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We drive a scalar delay differential system tomodel the congestion of a wireless access network setting.TheHopf bifurcation of this
system is investigated using the control and bifurcation theory; it is proved that there exists a critical value of delay for the stability.
When the delay value passes through the critical value, the system loses its stability and aHopf bifurcation occurs. Furthermore, the
direction and stability of the bifurcating periodic solutions are derived by applying the normal form theory and the center manifold
theorem. Finally, some examples and numerical simulations are presented to show the feasibility of the theoretical results.

1. Introduction

Recently, the wireless access network has been wildly applied
to various fields, especially to the Internment; therefore, it has
received significant attention.The congestion control in wire-
less access network also plays a crucial role in the success of
the wireless network technology.

The congestion and avoidance mechanism is a combina-
tion of the end-to-endTCP congestion controlmechanism [1,
2] at the end hosts and the queue management mechanism at
the routers. Because the congestion control algorithm is a
highly complex dynamical model, many researchers have
given much study to its dynamics and stability. In [3–5], the
local stability in congestion control models is studied. In [6–
9], the existence of Hopf bifurcation is analyzed in congestion
control models.

For wired access network, the dynamic of window size is
captured by the following equation [10]:

̇

𝑊

𝑖 (
𝑡) = 𝑥𝑖

(𝑡 − 𝜏

𝑖
) (

1 − 𝑝

𝑖 (
𝑡)

𝑊

𝑖 (
𝑡)

−

1

2

𝑝

𝑖 (
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𝑖 = 1, . . . , 𝑛,

(1)

where 𝑊
𝑖
(𝑡), 𝑥
𝑖
(𝑡) = 𝑊

𝑖
(𝑡)/𝜏

𝑖
, 𝜏
𝑖
, and 𝑝(𝑡) denote the TCP

window size, TCP rate, round trap time at time 𝑡 of flow 𝑖,
and probability of packet mark at time 𝑡, respectively.

However, there are seldom works which discuss the
dynamical behaviors of the congestion controlmodel in wire-
less access network such as stability andHopf bifurcation.The
observation provides us with the motivation to investigate
the dynamical behaviors of the congestion control model in
wireless access network.

In this paper, we consider the wireless access networks of
only one bottleneck router and let 𝑛 TCP flows tracer the
router. In the down link communication from the network to
the sources, themarking probability is fed back to the sources.
During channel fading, the source has failed to receive the
marking probability. Therefore, we suppose that the drop
probability is 𝑝

𝑑𝑖
. In this case, the source will use the previous

packet marking probability to reduce its window size, and
also the window size is decreased by one by convention.Thus,
we obtain

̇
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𝑊
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) .

(2)

Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2014, Article ID 632564, 12 pages
http://dx.doi.org/10.1155/2014/632564

http://dx.doi.org/10.1155/2014/632564


2 Abstract and Applied Analysis

The dynamic of queue length of the router is captured by the
following equation [11]:

̇𝑞 (𝑡) = 𝐹 (∑𝑥

𝑖 (
𝑡 − 𝜏)) − 𝑐, (3)

where 𝑐 is the serving capacity of the link node and the
function 𝐹(∑𝑥

𝑖
(𝑡)) is the adjusted rate of the source based on

the congestion rate 𝑥(𝑡) from the link node, which is a
decreasing and nonnegative derivative function.

Since 𝑥
𝑖
(𝑡) = 𝑊

𝑖
(𝑡)/𝜏

𝑖
and 𝑝

𝑖
(𝑡) = 𝑘𝑞(𝑡) [12], we obtain
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𝑖
) [
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𝑥 (𝑡)
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1

2

𝑘𝑥

𝑖 (
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−

1

2

𝑘𝑝
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𝑥

𝑖 (
𝑡) 𝑞 (𝑡) +

1

𝜏

𝑖

𝑘𝑝

𝑑𝑖
𝑞 (𝑡) ] .

(4)

We assume that the 𝜏

𝑖
is a constant and not time-

varying and the queuing delay is neglected. So, we obtain the
following congestion model in wireless network:

𝑥̇

𝑖 (
𝑡) = 𝑥𝑖 (

𝑡 − 𝜏) [

1 − 𝑘𝑞 (𝑡)

𝜏

2
𝑥

𝑖 (
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−

1

2

𝑘𝑝

𝑑
𝑥

𝑖 (
𝑡) 𝑞 (𝑡) +

1

𝜏

𝑘𝑝

𝑑
𝑞 (𝑡) ] ,

̇𝑞 (𝑡) = 𝐹 (∑𝑥

𝑖 (
𝑡 − 𝜏)) − 𝑐.

(5)

The paper is organized as follows. In Section 2, the stabil-
ity of trivial solutions and the existence of Hopf bifurcation
are discussed and the delay passes through the critical value,
the system loses its stability, and aHopf bifurcation occurs. In
Section 3, based on the normal form theory and the center
manifold theorem, we derive the formulas for determining
the properties of the direction of theHopf bifurcation and the
stability of bifurcating periodic solutions. In Section 4, num-
erical simulations are given to justify the theoretical analysis.
Finally, the conclusions appear in Section 5.

Since we focus on dynamical behavior analysis of the
above model in the wireless access networks, we only need to
choose the communication delay as the bifurcation parame-
ter.

It is worth to point out that recent many works have been
done for wired access network. For details, we refer to [13–16].

2. Stability of the System with
Communication Delay

In this section, we assume that 𝑥
𝑖
(𝑡), 𝑖 = 1, . . . , 𝑛 is equal to

𝑥(𝑡), so (5) can be rewritten as follows:

𝑥̇ (𝑡) = 𝑥 (𝑡 − 𝜏) [

1 − 𝑘𝑞 (𝑡)

𝜏

2
𝑥 (𝑡)

−

1

2

𝑘𝑥 (𝑡) 𝑞 (𝑡) −

1

2

𝑘𝑝

𝑑
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1

𝜏

𝑘𝑝

𝑑
𝑞 (𝑡) ] ,

̇𝑞 (𝑡) = 𝐹 (𝑛𝑥 (𝑡 − 𝜏)) − 𝑐.

(6)

Let the equilibrium point of the system (6) be (𝑥∗, 𝑞∗), which
should satisfy

𝐹 (𝑛𝑥

∗
) = 𝑐,

𝑞

∗
= 2[𝑘 (2 + (1 + 𝑝

𝑑
) (𝜏𝑥

∗
)

2
− 2𝑝

𝑑
𝜏𝑥

∗
)]

−1
(7)

and 0 < 𝑘𝑞∗ ≤ 1.
Hence, (1 + 𝑝

𝑑
)(𝜏𝑥

∗
)

2
− 2𝑝

𝑑
𝜏𝑥

∗
> 0 and we get

(H1) 𝜏 ≥ 2𝑝
𝑑
/𝑥

∗
(1 + 𝑝

𝑑
).

Remark 1. Consider 𝜏 ∈ [𝜏
1
, +∞), where

𝜏

1
=

2𝑝

𝑑

𝑥

∗
(1 + 𝑝

𝑑
)

. (8)

Let 𝑦
1
(𝑡) = 𝑥(𝑡)−𝑥

∗, 𝑦
2
(𝑡) = 𝑞(𝑡)−𝑞

∗. Linearizing the system
(6) about the equilibrium point, we get

̇𝑦

1 (
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𝑦

1 (
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𝑦
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𝑦

2 (
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̇𝑦
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𝑦

1 (
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(9)

where

𝑎
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= 𝑥
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∗
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∗

𝜏
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𝑥

∗
−

1
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𝑘𝑥

∗
𝑞

∗
+

𝑘𝑝

𝑑
𝑞

∗

𝜏

−

1
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𝑑
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𝑞

∗
,

𝑏

11
= 𝑥

∗
[−

1

2

𝑘𝑥

∗
−

1
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𝑘𝑝

𝑑
𝑥

∗
−
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2
𝑥

∗
+
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] ,

𝑎

22
= 𝑛𝐷 (𝐹) (𝑛𝑥

∗
) .

(10)

Then, the characteristic equation of the linearized equation
(9) is

𝐷 (𝜆, 𝜏) = 𝜆

2
− 𝑎

11
𝜆 − 𝑎

12
𝜆𝑒

−𝜆𝜏
− 𝑎

22
𝑏

11
𝑒

−𝜆𝜏
= 0.

(11)

Note that the coefficients 𝑎
11
, 𝑎
12
, and 𝑏

11
depend on time

delay 𝜏, since 𝑞∗ is connectedwith 𝜏. In order to apply the geo-
metric criterion of Kuang [17, 18], we rewrite𝐷(𝜆, 𝜏) = 0 into

𝐷 (𝜆, 𝜏) = 𝑃 (𝜆, 𝜏) + 𝑄 (𝜆, 𝜏) 𝑒

−𝜆𝜏
,

(12)

where

𝑃 (𝜆, 𝜏) = 𝜆

2
− 𝑎

11
𝜆,

𝑄 (𝜆, 𝜏) = − 𝑎22
𝑏

11
− 𝑎

12
𝜆.

(13)

Lemma 2. If (H1) holds, then

(a) 𝑃(0, 𝜏) + 𝑄(0, 𝜏) ̸= 0;
(b) 𝑃(𝜔𝑖, 𝜏) + 𝑄(𝜔𝑖, 𝜏) ̸= 0 for all 𝜔 ∈ 𝑅;
(c) lim sup{|𝑄(𝜆, 𝜏)/𝑃(𝜆, 𝜏)| : |𝜆| → +∞,Re 𝜆 ≥ 0} < 1;
(d) 𝐹(𝜔, 𝜏) = |𝑃(𝜔𝑖, 𝜏)|2−|𝑄(𝜔𝑖, 𝜏)|2 for each 𝜏 has atmost

a finite number of real zeros;
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(e) each positive root𝜔(𝜏) of𝐹(𝜔, 𝜏) = 0 is continuous and
differentiable in 𝜏 whenever it exists.

Proof. (a) For 𝜏 ∈ [𝜏
1
, +∞),

𝑃 (0, 𝜏) + 𝑄 (0, 𝜏) = − 𝑎22
𝑏

11
̸= 0. (14)

(b) Consider𝑃(𝜔𝑖, 𝜏)+𝑄(𝜔𝑖, 𝜏) = −𝜔2−𝑏
11
𝑎

22
+𝑖(−𝜔𝑎

11
−

𝜔𝑎

12
) ̸= 0.
(c) From (13), we get

lim
|𝜆|→+∞

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝑄 (𝜆, 𝜏)

𝑃 (𝜆, 𝜏)

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

= lim
|𝜆|→+∞

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝑎

12
𝜆 − 𝑏

11
𝑎

22

𝜆

2
− 𝑎

11
𝜆

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

= 0. (15)

Hence, lim sup{|𝑄(𝜆, 𝜏)/𝑃(𝜆, 𝜏)| : |𝜆| → +∞,Re 𝜆 ≥ 0} =

0 < 1.
(d) From (13), we get

𝐹 (𝜔, 𝜏) = |𝑃(𝜔𝑖, 𝜏)|

2
− |𝑄(𝜔𝑖, 𝜏)|

2

= 𝜔

4
+ 𝑎

2

11
𝜔

2
− 𝑎

2

12
𝜔

2
− 𝑏

2

11
𝑎

2

22
.

(16)

Hence, (d) holds.
(e) 𝐹(𝜔, 𝜏) is continuous for 𝜔 and 𝜏 and differentiable in

𝜔; hence, implicit function theorem implies (e). This com-
pletes the proof of the theorem.

Supposing that𝐷(𝜔𝑖, 𝜏) = 0 and 𝜔 > 0, we get

sin𝜔𝜏 =
𝜔 (𝑎

11
𝑎

22
𝑏

11
− 𝑎

12
𝜔

2
)

𝑎

2

22
𝑏

2

11
+ 𝑎

2

12
𝜔

2
,

cos𝜔𝜏 = −
𝜔

2
(𝑎

22
𝑏

11
− 𝑎

11
𝑎

12
)

𝑎

2

22
𝑏

2

11
+ 𝑎

2

12
𝜔

2
.

(17)

Hence,

𝐹 (𝜔, 𝜏) = |𝑃(𝜔𝑖, 𝜏)|

2
− |𝑄(𝜔𝑖, 𝜏)|

2

= 𝜔

4
+ 𝑎

2

11
𝜔

2
− 𝑎

2

12
𝜔

2
− 𝑏

2

11
𝑎

2

22

= 0.

(18)

Let 𝑧 = 𝜔2, and then (18) can be rewritten as

𝑧

2
+ (𝑎

2

11
− 𝑎

2

12
) 𝑧 − 𝑏

2

11
𝑎

2

22
= 0. (19)

Denote

ℎ (𝑧, 𝜏) = 𝑧

2
+ (𝑎

2

11
− 𝑎

2

12
) 𝑧 − 𝑏

2

11
𝑎

2

22
. (20)

Since − 𝑏2
11
𝑎

2

22
< 0, the equation ℎ(𝑧, 𝜏) = 0 has one

positive root.We denote that the positive root is 𝑧+.Then, (18)
has positive real root 𝜔(√𝑧+), where

𝜔 = 𝜔 (𝜏) =

√

− (𝑎

2

11
− 𝑎

2

12
) +

√

(𝑎

2

11
− 𝑎

2

12
)

2
+ 4𝑏

2

11
𝑎

2

22

2

.

(21)

For 𝜏 ∈ [𝜏
1
, +∞), let 𝜃(𝜏) ∈ (0, 2𝜋) be defined by

sin 𝜃 (𝜏) =
𝜔 (𝑎

11
𝑎

22
𝑏

11
− 𝑎

12
𝜔

2
)

𝑎

2

22
𝑏

2

11
+ 𝑎

2

12
𝜔

2
,

cos 𝜃 (𝜏) =
𝜔

2
(𝑎

22
𝑏

11
− 𝑎

11
𝑎

12
)

𝑎

2

22
𝑏

2

11
+ 𝑎

2

12
𝜔

2
,

(22)

which combines with (18) and defines the following maps:

𝑆

𝑛 (
𝜏) = 𝜏 −

𝜃 (𝜏) + 2𝑛𝜋

𝜔 (𝜏)

, 𝑛 ∈ 𝑁. (23)

According to [18] and the above discussion, we have the
following result.

Theorem 3. Assume that (H1) is satisfied, and then 𝜆 =

±𝜔(𝜏

0
)𝑖, 𝜏
0
∈ (0, 𝜏

1
), are a pair of simple and conjugate pure

imaginary roots of the characteristic equation (11) if and only if
𝑆

0
(𝜏

0
) = 0 for some 𝑛 ∈ 𝑁. This pair of simple conjugate pure

imaginary roots crosses the imaginary axis from left to right if
𝛿(𝜏

0
) > 0 and crosses the imaginary axis from right to left if

𝛿(𝜏

0
) < 0, where

𝛿 (𝜏

0
) := sign{ 𝑑Re 𝜆

𝑑𝜏

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨𝜆=𝜔(𝜏0)𝑖

} = sign{
𝑑𝑆

𝑛 (
𝜏)

𝑑𝜏

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨𝜏=𝜏0

} .

(24)

By the the expression of 𝑎
11
, 𝑎
12
, and 𝑏

11
, we know that

they have singularity at 𝜏 = 0. We can not gain the conclusion
that the equilibrium (𝑥

∗
, 𝑝

∗
) by discussing roots of the char-

acteristic equation𝐷(𝜆, 0) = 0. To our knowledge, this case is
rarely considered by papers. But we can get the stability of the
system (6) when 𝜏 = 𝜏

0
/2 by discussing the stability of the

following auxiliary system:

̇𝑦

1 (
𝑡) = 𝑐11

𝑦

1 (
𝑡) + 𝑐12

𝑦

1 (
𝑡 − 𝑟) + 𝑑11

𝑦

2 (
𝑡) ,

̇𝑦

2 (
𝑡) = 𝑐22

𝑦

1 (
𝑡 − 𝑟) ,

(25)

where

𝑐

11
= 𝑎

11

󵄨

󵄨

󵄨

󵄨

𝜏=𝜏0/2

,

𝑐

12
= 𝑎

12

󵄨

󵄨

󵄨

󵄨

𝜏=𝜏0/2

,

𝑐

22
= 𝑎

22

󵄨

󵄨

󵄨

󵄨

𝜏=𝜏0/2

,

𝑑

11
= 𝑏

11

󵄨

󵄨

󵄨

󵄨

𝜏=𝜏0/2

.

(26)

Then, the characteristic equation of the linearized equa-
tion (25) is

𝜆 − 𝑐

11
𝜆 − 𝑐

12
𝜆𝑒

−𝜆𝑟
− 𝑐

22
𝑑

11
𝑒

−𝜆𝑟
= 0.

(27)

Definition 4. For simplicity, let

𝐷

0 (
𝜆, 𝑟) = 𝜆

2
− 𝑐

11
𝜆 − 𝑐

12
𝜆𝑒

−𝜆𝑟
− 𝑐

22
𝑑

11
𝑒

−𝜆𝑟
.

(28)

Lemma 5. The equilibrium (0, 0) of system (25) is locally
asymptotically stable when 𝑟 = 0.
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Proof. When 𝑟 = 0, (27) becomes

𝜆

2
− (𝑐

11
+ 𝑐

12
) 𝜆 − 𝑐

22
𝑑

11
= 0. (29)

Further, if

(H2) 𝑐
11
+ 𝑐

12
< 0 and 𝑐

22
𝑑

11
< 0

is satisfied, all roots of (29) have negative real parts by the
Routh-Hurwitz criteria. So, when 𝑟 = 0, the equilibrium
point (0,0) of system (25) is locally asymptotically stable.This
completes the proof of the lemma.

Let 𝜆 = ±𝑖𝜔
𝑟0
, where𝜔

𝑟0
> 0. Substituting it into (27) and

separating the real and imaginary parts, we have

−𝜔

2

𝑟0
− 𝑐

12
𝜔

𝑟0
sin𝜔
𝑟0
𝑟 − 𝑐

22
𝑑

11
cos𝜔
𝑟0
𝑟 = 0,

− 𝑐

11
𝜔

𝑟0
− 𝑐

12
𝜔

𝑟0
cos𝜔
𝑟0
𝑟 − 𝑐

22
𝑑

11
sin𝜔
𝑟0
𝑟 = 0.

(30)

It follows from (30) that

sin𝜔
𝑟0
𝑟 =

𝜔

𝑟0
(𝑐

11
𝑐

22
𝑑

11
− 𝑐

12
𝜔

2

𝑟0
)

𝑐

2

22
𝑑

2

22
+ 𝑐

2

12
𝜔

2

𝑟0

,

cos𝜔
𝑟0
𝑟 = −

𝜔

2

𝑟0
(𝑐

22
𝑑

11
− 𝑐

11
𝑐

12
)

𝑐

2

22
𝑑

2

22
+ 𝑐

2

12
𝜔

2

𝑟0

.

(31)

Since sin2(𝜔
𝑟0
𝑟) + cos2(𝜔

𝑟0
𝑟) = 1, we have

𝑆

0
𝜔

6

𝑟0
+ 𝑆

1
𝜔

4

𝑟0
+ 𝑆

2
𝜔

2

𝑟0
+ 𝑆

3
= 0, (32)

where

𝑆

0
= 𝑐

2

12
,

𝑆

1
= 𝑐

2

11
𝑐

2

12
+ 𝑐

2

22
𝑑

2

11
− 𝑐

4

12
,

𝑆

2
= 𝑐

2

11
𝑐

2

22
𝑑

2

11
− 2𝑐

2

12
𝑐

2

22
𝑑

2

11,

𝑆

3
= − 𝑐

4

22
𝑑

4

11
.

(33)

Since 𝑆
0
> 0, we can rewrite (32) as

𝜔

6

𝑟0
+ 𝑅

1
𝜔

4

𝑟0
+ 𝑅

2
𝜔

2

𝑟0
+ 𝑅

3
= 0, (34)

where

𝑅

1
=

𝑐

2

11
𝑐

2

12
+ 𝑐

2

22
𝑑

2

11
− 𝑐

4

12

𝑐

2

12

,

𝑅

2
=

𝑐

2

11
𝑐

2

22
𝑑

2

11
− 2𝑐

2

12
𝑐

2

22
𝑑

2

11

𝑐

2

12

,

𝑅

3
=

− 𝑐

4

22
𝑑

4

11

𝑐

2

12

.

(35)

Let 𝑧 = 𝜔2
𝑟0
; then, (34) can be rewritten as

𝑧

3
+ 𝑅

1
𝑧

2
+ 𝑅

2
𝑧 + 𝑅

3
= 0. (36)

Denote

ℎ

0 (
𝑧) = 𝑧

3
+ 𝑅

1
𝑧

2
+ 𝑅

2
𝑧 + 𝑅

3
. (37)

Since lim
𝑧→+∞

ℎ

0
(𝑧) = +∞ and 𝑅

3
< 0, (36) has at the

least one positive root. We define

Δ =

4

27

𝑅

3

2
−

1

27

𝑅

2

1
𝑅

2

2
+

4

27

𝑅

3

1
𝑅

3
−

2

3

𝑅

1
𝑅

2
𝑅

3
+ 𝑅

2

3
.

(38)

Lemma 6. For cubic equation (36), the following cases need to
be considered [19]:

(a) if Δ > 0, then the equation has three distinct real roots;
(b) if Δ = 0, then the equation has a multiple root and all

its roots are real;
(c) if Δ < 0, then the equation has one real root and two

nonreal complex conjugate roots.

Without loss of generality, we assume that (36) has three
positive roots: 𝑧

01
, 𝑧
02
, and 𝑧

03
. Since 𝑧 = 𝜔2

𝑟0
and 𝜔

𝑟0
> 0, we

have

𝜔

𝑟01
= √𝑧01

, 𝜔

𝑟02
= √𝑧02

, 𝜔

𝑟01
= √𝑧03

. (39)

Thus, we know that

𝑟

(𝑠)

0𝑗
=

1

𝜔

𝑟0𝑗

[arccos(
𝜔

2

𝑟0𝑗
(𝑐

22
𝑑

11
− 𝑐

11
𝑐

12
)

𝑐

2

22
𝑏

2

22
+ 𝑐

2

12
𝜔

2

𝑟0

) + 2𝑠𝜋] ,

𝑗 = 1, 2, 3; 𝑠 = 0, 1, 2, . . . .

(40)

Denote

𝑟

0
= min
𝑗∈{1,2,3}

{𝑟

(0)

0𝑗
} . (41)

Lemma 7. Assume that 𝜆 = ±𝑖𝜔

𝑟0𝑗
are simple roots of (27)

when 𝑟 = 𝑟(𝑠)
0𝑗
.

Proof. Since 𝐷
0
(𝜆, 𝑟) = 𝜆

2
− 𝑐

11
𝜆 − 𝑐

12
𝜆𝑒

−𝜆𝑟
− 𝑐

22
𝑑

11
𝑒

−𝜆𝑟, we
obtain

𝑑𝐷

0 (
𝜆)

𝑑𝜆

= 2𝜆 − 𝑐

11
+ 𝑐

22
𝑑

11
𝑟𝑒

−𝜆𝑟
− 𝑐

12
𝑒

−𝜆𝑟
+ 𝑐

12
𝜆𝑟𝑒

−𝜆𝑟
.

(42)

Substituting 𝜆 = 𝑖𝜔

𝑟
, 𝑟 = 𝑟

0
into (42), by using (30), we

can obtain
𝑑𝐷

0
(𝑖𝜔

𝑟
)

𝑑𝜆

= − 𝑐

11
+ 𝑐

22
𝑑

11
𝑟

0
cos (𝜔

𝑟0
𝑟

0
) − 𝑐

12
cos (𝜔

𝑟0
𝑟

0
)

+ 𝑐

12
𝜔

𝑟0
𝑟

0
sin (𝜔

𝑟0
𝑟

0
)

+ 𝑖 [2𝜔

𝑟0
− 𝑐

22
𝑑

11
𝑟

0
sin (𝜔

𝑟0
𝑟

0
) − 𝑐

12
sin (𝜔

𝑟0
𝑟

0
)]

+ 𝑖 [𝑐

12
𝜔

𝑟0
𝑟

0
cos (𝜔

𝑟0
𝑟

0
)] ̸= 0.

(43)

Similarly, we can get

𝑑𝐷

0
(−𝑖𝜔

𝑟
)

𝑑𝜆

̸= 0.

(44)

This completes the proof of the lemma.



Abstract and Applied Analysis 5

Hence,±𝑖𝜔
𝑟0𝑗

is a simple pair of purely imaginary roots of
(27) with 𝑟 = 𝑟(𝑠)

0𝑗
.

Lemma 8. Let 𝜆(𝑟) = 𝜇(𝑟) + 𝑖𝜔

𝑟
(𝑟) be the root of (27)

satisfying 𝜇(𝑟
0
) = 0, 𝜔

𝑟
(𝑟

0
) = 𝜔

𝑟0
; the following transversality

condition holds:

𝑑Re (𝜆(𝑟))
𝑑𝑟

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨𝑟=𝑟0

̸= 0. (45)

Proof. By equation (27) with respect to 𝑟 and applying the
implicit function theorem, we get

𝑑𝜆 (𝑟)

𝑑𝑟

=

− 𝜆𝑒

−𝜆𝑟
(𝑐

22
𝑑

11
+ 𝑐

12
𝜆)

2𝜆 − 𝑐

11
+ 𝑐

22
𝑑

11
𝑟𝑒

−𝜆𝑟
− 𝑐

12
𝑒

−𝜆𝑟
+ 𝑐

12
𝜆𝑟𝑒

−𝜆𝑟
.

(46)

Since 𝜆(𝑟
0
) = 𝑖𝜔

𝑟0
, we obtain

Re 𝑑𝜆 (𝑟)
𝑑𝑟

=

𝑝

1
+ 𝑝

2
sin (𝜔

𝑟0
𝑟

0
) + 𝑝

3
cos (𝜔

𝑟0
𝑟

0
)

𝑞

1
+ 𝑞

2

, (47)

where

𝑝

1
= − 𝑐

2

12
𝜔

𝑟0
, 𝑝

2
= −𝜔

𝑟0
(2𝑐

12
𝜔

2

𝑟0
− 𝑐

11
𝑐

22
𝑑

11
) ,

𝑝

2
= −𝜔

𝑟0
(𝑐

11
𝑐

12
− 2𝑐

22
𝑑

11
) ,

𝑞

1
= [− 𝑐

11
+ (𝑐

22
𝑑

11
𝑟

0
− 𝑐

12
) cos (𝜔

𝑟0
𝑟

0
)

+ 𝑐

12
𝜔

0
𝑟

0
sin (𝜔

𝑟0
𝑟

0
)]

2
,

𝑞

2
= [2𝜔

𝑟0
− (𝑐

22
𝑑

11
𝑟

0
− 𝑐

12
) sin (𝜔

𝑟0
𝑟

0
)

+ 𝑐

12
𝜔

0
𝑟

0
cos (𝜔

𝑟0
𝑟

0
)]

2
.

(48)

By again using (30), we can obtain

𝑝

1
+ 𝑝

2
sin (𝜔

𝑟0
𝑟

0
) + 𝑝

3
cos (𝜔

𝑟0
𝑟

0
) ̸= 0,

𝑞

1
+ 𝑞

2
> 0.

(49)

Hence, (𝑑Re(𝜆(𝑟))/𝑑𝑟)|
𝑟=𝑟0

̸= 0. This completes the proof
of the lemma.

From the above discussion about the system (25), we have
the following result.

Theorem9. When 𝑟 < 𝑟
0
, the equilibrium point of system (25)

is locally asymptotically stable.
Further, if

(H3) 𝑟
0
(𝜏

0
) > 𝜏

0
/2

is satisfied, we will get the following lemma.

Lemma 10. The equilibrium point of system (6) is locally
asymptotically stable when 𝜏 = 𝜏

0
/2.

Proof. Since Lemma 5 and hypotheses (H3), the equilibrium
point of system (25) is locally asymptotically stable when 𝑟 =
𝜏

0
/2. When 𝑟 = 𝜏

0
/2 and 𝜏 = 𝜏

0
/2, system (9) and system

(25) are the same system. So, there are no roots of𝐷(𝜆, 𝜏
0
/2) =

𝐷

0
(𝜆, 𝜏

0
/2) = 0 with nonnegative real parts and the equilib-

rium point of system (6) is locally asymptotically stable when
𝜏 = 𝜏

0
/2. This completes the proof of the lemma.

According to [18] and the above discussion, we have
following the result.

Theorem 11. Assume that (H1), (H2), and (H3) hold, if the
function 𝑆

0
(𝜏) has positive zeros in (0, 𝜏

1
); the equilibrium

(𝑥

∗
, 𝑝

∗
) of system (6) is asymptotically stable for all 𝜏 ∈ [𝜏

1
, 𝜏

0
)

and becomes unstable for staying in some right neighborhood of
𝜏

0
; hence, system (6) undergoes Hopf bifurcation when 𝜏 = 𝜏

0
.

3. Direction and Stability of
the Hopf Bifurcation

In this section, we will study the direction of Hopf bifurcation
and the stability of bifurcating periodic solution of system (6)
at 𝜏 = 𝜏

0
. The approach employed here is the normal form

method and center manifold theorem introduced by Hassard
[20]. More precisely, we will compute the reduced system
on the center manifold with the pair of conjugate complex,
purely imaginary solutions of the characteristic equation (11).
By this reduction, we can determine the Hopf bifurcation
direction, that is, to answer the question of whether the
bifurcation branch of periodic solution exists locally for
supercritical bifurcation or subcritical bifurcation.

Let 𝜏 = 𝜏

0
+ 𝜇, 𝑢

𝑖
(𝑡) = 𝑦

𝑖
(𝜏𝑡), (𝑖 = 1, 2), 𝜇 ∈ 𝑅, 𝐿

𝜇
: 𝐶 →

𝑅

2, and𝐹 : 𝑅×𝐶 → 𝑅

2, so that system (6) is transformed into
an FDE in 𝐶 = 𝐶([−1, 0], 𝑅

2
) as

𝑢̇ (𝑡) = 𝐿𝜇
(𝑢

𝑡
) + 𝐹 (𝜇, 𝑢

𝑡
) , (50)

with

𝐿

𝜇
𝜑 = (𝜏

0
+ 𝜇) [𝐵𝜑 (0) + 𝐶𝜑 (−1)] ,

𝐹

1
(𝜑, 𝜇) = (𝜏

0
+ 𝜇) [𝑚

1
𝜑

2

1
(0) + 𝑚2

𝜑

1 (
0) 𝜑1 (

−1)

+ 𝑚

3
𝜑

1 (
0) 𝜑2 (

0) + 𝑚4
𝜑

1 (
−1) 𝜑2 (

0)

+ 𝑚

5
𝜑

3

1
(0) + 𝑚6

𝜑

2

1
(0) 𝜑1 (

−1)

+ 𝑚

7
𝜑

2

1
(0) 𝜑2 (

0)

+𝑚

8
𝜑

1 (
0) 𝜑1 (

−1) 𝜑2 (
0) + h.o.t] ,

𝐹

2
(𝜑, 𝜇) = (𝜏

0
+ 𝜇) [𝑛

1
𝜑

2

1
(−1) + 𝑛2

𝜑

3

1
(−1)] ,

(51)

where

𝐵 = [

𝑎

11
𝑏

11

0 0

] , 𝐶 = [

𝑎

12
0

𝑎

22
0

] ,

𝑚

1
=

1 − 𝑘𝑞

∗

𝜏

2
,

𝑚

2
=

−1 + 𝑘𝑞

∗

(𝜏𝑥

∗
)

2
−

1

2

𝑘𝑞

∗
−

1

2

𝑘𝑝

𝑑
𝑞

∗
,
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𝑚

3
= 𝑥

∗
(

𝑘

(𝜏𝑥

∗
)

2
−

1

2

𝑘 −

1

2

𝑘𝑝

𝑑
) ,

𝑚

4
= −

1

2

𝑘𝑥

∗
−

1

2

𝑘𝑝

𝑑
𝑥

∗
−

𝑘

𝜏

2
𝑥

∗
+

𝑘𝑝

𝑑

𝜏

,

𝑚

5
=

𝑘𝑞

∗
− 1

𝜏

2
(𝑥

∗
)

3
,

𝑚

6
=

1 − 𝑘𝑞

∗

𝜏

2
(𝑥

∗
)

3
, 𝑚

7
=

− 𝑘

(𝑥

∗
𝜏)

2
,

𝑚

8
=

𝑘

(𝑥

∗
𝜏)

2
−

1

2

𝑘 −

1

2

𝑘𝑝

𝑑
,

𝑛

1
=

1

2

𝑛

2
𝐷

(2)
(𝐹) (𝑛𝑥

∗
) ,

𝑛

2
=

1

6

𝑛

3
𝐷

(3)
(𝐹) (𝑛𝑥

∗
) .

(52)

Then,𝐿
𝜇
is a one parameter family of bounded linear operator

in 𝐶([−1, 0],R2). By the Riesz representation theorem, there
exists a function 𝜂(𝜃, 𝜇) of bounded variation for 𝜃 ∈ [−1, 0]
such that

𝐿

𝜇
𝜙 = ∫

0

−1

𝑑𝜂 (𝜃, 𝜇) 𝜙 (𝜃) , 𝜙 ∈ 𝐶.
(53)

In fact, we can choose

𝜂 (𝜃, 𝜇) = (𝜏

0
+ 𝜇) [𝐵𝛿 (𝜃) − 𝐶𝛿 (𝜃 + 1)] , (54)

where 𝛿(𝜃) is Dirac delta function. For 𝜙 ∈ 𝐶

1
([−1, 0], 𝑅

2
),

the infinitesimal generator 𝐴(𝜇) is defined by

𝐴 (𝜇) 𝜙 (𝜃) =

{

{

{

{

{

{

{

𝑑𝜙

𝑑𝜃

, 𝜃 ∈ [−1, 0) ,

∫

0

−1

𝑑𝜂 (𝑠, 𝜇) 𝜙 (𝑠) , 𝜃 = 0.

(55)

Further, let

𝑅 (𝜇) 𝜙 (𝜃) = {

0, 𝜃 ∈ [−1, 0) ,

𝐹 (𝜇, 𝜙) , 𝜃 = 0,

(56)

and then system (50) is equivalent to

𝑢̇

𝑡
= 𝐴 (𝜇) 𝑢

𝑡
+ 𝑅 (𝜇) 𝑢

𝑡
, (57)

where 𝑢
𝑡
(𝜃) = 𝑢(𝑡 + 𝜃) for 𝜃 ∈ [−1, 0].

The adjoint operator 𝐴∗(𝜇) of 𝐴(𝜇) is defined by

𝐴

∗
(𝜇) 𝜓 (𝜃) =

{

{

{

{

{

{

{

−

𝑑𝜓

𝑑𝜃

, 𝜃 ∈ (0, 1] ,

∫

0

−1

𝜓 (−𝑠) 𝑑𝜂 (𝑠, 𝜇) , 𝜃 = 0,

(58)

and a bilinear form

⟨𝜓, 𝜙⟩ = 𝜓 (0) 𝜙 (0) − ∫

0

−1

∫

𝜃

0

𝜓 (𝜉 − 𝜃) 𝑑𝜂 (𝜃, 𝜇) 𝜙 (𝜉) 𝑑𝜉,

(59)

where 𝜓 ∈ 𝐶

∗
= 𝐶

1
([0, 1], 𝑅

2∗
) and 𝑅2∗ are row vector space.

Let 𝜇 = 0; by the discussion in the previous section,
we know that ±𝜔

0
𝜏

0
𝑖 are common eigenvalues of 𝐴(0) and

𝐴

∗
(0).We need to compute the eigenvector of𝐴(0) and𝐴∗(0)

corresponding to𝜔
0
𝜏

0
𝑖 and−𝜔

0
𝜏

0
𝑖, respectively. Suppose that

𝑞(𝜃) and 𝑞∗(𝜃) are the eigenvector of 𝐴(0) and 𝐴∗(0) corre-
sponding to 𝜔

0
𝜏

0
𝑖 and −𝜔

0
𝜏

0
𝑖, respectively; then, we have

𝐴 (0) 𝑞 (𝜃) = 𝜔0
𝜏

0
𝑖𝑞 (𝜃) , (60)

𝐴

∗
(0) 𝑞

∗
(𝜃) = −𝜔0

𝜏

0
𝑖𝑞

∗
(𝜃) . (61)

Then, we have the following lemma.

Lemma 12. Consider

𝑞 (𝜃) = (

1

𝛾

) 𝑒

𝜔0𝜏0𝑖𝜃
, 𝜃 ∈ [−1, 0] ,

𝑞

∗
(𝑠) = 𝐷 (1 𝛾

∗
) 𝑒

𝜔0𝜏0𝑖𝜃
, 𝜃 ∈ [0, 1] ,

⟨𝑞

∗
, 𝑞⟩ = 1, ⟨𝑞

∗
, 𝑞⟩ = 0,

(62)

where

𝛾 =

𝑎

22
𝑒

−𝜔0𝜏0𝑖

𝜔

0
𝑖

, 𝛾

∗
=

𝑏

11
𝑖

𝜔

0

,

𝐷 = 1 + 𝛾𝛾

∗
− 𝜏

0
𝑎

12
𝑒

−𝑖𝜔0𝜏0
− 𝛾

∗
𝜏

0
𝑎

22
𝑒

−𝑖𝜔0𝜏0
.

(63)

Proof. From (55), we can rewrite (60) as

𝑑𝑞 (𝜃)

𝑑𝜃

= 𝑖𝜔

0
𝜏

0
𝑞 (𝜃) , 𝜃 ∈ [−1, 0) ,

∫

0

−1

𝑑𝜂 (𝑠, 0) 𝜑 (𝑠) = 𝐴 (0) 𝑞 (0) = 𝑖𝜔0
𝜏

0
𝑞 (0) , 𝜃 = 0.

(64)

Based on (53) and (64), we have

𝜏

0
[𝐵𝑞 (0) + 𝐶𝑞 (−1)] = 𝐴 (0) 𝑞 (0) = 𝑖𝜔0

𝜏

0
𝑞 (0) . (65)

For 𝑞(−1) = 𝑞(0)𝑒−𝑖𝜔0𝜏0 , we have

𝜏

0
[𝐵𝑞 (0) + 𝐶𝑞 (0) 𝑒

−𝑖𝜔0𝜏0
] = 𝑖𝜔

0
𝜏

0
𝑞 (0) . (66)

We can choose 𝑞(0) = (1, 𝛾)𝑇 and get

𝛾 =

𝑎

22
𝑒

−𝜔0𝜏0𝑖

𝜔

0
𝑖

, (67)

𝑞 (𝜃) = (1, 𝛾)

𝑇
𝑒

𝑖𝜔0𝜏0𝜃
.

(68)

Similar to the proof of (64)–(68), we can obtain

𝑞

∗
(0) = (1,

𝑖𝑏

11

𝜔

0

) ,

𝛾

∗
=

𝑖𝑏

11

𝜔

0

.

(69)
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Now, we can calculate ⟨𝑞∗, 𝑞⟩ as

⟨𝑞

∗
, 𝑞⟩ = 𝐷 (1, 𝛾

∗
) − ∫

0

−1

∫

𝜃

𝜉=0

𝐷(1, 𝛾

∗
) 𝑒

−𝑖𝜔0𝜏0(𝜉−𝜃)
[𝑑𝜂 (𝜃)]

× (1, 𝛾)

𝑇
𝑒

𝑖𝜔0𝜏0𝜉
𝑑𝜉

= 𝐷[1 + 𝛾𝛾

∗
− ∫

0

−1

(1, 𝛾

∗
) 𝜃𝑒

𝑖𝜔0𝜏0𝜃
[𝑑𝜂 (𝜃)] (1, 𝛾)

𝑇
]

= 𝐷 [1 + 𝛾𝛾

∗
− (1, 𝛾

∗
) [− 𝜏

0
𝐶𝑒

−𝑖𝜔0𝜏0
] (1, 𝛾)

𝑇
]

= 𝐷 [1 + 𝛾𝛾

∗
− 𝜏

0
𝑎

12
𝑒

−𝑖𝜔0𝜏0
− 𝛾

∗
𝜏

0
𝑎

22
𝑒

−𝑖𝜔0𝜏0
] = 1.

(70)

On the other hand, since ⟨𝜓, 𝐴𝜑⟩ = ⟨𝐴∗𝜓, 𝜑⟩, we have

−𝑖𝜔

0
𝜏

0
⟨𝑞

∗
, 𝑞⟩ = ⟨𝑞

∗
, 𝐴𝑞⟩

= ⟨𝐴

∗
𝑞

∗
, 𝑞⟩

= ⟨−𝑖𝜔

0
𝜏

0
𝑞

∗
, 𝑞⟩

= 𝑖𝜔

0
𝜏

0
⟨𝑞

∗
, 𝑞⟩.

(71)

Therefore, ⟨𝑞∗, 𝑞⟩ = 0. This completes the proof of the
lemma.

In the remainder of this section, by using the same nota-
tions as in Hassard [20], we first compute the coordinates to
describe the center manifold 𝐶

0
at 𝜇 = 0, which is a locally

invariant, attracting two-dimensional manifold in 𝐶
0
. Let𝑋

𝑡

be the solution of (57) when 𝜇 = 0. Define

𝑧 (𝑡) = ⟨𝑞

∗
, 𝑢

𝑡
⟩ ,

𝑊 (𝑡, 𝜃) = 𝑊 (𝑧, 𝑧, 𝜃) = 𝑢𝑡 (
𝜃) − 2Re {𝑧 (𝑡) 𝑞 (𝜃)} ,

(72)

and, then on the center manifold 𝐶
0
, we have

𝑊(𝑧, 𝑧, 𝜃) = 𝑊20 (
𝜃)

𝑧

2

2

+𝑊

11 (
𝜃) 𝑧𝑧 +𝑊02 (

𝜃)

𝑧

2

2

+ ⋅ ⋅ ⋅ ,

(73)

and then 𝑧 and 𝑧 are local coordinates for center manifold 𝐶
0

in the direction of 𝑞 and 𝑞∗. Note that 𝑊 is real if 𝑢
𝑡
is real

and we only deal with real solutions 𝑢
𝑡
. It is easy to see that

𝑧̇ (𝑡) = ⟨𝑞

∗
, 𝑢̇

𝑡
⟩

= ⟨𝑞

∗
, 𝐴 (0) 𝑢𝑡

+ 𝑅 (0) 𝑢𝑡
⟩

= ⟨𝑞

∗
, 𝐴 (0) 𝑢𝑡

⟩ + ⟨𝑞

∗
, 𝑅 (0) 𝑢𝑡

⟩

= ⟨𝐴

∗
(0) 𝑞

∗
, 𝑢

𝑡
⟩ + ⟨𝑞

∗
, 𝑅 (0) 𝑢𝑡

⟩

= 𝑖𝜔

0
𝜏

0
𝑧 (𝑡) + 𝑞

∗
(0) 𝑅 (0) 𝑢𝑡

− ∫

0

−1

∫

𝜃

0

𝑞

∗
(𝜉 − 𝜃) [𝑑𝜂 (𝜃, 0)] 𝑅𝑢𝑡 (

𝜉) 𝑑𝜉

= 𝑖𝜔

0
𝜏

0
𝑧 (𝑡) + 𝑞

∗
(0) 𝐹 (0, 𝑢𝑡 (

𝜃)) − 0

= 𝑖𝜔

0
𝜏

0
𝑧 (𝑡) + 𝑞

∗
(0) 𝐹0 (

𝑧 (𝑡) , 𝑧 (𝑡))

:= 𝑖𝜔

0
𝜏

0
𝑧 (𝑡) + 𝑔 (𝑧, 𝑧) ,

(74)

where

𝑔 (𝑧, 𝑧) = 𝑔20

𝑧

2

2

+ 𝑔

11
𝑧𝑧 + 𝑔

02

𝑧

2

2

+ 𝑔

21

𝑧

2
𝑧

2

+ ⋅ ⋅ ⋅ .

(75)

So, we can get

𝑔 (𝑧, 𝑧) = 𝑞

∗
(0) 𝐹0 (

𝑧 (𝑡) , 𝑧 (𝑡))

= 𝐷 (1, 𝛾

∗
) (𝐹

1
(0, 𝑢

𝑡
) , 𝐹

2
(0, 𝑢

𝑡
))

𝑇
,

(76)

where

𝐹

1
(0, 𝑢

𝑡
) = 𝜏

0
[𝑚

1
𝜑

2

1
(0) + 𝑚2

𝜑

1 (
0) 𝜑1 (

−1)

+ 𝑚

3
𝜑

1 (
0) 𝜑2 (

0) + 𝑚4
𝜑

1 (
−1) 𝜑2 (

0)

+ 𝑚

5
𝜑

3

1
(0) + 𝑚6

𝜑

2

1
(0) 𝜑1 (

−1)

+ 𝑚

7
𝜑

2

1
(0) 𝜑2 (

0)

+𝑚

8
𝜑

1 (
0) 𝜑1 (

−1) 𝜑2 (
0) + h.o.t] ,

𝐹

2
(0, 𝑢

𝑡
) = 𝜏

0
[𝑛

1
𝜑

2

1
(−1) + 𝑛2

𝜑

3

1
(−1)] .

(77)

Since 𝑢
𝑡
= 𝑢(𝑡 + 𝜃) = 𝑊(𝑧, 𝑧, 𝜃) + 𝑧𝑞 + 𝑧𝑞 and 𝑞(𝜃) =

(1, 𝛾)𝑒

𝑖𝜔0𝜏0𝜃, we have

𝑢

𝑡
= (

𝑢

1 (
𝑡 + 𝜃)

𝑢

2 (
𝑡 + 𝜃)

) = (

𝑊

(1)
(𝑡 + 𝜃)

𝑊

(2)
(𝑡 + 𝜃)

)

+ 𝑧(

1

𝛾

) 𝑒

𝑖𝜔0𝜏0𝜃
+ 𝑧(

1

𝛾

) 𝑒

−𝑖𝜔0𝜏0𝜃
,

𝜑

1 (
0) = 𝑧 + 𝑧 +𝑊

(1)

20
(0)

𝑧

2

2

+𝑊

(1)

11
(0) 𝑧𝑧

+𝑊

(1)

02
(0)

𝑧

2

2

+ ⋅ ⋅ ⋅ ,

𝜑

2 (
0) = 𝑧𝛾 + 𝑧𝛾 +𝑊

(2)

20
(0)

𝑧

2

2

+𝑊

(2)

11
(0) 𝑧𝑧

+𝑊

(2)

02
(0)

𝑧

2

2

+ ⋅ ⋅ ⋅ ,
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𝜑

1 (
−1) = 𝑧𝑒

−𝑖𝜔0𝜏0
+ 𝑧𝑒

𝑖𝜔0𝜏0
+𝑊

(1)

20
(−1)

𝑧

2

2

+𝑊

(1)

11
(−1) 𝑧𝑧 +𝑊

(1)

02
(−1)

𝑧

2

2

+ ⋅ ⋅ ⋅ ,

𝜑

2 (
−1) = 𝑧𝛾𝑒

−𝑖𝜔0𝜏0
+ 𝑧𝛾𝑒

𝑖𝜔0𝜏0
+𝑊

(2)

20
(−1)

𝑧

2

2

+𝑊

(2)

11
(−1) 𝑧𝑧 +𝑊

(2)

02
(−1)

𝑧

2

2

+ ⋅ ⋅ ⋅ .

(78)
From the definition of 𝐹(0, 𝑢

𝑡
), we have

𝐹

0 (
𝑧, 𝑧) = (

𝐾

11
𝑧

2
+ 𝐾

12
𝑧𝑧 + 𝐾

13
𝑧

2
+ 𝐾

14
𝑧

2
𝑧

𝐾

21
𝑧

2
+ 𝐾

22
𝑧𝑧 + 𝐾

23
𝑧

2
+ 𝐾

24
𝑧

2
𝑧

) + ⋅ ⋅ ⋅ ,

(79)
where

𝑘

11
= 𝜏

0
(𝑚

1
+ 𝑚

2
𝑒

−𝑖𝜔0𝜏0
+ 𝑚

3
𝛾 + 𝑚

4
𝛾𝑒

−𝑖𝜔0𝜏0
) ,

𝑘

12
= 𝜏

0
(2𝑚

1
+ 𝑚

2
𝑒

𝑖𝜔0𝜏0
+ 𝑚

2
𝑒

−𝑖𝜔0𝜏0
+ 𝑚

3
𝛾

+𝑚

3
𝛾 + 𝑚

4
𝛾𝑒

𝑖𝜔0𝜏0
+ 𝑚

4
𝛾𝑒

−𝑖𝜔0𝜏0
) ,

𝑘

13
= 𝜏

0
(𝑚

1
+ 𝑚

2
𝑒

𝑖𝜔0𝜏0
+ 𝑚

3
𝛾 + 𝑚

4
𝛾𝑒

𝑖𝜔0𝜏0
) ,

𝑘

14
= 𝜏

0
(𝑚

1
(𝑊

(1)

20
(0) + 2𝑊

(1)

11
(0))

+ 𝑚

2
(

1

2

𝑊

(1)

20
(0) 𝑒

𝑖𝜔0𝜏0
+𝑊

(1)

11
(0) 𝑒

−𝑖𝜔0𝜏0

+𝑊

(1)

11
(1) +

1

2

𝑊

(1)

20
(1))

+ 𝑚

3
(

1

2

𝛾𝑊

(1)

20
(0) + 𝛾𝑊

(1)

11
(0)

+𝑊

(2)

11
(0) +

1

2

𝑊

(2)

20
(0))

+ 𝑚

4
(

1

2

𝑊

(2)

20
(0) 𝑒

𝑖𝜔0𝜏0
+𝑊

(2)

11
(0) 𝑒

−𝑖𝜔0𝜏0

+ 𝛾𝑊

(1)

11
(1) +

1

2

𝛾𝑊

(1)

20
(1))

+ 3𝑚

5
+ 𝑚

6
(𝑒

𝑖𝜔0𝜏0
+ 2𝑒

−𝑖𝜔0𝜏0
) + 𝑚

7
(𝛾 + 2𝛾)

+𝑚

8
(𝛾𝑒

𝑖𝜔0𝜏0
+ 𝛾𝑒

−𝑖𝜔0𝜏0
+ 𝛾𝑒

−𝑖𝜔0𝜏0
) ) ,

𝑘

21
= 𝜏

0
𝑛

1
𝑒

−2𝑖𝜔0𝜏0
,

𝑘

22
= 2𝜏

0
𝑛

1
,

𝑘

23
= 𝜏

0
𝑛

1
𝑒

2𝑖𝜔0𝜏0
,

𝑘

24
= 𝜏

0
(𝑛

1
(𝑊

(1)

20
(1) 𝑒

𝑖𝜔0𝜏0
+ 2𝑊

(1)

11
(1) 𝑒

−𝑖𝜔0𝜏0
)

+ 3𝑛

2
𝑒

−𝑖𝜔0𝜏0
) .

(80)

Since 𝑞∗(0) = 𝐷(1, 𝛾∗), we have

𝑔 (𝑧, 𝑧) = 𝑞

∗
(0) 𝐹0 (

𝑧, 𝑧)

= 𝐷 (1, 𝛾

∗
) (

𝐾

11
𝑧

2
+ 𝐾

12
𝑧𝑧 + 𝐾

13
𝑧

2
+ 𝐾

14
𝑧

2
𝑧

𝐾

21
𝑧

2
+ 𝐾

22
𝑧𝑧 + 𝐾

23
𝑧

2
+ 𝐾

24
𝑧

2
𝑧

) + ⋅ ⋅ ⋅

= 𝐷 [(𝐾

11
+ 𝛾

∗
𝐾

21
) 𝑧

2
+ (𝐾

12
+ 𝛾

∗
𝐾

22
) 𝑧𝑧

+ (𝐾

13
+ 𝛾

∗
𝐾

23
) 𝑧

2
+ (𝐾

14
+ 𝛾

∗
𝐾

24
) 𝑧

2
𝑧]

+ ⋅ ⋅ ⋅ .

(81)

Comparing the coefficients of the above equation with
those in (75), we have

𝑔

20
= 2𝐷 (𝐾

11
+ 𝛾

∗
𝐾

21
) ,

𝑔

11
= 𝐷(𝐾

12
+ 𝛾

∗
𝐾

22
) ,

𝑔

02
= 2𝐷 (𝐾

13
+ 𝛾

∗
𝐾

23
) ,

𝑔

21
= 2𝐷 (𝐾

14
+ 𝛾

∗
𝐾

24
) .

(82)

In order to get the expression of 𝑔
21
, we need to compute

𝑊

20
(𝜃) and𝑊

11
(𝜃). Now, we determine the coefficients𝑊

𝑖𝑗
(𝜃)

in (73). By (72) and (57), we have

̇

𝑊 = {

𝐴 (0)𝑊 − 2Re {𝑞∗ (0) 𝐹0𝑞 (𝜃)} , −1 ≤ 𝜃 < 0,

𝐴 (0)𝑊 − 2Re {𝑞∗ (0) 𝐹0𝑞 (𝜃)} + 𝐹0, 𝜃 = 0.

:= 𝐴 (0)𝑊 + 𝐻 (𝑧, 𝑧, 𝜃) ,

(83)

𝐻(𝑧, 𝑧,𝜃) = 𝐻20 (
𝜃)

𝑧

2

2

+ 𝐻

11 (
𝜃) 𝑧𝑧 + 𝐻02 (

𝜃)

𝑧

2

2

+ ⋅ ⋅ ⋅ .

(84)

From (73), (74), (83), and (84), we obtain

(2𝑖𝜔

0
𝜏

0
− 𝐴 (0))𝑊20 (

𝜃) = 𝐻20 (
𝜃) ,

𝐴 (0)𝑊11 (
𝜃) = −𝐻11 (

𝜃) ,

(𝐴 (0) + 2𝑖𝜔0
𝜏

0
)𝑊

11 (
𝜃) = −𝐻02 (

𝜃) , . . . .

(85)

From (75) and (83), for 𝜃 ∈ [−1, 0), we have

𝐻(𝑧, 𝑧, 𝜃) = −2Re {𝑞∗ (0) 𝐹0𝑞 (𝜃)}

= −2Re {𝑔 (𝑧, 𝑧) 𝑞 (𝜃)}

= −𝑔 (𝑧, 𝑧) 𝑞 (𝜃) − 𝑔 (𝑧, 𝑧) 𝑞 (𝜃)

= −(𝑔

20

𝑧

2

2

+ 𝑔

11
𝑧𝑧 + 𝑔

02

𝑧

2

2

+ 𝑔

21

𝑧

2
𝑧

2

) 𝑞 (𝜃)

− (𝑔

20

𝑧

2

2

+ 𝑔

11
𝑧𝑧 + 𝑔

02

𝑧

2

2

+ 𝑔

21

𝑧

2
𝑧

2

) 𝑞 (𝜃) ⋅ ⋅ ⋅ .

(86)
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Comparing the coefficients of the above equation with those
in (84), it follows that

𝐻

20 (
𝜃) = −𝑔20

𝑞 (𝜃) − 𝑔

02
𝑞 (𝜃) ,

𝐻

11 (
𝜃) = −𝑔11

𝑞 (𝜃) − 𝑔

11
𝑞 (𝜃) ,

𝜃 ∈ [−1, 0) .

(87)

When 𝜃 = 0, we have

𝐻(𝑧, 𝑧, 0) = −2Re {𝑞∗ (0) 𝐹0𝑞 (𝜃)} + 𝐹0

= −(𝑔

20

𝑧

2

2

+ 𝑔

11
𝑧𝑧 + 𝑔

02

𝑧

2

2

+ 𝑔

21

𝑧

2
𝑧

2

) 𝑞 (0)

− (𝑔

20

𝑧

2

2

+ 𝑔

11
𝑧𝑧 + 𝑔

02

𝑧

2

2

+ 𝑔

21

𝑧

2
𝑧

2

) 𝑞 (0)

+ 𝐹

0

= −(𝑔

20

𝑧

2

2

+ 𝑔

11
𝑧𝑧 + 𝑔

02

𝑧

2

2

+ 𝑔

21

𝑧

2
𝑧

2

) 𝑞 (0)

− (𝑔

20

𝑧

2

2

+ 𝑔

11
𝑧𝑧 + 𝑔

02

𝑧

2

2

+ 𝑔

21

𝑧

2
𝑧

2

) 𝑞 (0)

+ (

𝐾

11
𝑧

2
+ 𝐾

12
𝑧𝑧 + 𝐾

13
𝑧

2
+ 𝐾

14
𝑧

2
𝑧

𝐾

21
𝑧

2
+ 𝐾

22
𝑧𝑧 + 𝐾

23
𝑧

2
+ 𝐾

24
𝑧

2
𝑧

) + ⋅ ⋅ ⋅ .

(88)

Comparing the coefficients of the above equation with those
in (84) gives that

𝐻

20 (
0) = −𝑔20

𝑞 (0) − 𝑔

02
𝑞 (0) + 2 (𝐾11

, 𝐾

21
) ,

𝐻

11 (
0) = −𝑔11

𝑞 (0) − 𝑔

11
𝑞 (0) + (𝐾12

, 𝐾

22
) .

(89)

From (85) and the definition of 𝐴(0), we have

̇

𝑊

20 (
𝜃) = 2𝑖𝜔0

𝜏

0
𝑊

20 (
𝜃) + 𝑔20

𝑞 (𝜃) + 𝑔

02
𝑞 (𝜃)

= 2𝑖𝜔

0
𝜏

0
𝑊

20 (
𝜃) + 𝑔20

𝑞 (0) 𝑒

𝑖𝜔0𝜏0𝜃
+ 𝑔

02
𝑞 (0) 𝑒

−𝑖𝜔0𝜏0𝜃
.

(90)

Hence,

𝑊

20 (
𝜃) =

𝑖𝑔

20
𝑞 (0)

𝜔

0
𝜏

0

𝑒

𝑖𝜔0𝜏0𝜃
+

𝑖𝑔

02
𝑞 (0)

3𝜔

0
𝜏

0

𝑒

−𝑖𝜔0𝜏0𝜃
+ 𝐸

1
𝑒

2𝑖𝜔0𝜏0𝜃
,

(91)

and, by a similar method, we get

𝑊

11 (
𝜃) = −

𝑖𝑔

11
𝑞 (0)

𝜔

0
𝜏

0

𝑒

𝑖𝜔0𝜏0𝜃
+

𝑖𝑔

11
𝑞 (0)

𝜔

0
𝜏

0

𝑒

−𝑖𝜔0𝜏0𝜃
+ 𝐸

2
, (92)

where 𝐸
1
and 𝐸

2
are both two-dimensional vectors. In the

following, we will find out 𝐸
1
and 𝐸

2
. From the definition of

𝐴(0) and (85), we can obtain

∫

0

−1

𝑑𝜂 (0, 𝜃)𝑊20 (
𝜃) = 2𝑖𝜔0

𝜏

0
𝑊

20 (
0) − 𝐻20 (

0) .
(93)

Notice that

(𝑖𝜔

0
𝜏

0
𝐼 − ∫

0

−1

𝑑𝜂 (0, 𝜃) 𝑒

𝑖𝜔0𝜏0𝜃
) 𝑞 (0) = 𝑖𝜔0

𝜏

0
𝑞 (0)

− 𝐴 (0) 𝑞 (0) = 0,

(−𝑖𝜔

0
𝜏

0
𝐼 − ∫

0

−1

𝑑𝜂 (0, 𝜃) 𝑒

−𝑖𝜔0𝜏0𝜃
) 𝑞 (0) = 0.

(94)

Hence, we can obtain

(2𝑖𝜔

0
𝜏

0
𝐼 − ∫

0

−1

𝑑𝜂 (0, 𝜃) 𝑒

2𝑖𝜔0𝜏0𝜃
)𝐸

1
= 2(

𝐾

11

𝐾

21

) . (95)

Similarly, we have

∫

0

−1

𝑑𝜂 (0, 𝜃) 𝐸2
= −(

𝐾

12

𝐾

22

) . (96)

Thus, we can get

𝜏

0
[

2𝑖𝜔

0
− 𝑎

11
− 𝑎

12
𝑒

−2𝑖𝜔0𝜏0
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−𝑎

22
𝑒
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2𝑖𝜔

0

] [

𝐸

(1)

1

𝐸
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1
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−𝑏

11

𝑎

22
0

] [

𝐸

(1)

2

𝐸

(2)

2

] = [

−𝐾

12

−𝐾

22

] .

(97)

From (97), we can obtain

𝐸

(1)

1
= − (𝑏

11
𝐾

21
+ 2𝜔

0
𝐾

11
)
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0
(− 4𝜔
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0
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0
𝑎
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0
𝑎
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𝑒

−2𝑖𝜔0𝜏0
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11
𝑎

22
𝑒
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,
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1
= − (𝑎
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𝐾

11
𝑒

−2𝑖𝜔0𝜏0
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21
𝜔

0
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𝐾
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− 𝑎

12
𝐾

21
𝑒

−2𝑖𝜔0𝜏0
)

× (𝜏

0
(− 4𝜔

2

0
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0
𝑎

11
+ 2𝜔

0
𝑎
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𝑒

−2𝑖𝜔0𝜏0

+ 𝑏
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𝑎

22
𝑒

−2𝑖𝜔0𝜏0
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−1

,

𝐸

(1)

2
=

𝐾
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𝑎

22
𝜏

0

,

𝐸

(2)

2
=

𝑎
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𝐾
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− 𝑎

11
𝐾
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− 𝑎

12
𝐾
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𝑎

22
𝑏

11
𝜏

0

.

(98)

Based on the above analysis, we can determine𝑊
20
(𝜃) and

𝑊

11
(𝜃) from (91) and (92). Furthermore, 𝑔

21
in (82) can be
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Figure 1: Waveform plot of 𝑡-𝑥(𝑡) with 𝜏 = 0.200.

expressed by the parameters and delay.Thus, we can compute
the following quantities:

𝑐

1 (
0) =

𝑖

2𝜔

0
𝜏

0

(𝑔

20
𝑔

11
− 2

󵄨

󵄨

󵄨

󵄨

𝑔

11

󵄨

󵄨

󵄨

󵄨

2
−

󵄨

󵄨

󵄨

󵄨

𝑔

02

󵄨

󵄨

󵄨

󵄨

2

3

) +

𝑔

21

2

,

𝜇

2
= −

Re {𝑐
1 (
0)}

Re {𝜆󸀠 (𝜏
0
)}

,

𝛽

2
= 2Re {𝑐

1 (
0)} ,

𝑇

2
= −

Im {𝑐

1 (
0)} + 𝜇2

Im {𝜆

󸀠
(𝜏

0
)}

𝜔

0
𝜏

0

,

(99)

which determine the quantities of bifurcating periodic solu-
tions in the center manifold at the critical value 𝜏

0
and we

have the following result.

Theorem 13. In (99), the following results hold:

(i) the sign of 𝜇
2
determines the directions of the Hopf

bifurcation: if 𝜇
2
> 0(< 0), then the Hopf bifurcation is

supercritical (subcritical) and the bifurcating periodic
solutions exist for 𝜏 > 𝜏

0
(𝜏 < 𝜏

0
);

(ii) the sign of 𝛽
2
determines the stability of the bifurcating

periodic solutions: the bifurcating periodic solutions are
stable (unstable) if 𝛽

2
< 0(𝛽

2
> 0);

(iii) the sign of 𝑇
2
determines the period of the bifurcating

periodic solutions: the period increases (decreases) if
𝑇

2
> 0 (𝑇

2
< 0).

4. Numerical Simulation Examples

In this section, we use the formulas obtained in Sections 2
and 3 to verify the existence of the Hopf bifurcation and
calculate the Hopf bifurcation value and the direction of the
Hopf bifurcation of system (6) with 𝑐 = 1000, 𝑛 = 50, and
𝑘 = 0.001.
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Figure 2: Waveform plot of 𝑡-𝑞(𝑡) with 𝜏 = 0.200.
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Figure 3: Phase plot for 𝑥(𝑡)-𝑞(𝑡) with 𝜏 = 0.200.

From (7), we have

𝑥

∗
= 50, 𝑞

∗
=

1000

1 + 220𝜏

2
− 2𝜏

. (100)

By calculation, we obtain that 𝜔
0
≈ 3.082, 𝜏

0
≈ 0.203, and

𝑟

0
≈ 0.472. It follows from (3.32) that

𝑐

1 (
0) = −0.000204 + 1.864768228𝑖,

𝜇

2
= 0.000005120369502,

𝛽

2
= −0.4074400488𝑒 − 4,

𝑇

2
= −2.980526844.

(101)

These calculations prove that the system equilibrium
(𝑥

∗
, 𝑞

∗
) is asymptotically stable when 𝜏 < 𝜏

0
by computer

simulation (see Figures 1, 2, and 3; 𝜏 = 0.200). When 𝜏 passes
through the critical value 𝜏

0
, (𝑥∗, 𝑞∗) loses its stability and a

Hopf bifurcation occurs (see Figures 4, 5, and 6; 𝜏 = 0.206).

5. Conclusion

A delayed model of congestion control was analyzed in
this paper. Based on our theoretical analysis and numerical
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Figure 4: Waveform plot of 𝑡-𝑥(𝑡) with 𝜏 = 0.206.
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Figure 5: Waveform plot of 𝑡-𝑞(𝑡) with 𝜏 = 0.206.
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Figure 6: Phase plot for 𝑥(𝑡)-𝑞(𝑡) with 𝜏 = 0.206.

simulation, we can find that there exists a critical value for
this delay and the whole system is stable when the delay
of the system is less than this critical value. By using the
time delay as a bifurcation parameter, we have shown that a
Hopf bifurcation occurs when this parameter passes through
a critical value, which means that the wireless access system

will be congested, even collapsed, when the communication
delay becomes large.
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