1
, . . . , 𝑞

𝑗𝑛
)
𝑇

=

𝑇𝑗

∑
𝑘=1

𝛾
𝑗𝑘
𝐾
Ω

𝑗𝑘

𝑚𝑗

∑
𝑙=1

𝐵
Ω

𝑗𝑘𝑙
𝑑
𝑗𝑘𝑙
,

𝑗 = 1, . . . , 𝑝,

(𝑞
𝑝+1,1

, . . . , 𝑞
𝑝+1,𝑛

)
𝑇

= −

𝑇𝑝+1

∑
𝑘=1

𝛾
𝑝+1,𝑘

𝐾
Ω

𝑝+1,𝑘

×

𝑚𝑝+1

∑
𝑙=1

𝐵
Ω

𝑝+1,𝑘𝑙
𝑑
𝑝+1,𝑘𝑙

.

(35)

In the following, some notations are introduced as fol-
lows:

𝑟𝐶 =

𝑛

∑
𝑖=1

min {𝑐
𝑖
𝐿
𝑖
, 𝑐
𝑖
𝑈
𝑖
} ,

𝑟𝐿
𝑗
=

𝑛

∑
𝑖=1

min {𝑞
𝑗𝑖
𝐿
𝑖
, 𝑞
𝑗𝑖
𝑈
𝑖
} ,

𝜌
𝑖
= 𝑈
∗
− 𝑟𝐶 − 𝐷 +min {𝑐

𝑖
𝐿
𝑖
, 𝑐
𝑖
𝑈
𝑖
} ,

𝛿
𝑗𝑖
= 𝑟
𝑗
− 𝑟𝐿
𝑗
+min {𝑞

𝑗𝑖
𝐿
𝑖
, 𝑞
𝑗𝑖
𝑈
𝑖
} ,

(36)

where 𝑗 = 1, . . . , 𝑝 + 1, 𝑖 ∈ 𝐼.
Based on the optimality and feasibility of the problem

(RCP), we can give two theorems below to determine the
region in which it is guaranteed that there is no optimal
solution; thus a reduction cut technique is formed from these
theorems.

Theorem 5. For any subrectangleΩ = (Ω
𝑖
)
𝑛×1

⊆ Ω withΩ
𝑖
=

[𝐿
𝑖
, 𝑈
𝑖
], the following statements hold.

(i) If 𝑟𝐶 + 𝐷 > 𝑈∗, then there exists no optimal solution
of the problem (RCP) over the subrectangle Ω.

(ii) If 𝑟𝐶 + 𝐷 ≤ 𝑈∗, consider the following two cases: if
there exists some 𝑡 ∈ 𝐼 satisfying 𝑐

𝑡
> 0 and 𝜌

𝑡
< 𝑐
𝑡
𝑈
𝑡
,

then there is no optimal solution of (RCP) over Ω
𝑎
=

(Ω
𝑎𝑖
)
𝑛×1

; conversely, if 𝑐
𝑡
< 0 and 𝜌

𝑡
< 𝑐
𝑡
𝐿
𝑡
for some

𝑡, then there does not exist global optimal solution of
(RCP) overΩ

𝑏
= (Ω
𝑏𝑖
)
𝑛×1

, where

Ω
𝑎𝑖
=
{

{

{

Ω
𝑖
, if 𝑖 ̸= 𝑡,

(
𝜌
𝑡

𝑐
𝑡

, 𝑈
𝑡
]⋂Ω

𝑡
, if 𝑖 = 𝑡,

Ω
𝑏𝑖
=
{

{

{

Ω
𝑖
, if 𝑖 ̸= 𝑡,

[𝐿
𝑡
,
𝜌
𝑡

𝑐
𝑡

)⋂Ω
𝑡
, if 𝑖 = 𝑡.

(37)

Theorem 6. For any Ω = (Ω
𝑖
)
𝑛×1

⊆ Ω with Ω
𝑖
= [𝐿
𝑖
, 𝑈
𝑖
], if

𝑟𝐿
𝑗
− 𝑟
𝑗
> 0 for some 𝑗 ∈ {1, . . . , 𝑝 + 1}, then there exists no

optimal solution of problem (RCP) over Ω; otherwise, for each
𝑗 ∈ {1, . . . , 𝑝 + 1}, consider the following two cases.

(i) If there exists some 𝑡 ∈ 𝐼 and 𝑗 ∈ {1, . . . , 𝑝 + 1}

satisfying 𝑞
𝑗𝑡

> 0 and 𝛿
𝑗𝑡

< 𝑞
𝑗𝑡
𝑈
𝑡
, then there is not

optimal solution of the problem (RCP) over Ω
𝑐

=

(Ω
𝑐𝑖
)
𝑛×1

.
(ii) If 𝑞

𝑗𝑡
< 0 and 𝛿

𝑗𝑡
< 𝑞
𝑗𝑡
𝐿
𝑡
for some 𝑡 ∈ 𝐼 and some 𝑗 ∈

{1, . . . , 𝑝 + 1}, then no optimal solution of the problem
(RCP) overΩ

𝑑
= (Ω
𝑑𝑖
)
𝑛×1

exists, where

Ω
𝑐𝑖
=

{{

{{

{

Ω
𝑖
, if 𝑖 ̸= 𝑡,

(
𝛿
𝑗𝑡

𝑞
𝑗𝑡

, 𝑈
𝑡
]⋂Ω

𝑡
, if 𝑖 = 𝑡,

Ω
𝑑𝑖
=

{{

{{

{

Ω
𝑖
, if 𝑖 ̸= 𝑡,

[𝐿
𝑡
,
𝛿
𝑗𝑡

𝑞
𝑗𝑡

)⋂Ω
𝑡
, if 𝑖 = 𝑡.

(38)

Note that the proof of Theorems 5 and 6 is similar to the
one of Theorems 1 and 2 in [26]; therefore it is omitted.

Reduction Cut
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(S1) Optimality Cut. Compute 𝑟𝐶 + 𝐷. If 𝑟𝐶 + 𝐷 > 𝑈∗, and
let Ω = 0; otherwise compute 𝑐

𝑖
(𝑖 = 1, . . . , 𝑛). If 𝑐

𝑡
> 0 and

𝜌
𝑡
< 𝑐
𝑡
𝑈
𝑡
for some 𝑡 ∈ 𝐼, then let 𝑈

𝑡
= 𝜌
𝑡
/𝑐
𝑡
and Ω = (Ω

𝑖
)
𝑛×1

with Ω
𝑖
= [𝐿
𝑖
, 𝑈
𝑖
] (𝑖 = 1, . . . , 𝑛). If 𝑐

𝑡
< 0 and 𝜌

𝑡
< 𝑐
𝑡
𝐿
𝑡

for some 𝑡 ∈ 𝐼, then let 𝐿
𝑡
= 𝜌
𝑡
/𝑐
𝑡
and Ω = (Ω

𝑖
)
𝑛×1

with
Ω
𝑖
= [𝐿
𝑖
, 𝑈
𝑖
] (𝑖 = 1, . . . , 𝑛).

(S2) Feasibility Cut.For any 𝑗 = 1, . . . , 𝑝, compute LF
𝑗
(𝑥)
𝑗
and

−UF
𝑝+1

(𝑥). If 𝑟𝐿
𝑗
−𝑟
𝑗
> 0 for some 𝑗 ∈ {1, . . . , 𝑝+1}, then let

Ω = 0; otherwise compute 𝑞
𝑗𝑖
(𝑗 = 1, . . . , 𝑝 + 1, 𝑖 = 1, . . . , 𝑛).

If 𝑞
𝑗𝑡
> 0 and 𝛿

𝑗𝑡
< 𝑞
𝑗𝑡
𝑈
𝑡
for some 𝑗 ∈ {1, . . . , 𝑝+1} and 𝑡 ∈ 𝐼,

then let 𝑈
𝑡
= 𝛿
𝑗𝑡
/𝑞
𝑗𝑡
and Ω = (Ω

𝑖
)
𝑛×1

with Ω
𝑖
= [𝐿
𝑖
, 𝑈
𝑖
] (𝑖 =

1, . . . , 𝑛). If 𝑞
𝑗𝑡
< 0 and 𝛿

𝑗𝑡
< 𝑞
𝑗𝑡
𝐿
𝑡
for some 𝑗 ∈ {1, . . . , 𝑝 + 1}

and 𝑡 ∈ 𝐼, then let 𝐿
𝑡
= 𝛿
𝑗𝑡
/𝑞
𝑗𝑡
and Ω = (Ω

𝑖
)
𝑛×1

with Ω
𝑖
=

[𝐿
𝑖
, 𝑈
𝑖
] (𝑖 = 1, . . . , 𝑛).

This reduction cut provides the possibility to cut away a
large part of subrectangle Ω that is currently investigated by
the algorithm procedure.

4. Algorithm and Its Convergence

Based upon the results and the algorithmic processes dis-
cussed in Section 3, the basic steps of the proposed global
optimization algorithm are summarized as follows.

Let LB(Ω) be the optimal objective function value of
(LRP(Ω)) and 𝑥(Ω) refers to an element of the corresponding
argmin.

4.1. Algorithm Statement

Step 1 (initialization).

(i) Solve problem (RCP1) with standard convex pro-
gramming software to obtain the solution 𝑥

󸀠 of
problem (RCP1). If 𝐹

𝑝+1
(𝑥) ≥ 0, stop with 𝑥󸀠 as the

global solution of the primal problem (RCP).
(ii) Let the set of all active nodes 𝑄

0
= {Ω}, the conver-

gence tolerance 𝜖 > 0, the bisection ratio 𝛼 ∈ (0, 0.5],
the upper bound 𝑈

∗ = ∞, and the iteration counter
𝑘 := 0.

(iii) Find an optimal solution 𝑥(Ω) and the optimal value
LB(Ω) for problem (LRP(Ω)). If 𝑥(Ω) ∈ (𝐷⋂Ω) \

𝐺, compute 𝑥(Ω) as given in Section 3.3; set 𝑈∗ =

𝐹
0
(𝑥(Ω)). Set the initial lower bound LB(0) = LB(Ω).

(iv) If𝑈∗−LB(0) ≤ 𝜖, then stop; 𝑥(Ω) is a global 𝜖-optimal
solutions for problem (RCP). Otherwise, go to Step 2.

Step 2 (updating the upper bound). Select the midpoint 𝑥mid

of Ω𝑘; if 𝑥mid is feasible to (RCP(Ω𝑘)), then compute 𝑥(Ω𝑘)

as given in Section 3.3; update the upper bound 𝑈∗ =

min{𝑈∗, 𝐹
0
(𝑥(Ω𝑘))}.

Step 3 (reduction). For the subrectangle Ω𝑘 that is currently
investigated, we use the reduction cut described in Section 3
to cut away Ω𝑘 and the remaining part is still denoted asΩ𝑘.

Step 4 (branching). Using the strategy of bisection of ratio
𝛼 described in Section 3.1 to get two new subrectangles and

denote the set of new partition rectangles as 𝑋
𝑘
. For each

Ω ∈ 𝑋
𝑘
, compute the lower bound 𝑓𝑙

𝑗
:= min

𝑥∈Ω
LF
𝑗
(𝑥), 𝑗 =

0, 1, . . . , 𝑝 and 𝑓𝑢
𝑝+1

:= max
𝑥∈Ω

UF
𝑝+1

(𝑥). If there exists some
𝑗 ∈ {0, 1, . . . , 𝑝} such that one of the lower bounds 𝑓𝑙

𝑗
satisfies

𝑓𝑙
0
> 𝑈∗ or 𝑓𝑙

𝑗
> 0 for some 𝑗 ∈ {1, . . . , 𝑝} or 𝑓𝑢

𝑝+1
< 0, then

the corresponding subrectangleΩ is eliminated from𝑋
𝑘
; that

is,𝑋
𝑘
:= 𝑋
𝑘
\ Ω, and skip to the next element of𝑋

𝑘
.

Step 5 (bounding). If 𝑋
𝑘

̸= 0, solve problem (LRP(Ω)) to
obtain 𝑥(Ω) and LB(Ω) for each Ω ∈ 𝑋

𝑘
. If LB(Ω) > 𝑈∗, set

𝑋
𝑘
:= 𝑋
𝑘
\Ω. Otherwise, if𝑥(Ω) ∈ (𝐷⋂Ω)\𝐺, then compute

𝑥(Ω); update the upper bound 𝑈∗ = min{𝑈∗, 𝐹
0
(𝑥(Ω))} and

update 𝑥∗ such that𝐹
0
(𝑥∗) = 𝑈∗.The partition set remaining

is now 𝑄
𝑘
:= (𝑄
𝑘
\ Ω𝑘) ∪ 𝑋

𝑘
and a new lower bound is now

LB(𝑘) := min{LB(Ω) | Ω ∈ 𝑄
𝑘
}.

Step 6 (convergence checking). Set𝑄
𝑘+1

= 𝑄
𝑘
\{Ω | LB(Ω) ≥

𝑈∗−𝜖,Ω ∈ 𝑄
𝑘
}. If𝑄

𝑘+1
= 0, then stop with𝑈∗ as the optimal

value and 𝑥∗ as the optimal solution. Otherwise, select an
active node Ω𝑘+1 such that Ω𝑘+1 = argmin{LB(Ω) | Ω ∈

𝑄
𝑘+1

} for further consideration. Set 𝑘 := 𝑘 + 1 and return to
Step 2.

Next, we give the global convergence of the above algo-
rithm. If the algorithm does not stop finitely, then the
branching rule guarantees all the intervals to an isolated point
for the variables.

Theorem 7. For any Ω = {𝑥 | 𝐿
𝑖
≤ 𝑥
𝑖
≤ 𝑈
𝑖
, 𝑖 ∈ 𝐼} ⊂ Ω, let

𝜇
𝑖
= 𝑈
𝑖
− 𝐿
𝑖
, ∀𝑖 ∈ 𝐼; then, for any 𝑥 ∈ Ω, ∀𝑗 ∈ {0, 1, . . . , 𝑝},

one has

𝐹
𝑗
(𝑥) − LF

𝑗
(𝑥) 󳨀→ 0, 𝐹

𝑝+1
(𝑥) − UF

𝑝+1
(𝑥) 󳨀→ 0,

(39)

as 𝜇
𝑖
→ 0 for each 𝑖 ∈ 𝐼.

Proof. First, let us consider the case 𝑗 = 0, 1, . . . , 𝑝. Let

Δ
𝑗
= 𝐹
𝑗
(𝑥) − LF

𝑗
(𝑥) = Δ

1

𝑗
+ Δ
2

𝑗
, (40)

where Δ1
𝑗
= 𝐹
𝑗
(𝑥) − 𝐿

𝑗
(𝑥), Δ2

𝑗
= 𝐿
𝑗
(𝑥) − LF

𝑗
(𝑥).

Obviously, if wewant to proveΔ
𝑗
→ 0 as𝜇

𝑖
→ 0, ∀𝑖 ∈ 𝐼,

we only need to proveΔ1
𝑗
→ 0 andΔ2

𝑗
→ 0, as 𝜇

𝑖
→ 0, ∀𝑖 ∈

𝐼.
From (7), (20), and the definition of 𝜂Ω

𝑗𝑘
in (15), we have

Δ
1

𝑗
=

𝑇𝑗

∑
𝑘=1

𝛾
𝑗𝑘
ln (exp (𝐴

𝑗𝑘
𝑥 + 𝑏
𝑗𝑘
))

−

𝑇𝑗

∑
𝑘=1

𝛾
𝑗𝑘
[𝐾
Ω

𝑗𝑘
(exp (𝐴

𝑗𝑘
𝑥 + 𝑏
𝑗𝑘
) − 𝜂
Ω

𝑗𝑘
) + ln(𝜂

Ω

𝑗𝑘
)]

=

𝑇𝑗

∑
𝑘=1

𝛾
𝑗𝑘
[ln (𝜂

Ω

𝑗𝑘
) − 𝐾
Ω

𝑗𝑘
(𝜂
Ω

𝑗𝑘
− 𝜂
Ω

𝑗𝑘
) − ln(𝜂

Ω

𝑗𝑘
)] .

(41)
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Since Δ1
𝑗
is a concave function about 𝜂Ω

𝑗𝑘
for any 𝜂Ω

𝑗𝑘
∈

[𝜂Ω
𝑗𝑘
, 𝜂
Ω

𝑗𝑘
], it can attain the maximum at the point 𝜂Ω

𝑗𝑘
= 1/𝐾Ω

𝑗𝑘
.

Let 𝑧
𝑗𝑘

= 𝜂
Ω

𝑗𝑘
/𝜂Ω
𝑗𝑘
; then by computing we have

max
𝑥∈Ω

Δ
1

𝑗

=

𝑇𝑗

∑
𝑘=1

𝛾
𝑗𝑘
[− ln𝐾

Ω

𝑗𝑘
− 1 + 𝐾

Ω

𝑗𝑘
𝜂
Ω

𝑗𝑘
− ln 𝜂

Ω

𝑗𝑘
]

=

𝑇𝑗

∑
𝑘=1

𝛾
𝑗𝑘
[ln

𝑧
𝑗𝑘

− 1

ln 𝑧
𝑗𝑘

− 1 +
ln 𝑧
𝑗𝑘

𝑧
𝑗𝑘

− 1
] .

(42)

By the definition of 𝑧
𝑗𝑘
, if 𝜇
𝑖
→ 0, ∀𝑖 ∈ 𝐼, we have 𝑧

𝑗𝑘
→

1, which implies that max
𝑥∈Ω

Δ1
𝑗

→ 0 as 𝜇
𝑖
→ 0, ∀𝑖 ∈ 𝐼.

Therefore, we can obtain that

Δ
1

𝑗
󳨀→ 0 as 𝜇

𝑖
󳨀→ 0, ∀𝑖 ∈ 𝐼. (43)

Next, we will prove Δ2
𝑗

→ 0, as 𝜇
𝑖
→ 0, ∀𝑖 ∈ 𝐼. From

(20) and (26), we have

Δ
2

𝑗
=

𝑇𝑗

∑
𝑘=1

𝛾
𝑗𝑘
[𝐾
Ω

𝑗𝑘
(

𝑚𝑗

∑
𝑙=1

exp (𝑑
𝑗𝑘𝑙
𝑥 + 𝑏
𝑗𝑘𝑙
) − 𝜂
Ω

𝑗𝑘
)

+ ln(𝜂
Ω

𝑗𝑘
)]

−

𝑇𝑗

∑
𝑘=1

𝛾
𝑗𝑘
{𝐾
Ω

𝑗𝑘
[

𝑚𝑗

∑
𝑙=1

(𝐵
Ω

𝑗𝑘𝑙
(1 − ln (𝐵

Ω

𝑗𝑘𝑙
) + 𝑑
𝑗𝑘𝑙
𝑥 + 𝑏
𝑗𝑘𝑙
))

−𝜂
Ω

𝑗𝑘
] + ln(𝜂

Ω

𝑗𝑘
)}

=

𝑇𝑗

∑
𝑘=1

𝛾
𝑗𝑘
{𝐾
Ω

𝑗𝑘

× [

𝑚𝑗

∑
𝑙=1

exp (𝑑
𝑗𝑘𝑙
𝑥 + 𝑏
𝑗𝑘𝑙
)

−

𝑚𝑗

∑
𝑙=1

(𝐵
Ω

𝑗𝑘𝑙
(1−ln (𝐵

Ω

𝑗𝑘𝑙
)+𝑑
𝑗𝑘𝑙
𝑥+𝑏
𝑗𝑘𝑙
)) ]} .

(44)

Now, let us denote

Δ
21

𝑗𝑘
=

𝑚𝑗

∑
𝑙=1

[exp (𝑑
𝑗𝑘𝑙
𝑥 + 𝑏
𝑗𝑘𝑙
)

−𝐵
Ω

𝑗𝑘𝑙
(1 − ln (𝐵

Ω

𝑗𝑘𝑙
) + 𝑑
𝑗𝑘𝑙
𝑥 + 𝑏
𝑗𝑘𝑙
)]

=

𝑚𝑗

∑
𝑙=1

[exp (𝑌Ω
𝑗𝑘𝑙
) − 𝐵
Ω

𝑗𝑘𝑙
(1 − ln (𝐵

Ω

𝑗𝑘𝑙
) + 𝑌
Ω

𝑗𝑘𝑙
)] ,

Δ
22

𝑗𝑘𝑙
(𝑌
Ω

𝑗𝑘𝑙
) = exp (𝑌Ω

𝑗𝑘𝑙
) − 𝐵
Ω

𝑗𝑘𝑙
(1 − ln (𝐵

Ω

𝑗𝑘𝑙
) + 𝑌
Ω

𝑗𝑘𝑙
) .

(45)

Then Δ
2

𝑗
can be rewritten in the following form:

Δ
2

𝑗
=

𝑇𝑗

∑
𝑘=1

𝛾
𝑗𝑘
𝐾
Ω

𝑗𝑘

𝑚𝑗

∑
𝑙=1

Δ
22

𝑗𝑘𝑙
. (46)

Since Δ22
𝑗𝑘𝑙

is a convex function about 𝑌Ω
𝑗𝑘𝑙

= 𝑑
𝑗𝑘𝑙
𝑥 + 𝑏

𝑗𝑘𝑙

over the interval [𝑌Ω
𝑗𝑘𝑙
, 𝑌
Ω

𝑗𝑘𝑙
], it follows that Δ22

𝑗𝑘𝑙
can attain the

maximum max
𝑥∈Ω

Δ22
𝑗𝑘𝑙

at the point 𝑌Ω
𝑗𝑘𝑙

or 𝑌Ω
𝑗𝑘𝑙
. Let 𝑢

𝑗𝑘𝑙
=

𝑌
Ω

𝑗𝑘𝑙
− 𝑌Ω
𝑗𝑘𝑙

and V
𝑗𝑘𝑙

= (exp(𝑢
𝑗𝑘𝑙
) − 1)/𝑢

𝑗𝑘𝑙
, then through

computing, we can derive that

Δ
22

𝑗𝑘𝑙
(𝑌
Ω

𝑗𝑘𝑙
) = exp (𝑌Ω

𝑗𝑘𝑙
) − 𝐵
Ω

𝑗𝑘𝑙
(1 − ln (𝐵

Ω

𝑗𝑘𝑙
) + 𝑌
Ω

𝑗𝑘𝑙
)

= exp (𝑌Ω
𝑗𝑘𝑙
) −

exp (𝑌Ω
𝑗𝑘𝑙
) − exp (𝑌Ω

𝑗𝑘𝑙
)

𝑌
Ω

𝑗𝑘𝑙
− 𝑌Ω
𝑗𝑘𝑙

× (1 − ln
exp (𝑌Ω

𝑗𝑘𝑙
) − exp (𝑌Ω

𝑗𝑘𝑙
)

𝑌
Ω

𝑗𝑘𝑙
− 𝑌Ω
𝑗𝑘𝑙

+ 𝑌
Ω

𝑗𝑘𝑙
)

= exp (𝑌Ω
𝑗𝑘𝑙
) (1 − V

𝑗𝑘𝑙
(1 − ln V

𝑗𝑘𝑙
)) ,

Δ
22

𝑗𝑘𝑙
(𝑌
Ω

𝑗𝑘𝑙
) = exp (𝑌Ω

𝑗𝑘𝑙
) − 𝐵
Ω

𝑗𝑘𝑙
(1 − ln (𝐵

Ω

𝑗𝑘𝑙
) + 𝑌
Ω

𝑗𝑘𝑙
)

= exp (𝑌Ω
𝑗𝑘𝑙
) −

exp (𝑌Ω
𝑗𝑘𝑙
) − exp (𝑌Ω

𝑗𝑘𝑙
)

𝑌
Ω

𝑗𝑘𝑙
− 𝑌Ω
𝑗𝑘𝑙

× (1 − ln
exp (𝑌Ω

𝑗𝑘𝑙
) − exp (𝑌Ω

𝑗𝑘𝑙
)

𝑌
Ω

𝑗𝑘𝑙
− 𝑌Ω
𝑗𝑘𝑙

+ 𝑌
Ω

𝑗𝑘𝑙
)

= exp (𝑌Ω
𝑗𝑘𝑙
)

− exp (𝑌Ω
𝑗𝑘𝑙
) V
𝑗𝑘𝑙

(1 − ln V
𝑗𝑘𝑙

+ 𝑌
Ω

𝑗𝑘𝑙
− 𝑌
Ω

𝑗𝑘𝑙
) .

(47)

Additionally, by the definitions of𝑌Ω
𝑗𝑘𝑙

and𝑌
Ω

𝑗𝑘𝑙
, we know that

for any 𝑗, 𝑘, 𝑙, 𝑌Ω
𝑗𝑘𝑙

−𝑌Ω
𝑗𝑘𝑙

→ 0 and exp(𝑌Ω
𝑗𝑘𝑙
)−exp(𝑌Ω

𝑗𝑘𝑙
) → 0

as 𝜇
𝑖

→ 0, ∀𝑖 ∈ 𝐼, and so, we have V
𝑗𝑘𝑙

go to 1 as each
𝜇
𝑖
approaches zero. This implies that Δ22

𝑗𝑘𝑙
(𝑌Ω
𝑗𝑘𝑙
) → 0 and

Δ22
𝑗𝑘𝑙
(𝑌
Ω

𝑗𝑘𝑙
) → 0 as 𝜇

𝑖
→ 0, ∀𝑖 ∈ 𝐼; that is, max

𝑥∈Ω
Δ22
𝑗𝑘𝑙

→ 0

as 𝜇
𝑖
→ 0, ∀𝑖 ∈ 𝐼. Hence, according to the above discussion,

we can follow that

Δ
2

𝑗
󳨀→ 0, as 𝜇

𝑖
󳨀→ 0, ∀𝑖 ∈ 𝐼. (48)

Based on the above discussion, for each 𝑗 = 0, 1, . . . , 𝑝,
from (40) it follows that

Δ
𝑗
󳨀→ 0, as 𝜇

𝑖
󳨀→ 0, ∀𝑖 ∈ 𝐼. (49)

Second, let us consider 𝑗 = 𝑝 + 1. Let

Δ
𝑝+1

= UF
𝑝+1 (𝑥) − 𝐹

𝑝+1 (𝑥) = Δ
1

𝑝+1
+ Δ
2

𝑝+1
, (50)
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whereΔ1
𝑝+1

= 𝑈
𝑝+1

(𝑥)−𝐹
𝑝+1

(𝑥), Δ2
𝑝+1

= UF
𝑝+1

(𝑥)−𝑈
𝑝+1

(𝑥).
By using (7), (21), and the definition of 𝜂Ω

𝑝+1,𝑘
in (15) we have

Δ
1

𝑝+1
= 𝑈
𝑝+1

(𝑥) − 𝐹
𝑝+1

(𝑥)

=

𝑇𝑝+1

∑
𝑘=1

𝛾
𝑝+1,𝑘

[𝐾
Ω

𝑝+1,𝑘
exp (𝐴

𝑝+1,𝑘
𝑥 + 𝑏
𝑝+1,𝑘

)

−1 − ln (𝐾
Ω

𝑝+1,𝑘
)]

−

𝑇𝑝+1

∑
𝑘=1

𝛾
𝑝+1,𝑘

ln (exp (𝐴
𝑝+1,𝑘

𝑥 + 𝑏
𝑝+1,𝑘

))

=

𝑇𝑝+1

∑
𝑘=1

𝛾
𝑝+1,𝑘

[𝐾
Ω

𝑝+1,𝑘

𝑚𝑝+1

∑
𝑙=1

exp (𝑑
𝑝+1,𝑘𝑙

𝑥 + 𝑏
𝑝+1,𝑘𝑙

)

− 1 − ln (𝐾
Ω

𝑝+1,𝑘
)

− ln(

𝑚𝑝+1

∑
𝑙=1

exp (𝑑
𝑝+1,𝑘𝑙

𝑥 + 𝑏
𝑝+1,𝑘𝑙

))]

=

𝑇𝑝+1

∑
𝑘=1

𝛾
𝑝+1,𝑘

[𝐾
Ω

𝑝+1,𝑘
𝜂
Ω

𝑝+1,𝑘
− 1

− ln (𝐾
Ω

𝑝+1,𝑘
) − ln (𝜂

Ω

𝑝+1,𝑘
)] .

(51)

Since Δ1
𝑝+1

is a convex function about 𝜂Ω
𝑝+1,𝑘

over the interval
[𝜂Ω
𝑝+1,𝑘

, 𝜂
Ω

𝑝+1,𝑘
], it can attain the maximummax

𝑥∈Ω
Δ1
𝑝+1

at the

point 𝜂Ω
𝑝+1,𝑘

or 𝜂
Ω

𝑝+1,𝑘
. Let 𝑧

𝑝+1,𝑘
= 𝜂
Ω

𝑝+1,𝑘
/𝜂Ω
𝑝+1,𝑘

; then, by
similar discussion as above we can obtain that

Δ
1

𝑝+1
(𝜂
Ω

𝑝+1,𝑘
)

=

𝑇𝑝+1

∑
𝑘=1

𝛾
𝑝+1,𝑘

[𝐾
Ω

𝑝+1,𝑘
𝜂
Ω

𝑝+1,𝑘
− 1 − ln (𝐾

Ω

𝑝+1,𝑘
) − ln(𝜂

Ω

𝑝+1,𝑘
)]

=

𝑇𝑝+1

∑
𝑘=1

𝛾
𝑝+1,𝑘

(ln
𝑧
𝑝+1,𝑘

− 1

ln 𝑧
𝑝+1,𝑘

− 1 +
ln 𝑧
𝑝+1,𝑘

𝑧
𝑝+1,𝑘

− 1
) ,

Δ
1

𝑝+1
(𝜂
Ω

𝑝+1,𝑘
)

=

𝑇𝑝+1

∑
𝑘=1

𝛾
𝑝+1,𝑘

[𝐾
Ω

𝑝+1,𝑘
𝜂
Ω

𝑝+1,𝑘
− 1 − ln (𝐾

Ω

𝑝+1,𝑘
) − ln (𝜂

Ω

𝑝+1,𝑘
)]

=

𝑇𝑝+1

∑
𝑘=1

𝛾
𝑝+1,𝑘

(ln
𝑧
𝑝+1,𝑘

− 1

ln 𝑧
𝑝+1,𝑘

−1 +
𝑧
𝑝+1,𝑘

ln 𝑧
𝑝+1,𝑘

𝑧
𝑝+1,𝑘

− 1
− ln 𝑧

𝑝+1,𝑘
) .

(52)

Since 𝑧
𝑝+1,𝑘

→ 1 as 𝜇
𝑖

→ 0, ∀𝑖 ∈ 𝐼, we have that
Δ1
𝑝+1

(𝜂Ω
𝑝+1,𝑘

) → 0 and Δ1
𝑝+1

(𝜂
Ω

𝑝+1,𝑘
) → 0; that is,

max
𝑥∈Ω

Δ1
𝑝+1

→ 0, as 𝜇
𝑖
→ 0, ∀𝑖 ∈ 𝐼. Hence, according

to the above discussion, we can obtain that

Δ
1

𝑝+1
󳨀→ 0, as 𝜇

𝑖
󳨀→ 0, ∀𝑖 ∈ 𝐼. (53)

On the other hand, from (27) and (21) it follows that

Δ
2

𝑝+1

= UF
𝑝+1

(𝑥) − 𝑈
𝑝+1

(𝑥)

=

𝑇𝑝+1

∑
𝑘=1

𝛾
𝑝+1,𝑘

× [𝐾
Ω

𝑝+1,𝑘

𝑚𝑝+1

∑
𝑙=1

(𝐶
Ω

𝑝+1,𝑘𝑙
+ 𝐵
Ω

𝑝+1,𝑘𝑙
(𝑑
𝑝+1,𝑘𝑙

𝑥 + 𝑏
𝑝+1,𝑘𝑙

))

− 1 − ln (𝐾
Ω

𝑝+1,𝑘
) ]

−

𝑇𝑝+1

∑
𝑘=1

𝛾
𝑝+1,𝑘

[𝐾
Ω

𝑝+1,𝑘

𝑚𝑝+1

∑
𝑙=1

exp (𝑑
𝑝+1,𝑘𝑙

𝑥 + 𝑏
𝑝+1,𝑘𝑙

)

− 1 − ln (𝐾
Ω

𝑝+1,𝑘
) ]

=

𝑇𝑝+1

∑
𝑘=1

𝛾
𝑝+1,𝑘

𝐾
Ω

𝑝+1,𝑘

×

𝑚𝑝+1

∑
𝑙=1

[𝐶
Ω

𝑝+1,𝑘𝑙
+ 𝐵
Ω

𝑝+1,𝑘𝑙
(𝑑
𝑝+1,𝑘𝑙

𝑥 + 𝑏
𝑝+1,𝑘𝑙

)

− exp (𝑑
𝑝+1,𝑘𝑙

𝑥 + 𝑏
𝑝+1,𝑘𝑙

)]

=

𝑇𝑝+1

∑
𝑘=1

𝛾
𝑝+1,𝑘

𝐾
Ω

𝑝+1,𝑘

×

𝑚𝑝+1

∑
𝑙=1

[𝐶
Ω

𝑝+1,𝑘𝑙
+ 𝐵
Ω

𝑝+1,𝑘𝑙
𝑌
Ω

𝑝+1,𝑘𝑙
− exp (𝑌Ω

𝑝+1,𝑘𝑙
)] .

(54)

Now, let us denote

Δ
21

𝑝+1,𝑘𝑙
= 𝐶
Ω

𝑝+1,𝑘𝑙
+ 𝐵
Ω

𝑝+1,𝑘𝑙
𝑌
Ω

𝑝+1,𝑘𝑙
− exp (𝑌Ω

𝑝+1,𝑘𝑙
) ; (55)

then, Δ2
𝑝+1

can be rewritten as follows:

Δ
2

𝑝+1
=

𝑇𝑝+1

∑
𝑘=1

𝛾
𝑝+1,𝑘

𝐾
Ω

𝑝+1,𝑘

𝑚𝑝+1

∑
𝑙=1

Δ
21

𝑝+1,𝑘𝑙
. (56)

SinceΔ21
𝑝+1,𝑘𝑙

is a concave function about𝑌Ω
𝑝+1,𝑘𝑙

over the inter-

val [𝑌Ω
𝑝+1,𝑘𝑙

, 𝑌
Ω

𝑝+1,𝑘𝑙
], it attains themaximummax

𝑥∈Ω
Δ21
𝑝+1,𝑘𝑙

at
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the point 𝑌Ω
𝑝+1,𝑘𝑙

= ln(𝐵Ω
𝑝+1,𝑘𝑙

). Let 𝑢
𝑝+1,𝑘𝑙

= 𝑌
Ω

𝑝+1,𝑘𝑙
− 𝑌Ω
𝑝+1,𝑘𝑙

and V
𝑝+1,𝑘𝑙

= (exp(𝑢
𝑝+1,𝑘𝑙

) − 1)/𝑢
𝑝+1,𝑘𝑙

; then by computing we
can get

max
𝑥∈Ω

Δ
21

𝑝+1,𝑘𝑙

= 𝐶
Ω

𝑝+1,𝑘𝑙
+ 𝐵
Ω

𝑝+1,𝑘𝑙
ln (𝐵
Ω

𝑝+1,𝑘𝑙
) − 𝐵
Ω

𝑝+1,𝑘𝑙

= −𝐵
Ω

𝑝+1,𝑘𝑙
𝑌
Ω

𝑝+1,𝑘𝑙
+ exp (𝑌Ω

𝑝+1,𝑘𝑙
)

+ 𝐵
Ω

𝑝+1,𝑘𝑙
ln (𝐵
Ω

𝑝+1,𝑘𝑙
) − 𝐵
Ω

𝑝+1,𝑘𝑙

= exp (𝑌Ω
𝑝+1,𝑘𝑙

) [V
𝑝+1,𝑘𝑙

ln V
𝑝+1,𝑘𝑙

+ 1 − V
𝑝+1,𝑘𝑙

] .

(57)

By the definition of 𝑢
𝑝+1,𝑘𝑙

and V
𝑝+1,𝑘𝑙

, we have 𝑢
𝑝+1,𝑘𝑙

→ 0

and V
𝑝+1,𝑘𝑙

→ 1 as 𝜇
𝑖

→ 0, ∀𝑖 ∈ 𝐼. This implies that
max
𝑥∈Ω

Δ21
𝑝+1,𝑘𝑙

→ 0 as 𝜇
𝑖
→ 0, ∀𝑖 ∈ 𝐼. Therefore, we have

Δ
2

𝑝+1
󳨀→ 0, as 𝜇

𝑖
󳨀→ 0, ∀𝑖 ∈ 𝐼. (58)

Thus, by (50) and the above discussion, it is obvious that

Δ
𝑝+1

󳨀→ 0 as 𝜇
𝑖
󳨀→ 0, ∀𝑖 ∈ 𝐼. (59)

In summary, according to the above results, the proof is
complete.

Remark 8. From Theorem 7, it follows that LF
𝑗
(𝑥), 𝑗 =

0, 1, . . . , 𝑝 and UF
𝑝+1

(𝑥) will approximate the corresponding
functions 𝐹

𝑗
(𝑥), 𝑗 = 0, 1, . . . , 𝑝 and 𝐹

𝑝+1
(𝑥) as 𝜇

𝑖
→ 0, ∀𝑖 ∈

𝐼.

Theorem 9. (a) If the algorithm is finite, then upon termina-
tion, the incumbent solution being optimal to (RCP) is a global
𝜖-optimal solution for problem (RCP).

(b) If the algorithm is infinite, then it will generate an
infinite sequence of iterations such that along any infinite
branch of the branch and bound tree, any accumulation point
of the sequence {𝑥𝑘} will be the global solution of the problem
(RCP).

Proof. (a) If the algorithm is finite, then it terminates in some
Step 𝑘, 𝑘 ≥ 0. Without loss of generality, upon termination,
the incumbent solution is denoted as 𝑥𝑘. By the algorithm, it
follows that 𝑈∗ − LB(𝑘) ≤ 𝜖. From (iv) of Steps 1 and 6, this
implies that𝐹

0
(𝑥𝑘)−LB(𝑘) ≤ 𝜖. Let V denote the optimal value

of problem (RCP); then, by Section 3, we know that LB(𝑘) ≤
V. Since 𝑥𝑘 is a feasible solution of problem (RCP), we have
𝑓(𝑥𝑘) ≥ V. Taken together, this implies that

𝐹
0
(𝑥
𝑘
) ≥ V ≥ LB (𝑘) ≥ 𝐹

0
(𝑥
𝑘
) − 𝜖. (60)

Therefore, 𝑥𝑘 is a global 𝜖-optimal solution for problem
(RCP). And the proof of part (a) is complete.

(b) When the algorithm is infinite, a sufficient condition
for a global optimization to be convergent to the global min-
imum, stated in [28], requires that the bounding operation
must be consistent and the selection operation is bound
improving.

A bounding operation is called consistent if at every step
any unfathomed partition can be further refined, and if
any infinitely decreasing sequence of successively refined
partition elements satisfies

lim
𝑘→∞

(UB
𝑘
− LB
𝑘
) = 0, (61)

where UB
𝑘
is a computed upper bound in stage 𝑘 and LB

𝑘
is

the best lower bound at iteration 𝑘 not necessarily occurring
inside the same subrectangle with UB

𝑘
. In the following, we

will show that (61) holds.
Since the employed subdivision process is exhaus-

tive. Consequently, from Theorem 7 and the relationship
𝑉(RCP) ≥ 𝑉(LRP), the formulation (61) holds; this implies
that the employed bounding operation is consistent.

A selection operation is called the bound improving if at
least one partition element where the actual upper bound is
attained is selected for further partition after a finite number
of refinements. Clearly, the employed selection operation is
the bound improving because the partition elementwhere the
actual upper bound is attained is selected for further partition
in the immediately following iteration.

In summary, we have shown that the bounding operation
is consistent and that selection operation is the bound
improving. Therefore, according toTheorem IV.3 in [28], the
employed global optimization algorithm is convergent to the
global minimum of (RCP).

5. Numerical Experiments

To demonstrate the potentiality and feasibility of the pro-
posed global optimization algorithm, our numerical exper-
iment is reported in this section. The algorithm is coded in
C++ and each linear programming is solved by the simplex
method.The convergence tolerance 𝜖 is set to 𝜖 = 10

−5 in our
experiments.

Example 10 (see [37]). Consider

min 𝑥
1

s.t. 𝑥
−1

1
𝑥
2

2
+ 𝑥
−1

1
𝑥
2

3
≤ 1,

0.3𝑥
2
𝑥
3
≥ 1,

𝑥 ∈ 𝑋 = {𝑥 | 1 ≤ 𝑥
1
≤ 100,

1 ≤ 𝑥
2
≤ 100, 1 ≤ 𝑥

3
≤ 100} .

(62)

Example 11 (see [37]). Consider

min 𝑥
1

s.t. 3.7𝑥
−1

1
𝑥
0.85

2
+ 1.985𝑥

−1

1
𝑥
2
+ 700.3𝑥

−1

1
𝑥
−0.75

3
≤ 1,

0.7673𝑥
0.05

3
𝑥
−1

4
≤ 1,

𝑥
−1

4
+ 0.05𝑥

2
𝑥
−1

4
≥ 1,
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𝑥 ∈ 𝑋 = {𝑥 | 0.1 ≤ 𝑥
1
≤ 15, 0.1 ≤ 𝑥

2
≤ 5,

380 ≤ 𝑥
3
≤ 450, 0.1 ≤ 𝑥

4
≤ 10} .

(63)

Example 12 (see [37]). Consider

min 𝑥
0.8

3
𝑥
1.2

4

s.t. 𝑥
1
𝑥
−1

4
+ 𝑥
−1

2
𝑥
−1

4
≤ 1,

𝑥
−2

1
𝑥
−1

3
+ 𝑥
2
𝑥
−1

3
≥ 1,

𝑥 ∈ 𝑋 = {𝑥 | 0.1 ≤ 𝑥
1
≤ 1, 5 ≤ 𝑥

2
≤ 10,

8 ≤ 𝑥
3
≤ 15, 0.01 ≤ 𝑥

4
≤ 1} .

(64)

Example 13 (see [26]). Consider

min 5𝑥
1
+ 50000𝑥

−1

1
+ 20𝑥

2
+ 72000𝑥

−1

2
+ 144000𝑥

−1

3

s.t. 4𝑥
−1

1
+ 32𝑥

−1

2
+ 120𝑥

−1

3
≤ 1,

70 ≤ 𝑥
1
≤ 108, 83 ≤ 𝑥

2
≤ 100,

200 ≤ 𝑥
2
≤ 210.

(65)

Example 14 (see [24]). Consider

min (𝑥
1
+ 𝑥
2
+ 𝑥
3
) (2𝑥
1
+ 𝑥
2
+ 𝑥
3
) (𝑥
1
+ 2𝑥
2
+ 2𝑥
3
)

s.t. (𝑥
1
+ 2𝑥
2
+ 𝑥
3
)
1.1
(2𝑥
1
+ 2𝑥
2
+ 𝑥
3
)
1.3

≤ 100,

1 ≤ 𝑥
1
, 𝑥
2
, 𝑥
3
≤ 3.

(66)

Example 15 (see [24]). Consider

min (𝑥
1
+ 𝑥
2
+ 1)
2.5
(2𝑥
1
+ 𝑥
2
+ 1)
1.1
(𝑥
1
+ 2𝑥
2
+ 1)
1.9

s.t. (𝑥
1
+ 2𝑥
2
+ 1)
1.1
(2𝑥
1
+ 2𝑥
2
+ 2)
1.3

≤ 50,

1 ≤ 𝑥
1
≤ 3, 1 ≤ 𝑥

2
≤ 3.

(67)

Example 16. Consider

min (𝑥
1
𝑥
−2

2
+ 𝑥
0.8

2
𝑥
−1.2

3
) (𝑥
−1.2

1
𝑥
−2

2
+ 𝑥
0.8

3
𝑥
−1.2

4
)
12

s.t. (5𝑥
3

2
𝑥
0.5

3
+ 10𝑥

1
𝑥
−2

3
) (23𝑥

−3

2
𝑥
0.5

3
+ 12𝑥

1
𝑥
−2

4
)
8

≤ 1,

(5𝑥
−1.2

1
𝑥
2

2
+ 20𝑥

−1

1
𝑥
5

3
)
0.8

(𝑥
1
𝑥
−1

4
+ 𝑥
−1

2
𝑥
−1

4
)
2.4

≤ 1,

(8𝑥
2
𝑥
1.1

3
+ 2𝑥
2
𝑥
3
) (0.2𝑥

−2

1
𝑥
5

3
+ 0.6𝑥

2
𝑥
−1

4
) ≥ 1,

𝑥 ∈ 𝑋 = {𝑥 | 0.1 ≤ 𝑥
1
≤ 20, 1 ≤ 𝑥

2
≤ 50,

1 ≤ 𝑥
3
≤ 60, 0.01 ≤ 𝑥

4
≤ 40} .

(68)

Table 1: 𝛼 = 0.5; the reduction cut and new upper bound updating
are not adopted.

Example 3 4 5 6
Iter 300 1596 83 471
𝐿max 73 436 22 54
Time 0.9105 12.2033 0.2504 2.2001

Table 2: 𝛼 = 0.5; the reduction cut is not adopted.

Example 3 4 5 6
Iter 300 1596 52 457
𝐿max 70 432 6 44
Time 0.8903 11.3474 0.4003 52.4406

Table 3: 𝛼 = 0.5; the strategies in Section 3 are all adopted.

Example 3 4 5 6
Iter 139 145 68 64
𝐿max 55 73 11 10
Time 0.4378 0.6898 0.3475 0.3026

In order to test the effectiveness of several key strategies in
Section 3, we select the above four Examples 12–15 by adopt-
ing the different strategy in the branch-and-bound search,
the corresponding computational results are summarized in
Tables 1, 2, 3, and 4, respectively.

In Table 1, by setting 𝛼 = 0.5, the test does not adopt the
reduction cut (i.e., Step 3 of the algorithm is skipped), and the
new method to update upper bounds has not been applied;
that is, 𝑈

∗ = min{𝑈∗, 𝐹
0
(𝑥(Ω)} is replaced by 𝑈∗ =

min{𝑈∗, 𝐹
0
(𝑥(Ω)} in (iii) of Steps 1 and 5 of the algorithm.

In Tables 2–4, the test can be refereed the corresponding of
explanation in the header of tables.

In these tables, somenotations have been used for column
headers, that is, Iter: the number of the algorithm iterations;
𝐿max: themaximal number of the active nodes necessary; and
Time: the execution time in seconds.

The computational results show that the proposed algo-
rithm can globally solve the problem (MP) effectively. Fur-
thermore, comparing the numerical results, fromTables 1–4 it
is shown that the proposed several strategies, especially in the
reduction cut, upper bound updating, and bisection of ratio
𝛼, are very effective for decreasing the number of the iteration
and themaximal number of the active nodes and the running
CPU time.

Additionally, in order to test our algorithm further, we
give some other computational results, which are generated
randomly. InTable 5 below, the convergence tolerance param-
eters are set as 10−6, where the average CPU times (denoted
by Ave. time), average number of iterations (denoted by Ave.
Iter), and average longest node number (denoted by Ave. 𝐿)
are obtained by running the algorithm for 10 times.
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Table 4: 𝛼 = 0.35; the four strategies are all adopted in Section 3.

Number Ref. Iter 𝐿max Time Optimal solution Optimal value

1 Ours 105 38 0.2192 (6.6667, 1.8257, 1.8258) 6.6667
[37] 151 33 0.15 (6.6667, 1.8257, 1.8258) 6.6667

2 Ours 113 64 0.2279 (11.9644, 0.8112, 442.66, 1.0406) 11.9644
[37] 259 104 0.62 (11.9632, 0.8158, 444.6624, 1.0408) 11.9632

3 Ours 5 2 0.0574 (0.1000, 10.0000, 8.0000, 0.2000) 0.7651
[37] 99 27 0.15 (0.1000, 10.0000, 8.0000, 0.2000) 0.7651

4 Ours 8 3 0 (100, 83, 210.0) 4213.184165257
5 Ours 1 1 0 (1.0, 1.0, 1.0) 60.0
6 Ours 1 1 0 (1.0, 1.0) 997.661265
7 Ours 25 5 1.2714 (20, 7.0536, 1, 40) 7.576𝑒 − 023

Table 5: Numerical results for random problems.

𝑇 𝑝 𝑚 𝑛 Ave. Iter Ave. L Ave. time
2 3 3 6 2811 402 2.9228
2 3 3 8 12342 2832 17.225
2 5 3 6 3954 556 6.7927
2 3 5 6 5832 758 10.9702
4 3 3 6 6346 706 14.2749
4 5 3 8 38043 7695 173.6108
4 5 3 6 8739 1240 16.7542
4 3 5 6 11969 1757 36.6518

Example 17. Consider

min 𝐹
0
(𝑦) =

𝑇

∏
𝑘=1

(

𝑚

∑
𝑙=1

𝛽
0𝑘𝑙

𝑛

∏
𝑖=1

𝑦
𝛼0𝑘𝑙𝑖

𝑖
)

𝛾0𝑘

s.t. 𝐹
𝑗
(𝑦) =

𝑇

∏
𝑘=1

(

𝑚

∑
𝑙=1

𝛽
𝑗𝑘𝑙

𝑛

∏
𝑖=1

𝑦
𝛼𝑗𝑘𝑙𝑖

𝑖
)

𝛾𝑗𝑘

≤ 1,

𝑗 = 1, . . . , 𝑝,

𝐹
𝑝+1

(𝑦) =

𝑇

∏
𝑘=1

(

𝑚

∑
𝑙=1

𝛽
𝑝+1,𝑘𝑙

𝑛

∏
𝑖=1

𝑦
𝛼𝑝+1,𝑘𝑙𝑖

𝑖
)

𝛾𝑝+1,𝑘

≥ 1,

𝑦 ∈ Ω = {𝑦 | 𝑦
𝐿

𝑖
≤ 𝑦
𝑖
≤ 𝑦
𝑈

𝑖
, 𝑖 ∈ 𝐼} ,

(69)

where 𝛾
𝑗𝑘
, 𝛼
𝑗𝑘𝑙𝑖

, and 𝛽
𝑗𝑘𝑙

are generated randomly in the
intervals [1, 2], [0, 5], and [0.1, 10.1], respectively. And𝑦𝐿

𝑖
and

𝑦𝑈
𝑖
are generated randomly in the intervals [0, 1] and [10, 11].

It is seen fromTable 5 that the sizes of𝑇 and 𝑛 are themain
factors affecting the performance of the algorithm. This is
mainly because the number of terms in the subproblem linear
programs (LRP(Ω)) is proportional to 𝑇 or 𝑛. Also, the CPU
time increases as 𝑝 or𝑚 increases, but not as sharply as 𝑇 or
𝑛.

6. Concluding Remarks

A deterministic global optimization algorithm is proposed
for solving problem (MP). It successfully reduces a compli-
cated problem (MP) to a simpler reverse convex program-
ming (RCP) problem. Based on the characteristics of the
problem (RCP), several global optimization strategies are
proposed.The first one is bisection of ratio 𝛼, which provides
a more flexible subdivision rule. The second strategy is the
linearization method. By adopting the two-part linearization
method, the linear relaxation programming of the problem
(RCP) can be obtained, whose minimum will provide the
lower bound of the minimum of the problem (RCP). The
third strategy is global solution location and upper bound
updating.This strategy provides amethod to locate the global
solutions of the (RCP) and decreases the maximal number
of the active nodes and the computational effort required
during the algorithm. The final strategy is reduction cut as
an accelerating device, which can cut away all part or a large
part of the currently investigated feasible region in which
the global optimal solution does not exist. A branch and
bound algorithm is presented in which the four strategies are
adopted successfully. The proposed algorithm is convergent
to the global solutions. And the numerical results show that
our algorithm is effective and feasible. It is noted that the third
strategy can be used for solving the general reverse convex
programming problems effectively.
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