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A no-search fractal image coding method based on a fitting surface is proposed. In our research, an improved gray-level transform
with a fitting surface is introduced. One advantage of this method is that the fitting surface is used for both the range and domain
blocks and one set of parameters can be saved. Another advantage is that the fitting surface can approximate the range and domain
blocks better than the previous fitting planes; this can result in smaller block matching errors and better decoded image quality.
Since the no-search and quadtree techniques are adopted, smaller matching errors also imply less number of blocks matching
which results in a faster encoding process. Moreover, by combining all the fitting surfaces, a fitting surface image (FSI) is also
proposed to speed up the fractal decoding. Experiments show that our proposed method can yield superior performance over the
other three methods. Relative to range-averaged image, FSI can provide faster fractal decoding process. Finally, by combining the
proposed fractal coding method with JPEG, a hybrid coding method is designed which can provide higher PSNR than JPEG while
maintaining the same Bpp.

1. Introduction

The basic idea of fractal image coding was first proposed by
Barnsley [1]. Its kernel issue is to find an iterated function
system whose fixed point can approximate the input image
well. Then, Jacquin [2] introduced the first practical fractal
coding scheme. After many years of development, it has been
successfully used inmany image processing applications such
as image compression [3], image denoising [4, 5], image
retrieval [6, 7], image magnification [8, 9], and image water-
marking [10–12].

Although the fractal coding method has the advantage of
potential high compression ratio, resolution independence,
and fast decoding, itsmain drawback is very time-consuming
in the encoding process. In order to reduce the computational
complexity of fractal encoding, converting the global search
to local search is an effective way to solve this problem.
It mainly consists of classification techniques and feature
vector techniques. For the former ones, the range blocks
and domain blocks are first divided into different categories
and the block matching is only carried out within the same
category [13, 14]. For the latter ones, the block matching
process is carried out in the feature space. Due to the lower

dimension of features andmore effective searching strategies,
such as kd-tree method, the fractal encoding process can
be finished in a short time [15–17]. Typically, Furao and
Hasegawa [18] introduced the first no-search fractal encoding
algorithm which can provide faster encoding process and
higher compression ratio at the expense of poor quality of
the decoded image. Afterwards,Wang et al. [19, 20] proposed
the adaptive plane and fitting plane to improve the quality
of the decoded image, respectively. In particular, the latter
one can achieve higher compression ratio, better decoded
image quality, and shorter encoding time than the previous
similar methods. In our research, we propose an improved
gray-level transformation whose fitting surface is used to fit
both the range blocks and domain blocks. Moreover, the
fitting surface in our method can approximate the range
block better than Wang’s fitting plane. Due to the no-search
and quadtree method adopted, the proposed method can
also maintain a fast encoding speed. Moreover, an initial
image for fast fractal decoding is also proposed. Generally,
accelerating the fractal decoding can be realized by two ways:
one is to adopt improved iteration strategies [21–23], such
as the one buffer decoding method [23]. The other one is to
select an initial image which can approximate the original

Hindawi Publishing Corporation
Journal of Applied Mathematics
Volume 2014, Article ID 634848, 11 pages
http://dx.doi.org/10.1155/2014/634848

http://dx.doi.org/10.1155/2014/634848


2 Journal of Applied Mathematics

image well. Moon et al. [24] proposed an approximated
range-averaged image as the initial image and the range-
averaged image is considered as the ideal initial image. In our
research, we propose a novel initial image which can provide
faster decoding speed. Since the proposed fitting surface
itself is more similar to the corresponding range block, all
the fitting surfaces can constitute a better fitting surface
image (FSI) as the initial image in fractal decoding process
without extra computations. Experimental results show that
the proposed no-search fractal encodingmethod can provide
better performance than Jacquin [2], Tong [25], and Wang’s
methods [20]. Moreover, compared with the range-averaged
image, FSI can also provide faster decoding speed. Finally,
by combining our proposed fractal encoding method with
JPEG, we design a hybrid coding method which can provide
higher PSNR than JPEG while maintaining the same Bpp.

This paper is organized as follows. In Section 2, we
describe the conventional fractal image coding method and
the corresponding improved gray-level transforms. In Sec-
tion 3, an improved gray-level transform with a second order
fitting surface is proposed. In Section 4, a novel initial image
is introduced to accelerate the fractal decoding process. In
Section 5, the experimental results, such as Bpp, encoding
time, and decoded image quality, are given and analyzed in
detail. The final conclusion is presented in Section 6.

2. Review of Fractal Image Coding

According to the Collage theorem, for an input image F, the
fractal image encoding process is to construct an iteration
function system 𝑊 which can be used to reconstruct the
original image approximately.The reconstruction procedures
can be described as follows:

𝑊
(𝑘)

(F0) 󳨐⇒ F, 𝑘 󳨀→ ∞, (1)

where 𝑘 indicates the 𝑘th iteration. F0 is the initial image. F
denotes the fixed point of𝑊which is an approximated image
of F.

In the practical implementation of the fractal encoding
process, the input image is firstly partitioned into nonover-
lapping range blocks. The domain blocks are obtained by
sliding a square window throughout the original image.
Commonly, the size of the domain blocks is twice the size
of the range blocks. For each range block, the corresponding
best matching domain block can be found in a domain
block pool. The domain block pool is built by contracting
all the domain blocks to the same size of the range blocks.
Furthermore, the domain block pool is extended by eight iso-
metric transformations which contain the identity, rotation
through 90∘, rotation through 180∘, rotation through 270∘,
reflection about the middle vertical axis, reflection about the
middle horizontal axis, reflection about the first diagonal,
and reflection about the second diagonal. Figure 1 illustrates
the above eight isometric transformations in order. In order
to reduce the matching error, each contracted domain block
should be transformed by the following gray-level transform:

𝜑 (D) = 𝛼D + 𝛽I, (2)

Figure 1: Eight isometric transformations in fractal encoding.

where 𝛼 and 𝛽 denote the scaling coefficient and offset coef-
ficient, respectively. For each range block R, the best match-
ing domain block can be obtained by minimizing the follow-
ing equation:

Error = min
𝛼,𝛽

󵄩󵄩󵄩󵄩R − 𝛼D − 𝛽I󵄩󵄩󵄩󵄩
2
, (3)

where ‖∙‖ is the two-norm. Idenotes amatrixwhose elements
are all ones. Error is the minimum matching error for each
range block. With the least squares method, 𝛼 and 𝛽 can be
computed as follows:

𝛼 =

⟨R − 𝑟I,D − 𝑑I⟩
󵄩󵄩󵄩󵄩󵄩
D − 𝑑I󵄩󵄩󵄩󵄩󵄩

2
, 𝛽 = 𝑟 − 𝛼𝑑, (4)

where ⟨∙, ∙⟩ is the inner product. 𝑑 and 𝑟 are the mean
values of the contracted domain block and the range block,
respectively. The fractal encoding process can be finished by
storing all the transformation parameters as the fractal code.

At the fractal decoding phase, the transformation param-
eters are recursively applied to any starting image and an
iteration image sequence is constructed. The image sequence
converges after about ten iterations. By selecting the com-
monly used black image as the initial image, Figure 2
illustrates the first six iteration images for Barbara image.

Different from (2), Tong and Pi [25] proposed a modified
gray-level transform as follows:

𝜑
󸀠
(D) = 𝑠 (D − 𝑑I) + 𝑟I. (5)

The corresponding minimum matching error function
can be described as

𝐸(R,D)
2
= min
𝑖

󵄩󵄩󵄩󵄩󵄩
𝑠𝑖(D − 𝑑I) − (R − 𝑟I)󵄩󵄩󵄩󵄩󵄩

2
, (6)

where 𝑠𝑖 is the scaling coefficient. 𝑑 and 𝑟 are also the mean
values of the contracted domain block and the range block,
respectively. The main advantage of this method is that we
only need to search the optimal coefficient 𝑠𝑖 and it is more
efficient than the previous method in (2). In order to reduce
the minimum matching error further, Wang et al. [20]
proposed an improved gray-level transform as follows:

𝜑
󸀠󸀠
(D) = 𝑠 (D − PD) + PR. (7)
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Figure 2: The first six iterations for Barbara image in fractal decoding.

The corresponding minimum matching error function
can be described as

𝐸(R,D)
2
= min
𝑖

󵄩󵄩󵄩󵄩𝑠𝑖(D − PD) − (R − PR)
󵄩󵄩󵄩󵄩

2
, (8)

where PR and PD are the fitting planes of the range block R
and the contracted domain block D, respectively. The fitting
plane can be described as follows:

𝑧 = 𝑎𝑥 + 𝑏𝑦 + 𝑐, 𝑥, 𝑦 = 1, 2, . . . , 𝐿, (9)
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where 𝐿 is the width or height of the range blocks. 𝑥 and 𝑦 are
the variables to represent the position of each pixel. 𝑧 is the
pixel gray value. 𝑎, 𝑏, and 𝑐 are the parameters to be estimated.

3. An Improved Gray-Level Transform
Using a Fitting Surface

In this section, a second order surface instead of a first order
one in (9) is proposed which can be represented as follows:

𝑧 = 𝑎𝑓
2
(𝑥) + 𝑏𝑓 (𝑥) + 𝑐𝑓

2
(𝑦) + 𝑑𝑓 (𝑦) + 𝑒

𝑥, 𝑦 = 1, 2, . . . , 𝐿,

(10)

where

𝑓 (𝑥) =

{{

{{

{

𝑥 −
𝐿

2

𝐿

2
< 𝑥 ≤ 𝐿

𝑥 −
𝐿

2
− 1 1 ≤ 𝑥 ≤

𝐿

2
.

(11)

For arbitrary range block R, we need to find the coeffi-
cients 𝑎, 𝑏, 𝑐, 𝑑, and 𝑒 that can make the surface best fit the
range block R. We can solve this problem by the least squares
method:

𝐸 = min
𝑎,𝑏,𝑐,𝑑,𝑒

𝐿

∑

𝑥=1

𝐿

∑

𝑦=1

(R (𝑥, 𝑦) − 𝑧)
2
, (12)

where 𝑧 is pixel gray value in (10). Set the derivatives of
(12) with respect to 𝑎, 𝑏, 𝑐, 𝑑, and 𝑒 to zero, respectively. By
solving the system of equations, we can obtain the optimal
coefficients as follows:

𝑎 = (−(60(

𝐿

∑

𝑥=1

𝐿

∑

𝑦=1

R (𝑥, 𝑦) (𝐿 + 1) (𝐿 + 2)

−12

𝐿

∑

𝑥=1

𝐿

∑

𝑦=1

R (𝑥, 𝑦) 𝑓
2
(𝑥))))

× ((𝐿
2
(4𝐿 + 11) (𝐿 − 2) (𝐿 + 2) (𝐿 + 1)))

−1
,

𝑏 =

12∑
𝐿

𝑥=1∑
𝐿

𝑦=1 R (𝑥, 𝑦) 𝑓 (𝑥)

𝐿2 (𝐿 + 2) (𝐿 + 1)
,

𝑐 = (−(60(

𝐿

∑

𝑥=1

𝐿

∑

𝑦=1

R (𝑥, 𝑦) (𝐿 + 1) (𝐿 + 2)

−12

𝐿

∑

𝑥=1

𝐿

∑

𝑦=1

R (𝑥, 𝑦) 𝑓
2
(𝑦))))

× ((𝐿
2
(4𝐿 + 11) (𝐿 − 2) (𝐿 + 2) (𝐿 + 1)))

−1
,

𝑑 =

12∑
𝐿

𝑥=1∑
𝐿

𝑦=1 R (𝑥, 𝑦) 𝑓 (𝑦)

𝐿2 (𝐿 + 2) (𝐿 + 1)
,

𝑒 = (

𝐿

∑

𝑥=1

𝐿

∑

𝑦=1

R (𝑥, 𝑦) (14𝐿
2
+ 33𝐿 − 2)

−60(

𝐿

∑

𝑥=1

𝐿

∑

𝑦=1

R (𝑥, 𝑦) (𝑓
2
(𝑥) + 𝑓

2
(𝑦))))

× (𝐿
2
(4𝐿 + 11) (𝐿 − 2))

−1
.

(13)

Figure 3(a) illustrates an original surface which can be
considered as a range block. Figures 3(b) and 3(c) are Wang’s
fitting plane and the proposed fitting surface, respectively.We
can observe that the proposed fitting surface approximates
the original surface better than the fitting plane. Substantially,
the mean squared errors of Wang’s fitting plane and the
proposed fitting surface are 300 and 200, respectively.

Furthermore, we propose an improved gray-level trans-
form by making use of the surface stated in (10) as follows:

𝜑
󸀠󸀠󸀠

(D) = 𝑠 (D − SR) + SR. (14)

The corresponding minimum matching error function
can be denoted as

𝐸(R,D)
2
= min
𝑖

󵄩󵄩󵄩󵄩(R − SR) − 𝑠𝑖 (D − SR)
󵄩󵄩󵄩󵄩

2
, (15)

where SR is the fitting surface of the range block R and
both the range block R and the domain block D adopt SR
as their fitting surface. On one hand, we do not need to use
another surface to represent the domain block D and one
set of parameters can be saved to improve the compression
ratio. On the other hand, we suppose that, for arbitrary
range block R, the best matching domain block D is very
similar to the range block R and can also provide minor
matching error with the same fitting surface SR. In order to
check the effectiveness of the proposed gray-level transform,
in Figure 4(a), we select one hundred 8 × 8 range blocks
randomly in Barbara image. Figure 4(b) illustrates their
matching errors and we can see that, for most of the range
blocks, our proposed method can provide smaller matching
errors than Wang’s method [20]. In addition, the minimum
matching error function in (15) can be also described as
follows:

𝐸(R,D)
2
=

󵄩󵄩󵄩󵄩R − SR
󵄩󵄩󵄩󵄩

2
− 𝑠
2󵄩󵄩󵄩󵄩D − SR

󵄩󵄩󵄩󵄩

2
≤

󵄩󵄩󵄩󵄩R − SR
󵄩󵄩󵄩󵄩

2
. (16)

From (16), we know that, since the proposed fitting
surface SR can approximate the range block R better than the
fitting plane, smaller matching errors can be achieved in our
method. This is consistent with Figure 4(b).

4. A Novel Initial Image for Fast Decoding

At the decoding phase of our proposed method, in each level
of the quadtree structure established in the encoding process,
all the range blocks will be reconstructed by the same way
as (14). One iteration is finished by combining all the recon-
structed range blockswith different sizes. SR can be computed
off line by (10) and all the fitting surfaces will be used
repeatedly. Since (14) is invariable in the decoding process,
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Figure 3: Comparison between the fitting plane and the fitting surface. (a) Original surface. (b) Fitting plane. (c) Fitting surface.
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Figure 4:Matching error comparison between the proposedmethod andWang’s method. (a) 100 range blocks of size 8 × 8 selected randomly
in Barbara image marked by “◻.” (b) Matching error comparison for the 100 range blocks.
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(a) (b)

(c)

Figure 5: Comparison between Moon’s range-averaged image and FSI with respect to the original image. (a) Original image. (b) Range-
averaged image. (c) FSI.

once the iteration strategy is specified, the convergence speed
of the decoding process depends heavily on the initial image.
The initial image is more similar to the input image; the
reconstructed image in each iteration will approximate the
decoded image better. In our research, instead of the initial
black image which is commonly used, we proposed an initial
image represented as follows:

FSI = ⋃

𝑖

(S𝑖R) , (17)

where S𝑖R is the 𝑖th fitting surface, ⋃(∙) denotes the seamless
splicing operation, and an initial image called fitting surface
image (FSI) can be constituted by all the SRs with the
same order as corresponding range blocks. Since all the SRs
can be computed off line, we can get FSI without extra
computations. By Moon’s opinion [24], the range-averaged
image is considered as the ideal initial image. The range-
averaged image is combined with the blocks whose pixel
intensities are all the mean values of the corresponding range
blocks. Compared with the fitting surface we proposed, the
blocks in range-averaged image can be only regarded as the

simplest fitting surface. Thus, the proposed fitting surface in
(10) can approximate arbitrary range block better than mean
value block, and analogously the proposed FSI will be more
similar to the original image than the range-averaged image.
If the size of range blocks is set to be 8 × 8, Figures 5(a), 5(b),
and 5(c) illustrate the original image, range-averaged image,
and FSI for Barbara image, respectively. We can observe that,
compared with the range-averaged image, FSI can preserve
more details and approximate the original image better.

5. Experiments

The 512 × 512 Barbara image is used in our experiment.
The scaling coefficient 𝑠𝑖 is quantized by two bits and they
are 0, 0.25, 0.5, and 0.75. The parameters 𝑎, 𝑏, 𝑐, 𝑑, and
𝑒 for the fitting surface are quantized by 4, 4, 4, 4, and
6 bits, respectively. The experiments are carried out on a
Pentium Dual-Core 2.93GHz PC and programmed using
MATLAB software. In order to estimate the performance
of our proposed method, we will compare our algorithm
with Jacquin [2], Tong [25], and Wang’s methods [20] by the
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encoding time, the quality of the decoded image, and Bpp.
The decoded image quality is measured by peak signal to
noise ratio (PSNR):

PSNR = 10 log10(
255
2

((1/𝑀𝑁)∑
𝑀

𝑖=1∑
𝑁

𝑗=1 (f𝑖𝑗 − f∗
𝑖𝑗
)
2
)

) ,

(18)

where𝑀 and𝑁 are the height and width of the input image.
f and f∗ represent the original image and the decoded image,
respectively.

5.1. Compare the Proposed Method with the Other Three
Methods. In this part, the no-search and quadtree method
will be incorporated into the fractal coding method. The
quadtree structure we use contains four levels and the sizes of
range blocks are 16 × 16, 8 × 8, 4 × 4, and 2 × 2, respectively.
In the encoding process, the input image is firstly divided into
nonoverlapping range blocks of 16 × 16 pixels. We encode the
range blocks one by one with the fractal encoding method
and compare the matching error with a given error threshold
𝑇𝑖, 𝑖 = 1, 2, 3, which changes by 𝑇𝑖+1 = 2 × 𝑇𝑖 as the quadtree
level increases. Whether the range blocks should be divided
into four subblocks is determined by whether the matching
error is larger than the threshold. The above procedures will
be repeated level by level until the size of range blocks is 2 × 2.
We summarize the above procedures as follows:

Step 1. Set an error threshold 𝑇1 and divide the input image
into range blocks of 16 × 16 pixels. Assign extra two bits for
each range block which are used to label the quadtree level it
belongs to.

Step 2. For each range block, as illustrated in Figure 6, appoint
the domain block as the best matching domain block directly
which has the same center with the range block, compute the
corresponding coefficients 𝑎, 𝑏, 𝑐,𝑑, and 𝑒with (13), search the
best scaling coefficient 𝑠𝑘, and obtain theminimummatching
error by (15). If the minimum matching error is less than 𝑇𝑖,
store the corresponding coefficients 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, and 𝑠𝑘 as the
fractal code and label them. If not, divide the range block into
four subblocks uniformly and insert them into the next level.

Step 3. Repeat Step 2 until the size of range blocks is 2 × 2.
Encode them with the gray-level transform in (5) and store
all the coefficients as the fractal code.

We compare the proposed method with the other three
methods under the same environment and the main differ-
ences are the gray-level transforms in (2), (5), (7), and (14).
The encoding speed ismainly determined by the total number
of blocks encoded in four quadtree levels. Smaller number of
blocks matching can result in shorter encoding time. From
the last column of Table 1, it is clearly seen that, for each
𝑇1, the proposed method needs to encode the least number
of range blocks and this results in the shortest encoding
time which is shown in the last row of Table 2. The number
of encoded blocks increases from the proposed method to

R

D

Figure 6: Relative position of the range block and its corresponding
domain block.

Wang’s method to Jacquin and Tong’s methods. Jacquin and
Tong’s methods need to encode the most range blocks and
this will result in longer encoding time which is also shown
in the eleventh and twelfth rows of Table 2. We also can
observe that Jacquin and Tong’s methods perform almost the
same number of blocksmatching. Furthermore, in each block
matching, the parameters in Jacquin’s method are computed
by (4)which leads tomore computations thanTong’smethod.
Thus, the encoding time of Jacquin’s method is longer than
Tong’s method.

From Figures 3 and 4, we know that the fitting surface
SR can approximate the corresponding range block R better;
the corresponding matching error 𝐸(R,D) can achieve a
smaller value thanWang’s method. Consequently, for a given
threshold 𝑇1, more range blocks will be encoded in the
quadtree level with larger block size. From Table 1, we can see
that, from Jacquin and Tong’s methods to Wang’s method to
our method, the number of blocks with larger size increases
and the number of blocks with smaller size decreases. The
number of 16 × 16 blocks in our method is always larger
than the other three methods. On the one hand, smaller
matching errors in the encoding process can result in higher
quality of the decoded image which is listed in the sixth
row of Table 2. On the other hand, larger number of blocks
with larger size will result in improving Bpp. Figure 7(a) also
illustrates the PSNR versus Bpp for the four methods; we
can see that the proposed method can obtain the highest
decoded image quality all the time with different Bpps. If
Bpp is larger than 1.2, the PSNR of Wang’s method is slightly
smaller thanTong’smethod. If not,Wang’smethod can obtain
higher PSNR than Tong’s method. Figure 7(b) illustrates the
PSNR versus encoding time for the four methods.We can see
that, under the same encoding time, our proposed method
can provide the highest PSNRs than the other three methods.
Figure 8 illustrates the decoded Barbara image with 𝑇1 = 11.
Figure 9 illustrates the quadtree structure for Barbara image
with 𝑇1 = 11. In summary, compared with the other three
methods, the proposed method can provide higher PSNR at
the same Bpp and higher PSNR at the same encoding time.
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Table 1: Number of blocks in different quadtree levels for the four methods.

Image T1 Method Level 1 (16 × 16) Level 2 (8 × 8) Level 3 (4 × 4) Level 4 (2 × 2) Total

Barbara

7

Jacquin’s 277 1394 4826 6200 12697
Tong’s 277 1394 4826 6200 12697
Wang’s 313 1383 4540 5216 11452

Proposed 327 1442 4571 3252 9592

11

Jacquin’s 363 1734 3430 840 6367
Tong’s 363 1735 3426 840 6364
Wang’s 401 1678 3134 488 5701

Proposed 417 1687 2927 148 5179

15

Jacquin’s 450 1862 1735 4 4051
Tong’s 450 1862 1735 4 4051
Wang’s 488 1769 1499 4 3760

Proposed 535 1605 1403 4 3547

Table 2: Performance comparison between the proposed method
and the other three methods.

Image Barbara
𝑇 7 11 15

PSNR

Jacquin’s 23.66 23.53 23.15
Tong’s 24.32 23.70 23.22
Wang’s 24.61 24.24 23.81

Proposed 25.34 25.11 24.47

Bpp

Jacquin’s 0.73 0.36 0.23
Tong’s 0.73 0.36 0.23
Wang’s 0.85 0.49 0.33

Proposed 0.88 0.56 0.39

Time

Jacquin’s 7.73 3.89 2.52
Tong’s 7.09 3.45 2.23
Wang’s 6.27 3.28 2.21

Proposed 6.19 3.01 2.16

5.2. Fast Fractal Decoding Based on FSI. In the following part,
we will estimate the performance of FSI. In order to describe
the convergence speed conveniently, we define the following
RMSE to describe the difference between each iteration and
the final decoded image:

RMSE =
√

∑
𝑀

𝑖=1∑
𝑁

𝑗=1 (f
𝑘
𝑖𝑗 − fDecoded𝑖𝑗 )

2

𝑀 × 𝑁
, 𝑘 = 1, 2, . . . , 𝑛,

(19)

where f𝑘 and fDecoded are the 𝑘th iteration image and decoded
image, respectively. Based on the fractal code, with a number
of iterations, we first get the final decoded images as the
reference image, and then we select the range-averaged
image and FSI as the initial image, respectively. The same
reconstructionmethod, described by (14), is adopted for both
above two initial images. Figure 10(a) illustrates the RMSEs of
each iteration with respect to the decoded image for Barbara
image. Figure 10(b) illustrates the RMSEs with respect to the
decoding time.We can see that FSI can provide smaller RSME

all the time and achieve faster fractal decoding speed than the
range-averaged image.

5.3. Hybrid Coding Method Based on the Proposed Fractal
Coding Method. In this part, we first compare the proposed
no-search fractal coding method with JPEG by compression
ratio (CR) and PSNR.The error threshold𝑇1 in fractal coding
is set to be 11 and the experimental results are listed in
Table 3.We can see that, with almost the same decoded image
quality, JPEG can provide higher CR than the fractal coding
method for the whole image, but, for the blocks of 16 ×

16 pixels, the fractal coding method can provide higher CR
while maintaining almost the same decoded image quality
as JPEG. Thus, we suppose that if the blocks of 16 × 16
pixels are encoded by the proposed fractal algorithm and the
remaining blocks are encoded by JPEG, better performance
can be obtained. The encoding process of the above hybrid
coding method can be described as follows.

Step 1. Assign extra one bit to label the range block encoded
by the fractal coding method.

Step 2. Partition the input image into range blocks of 16 × 16
pixels and encode them one by one. For arbitrary range block,
if the collage error is smaller than 𝑇1, encode the range block
by the proposed fractal encoding method and label it; if not,
partition the range block into four subblocks of 8 × 8 pixels.

Step 3. Encode all the remaining blocks of 8× 8 pixels by JPEG
encoder.

The corresponding decoding process can be described as
follows.

Step 1. According to marking vector, decode the blocks of 16
× 16 pixels and 8 × 8 pixels with the fractal decoder and the
JPEG decoder, respectively.

Step 2. Repeat Step 1 about ten times and the decoding process
will converge to the final decoded image.

From the above analysis we know that, for the range
blocks of 16 × 16 pixels, the fractal coding method can obtain
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Table 3: Performance comparison between the proposed fractal coding method and JPEG while 𝑇1 = 11.

Block size Percentage Fractal coding JPEG
CR PSNR (dB) CR PSNR (dB)

16 × 16 40.72% 70.62 32.85 57.46 32.86
8 × 8 41.19% 17.66 25.87 26.03 26.31
4 × 4 and 2 × 2 18.09% 4.36 20.00 16.55 19.82
Whole image 100% 14.16 25.11 29.55 25.14
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Figure 7: Comparison between the proposed method and the other three methods for Barbara image. (a) PSNR versus Bpp. (b) PSNR versus
encoding time.

Figure 8: Decoded images of Barbara image; PSNR = 25.11 dB while
𝑇1 = 11.

good decoded image quality and high CR, simultaneously,
but JPEG can only obtain either good decoded image quality
or high CR.Thus, the decoded image quality can be improved
by the local image encoded by the fractal coding method.
Figure 11 illustrates the PSNR versus Bpp for the hybrid

Figure 9: Quadtree structure for Barbara image while 𝑇1 = 11.

method and JPEG. It can be clearly seen that, with the same
Bpp, the hybrid method can provide better PSNR than JPEG.

6. Conclusions

In order to reduce the matching error between the range
block and its matching domain block, an improved gray-level
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Figure 10: Comparison of the fractal decoding for the range-averaged image and FSI. (a) RMSE versus iterations. (b) RMSE versus decoding
time.
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Figure 11: PSNR versus Bpp for the hybrid coding method and
JPEG.

transform with a fitting surface is proposed in this paper.
Firstly, the proposed fitting surface can approximate the range
block better. Consequently, higher quality of the decoded
image can be achieved with respect to the other three similar
methods. Moreover, we adopt the same fitting surface for the
range block and its matching domain block. This can save
many bits and result in improving Bpp. In addition, due to
smaller matching errors, more range blocks with larger size
can be encoded and this can reduce the total number of blocks
matching; that is, shorten the encoding time. Experimental

results show that the proposed method can yield superior
performance over the other three similarmethods.Moreover,
FSI can also accelerate the fractal decoding process. Finally,
by combining the proposed fractal encoding method with
JPEG, PSNR can be achieved higher than JPEG while main-
taining the same Bpp.
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