Hindawi Publishing Corporation
Abstract and Applied Analysis

Volume 2014, Article ID 632109, 11 pages
http://dx.doi.org/10.1155/2014/632109

Research Article

Linearization of Impulsive Differential Equations with

Ordinary Dichotomy

Yongfei Gao,' Xiaoqing Yuan,' Yonghui Xia,' and P. J. Y. Wong®

! Department of Mathematics, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
?School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798

Correspondence should be addressed to Yonghui Xia; xiadoc@163.com

Received 27 November 2013; Accepted 3 January 2014; Published 2 March 2014

Academic Editor: Yongli Song

Copyright © 2014 Yongfei Gao et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This paper presents a linearization theorem for the impulsive differential equations when the linear system has ordinary dichotomy.
We prove that when the linear impulsive system has ordinary dichotomy, the nonlinear system x(t) = A(f)x(¢) + f(t,x), t #t;,
Ax(t) = A'(tk)x(tk) + f~(tk,x), k € Z, is topologically conjugated to x(t) = A(t)x(t), t #t;, Ax(t;) = Av(tk)x(tk), k € Z, where
Ax(ty) = x(t]) — x(t;.), x(t) = x(t;), represents the jump of the solution x(¢) at ¢ = . Finally, two examples are given to show the

feasibility of our results.

1. Introduction

A basic linearization theorem is the famous Hartman-Grob-
man theorem (see [1, 2]). Then Palmer successfully gener-
alized the standard Hartman-Grobman theorem to nonau-
tonomous differential equations (see [3]). Then Fenner and
Pinto [4] generalized Hartman-Grobman theorem to impul-
sive differential equations. Since they did not discuss the
Holder regularity of the topologically equivalent function
H(t, x), for this reason, recently, Xia et al. [5] gave a rigorous
proof of the Holder regularity. Xia et al. [6, 7] proved a version
of generalized Hartman-Grobman theorem for dynamic
systems on time scales. It should be noted that the abovemen-
tioned works are based on the linear differential equations
with uniform exponential dichotomy. Therefore, motivated
by [8], in this paper, we have a version of generalized
Hartman-Grobman theorem for the impulsive differential
equations when the linear system has ordinary dichotomy.

Our main objective in this paper is to prove that, when
the impulsive linear system has an ordinary dichotomy, the
nonlinear system

x() =AM x )+ f(tx),

Ax () = A(t) x () + f (t- %),

t :/: tk)
¢y
keZ,

is topologically conjugated to its linear part

x(t)=At)x(t),

Ax (t) = A(t) x (1),

t#t,
(2)
keZ,

where Ax(t;) = x(tZ) - x(t;.), x(t;) = x(t;), represents the
jump of the solution x(¢) at t = t. Finally, two examples are
given to show the feasibility of our results.

2. Definitions

Consider the linear nonautonomous system with impulses at
times {t;} ez

M) =At)x, ttt,

_ (3)
Ax (t) = A(t) x (t),

keZ,

where Ax(t) = x(t;) — x(t;), x(t;) = x(t;), represents the
jump of the solution x(¢) at t = t;, x € R", and A(¢) and A(t)
are n X n matrixes.
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Definition 1. System (3) is said to be an ordinary dichotomy,
if there exists a projection P (P* = P) and a constant K > 0
such that

[vopPut )| <k (t=5),
(4)
lvowa-pute|<k <y,

where U(¢) is a fundamental matrix of linear system (3) and
is given by

U =0@) [] @ (6 (T+A(t) (1) O (),
tke[tg,t)
t>t,

©)

where () is a fundamental matrix of the system x = A(t)x,
provided that ®(t;) is invertible, for all t, > ¢,. In what
follows, we will assume that U(¢) is invertible for all t € R.

Definition 2. In Definition 1, if U#)P — 0O ast — +oo,
then system (3) is said to possess an ordinary dichotomy with
a positive asymptotically stable manifold,

itU(t)(I-P) — O0ast — —oo,thensystem (3) is said
to possess an ordinary dichotomy with a negatively
asymptotically stable manifold;

iftboth of them hold, then system (3) is said to possess
an ordinary dichotomy with asymptotically stable
manifolds.

3. Main Result and Proof

Consider the following nonautonomous impulse systems:

x(O) =A% t#h,
(6)
Ax (tk) :K(tk)x(tk), k€ Z,
2O =AD)x+ (LX), t#
7)

Ax () = A(t) x (1) + f (tox (1)), ke Z,

where Ax(t;) = x(t;) — x(t;), x(t;) = x(t;), represents the
jump of the solution x(¢) att = t;, x € R", and A(¢) and A(t)
are n X n matrixes.

Definition 3. Suppose that there exists a function H : R x
R" — R” such that

(i) for each fixed ¢, H(t,-) is a homeomorphism of R”
into R";
(ii) |H(t, x) — x|l uniformly bounded with respect to t;
(iii) assume that G(¢,-) = H™!(t, -) has property (ii) also;
(iv) if x(¢) is a solution of system (7), then H(t, x(t)) is a
solution of system (6).

If such a map H exists, then system (7) is topologically
conjugated to (6). H is an equivalent function.

Abstract and Applied Analysis

Theorem 4. Suppose that the impulsive linear system (6) has
an ordinary dichotomy and for any x,x,,x, € R" and t € R
one has

(Hy) L f (&0l < w(?),

(H) £t )l < (8),

(H3) L f(t,x1) = f(£, )l < r(®)llxy — x5,

(Hy) It x)) = f(t, x)Il 7By = ),

(Hs) ["9()dt + ¥, (oo T(te) < N,

(Hg) [*2r(0)dt + Ty ((o0100) F(tx) < Cs k€ Z,

where y(t), r(t) are integrable functions and y(t), 7(t;) are
summable functions in R, and C and N are positive constants.
Then system (7) is topologically conjugated to system (6).

Remark 5 (pure continuous case). If impulsive jump oper-
ators are absent, then system (6) and (7) reduces to pure
continuous systems. That is,

x=A(t)x, teR,

(8)

x=At)x+ f(t,x), teR.

Then Theorem 4 reduces to main results in [8].

Remark 6 (Pure discrete cases). A difference system, or a
pure discrete-time system, is a special case of systems with
impulses. Thus, instead of (6), we have only

Ax (ty) = A(t) x () »
or for the perturbed case (7),
Ax () = A(t) x () + f (to x (1)) s

Now, Ax(t;) means x(t;,,) — x(t;), so that we may write the
linear system in the canonical way as

X (tr) = A(t) x () »

or similarly for the perturbed system,

x (tyr) = A ) x (t) + f (o x (t))

where A = (I + A). Then we have the following.

keZ, 9)

keZ. (10)

keZ, (11)

keZ, (12)

Corollary 7. Suppose that Ax(t,) = Zf(tk)x(tk) has an
ordinary dichotomy, and for any x,x,,x, € R". If f(t x)
satisfies

If x| <70,
|F(t.x) - F(tx)| <7 () |x; - x5
> w() <N, (13)

t. €(—00,+00)

z 7(t) < C,

1. €(-00,+00)

then system (10) is topologically equivalent to system (9).
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Remark 8. We point out that the conditions in Theorem 4 can
be approached. For example, taking §/(t) = 7(t) = 1/t%, if we
assume that the interval [n,#n + 1] contains finite number of
sequences t;, then

Z ¥ (t) = Z

1. €(—00,+00) t.€(—00,+00)

7 (t) < +00. (14)

In particular, if t =t; =k, k=1,2,..., then
+00 +00 7_[2
ZV/(tk) = ZF(tk) e (15)
te=1 te=1

Before the proof of Theorem 4, let us make some discus-
sions about ordinary dichotomy and introduce some lemmas.
Note first that if system (6) has an ordinary dichotomy then
a fundamental matrix can be chosen such that the projection
P = (") in (4). In fact, for any projection P, there exists
an invertible matrix T such that T'PT = (" ). If (4)

holds for U(t) and P; then (4) holds for U(t) and T™'PT,
this implies that T"'PT = (") is the required projection
if U(t)T is chosen as a fundamental matrix. Furthermore, in
(4), we can assume that U(t) = (¢,(¢),...,¢,(t)) with ¢,(t)
being unbounded on R fori = 1,...,r —s,r +t,...,n and
(pj(t) bounded on R for j = r —s+ 1,...,r +t — 1 and
P=("))=P+PwithpP = (" ), I-P=P+P
with P, = (° ;). Then [U(t)(P, + P,)U ' (s)| is bounded
on R, IU(t)PlUfl(s)I is bounded on t > s(and unbounded
ont < s), and |U(t)P4U_1(s)| is bounded on t < s(and
unbounded on t > s).

In what follows, we assume that the assumptions in
Theorem 4 always hold. Let X(t,t,, x,) be a solution of (7)
satistying the initial condition X(¢,) = x, and Y (t,t,, y,) a
solution of (6) satisfying the initial condition Y (¢,) = y,.

Lemma 9. For each (t,&), the system
Z=AWZ-f{tX({(1E),

AZ(t) = A(te) Z () - f (8 X (1 (1.9))).

t#t,

keZ,
(16)

has a unique bounded solution h(t,(7,&)) with (P, +
P)U(0)h(0, (7,£)) = 0.

Proof. For each (7,£), the solution of system (16) satisfying
h(0, (7,&)) = x, is

t

Bt (,8) = U U™ (0)x - L UHU ()

x f(s,X(s,(1,8))) ds
- Y UOUT () f (4 X (4 (1.8))

t,.€[0,t)

4 ot

=U®OU T (0)x- ) I Ut PU (s)

i=1 70

X f(s,X (s, (1,8))) ds

4
=) D UmPU(t)
i=1t, €[0,t)
x f (te X (1 (1,)))
=U@®U"(0)x, - r U ()P, U (s)

x f(s,X(s,(7,8))) ds

0
N j UM PU(s) f (5 X (s (1, £))) ds

- Jt U (t) (P, +P,) U (5)
0
x f (s, X (s,(1,€))) ds

- <J+°O - foo U(t)P,U " (s)

0

X f (s, X (s,(1,€))) ds)

- Y U®PU ()

t€(—00,t)
x f (te X (1 (1, 8)))
+ Z UM P U (&) f (4 X (1, (1,9)))

t;.€(—00,0)

- > U0 (R +P) U (£)
t€[0,t)

x f (e X (ty (1,9)))

( > ooy
t;.€[0,+00)

> U@ P,U (£)
t €[t,+00)
x f (te X (te (1,9)) -

17)

Noting that

0
J U@)PU " (s) f (s, X (s, (1,6))) ds

0

=U(t) P,U " (0) J U (0) P, U (5)

X f (s, X (s,(1,8)))ds

2U@t)P,U " (0)x,,



L U () P,U " (5) f (s, X (s, (7, &))) ds

+00

=U(@)P,U " (0) J U (0)P,U" (s)

0
X f (5, X (s, (7,£))) ds
2 U(t) P,U " (0) x,.
(18)
On the other hand,
Y, UOPU (1) f (t X (4 (1, 9))

t.€(—00,0)

=UMPU(0) Y U©OPU ()

£ €(—00,0)
X f(tk,X (tk’ (7, 6)))
2U ) PU " (0) x5,

Y U®PU () F (te X (4 (1.8))

t,.€[0,+00)

(19)

=U®PU(0) ) UOPU ()

t.€[0,+00)

X f(te X (t (1.)))
2 U(®t)P,U " (0) x,.
It follows from (17) that
h(t, (1,8) = U(t) (P, + P;) U (0) x, + U (t) U (0)

X (xo + %) + x3)

+U () P,U (0) (g — x5 — X4)

t
- L U@ PU™ (s) f (s X (s, (1,))) ds
+ L U (1) PU (s) f (5, X (5, (7, 8))) ds

- L U () (P, +P,) U (5) f (s, X (s, (7, &) ds

- Y UOPU () [ (e X (4 (1. )

t;€(—00,t)
+ ) UOPRUT () f (6o X (46 (1.9))
t€[t,+00)
= 2 UOPE+P)UT (1)
t€[0,t)
x f (i X (6 (1.8))).
(20)
We can assert that P,U(0)(x, + x; + x3) = 0 and

P4U71(0)(x0 - x, — x4) = 0 hold. Otherwise, h(t, (1,£))
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will be unbounded since it concludes unbounded part
U(t)P,U " (0)(xy +x, +3) or/and U(t) P,U " (0)(xy —x, — X,).-
Thus

h(t, (1,8) = U @) (P, + ;) U (0) x,
_ I_ U PU (s) f (s, X (s, (1, ) ds
+ L U (t) P,U " (s) f (s, X (s, (7, &))) ds

- L U () (P, + P) U™ () f (5, X (5, (7,8))) ds

- Y UOPU (1) F (e X (4 (1.8)))

tr€(—00,t)

+ Z U @) PU (i) f (5 X (13 (1,9)))

t;.€[t,+00)

- Y U@ (P +P)UT (1)

t,.€[0,t)

x f (te X (e (1,9))) .
(21)

Moreover, if h(t, (1,§)) satisfies the initial condition (P, +
P,)U (0)A(0, (1, £)) = 0, then
h(t,(1,8)) = —I_ U@ PU () f (s, X (5, (1, 8)) ds
N j U PU™ () £ (5 X (5 (1, 6))) ds
- L U () (P, +P) U (s) f (s, X (s, (1,8))) ds
- Y U®PU () f (te X (4 (1,8)))

t;€(—00,t)
+ ) UOPUT (1) F (16X (te (1.))
t;€[t,+00)
- z U@ (P +P) U ()
t,€[0,t)
% f (te X (e (1.9))).
(22)
Now, we prove that h(t,(7,&)) is bounded. Due to the
boundedness of U(t)P, = (0,...,0,¢, ¢ 15---> ¢,,0,..., 0)
and U(H)P; = (0,..., 0,¢ri1>--» ¢ri-1>0,...,0), we assume

that |U(t)P,U1(0)] < C,, [U®)P,U(0)| < C,, where C,,
C, are some positive constants. Together with (4) and (H,), it
follows that, if ¢ > 0, then we have

t
L U (t) B,U " (5) f (5, X (s, (1, &))) ds

< jot [u@® P U™ )] - 1f (s X (s, (.0 ds|  (23)

t
SKJ- y(s)ds;
0
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if t < 0, then we have

L U0 U™ (5) f (5, X (s, (7, 6))) ds

<

U P (0) Lt lu©Ppu )

(24)
f 5 X (s, (7, 6))] ds

0
< KCIJ v (s) ds.

t

Similarly, if ¢ > 0, then we have

JO U PU (s) f (5, X (s, (1, 6))) ds

< U@ P,U (0) Lt ||U (0)P,U™ (s)]]

(25)
| (s X (s, (7, €)))] ds

t
< KC, J v (s)ds;
0

if t < 0, then we have

t
L U)PU " (s) f (s, X (s, (1,6))) ds

< (26)

j [o@ U™ @] -1 5 X (s (. 8] ds

<K LO y(s)ds.

On the other hand, it follows from (4) and (H,) that, if t > 0,
then we have

Y UOPU™ (1) F (1 X (1 (1.8))

t,.€[0,t)

<K ) #(t).
t,.€[0,t)
(27)

If t < 0, then we have

Y. UOPRU™ (1) f (to X (te (7, E)))I

t.€(,0]

<

U@ PUT(0) ) U@OPU

t.€(t,0]

(28)

x (tg) f (o X (o (1,9))) ‘

< KC, Z ¥ (t).

t.€(,0]

Similarly, if ¢ > 0, then we have

t,€[0,t)

<

X f(tk’ X (tk’ (T, 5)))1

<KC, Y ¥(ty).

t€[0,t)

If t < 0, then we have

tc€(£,0]

<K ) (k).

t€(t,0]

Therefore, we get

<max{C, +1,C, + 1} K

N
sK(C1+C2+1)J

—00

t€[0,t)

<max{C; +1,C, + 1} K

Y UM PUT (1) f (8 X (

jo U () (Py + P) U™ () £ (5, X (s, (1, £))) ds

—00

y () dr,

>

t.€(—00,+00)

Y. UOPUT (1) F (6o X (t (1, E)))‘

UOPRU () Y UOPU ()

t€[0,t)

t (T, E)))‘

roo y(t)dt

Z U@®) (P +P) U (1) f (te X (te (7, E)))‘

v (t)

<K(C +C,+1) Z v (t).

t. €(—00,+00)

Similarly, we get

Jt U (t) (P, +P,) U (s)r (s)ds
0

+00
gK(C1+C2+1)J r(t)dt,

t€[0,t)

<K(C +C,+1)

Y U@ (P +P)U ()7 (1)

2

t.€(—00,+00)

7 (t) -

(29)

(30)

(31)

(32)



It follows from (4), (Hs), (22), and (31) that

t +00
|h (t, (T,E))| <K J_ y(s)ds+K L y(s)ds
+K Z ¥ (t)
tr€(—00,t)

+K Z 1/7(tk)+K(C1+C2+1)J

t€[t,+00) -

y(¢)dt

+K(C;+C,+1) Z

t.€(—00,+00

=K<j+:w<t>dt+ y &(tk)>

1. €(—00,+00)

¥ (t)
)

+K(C1+C2+l)<J_+:1//(t)dt+ Z 1/7(fk)>

t. €(—00,+00)
<KN+KN(C,+C,+1)

=KN(C, +C, +2).
(33)

So h(t, (1, &)) is abounded solution, and the bounded solution

is unique with the initial condition (P, + P3)U71(0)h(0,
(1,&)) = 0. The proof of Lemma 9 is complete. O

Lemma 10. For each (t,£&), the system

Z=AWZ+fELYtT,E)+Z), t#t,

AZ(t) = A(ty) Z (1) + f (1Y (te1.8) + Z (1)),

keZ,
(34)

has a unique bounded solution g(t,(t,&)) with (P, +
P)U(0)g(0, (,)) = 0.

Proof. For a bounded continuous function z(t) of R whose
norm [|z| = sup,.glz(t)|, we define a map T as follows:

Tz (t) = Jt U(t) PIU_1 ) f (Y (51,8 +2(s)ds
_ Jm U @) P,U " (5) f(s,Y (5,7,&) + 2 (s)) ds
t

+ jt Ut) (P, +P) U (s)
0

X f(sY(s,7,8) +2z(s)ds
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+ Y UMPUT(f)
t€(—00,t)
x f (Y (te.€) + 2 (1))

- ) U®PRU! ()

t.€[t,+00)
X f(teY (t1.8) +2 (1)

+ Y U@ (P+P)UT (1)
t€[0,t)

x f(teY (tor,8) + 2 (1)
(35)

It follows from (4), (Hs), and (31) that we can also obtain that

t +00
|Tz(t)|§KJ- t//(s)ds+KJ y(s)ds+K Z v (t)
- ¢ tr€(—00,t)
+K Z 1/7(tk)+K(C1+C2+1)J+001//(t)dt

ti€[t,+00)

+K(C,+C,+1) Z

t. €(—00,+00

=K<J_+:w(t)dt+ D lﬁ(fk)>

1. €(—00,+00)
+K(C,+C, +1)

x (me//(t)du D 1/7(tk)>
—00 t). €(—00,+00)

<KN+KN(C,+C,+1)

v (t)
)

=KN(C,+C,+2)
£B.
(36)

So, we have |Tz(t)| < B. Therefore, T is a self-map of a sphere
with radius B.
Moreover, it follows from (4), (Hs), (H,), (Hg), and (32)
that
t

Tz, (t) - Tz, (t)| < KI r(s) |z, (s) =z, (s)| ds

+00

+ KJ r(s) |z1 (s) -z, (s)| ds
t

oo Eeyutol

X 1 (s) |z1 (s) -z, (s)| ds
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+ Y |ue @+ r) Ut ()| 7 (8)

t€[0,t)
X |Zl (te) = 2 (tk)l
+K Z 7 (t) |21 () — 2 ()]
t€(—00,t)
+K Z 7 (t) 21 (t) = 2, (1)
ti€[t,+00)

<SK(C +Cy+1) |z -2

v (f:r(t) d+ Y 7(tk)>

t). €(—00,+00)
+K |z, - 2|

x (Jm r(t)dt + tke(—§,+oo)7(tk)>

< KC(C,+Cy+2) |z — 2| -
(37)
Let C be a positive constant such that C < 1/K(C; + C, + 2);

then L 2 KC(C, + C, + 2) < 1. By the contraction principle
map T has a unique fixed point z,(¢); that is, z(¢) satisfies

t
2y (t) = L U @) PU " (5) f(5Y (5,7,8) + 24 (s)) ds
j UOPU(s) f(5,Y (578 + 2 (5)) ds

j U(t) (P, +P,) U (s)

X f(s,Y(s,7,8) + 2, (s))ds
+ Y U®PU ()

t €(—00,t)
X f(teY (t.8) + 2o (1)

- > UMPRU(f)

t€[t,+00)
X f(teY (6o1,8) + 2o (t;))

+ ) U@ (P +PB)UT (1)

)

X fteY (to1.8) + 2o (1))
(38)

By direct differentiation, we can verify that z(¢) is a solution

of (34). Furthermore, the solution is bounded with |z, (¢)| < B
and

(P, +P,) U (0)2(0) = 0. (39)

Now, we are going to prove that the bounded solution with
initial condition (39) is unique. For this purpose, we assume
that z, (¢) is another solution of (34). Following steps similar
to (17)-(22), it is not hard to show that any bounded solution
of (34) with initial value condition (39) can be written as
follows:

z, (t) = [OOU(t) PU (s)
x f(s.Y (51,8 +2(s)ds
- J:OO U () P,U " (s)
X f(s,Y (5,7,8) + 2, (s)) ds
+ Lt U(t) (P, +P) U (s)

X f(s,Y (57,8 +2 (s)ds
Y U@PUT()

t€(—00,t)
X f(teY (4e1,8) + 2, (1))
- > UMPRU(f)

t€[t,+00)
X f(teY (bat.8) + 2, (1)

+ Y U@ (R +P)UT ()

t€[0,t)

X fteY (te1.8) +2, ().

(40)

Calculate z, (t) — z,(t), by (4), (H;), (H,), (Hy), and (32) that

|zl (t) -z, (t)| <K J_ r(s) lzl (s) -z (s)l ds
+K J; r(s) |z1 (s) — 2z (s)| ds

t
+ [ Jvo @+ p) v ©fro
X |z, (s) = 2 (5)| ds
Y oo @+ p) U (5)]7 (1)

tee[0,t)
x |2y (ti) = 2z (1)
+K Z 7 (t) |21 (1) — 2o (1)
t;€(—00,t)
+K Z 7 (t) |21 (1) — 2o (8]
t;€[t,+00)

<K(C+Cy+1) |z -2



x <LO r(t)dt + tke<§,+oo)7(tk)>

+ Kz - 2|

X <J+Oor(t)dt + ) F(tk)>
—00 t.€(~00,4+00)

< KC(C;+Cy+2) |z — 2

Lz -
(41)

Hence ||z; — zyll < Lllz; — 2zoll, and L < 1, so we have z, () =
zo(t). This implies that the bounded solution of (34) with
initial condition (39) is unique. The proof of Lemma 10 is
complete. O

Lemma 11. Let x(t) be any solution of the system (7); then the
system

Z=AM)Z+ ft,x(t)+2Z)~ f(t,x(t), t#t
AZ(t) = At) Z (t) + f (tox (t) + Z (1)) (42)
- fltox(t), keZz
has a unique bounded solution z(t) = 0 with (P, +

P,)U1(0)z(0) = 0.

Proof. Obviously, z = 0 is a bounded solution of system (42)
with the initial condition (P, + P3)U_1(0)z(0) = 0. Now we
show that the bounded solution is unique. If not, there is
another bounded solution z,(t), by Lemma 10, which can be
written as follows:

a0-| vOPUE
X [f(s,x(8)+2,(5) = f(s,x(s)]ds
- Jm U () P,U (s)
X [f(sx(s)+2,(5) = f(s,x(s))] ds
! 1
+ L U(t)(P,+P;) U (s)

X [f(s,x(8)+2,(5) = f(s,x(s))]ds

+ Y UMPUT(f)

t€(—00,t)

X []?(tk’ x(t) + 2 () - f(tox (tk))]

Abstract and Applied Analysis

- Y UMPRU(f)

t€[t,+00)
X [J?(th(tk) +2; (i) _]?(tk’x(tk))]

+ Y U@ (R +P)UT (L)

t€[0,t)

X [J?(tk’x (te) + 2 (8) - f (o x (tk))] .
(43)

Then it follows from (4), (H;), (H,), (Hs), and (32) that
t +
- t

|z1 (t)| < KJ r(s) |z1 (s)| ds + KJ r(s) |z1 (s)| ds

t
+ L [u® (B, + P) U ()] 7 (9) |2, (5)] ds

+ Y Jum @+ YU ()| (1) |2, (1))

t€(0)

+K z 7(t) |21 (t)]

t;€(—00,t)

+K Z 7(t) |21 (t)]

t;€[t,+00)

<K(C +Cy+ 1)z

><<J+Oor(t)dt+ Y ?(tk)>
-0 t,€(—00,+00)

+00
+K||zll|<J rder Y F(tk)>
—00 £ €(—00,+00)

<KC(C+Cy+2) |z

= L=z
(44)

Since L < 1, so z,(t) = 0 with the initial condition (P, +
P3)U_1(0)z(0) = 0. The proof of Lemma 11 is complete. [

Let
H(t,x)=x+h(t(tx)),
Gty)=y+gt(ty),

where h(t, (¢, x)) is given by (22), and

(45)

ht,(t,x))= - [ U (1) PlU_1 (s) f (s, X (s,(t,x))) ds

+ jm U (t) P,U " (s) f (s, X (s, (t, x))) ds

t

- L U (t) (P, + P,) U (5) f (s, X (s, (t, x))) ds
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- Y UOPU (1) F (e X (1 (8,5)))

t€(—00,t)

LY UORUT () Ft X (1o (6.9))

t€[t,+00)

- Y U@ (P +P)UT (1)

t,€[0,t)

x f (to X (t (£, %))).
(46)

Lemma 12. Let x(t) be any solution of system (7); then
H(t, x(t)) is a solution of system (6).

Proof. If x(t) is any solution of system (7), then H(t, x(t)) =
x(t) + h(t, (t,x(t))) = x(t) + h(t,(0,x(0))) since, by (46),
h(t, (t, x(t))) = h(t, (0, x(0))).

We assume that H(t) = H(t, x(t)); then we have

Ht)=A®x®)+ f(tx®)+A@)h((Lx (1)
- f & x(®)
= A1) (x (6) + h (¢t (& x (1))
=AMH®),

AH (1) = A(t) x (t) + f (15 x ()
+ A (te) h(th (to x (1)) = F (8o x (8))
= A(t,) (x () + h (to (te x (£))))

= A () H(t). -
47

So, H(t, x(t)) is the solution of system (6). O

Lemma 13. Let y(t) be any solution of system (6); then
G(t, y(t)) is a solution of system (7).

Proof. The proof is similar to Lemma 12. O
Lemmal4. Foranyt € R, x € R",
G(t,H (t,x)) = x. (48)

Proof. According to the above arguments, if x(t) is a solution
of system (7), from Lemma 12, H(¢, x(t)) is a solution of (6).
On the other hand, in view of Lemma 13, it is easy to see that
x,(t) = G(t, H(t, x(t))) is another solution of (7). Let J(¢) =
x, (t) — x(t); we have

JO)y=At)x, &)+ f(t.x; ) - A®) x(t) + f (£ x (1)
=AMOTO+ f6Lx®)+] ) - f G x (),
AT (1) = A(t) x, () + (1o %, (8))
= A(t) x (1) + F (t x ()

= A(t) ] (t) + f (tiox (1) + T (1)) = f (1 x ().
(49)

Thus J(t) is a solution of the system (42). On the other hand,
following the definition of H, G, we can obtain

[J (O] = |G (&, H (£, x (1)) — x (£)]

IN

G (¢, H (t, x (t))) - H (£, x (1))]
(50)
+[H (£, x () - x (1)

lg @t & H (tx®)| + |h(t, & x ()]

It follows from Lemmas 9 and 10 that J(¢) is a bounded
solution of the system (42); by Lemma 11, system (42) has
only one zero bounded solution with the initial condition
(P2+P3)U71(0)z(0) = 0. Hence J(t) = 0 and thus x, (¢) = x(¢).
Thatis, G(t, H(t, x(t))) = x(t). Since x(t) is arbitrary, we have

G(t,H (t,x)) = x. (51)
O

Lemmal5. Foranyt € R, y € R",
H(tG(ty)) = y. (52)
Proof. If y(t) is any solution of system (6), from Lemma 13,
G(t, y(t)) is a solution of (7). On the other hand, in view of

Lemma 12, it is easy to see that y,(t) = H(t,G(t, y(t))) is
another solution of (6). Let J(¢) = y,(¢) — y(t); we have

JOy =AW -AB)yH)=AW®) 1),

A (t) = A(t) 3 (8) = At) y (8) = A(t) T (1)

(53)

Thus J(t) is a solution of the system (6). On the other hand,
following the definition of H, G, we can obtain

J@®))=H (Gt y®)) -y @)
<[HGG(ty 1)) -Gty ®)|
+|G(t,y ) - y ()]
=|h (6 (G (6 y )] +g (& (8. y )]

It follows from Lemmas 9 and 10 that J(¢) is a bounded
solution of the system (6), and it is easy to see that system (6)
has only one zero bounded solution with the initial condition
(P, + P3)U_1(0)x(0) = 0; therefore, J(t) = 0 and thus y, (t) =
y(t). Thatis, H(t, G(¢, y(t))) = y(t). Since y(t) is arbitrary, we
have

(54)

H(t,G(t,y)) = y. (55)

So H and G are inverses of each other for each fixed t and they
are both homeomorphisms for each fixed ¢. O

Now we are in a position to prove the main results.
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Proof of Theorem 4. We are going to show that H(t, -) satisfies
the four conditions of Definition 3.

Proof of Condition (i). For any fixed t, it follows from Lemmas
14 and 15 that H(¢,:) is homeomorphism and G(t,-) =
H71 (t) ) .

Proof of Condition (ii). It follows from H(¢, x) = x+h(t, (t, x))
and Lemma 9 that |H(t, x) — x| is bounded, uniformly with
respect to £.

Proof of Condition (iii). It follows from G(t, y) = y+g(t, (t, y))
and Lemma 10 that |G(t, y) — y| is bounded, uniformly with

respect to £.

Proof of Condition (iv). Following from Lemma 12 and

Lemma 13, we easily prove that condition (iv) is true.
Therefore, system (7) is topologically conjugated to sys-

tem (6). This completes the proof of Theorem 4. O

4. Examples

Now we present two examples to show the feasibility of our
results. Consider the following impulsive systems:

X () =AM x, t#t,
Ax (ty) = A(ty) x (t) s
At)yx+ f(t,x),

= A(t) x (t) + f (tx (1)) s

(56)
keZ,
x (t) = t# 1t
(57)
Ax (tk) k € Z,
where

1

1
l+t2’1+\/m

Al(t) :diag{_li-lltl’_ ,arctant},

ftx) = (sin x, 1, cos x, l)T, (58)

v
37 (1 +¢2)
f(t’ x) =

5 (cosx,sinx, 1, 1)T.

1
(1+1)

From system (57), we can easily see that f (¢, x) satisfies

If &0l < o =v®),

|F 0] < A

If (6x)) = f (£:x,)] <

th) “ X1 =X " (59)

2 r(t) Hxl - x2|| ,

“f (tx)) - f(t x2)||

2” X1 xz”

27 (t) ||x1 - x2|| .
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It is easy to see that the fundamental matrix of x' = A(t)x is

@(t)zdiag{fo (1/(1+uD)dn = arctant

(60)
odo (/1 VTuD)du

t
ejﬂ arctan udu
, .

Then the fundamental matrix of the impulsive linear system
(56) is

U =0@) [] o7 (1) (I+A(t)) @ (1) 07 (0).

t,.€[0,t)
(61)
In what follows, we give two examples of A(t;.).
Example 1. Taking
—~ 1 1 1 1
-l L L LY e
(ty) = diag > Ty, (62)

denote that N is a positive constant such that the interval [0, ¢)
contains no more than N{t;};.7. Then we have

- aw 1 -
U(t) dlag{ Io (1/(1+ul))du 2_1\] arctant :
(63)
(1/(+Vul))du arctan udu
b L
ON€ SN e )
Let
P = diag{1,1,0,0}. (64)
Consequently,

U(@t) PU ! (5)

_ Lo —/aeiuydu 1
= diag {4—Ne s PN

—arctan t+arctan s
e , 0, 0} )

U@ (I-P)U " (s)

J 1/ +Tul))du

_ d1ag {0 0, — I arctan udu} )

4N
(65)

Obviously,

lvwPu ()] < 4LN <1,
(66)
"U(t) (I-P)U™" (s)" < %N <1
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That is, system (56) possesses an ordinary dichotomy. On the
other hand, we see that

f:w(t)dm >

t€(—00,+00

¥ (t)
)

J~+OO Z l
= dt + _—
o 1+12 feComroo (1+ tk)z

2
:N(n+ﬂ—),
6

J+Oor(t)dt+ D

-0 £ €(—00,+00)

(67)

7 (t)

+00 1 1
= I et —
—o0 3m(1+12) te(Coorooy (1 + 1)

2
=N ( ! + ) .
3 6
From Theorem 4, we conclude that (56) and (57) are topolog-
ically conjugated.

Example 2. Taking

1 1 1 1 }
tk+2, tk+2) tk+2’ tk+2 ’ (68)

A(t,) = diag {—
P = diag{1,1,0,0}.

Taking t, =k =0,1,2,..., we have

. 1 t_ d 1 —arctant
U (t) = dia {—e-[o (1/(1+ful)) “) arctan i
( ) 8 k+2 k+2 (69)
1 ej-ot(l/(lJr\/m))du’ 1 eJot arctanudu} )
k+2 k+2

That is,

_ 1 t
U ) PU (s) = diag { —— els 1/ +luD)du
0 PU () lg{(k+2)2
1

(k +2)*

—arctan t+arctan s
e , 0, 0} ,

. 1
Ut)(I-P) U (s) = diag 10,0, —— - /A Vlul)du
() ( ) (s) g{ k+2)

1 eJ': arctan udu }

(k +2)?
(70)
Obviously,
_ 1
v Pu ()] < e <1,
(71)

1

lvoa-pute)< TRl

1

In this case, system (56) also possesses an ordinary dichot-
omy. On the other hand, we have

2
~ T
z v (t) =m+ rE

t). €(—00,+00)

J+Oo1p(t) dt +

—00

(72)
2

J+Oor(t)dt+ Y F() = % +Z

t.€(—00,+00) 6

From Theorem 4, we conclude that (56) and (57) are topolog-
ically conjugated.
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