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We introduce the notion of h-stability for fractional differential systems. Then we investigate the boundedness and h-stability of
solutions of Caputo fractional differential systems by using fractional comparison principle and fractional Lyapunov direct method.
Furthermore, we give examples to illustrate our results.

1. Introductions and Preliminaries

Lakshmikantham et al. [1–5] investigated the basic theory
of initial value problems for fractional differential equations
involving Riemann-Liouville differential operators of order
0 < 𝑞 < 1. They followed the classical approach of the theory
of differential equations of integer order in order to compare
and contrast the differences as well as the intricacies that
might result in development [6, Vol. I]. Li et al. [7] obtained
some results about stability of solutions for fractional-order
dynamic systems using fractional Lyapunov direct method
and fractional comparison principle. Choi and Koo [8]
improved on the monotone property of Lemma 1.7.3 in [5]
for the case 𝑔(𝑡, 𝑢) = 𝜆𝑢 with a nonnegative real number
𝜆. Choi et al. [9] also investigated Mittag-Leffler stability
of solutions of fractional differential equations by using the
fractional comparison principle.

In this paper we introduce the notion of ℎ-stability for
fractional differential equations. Then, we investigate the
boundedness and ℎ-stability of solutions of Caputo fractional
differential systems by using fractional comparison principle
and fractional Lyapunov direct method. Furthermore, we
give some examples to illustrate our results.

For the basic notions and theorems about fractional
calculus, we mainly refer to some books [5, 10, 11].

We recall the notions of Mittag-Leffler functions which
were originally introduced by Mittag-Leffler in 1903 [12].
Similar to the exponential function frequently used in the
solutions of integer-order systems, a function frequently used

in the solutions of fractional order systems is the Mittag-
Leffler function, defined as

𝐸
𝛼
(𝑧) =

∞

∑

𝑘=0

𝑧
𝑘

Γ (𝑘𝛼 + 1)
, (1)

where 𝛼 > 0 and Γ is the Gamma function [11]. The Mittag-
Leffler function with two parameters has the following form:

𝐸
𝛼,𝛽

(𝑧) =

∞

∑

𝑘=0

𝑧
𝑘

Γ (𝑘𝛼 + 𝛽)
, (2)

where 𝛼 > 0 and 𝛽 > 0. For 𝛽 = 1, we have 𝐸
𝛼
(𝑧) = 𝐸

𝛼,1
(𝑧).

Also, 𝐸
1,1
(𝑧) = 𝑒

𝑧.
Note that the exponential function 𝑒

𝑎𝑡 possesses the
semigroup property (i.e., 𝑒𝑎(𝑡+𝑠) = 𝑒

𝑎𝑡

𝑒
𝑎𝑠 for all 𝑡, 𝑠 ≥ 0),

but the Mittag-Leffler function 𝐸
𝛼
(𝑎𝑡
𝛼

) does not satisfy the
semigroup property unless 𝛼 = 1 or 𝑎 = 0 [13].

We recall briefly the notions and basic properties about
fractional integral operators and fractional derivatives of
functions [5, 10]. Let 𝐽 = [𝑡

0
,∞) ⊂ R+ = [0,∞).

Definition 1 (see [5]). The Riemann-Liouville fractional inte-
gral of order 𝛼 > 0 of a function 𝑓 ∈ 𝐿

1
(𝐽,R) is defined as

𝐼
𝛼

𝑡0

𝑓 (𝑡) =
1

Γ (𝛼)
∫

𝑡

𝑡0

(𝑡 − 𝑠)
𝛼−1

𝑓 (𝑠) 𝑑𝑠, (3)

where 𝑡
0

∈ R (provided that the integral exists in the
Lebesgue sense).
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Definition 2 (see [5]). The Riemann-Liouville fractional
derivative of order 𝛼 > 0 of a continuous function𝑓 : 𝐽 → R

is given by

𝐷
𝛼

𝑡0

𝑓 (𝑡) =
1

Γ (𝑛 − 𝛼)
(
𝑑
𝑛

𝑑𝑡𝑛
∫

𝑡

𝑡0

(𝑡 − 𝑠)
𝑛−𝛼−1

𝑓 (𝑠) 𝑑𝑠) ,

𝑛 − 1 < 𝛼 < 𝑛, 𝑛 ∈ N,

(4)

provided that the right side is pointwise defined on 𝐽.

If 0 < 𝛼 < 1, then the Riemann-Liouville fractional
derivative of order 𝛼 of a function 𝑓 reduces to

𝐷
𝛼

𝑡0

𝑓 (𝑡) =
1

Γ (1 − 𝛼)

𝑑

𝑑𝑡
∫

𝑡

𝑡0

(𝑡 − 𝑠)
−𝛼

𝑓 (𝑠) 𝑑𝑠. (5)

Note that the Riemann-Liouville fractional derivatives
have singularity at 𝑡

0
and the fractional equations in the

Riemann-Liouville sense require initial conditions at some
point different from 𝑡

0
. To overcome this issue, Caputo [14]

defined the fractional derivative in the following way.

Definition 3 (see [10]). Let 𝛼 be a positive real number such
that 𝑛−1 < 𝛼 ≤ 𝑛 for 𝑛 ∈ N. The Caputo fractional derivative
of order 𝛼 of a function 𝑓 is defined by

𝐶

𝐷
𝛼

𝑡0

𝑓 (𝑡) =
1

Γ (𝑛 − 𝛼)
∫

𝑡

𝑡0

(𝑡 − 𝑠)
𝑛−𝛼−1

𝑓
(𝑛)

(𝑠) 𝑑𝑠, (6)

where 𝑓(𝑛)(𝑠) = 𝑑
𝑛

/𝑑𝑠
𝑛

𝑓(𝑠).

When 0 < 𝛼 < 1, then the Caputo fractional derivative of
order 𝛼 of 𝑓 reduces to

𝐶

𝐷
𝛼

𝑡0

𝑓 (𝑡) =
1

Γ (1 − 𝛼)
∫

𝑡

𝑡0

𝑓


(𝑠)

(𝑡 − 𝑠)
𝛼
𝑑𝑠. (7)

When 0 < 𝛼 < 1, we have
𝐶

𝐷
𝛼

𝑡0

𝑓 (𝑡) = 𝐷
𝛼

𝑡0

[𝑓 (𝑡) − 𝑓 (𝑡
0
)]

= 𝐷
𝛼

𝑡0

𝑓 (𝑡) −
𝑓 (𝑡
0
)

Γ (1 − 𝛼)
(𝑡 − 𝑡
0
)
−𝛼

.

(8)

In particular, if 𝑓(𝑡
0
) = 0, then we have

𝐶

𝐷
𝛼

𝑡0

𝑓 (𝑡) = 𝐷
𝛼

𝑡0

𝑓 (𝑡) . (9)

Hence, we can see that theCaputo derivative is defined for
functions for which the Riemann-Liouville derivative exists.
Also, we note that the Mittag-Leffler functions 𝐸

𝛼
(𝑧) and

𝐸
𝛼,𝛼

(𝑧) satisfy the more general differential relations

𝐶

𝐷
𝛼

𝑡0

𝐸
𝛼
(𝜆(𝑡 − 𝑡

0
)
𝛼

) = 𝜆𝐸
𝛼
(𝜆(𝑡 − 𝑡

0
)
𝛼

) ,

𝐷
𝛼

𝑡0

𝐸
𝛼,𝛼

(𝜆(𝑡 − 𝑡
0
)
𝛼

) = 𝜆𝐸
𝛼,𝛼

(𝜆(𝑡 − 𝑡
0
)
𝛼

) ,

(10)

respectively, for 𝜆 ∈ R.
We can obtain the following asymptotic property for

𝐸
𝛼
(𝜆𝑡
𝛼

) and 𝐸
𝛼,𝛼+1

(𝜆𝑡
𝛼

) from the result [10, page 51].

Lemma 4 (see [10]). When 𝛼 > 0, then 𝐸
𝛼,𝛽

(𝑧) has different
asymptotic behavior at infinity for 0 < 𝛼 < 2 and 𝛼 ≥ 2.

(1) If 0 < 𝛼 < 2 and 𝜇 is a real number such that
𝜋𝛼

2
< 𝜇 < min {𝜋, 𝜋𝛼} , (11)

then, for 𝑝 ∈ N \ {1}, the following asymptotic
expansions are valid:

𝐸
𝛼,𝛽

(𝑧) =
1

𝛼
𝑧
(1−𝛽)/𝛼 exp (𝑧1/𝛼)

−

𝑝

∑

𝑘=1

1

Γ (𝛽 − 𝛼𝑘)

1

𝑧𝑘
+ 𝑂(

1

𝑧𝑝+1
) ,

(12)

with |𝑧| → ∞, | arg(𝑧)| ≤ 𝜇; and

𝐸
𝛼,𝛽

(𝑧) = −

𝑝

∑

𝑘=1

1

Γ (𝛽 − 𝛼𝑘)

1

𝑧𝑘
+ 𝑂(

1

𝑧𝑝+1
) , (13)

with |𝑧| → ∞, 𝜇 ≤ | arg(𝑧)| ≤ 𝜋.
(2) When 𝛼 ≥ 2, then, for 𝑝 ∈ N \ {1}, the following

asymptotic estimate holds:

𝐸
𝛼,𝛽

(𝑧)

=
1

𝛼
∑

𝑛

(𝑧
1/𝛼 exp [2𝑛𝜋𝑖

𝛼
])

1−𝛽

exp [exp (2𝑛𝜋𝑖
𝛼

) 𝑧
1/𝛼

]

−

𝑝

∑

𝑘=1

1

Γ (𝛽 − 𝛼𝑘)

1

𝑧𝑘
+ 𝑂(

1

𝑧𝑝+1
) ,

(14)

with |𝑧| → ∞, | arg(𝑧)| ≤ 𝛼𝜋/2, and where the first
sum is taken over all integer 𝑛 such that

arg (𝑧) + 2𝜋𝑛
 ≤

𝛼𝜋

2
. (15)

Lemma 5. Let 0 < 𝛼 ≤ 1 and 𝜆 < 0. Then, 𝐸
𝛼,𝛼

(𝜆𝑡
𝛼

) and
𝐸
𝛼,𝛼+1

(𝜆𝑡
𝛼

) tend monotonically to zero as 𝑡 → ∞.

Proof. If we set𝛽 = 𝛼 and 𝑧 = 𝜆𝑡
𝛼 in Lemma 4, then it follows

from Lemma 4 that for 𝑝 = 2 we have

𝐸
𝛼,𝛼

(𝜆𝑡
𝛼

) = −

2

∑

𝑘=1

1

Γ (𝛼 − 𝛼𝑘)

1

𝜆𝑘𝑡𝑘𝛼
+ 𝑂(

1

𝜆3𝑡3𝛼
)

= −
1

Γ (−𝛼)

1

𝜆2𝑡2𝛼

+O(
1

𝜆3𝑡3𝛼
) → 0, as 𝑡 → ∞,

𝜇 ≤
arg (𝜆)

 ≤ 𝜋.

(16)

Thus, we have

𝐸
𝛼,𝛼

(𝜆𝑡
𝛼

) → 0, as 𝑡 → ∞,
arg (𝜆)

 >
𝜋𝛼

2
. (17)
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For 𝛽 = 𝛼 + 1, we also have

𝐸
𝛼,𝛼+1

(𝜆𝑡
𝛼

) → 0, as 𝑡 → ∞,
arg (𝜆)

 >
𝜋𝛼

2
, (18)

by the above similar argument.This completes the proof.

Corollary 6. Let 0 < 𝛼 < 1 and | arg(𝜆)| > 𝜋𝛼/2. Then, one
has

𝑡
𝛼

𝐸
𝛼,𝛼+1

(𝜆𝑡
𝛼

) = −
1

𝜆
−

1

Γ (1 − 𝛼) 𝜆
2𝑡𝛼

+ 𝑂(
1

𝜆3𝑡2𝛼
) as 𝑡 → ∞.

(19)

2. Main Results

Let 0 < 𝑞 < 1 and 𝑝 = 1 − 𝑞. Denote by 𝐶
𝑝
([𝑡
0
, 𝑇],R𝑛) the

function space

𝐶
𝑝
([𝑡
0
, 𝑇] ,R

𝑛

)

= {𝑥 ∈ 𝐶 ((𝑡
0
, 𝑇] ,R

𝑛

) | 𝑥 (𝑡) (𝑡 − 𝑡
0
)
𝑝

∈ 𝐶 ([𝑡
0
, 𝑇] ,R

𝑛

) } .

(20)

Let Ω ⊂ R𝑛 be a domain and 𝑓 ∈ 𝐶([𝑡
0
, 𝑡
0
+ 𝑎] × Ω,R𝑛).

We consider the Caputo fractional differential system with
the initial value

𝐶

𝐷
𝑞

𝑡0

𝑥 = 𝑓 (𝑡, 𝑥) , 𝑥 (𝑡
0
) = 𝑥
0
, (21)

where 𝑓(𝑡, 0) = 0. If 𝑥 ∈ 𝐶
𝑝
([𝑡
0
, 𝑡
0
+ 𝑎],R𝑛) satisfies (21), it

also satisfies the Volterra fractional integral equation

𝑥 (𝑡) = 𝑥
0
+

1

Γ (𝑞)
∫

𝑡

𝑡0

(𝑡 − 𝑠)
𝑞−1

𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠,

𝑡
0
≤ 𝑡 ≤ 𝑡

0
+ 𝑎,

(22)

and vice versa.
In the sequential we assume that the solution 𝑥(𝑡) of (21)

exists globally on 𝐽 = [𝑡
0
,∞). See [5, Theorem 2.10.1] for the

existence and uniqueness result.
Next, we consider the nonhomogeneous linear fractional

differential equation with Caputo fractional derivative
𝐶

𝐷
𝑞

𝑡0

𝑥 = 𝜆𝑥 + ℎ (𝑡) , 𝑥 (𝑡
0
) = 𝑥
0
, (23)

where ℎ ∈ 𝐶
𝑝
(𝐽,R) is Hölder continuous with exponent 𝑞.

Then, we get the unique solution of (23) as

𝑥 (𝑡) = 𝑥
0
𝐸
𝑞
(𝜆(𝑡 − 𝑡

0
)
𝑞

)

+ ∫

𝑡

𝑡0

(𝑡 − 𝑠)
𝑞−1

𝐸
𝑞,𝑞

(𝜆(𝑡 − 𝑠)
𝑞

) ℎ (𝑠) 𝑑𝑠

(24)

for each 𝑡 ∈ 𝐽.

Lemma 7 (see [9, Lemma 3.2]). If one sets ℎ(𝑡) ≡ 𝑑 in (23)
with a constant 𝑑, then the solution of (24) reduces to

𝑥 (𝑡) = 𝑥
0
𝐸
𝑞
(𝜆(𝑡 − 𝑡

0
)
𝑞

) + 𝑑(𝑡 − 𝑡
0
)
𝑞

× 𝐸
𝑞,𝑞+1

(𝜆(𝑡 − 𝑡
0
)
𝑞

) , 𝑡 ∈ 𝐽.

(25)

Remark 8. If ℎ(𝑡) ≡ 0, then it follows from Lemma 7 that

𝑥 (𝑡) = 𝑥
0
𝐸
𝑞
(𝜆(𝑡 − 𝑡

0
)
𝑞

) , 𝑡 ∈ 𝐽. (26)

We can obtain the followingCaputo fractional differential
inequality of Gronwall type by Lemma 7.

Lemma 9. Suppose that𝑚 ∈ 𝐶
𝑝
(R+,R) satisfies

𝐶

𝐷
𝑞

𝑡0

𝑚(𝑡) ≤ 𝜆𝑚 (𝑡) + 𝑑, 𝑚 (𝑡
0
) = 𝑚

0
, 𝑡 ≥ 𝑡

0
≥ 0, (27)

where 𝜆, 𝑑 ∈ R. Then one has

𝑚(𝑡) ≤ 𝑚 (𝑡
0
) 𝐸
𝑞
(𝜆(𝑡 − 𝑡

0
)
𝑞

)

+ 𝑑(𝑡 − 𝑡
0
)
𝑞

𝐸
𝑞,𝑞+1

(𝜆(𝑡 − 𝑡
0
)
𝑞

) , 𝑡 ≥ 𝑡
0
≥ 0.

(28)

Proof. There exists a nonnegative function 𝑛(𝑡) satisfying

𝐶

𝐷
𝑞

𝑡0

𝑚(𝑡) − 𝜆𝑚 (𝑡) − 𝑑 + 𝑛 (𝑡) = 0, 𝑡 ≥ 𝑡
0
≥ 0. (29)

It follows from Lemma 7 that

𝑚(𝑡) = 𝑚 (𝑡
0
) 𝐸
𝑞
(𝜆(𝑡 − 𝑡

0
)
𝑞

)

+ 𝑑(𝑡 − 𝑡
0
)
𝑞

𝐸
𝑞,𝑞+1

(𝜆(𝑡 − 𝑡
0
)
𝑞

)

− 𝑛 (𝑡) ∗ 𝑡
𝑞−1

𝐸
𝑞,𝑞

(𝜆(𝑡 − 𝑡
0
)
𝑞

) , 𝑡 ≥ 𝑡
0
,

(30)

where ∗ denotes the convolution operator of nonnega-
tive functions 𝑛(𝑡) and 𝑡

𝑞−1

𝐸
𝑞,𝑞
(𝜆(𝑡 − 𝑡

0
)
𝑞

). Since 𝑛(𝑡) ∗

𝑡
𝑞−1

𝐸
𝑞,𝑞
(𝜆(𝑡 − 𝑡

0
)
𝑞

) is nonnegative for each 𝑡 ≥ 𝑡
0
, then we

have

𝑚(𝑡) ≤ 𝑚 (𝑡
0
) 𝐸
𝑞
(𝜆(𝑡 − 𝑡

0
)
𝑞

)

+ 𝑑(𝑡 − 𝑡
0
)
𝑞

𝐸
𝑞,𝑞+1

(𝜆(𝑡 − 𝑡
0
)
𝑞

) , 𝑡 ≥ 𝑡
0
≥ 0.

(31)

This completes the proof.

Remark 10. If we set 𝑞 = 1 and 𝑑 = 0 in Lemma 9, then we
have

𝑚(𝑡) ≤ 𝑚 (𝑡
0
) 𝐸
1,1

(𝜆 (𝑡 − 𝑡
0
)) = 𝑚 (𝑡

0
) 𝑒
𝜆(𝑡−𝑡0), 𝑡 ≥ 𝑡

0
≥ 0.

(32)

We can obtain the following result about fractional inte-
gral inequality. It is adapted from the comparison principle
regarding nonstrict inequalities in [2, 5].

Lemma 11 (see [8, Lemma 2.11]). Let 0 < 𝑞 < 1 and 𝑔 ∈ 𝐶(𝐽×

R,R+). Suppose that 𝑤, V ∈ 𝐶(𝐽,R+) satisfy the fractional
integral inequality:

V (𝑡) − 𝐼
𝑞

𝑡0

𝑔 (𝑡, V (𝑡)) < 𝑤 (𝑡) − 𝐼
𝑞

𝑡0

𝑔 (𝑡, 𝑤 (𝑡)) , (33)

where 𝐼
𝑞

𝑡0

𝑔(𝑡, V(𝑡)) = 1/(Γ(𝑞)) ∫
𝑡

𝑡0

(𝑡 − 𝑠)
𝑞−1

𝑔(𝑠, V(𝑠))𝑑𝑠 and
𝑔(𝑡, 𝑢) is monotonic nondecreasing in 𝑢 for each 𝑡 ≥ 𝑡

0
. If

V(𝑡
0
) < 𝑤(𝑡

0
), then one has V(𝑡) < 𝑤(𝑡) on 𝐽.
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Pinto [15] introduced ℎ-stability which is an important
extension of the notions of exponential stability and uniform
Lipschitz stability for differential equations.

Wewill give the notion of ℎ-stability for Caputo fractional
differential systems.

Definition 12. The zero solution 𝑥 = 0 of (21) is said to be

(1) an ℎ-system if there exist a constant 𝑐 ≥ 1 and a
positive continuous function ℎ : 𝐽 → R such that

|𝑥 (𝑡)| ≤ 𝑐 |𝑥 (𝑎)| ℎ (𝑡) ℎ(𝑎)
−1

, 𝑡 ≥ 𝑎 ≥ 𝑡
0
, (34)

for |𝑥(𝑎)| ≤ 𝛿. Here ℎ(𝑎)−1 = 1/ℎ(𝑎).
(2) ℎ-stable if ℎ is bounded.

We recall the stability in the sense ofMittag-Leffler [8, 16].

Definition 13. The zero solution 𝑥 = 0 of (21) is said to be a
Mittag-Leffler system if

|𝑥 (𝑡)| ≤ {𝑚 (𝑥 (𝑡
0
)) 𝐸
𝑞
(𝜆(𝑡 − 𝑡

0
)
𝑞

)}
𝑏

, 𝑡 ≥ 𝑡
0
, (35)

where 𝜆 ∈ R, 𝑏 > 0,𝑚(0) = 0,𝑚(𝑥) ≥ 0, and𝑚(𝑥) are locally
Lipschitz on 𝑥 ∈ 𝐵 ⊆ R𝑛 with Lipschitz constant𝑚

0
.

The zero solution 𝑥 = 0 of (21) is called Mittag-Leffler
stable if the constant 𝜆 in (35) is nonpositive.

Note that the Mittag-Leffler stability implies ℎ-stability,
but the converse does not hold in general. See Remark 19 for
the example.

We can obtain the following result adapted from Theo-
rem 3.4 in [8].

Theorem 14. Suppose that the function 𝑓 of (21) satisfies
𝑓 (𝑡, 𝑥)

 ≤ 𝑔 (𝑡, |𝑥|) , (36)

where 𝑔 ∈ 𝐶(𝐽 × R,R+) is monotonic increasing in 𝑢 for each
𝑡 ∈ 𝐽 with 𝑔(𝑡, 0) = 0. One considers the Caputo fractional
differential equation

𝐶

𝐷
𝑞

𝑡0

𝑢 (𝑡) = 𝑔 (𝑡, 𝑢) , 𝑢 (𝑡
0
) = 𝑢
0
, 𝑡 ≥ 𝑡

0
. (37)

If the zero solution 𝑢 = 0 of (37) is an ℎ-system, then the
zero solution 𝑥 = 0 of (21) is also an ℎ-system whenever
𝑢
0
> |𝑥(𝑡

0
)|.

Proof. The equation (21) is equivalent to the following
Volterra fractional integral equation:

𝑥 (𝑡) = 𝑥 (𝑡
0
) + 𝐼
𝑞

𝑡0

𝑓 (𝑡, 𝑥 (𝑡)) , 𝑡 ≥ 𝑡
0
. (38)

Then, we obtain

|𝑥 (𝑡)| =
𝑥 (𝑡0)

 +

𝐼
𝑞

𝑡0

𝑓 (𝑡, 𝑥 (𝑡))


≤
𝑥 (𝑡0)

 + 𝐼
𝑞

𝑡0

𝑓 (𝑡, 𝑥 (𝑡))


≤
𝑥 (𝑡0)

 + 𝐼
𝑞

𝑡0

𝑔 (𝑡, |𝑥 (𝑡)|) , 𝑡 ≥ 𝑡
0
.

(39)

Thus we have

|𝑥 (𝑡)| − 𝐼
𝑞

𝑡0

𝑔 (𝑡, |𝑥 (𝑡)|)

≤
𝑥 (𝑡0)

 < 𝑢
0
= 𝑢 (𝑡)

− 𝐼
𝑞

𝑡0

𝑔 (𝑡, 𝑢 (𝑡)) , 𝑡 ≥ 𝑡
0
,

(40)

where 𝑢
0
= 𝑢(𝑡
0
). By Lemma 11, we have 𝑥(𝑡) < 𝑢(𝑡) for all

𝑡 ≥ 𝑡
0
. Since𝑢 = 0 of (37) is an ℎ-system, there exist a constant

𝑐
1
≥ 1 and a positive continuous function ℎ : 𝐽 → R such

that

|𝑢 (𝑡)| ≤ 𝑐
1
|𝑢 (𝑎)| ℎ (𝑡) ℎ(𝑡

0
)
−1

, 𝑡 ≥ 𝑎 ≥ 𝑡
0
, (41)

for |𝑢(𝑎)| ≤ 𝛿. Thus, we see that

|𝑥 (𝑡)| < 𝑢 (𝑡)

≤ 𝑐
1
|𝑢 (𝑎)| ℎ (𝑡) ℎ(𝑎)

−1

= 𝑐 |𝑥 (𝑎)| ℎ (𝑡) ℎ(𝑎)
−1

, 𝑡 ≥ 𝑎 ≥ 𝑡
0
,

(42)

where 𝑢(𝑎) = |𝑥(𝑎)|𝑑 with 𝑑 > 1 and 𝑐 = 𝑐
1
𝑑. This completes

the proof.

Corollary 15. Suppose that all conditions of Theorem 14 hold.
The asymptotic stability of (37) implies the corresponding
asymptotic stability of (21).

We can obtain an upper bound of solutions for Caputo
fractional differential equations via fractional Gronwall’s
inequality. The following result is adapted fromTheorem 5.1
in [7] andTheorem 3.15 in [9].

Lemma 16. Suppose that 𝐷 ⊂ R𝑛 is a domain containing the
origin and 𝑞 ∈ (0, 1). Let 𝑉 : R+ × 𝐷 → R be a continuously
differentiable function and locally Lipschitz with respect to 𝑥

satisfying

𝛼
1
|𝑥|
𝑎

≤ 𝑉 (𝑡, 𝑥) ≤ 𝛼
2
|𝑥|
𝑎𝑏

, (43)

𝐶

𝐷
𝑞

𝑡0

𝑉 (𝑡, 𝑥) ≤ −𝛼
3
|𝑥|
𝑎𝑏

+ 𝐿, 𝑡 ≥ 𝑡
0
, (44)

where 𝐿 ∈ R and 𝛼
1
, 𝛼
2
, 𝛼
3
, 𝑎, 𝑏 are positive constants. Then

one has

|𝑥 (𝑡)| ≤ {
𝛼
2

𝛼
1

𝑥0


ab
𝐸
𝑞
(−

𝛼
3

𝛼
2

(𝑡 − 𝑡
0
)
𝑞

)

+
𝐿

𝛼
1

(𝑡 − 𝑡
0
)
𝑞

𝐸
𝑞,𝑞+1

(−
𝛼
3

𝛼
2

(𝑡 − 𝑡
0
)
𝑞

)}

1/𝑎

,

𝑡 ≥ 𝑡
0
,

(45)

where 𝑥(𝑡) = 𝑥(𝑡, 𝑡
0
, 𝑥
0
) is any solution of (21).

Proof. It follows from (43) and (44) that

𝐶

𝐷
𝑞

𝑡0

𝑉 (𝑡, 𝑥) ≤ −𝛼
3
|𝑥|
𝑎𝑏

+ 𝐿

≤ −
𝛼
3

𝛼
2

𝑉 (𝑡, 𝑥) + 𝐿, 𝑡 ≥ 𝑡
0
.

(46)



Abstract and Applied Analysis 5

It follows from Lemma 9 that

𝑉 (𝑡, 𝑥 (𝑡)) ≤ 𝑉 (𝑡
0
, 𝑥 (𝑡
0
)) 𝐸
𝑞
(−

𝛼
3

𝛼
2

(𝑡 − 𝑡
0
)
𝑞

)

+ 𝐿(𝑡 − 𝑡
0
)
𝑞

𝐸
𝑞,𝑞+1

(−
𝛼
3

𝛼
2

(𝑡 − 𝑡
0
)
𝑞

) , 𝑡 ≥ 𝑡
0
.

(47)

Substituting (47) into (43) yields

|𝑥 (𝑡)| ≤ {
𝛼
2

𝛼
1

𝑥0


𝑎𝑏

𝐸
𝑞
(−

𝛼
3

𝛼
2

(𝑡 − 𝑡
0
)
𝑞

)

+
𝐿

𝛼
1

(𝑡 − 𝑡
0
)
𝑞

𝐸
𝑞,𝑞+1

(−
𝛼
3

𝛼
2

(𝑡 − 𝑡
0
)
𝑞

)}

1/𝑎

, 𝑡 ≥ 𝑡
0
.

(48)

This complete the proof.

We can obtain the boundedness of solutions for Caputo
fractional differential equations via the fractional Lyapunov
direct method.

Theorem 17. Under the same assumptions of Lemma 16, all
solutions of (21) are eventually bounded on 𝐽.

Proof. Let 𝑥(𝑡) = 𝑥(𝑡, 𝑡
0
, 𝑥
0
) be any solution of (21). Then it

follows from Lemma 16 that

|𝑥 (𝑡)| ≤ {
𝛼
2

𝛼
1

𝑥0


𝑎𝑏

𝐸
𝑞
(−

𝛼
3

𝛼
2

(𝑡 − 𝑡
0
)
𝑞

)

+
𝐿

𝛼
1

(𝑡 − 𝑡
0
)
𝑞

𝐸
𝑞,𝑞+1

(−
𝛼
3

𝛼
2

(𝑡 − 𝑡
0
)
𝑞

)}

1/𝑎

,

(49)

for each 𝑡 ≥ 𝑡
0
. In view of Lemma 5 and Corollary 6, we

note that 𝐸
𝑞
(−(𝛼
3
/𝛼
2
)(𝑡 − 𝑡

0
)
𝑞

) tends monotonically zero as
𝑡 → ∞ and (𝑡 − 𝑡

0
)
𝑞

𝐸
𝑞,𝑞+1

(−(𝛼
3
/𝛼
2
)(𝑡 − 𝑡

0
)
𝑞

) is eventually
bounded on [𝑡

0
,∞). Hence, there exist a positive constant

𝑀
0
= 𝑀(|𝑥

0
|) and 𝑡

1
> 𝑡
0
such that

|𝑥 (𝑡)| ≤ 𝑀
0
, 𝑡 ≥ 𝑡

1
. (50)

This completes the proof.

We can obtain the following result [7,Theorem 5.1] about
Mittag-Leffler stability of (21) as a corollary of Lemma 16.

Corollary 18. If one sets𝐿 = 0 in the assumption of Lemma 16,
then the zero solution 𝑥 = 0 of (21) is Mittag-Leffler stable.

3. Examples

In this section we give tow examples which illustrate some
results in the previous section.

Example 1 (see [8]). To illustrateTheorem 14, we consider the
Caputo fractional differential equation

𝐶

𝐷
1/2

𝑡0

𝑥 (𝑡) =
𝑥

𝑡 (1 + 𝑥2)
, 𝑡 ≥ 𝑡

0
> 0, (51)

where 𝑓(𝑡, 𝑥) = 𝑥/𝑡1 + 𝑥
2. Then the zero solution 𝑥 = 0 of

(51) is ℎ-stable.

Proof. The function 𝑓 satisfies

𝑓 (𝑡, 𝑥)
 ≤ 𝑔 (𝑡, |𝑥|) =

|𝑥|

𝑡
, 𝑡 > 0, (52)

and the solution of the Caputo fractional differential equation

𝐶

𝐷
1/2

0
𝑢 (𝑡) =

1

𝑡
𝑢, 𝑢 (𝑡

0
) = 𝑢
0

(53)

is given by 𝑢(𝑡) = 𝑐𝑡
−1/2

𝑒
−1/𝑡

, 𝑡 > 0. We have

𝑢 (𝑡) = 𝑢
0
√𝑡
0
𝑒
1/𝑡0

1

√𝑡𝑒1/𝑡
= 𝑢
0
ℎ (𝑡) ℎ(𝑡

0
)
−1

, 𝑡 ≥ 𝑡
0
> 0,

(54)

where ℎ(𝑡) = 𝑡
−1/2

𝑒
−1/𝑡. Thus, the zero solution 𝑢 = 0 of (53)

is ℎ-stable. Hence, the zero solution 𝑥 = 0 of (51) is ℎ-stable
byTheorem 14.

Remark 19. We note that the fractional differential equation
(53) given in the proof of Example 1 is ℎ-stable but notMittag-
Leffler stable.

Proof. Let 𝑢(𝑡) be any solution of (53). Then, it follows from
[8, Example 2.2] that𝑢(𝑡) is neithermonotonic nondecreasing
in 𝑡normonotonic nonincreasing in 𝑡. Furthermore,we easily
see that

lim
𝑡→0
+

𝑢 (𝑡) = 0 = lim
𝑡→∞

𝑢 (𝑡) . (55)

Suppose that (53) is Mittag-Leffler stable; that is, there exist
positive constants 𝜆 and 𝑏 satisfying

|𝑢 (𝑡)| ≤ {𝑚 (𝑢 (𝑡
0
)) 𝐸
1/2

(−𝜆(𝑡 − 𝑡
0
)
1/2

)}

𝑏

, 𝑡 ≥ 𝑡
0
> 0,

(56)

where 𝑚(0) = 0,𝑚(𝑥) ≥ 0, and 𝑚(𝑥) is locally Lipschitz
in 𝑥. Since 𝐸

1/2
(−𝜆(𝑡 − 𝑡

0
)
1/2

) is monotonic nonincreasing
in 𝑡 [17], we see that the right-hand function of (56) also
is monotonic decreasing in 𝑡. This contradicts the fact that
𝑢(𝑡) has neither monotonic nondecreasing property nor
monotonic nonincreasing property.

Next, we will give an example to illustrate Theorem 17.

Example 2. Let 0 < 𝑞 < 1. We consider the Caputo fractional
differential equation

𝐶

𝐷
𝑞

0
|𝑥 (𝑡)| = − |𝑥 (𝑡)| + 𝑓 (𝑡) , 𝑡 ≥ 0, (57)

where𝑓 ∈ 𝐶(R+,R) is bounded by a constant 𝑑. Let𝑉(𝑡, 𝑥) =
|𝑥|. Then it follows that

𝐶

𝐷
𝑞

0
𝑉 (𝑡, 𝑥)=

𝐶

𝐷
𝑞

0
|𝑥| = − |𝑥| + 𝑓 (𝑡)

≤ −𝑉 (𝑡, 𝑥) + 𝑑, 𝑡 ≥ 0.

(58)
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Let 𝛼
1
= 𝛼
2
= 𝛼
3
= 𝑎 = 𝑏 = 1. Applying them in Lemma 16

gives

|𝑥 (𝑡)| ≤ |𝑥 (0)| 𝐸
𝑞
(−𝑡
𝑞

) + 𝑑𝑡
𝑞

𝐸
𝑞,𝑞+1

(−𝑡
𝑞

) , 𝑡 ≥ 0. (59)

Hence, all solutions of (57) are eventually bounded by
Theorem 17.
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