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We study a forced Benjamin-Bona-Mahony (BBM) equation. We prove that the equation is not weak self-adjoint; however, it is
nonlinearly self-adjoint. By using a general theorem on conservation laws due to Nail Ibragimov and the symmetry generators, we
find conservation laws for these partial differential equations without classical Lagrangians. We also present some exact solutions
for a special case of the equation.

1. Introduction

In a recent paper [1], Eloe and Usman have considered the
damped externally excited Benjamin-Bona-Mahony (BBM)
type equation given by

𝑢
𝑡
+ 𝑢
𝑥
+ 2𝑏𝑢𝑢

𝑥
− 𝑐𝑢
𝑥𝑥
− 𝑑𝑢 − 𝑎𝑢

𝑥𝑥𝑡
= 𝜂 cos 𝑘 (𝑥 + 𝜆𝑡) ,

(1)

where 𝑐 and𝑑 are nonnegative constants that are proportional
to the strength of the damping effect. Equation (1) was
introduced to model long waves in nonlinear dispersive
systems. Some special cases of (1) are studied in [2, 3]. If
𝑏 = 1/2 and 𝑎 = 1, 𝑐 = 0, 𝑑 = 0, and 𝜂 = 0, then (1) reduces
to the celebrated Benjamin-Bona-Mahony (BBM) equation

𝑢
𝑡
+ 𝑢
𝑥
+ 𝑢𝑢
𝑥
− 𝑢
𝑥𝑥𝑡

= 0. (2)

The well-known BBM equation (2) was derived in [4] for
moderately long wave equations in nonlinear dispersive
systems. The authors derived three conservation laws for
(2) and also considered the forcing equation. In [5], it was
proved that these conservation laws are the only conservation
laws admitted by the BBM equation. In [6], a family of
BBM equations with strong nonlinear dispersive term was

considered from the point of view of symmetry analysis.
The symmetry reductions were derived from the optimal
system of subalgebras and lead to systems of ordinary
differential equations. For special values of the parameters of
this equation, many exact solutions are expressed by various
single and combined nondegenerative Jacobi elliptic function
solutions and their degenerative solutions (soliton, kink,
and compactons). In [7], nonlocal symmetries of a family
of Benjamin-Bona-Mahony-Burgers equations were studied.
In [8] for a family of Benjamin-Bona-Mahony equations
with strong nonlinear dispersion, the subclass of equations
which are self-adjoint was determined and some nontrivial
conservation laws were derived. In [9], da Silva and Freire
showed that the BBM equation is strictly self-adjoint and a
conservation law obtained from the scaling invariance was
established.

In [1], the authors have obtained an analytic steady state
solution of (1) and they have studied properties of some
travelling wave solutions using a perturbation method.

In [10], the first author of this paper introduced the
definition of weak self-adjointness and showed that the
substitution V = ℎ(𝑢) can be replaced with a more general
substitution, where ℎ involves not only the variable 𝑢 but also
the independent variables ℎ = ℎ(𝑥, 𝑡, 𝑢). In [11], Ibragimov
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pointed out that, in constructing conservation laws, it is only
important that V does not vanish identically and introduced
the definition of nonlinearly self-adjoint equation; that is, the
substitution V = ℎ(𝑢) can be replaced with a more general
substitution, where ℎ involves not only the variable 𝑢 but also
its derivatives as well as the independent variables; that is,
V = ℎ(𝑥, 𝑡, 𝑢, 𝑢

𝑡
, 𝑢
𝑥
, . . .).

In this paper, we consider a generalization of the damped
externally excited Benjamin-Bona-Mahony type equation (1),
that is, the forced BMM type equation

𝑢
𝑡
+ 𝑢
𝑥
+ 2𝑏𝑢𝑢

𝑥
− 𝑐𝑢
𝑥𝑥
− 𝑑𝑢 − 𝑎𝑢

𝑥𝑥𝑡
= 𝑓 (𝑥, 𝑡) , (3)

where 𝑐 and𝑑 are nonnegative constants that are proportional
to the strength of the damping effect and𝑓(𝑥, 𝑡) is an arbitrary
function of the variables 𝑥 and 𝑡.

The aim of this paper is to prove that (3) is nonlinearly
self-adjoint. We determine, by using the Lie generators of
(3) and the notation and techniques of [12], some nontrivial
conservation laws for (3). Finally, we present some exact
solutions for a special case of (3).

2. Self-Adjoint and Nonlinearly
Self-Adjoint Equations

Consider an 𝑠th-order partial differential equation

𝐹 (𝑥, 𝑢, 𝑢
(1)
, . . . , 𝑢

(𝑠)
) = 0 (4)

with independent variables 𝑥 = (𝑥
1
, . . . , 𝑥

𝑛
) and a dependent

variable 𝑢, where 𝑢
(1)

= {𝑢
𝑖
}, 𝑢
(2)

= {𝑢
𝑖𝑗
}, . . . , denote the

sets of the partial derivatives of the first, second, and so forth
orders, 𝑢

𝑖
= 𝜕𝑢/𝜕𝑥

𝑖, 𝑢
𝑖𝑗
= 𝜕
2
𝑢/𝜕𝑥
𝑖
𝜕𝑥
𝑗. The adjoint equation

to (4) is

𝐹
∗
(𝑥, 𝑢, V, 𝑢

(1)
, V
(1)
, . . . , 𝑢

(𝑠)
, V
(𝑠)
) = 0, (5)

with

𝐹
∗
(𝑥, 𝑢, V, 𝑢

(1)
, V
(1)
, . . . , 𝑢

(𝑠)
, V
(𝑠)
) =

𝛿 (V𝐹)
𝛿𝑢

, (6)

where

𝛿

𝛿𝑢

=

𝜕

𝜕𝑢

+

∞

∑

𝑠=1

(−1)
𝑠
𝐷
𝑖
1

⋅ ⋅ ⋅ 𝐷
𝑖
𝑠

𝜕

𝜕𝑢
𝑖
1
⋅⋅⋅𝑖
𝑠

(7)

denotes the variational derivatives (the Euler-Lagrange oper-
ator) and V is a new dependent variable. Here,

𝐷
𝑖
=

𝜕

𝜕𝑥
𝑖
+ 𝑢
𝑖

𝜕

𝜕𝑢

+ 𝑢
𝑖𝑗

𝜕

𝜕𝑢
𝑗

+ ⋅ ⋅ ⋅ (8)

are the total differentiations.

Definition 1. Equation (4) is said to be self-adjoint if the
equation obtained from the adjoint equation (5) by the
substitution V = 𝑢,

𝐹
∗
(𝑥, 𝑢, 𝑢, 𝑢

(1)
, 𝑢
(1)
, . . . , 𝑢

(𝑠)
, 𝑢
(𝑠)
) = 0, (9)

is identical to the original equation (4).

Definition 2. Equation (4) is said to be weak self-adjoint if
the equation obtained from the adjoint equation (5) by the
substitution V = ℎ(𝑥, 𝑡, 𝑢), with a certain function ℎ(𝑥, 𝑡, 𝑢)

such that ℎ
𝑥
(𝑥, 𝑡, 𝑢) ̸= 0, (or ℎ

𝑡
(𝑥, 𝑡, 𝑢) ̸= 0) and ℎ

𝑢
(𝑥, 𝑡, 𝑢) ̸= 0,

is identical to the original equation.

Definition 3. Equation (4) is said to be nonlinearly self-
adjoint if the equation obtained from the adjoint equation
(5) by the substitution V = ℎ(𝑥, 𝑡, 𝑢, 𝑢

(1)
, . . .), with a certain

function ℎ(𝑥, 𝑡, 𝑢, 𝑢
(1)
, . . .) such that ℎ(𝑥, 𝑡, 𝑢, 𝑢

(1)
, . . .) ̸= 0, is

identical to the original equation (4).

2.1. The Subclass of Nonlinearly Self-Adjoint Equations. Let us
single out some nonlinearly self-adjoint equations from the
equations of the form (3). Equation (6) yields

𝐹
∗
=

𝛿

𝛿𝑢

[V (𝑢
𝑡
+ 𝑢
𝑥
+ 2𝑏𝑢𝑢

𝑥
− 𝑐𝑢
𝑥𝑥

−𝑑𝑢 − 𝑎𝑢
𝑥𝑥𝑡

− 𝑓 (𝑥, 𝑡))]

= − 𝑐V
𝑥𝑥
− 2𝑏𝑢V

𝑥
− V
𝑥
+ 𝑎V
𝑡𝑥𝑥

− V
𝑡
− 𝑑V.

(10)

Setting V = ℎ(𝑥, 𝑡, 𝑢) in (10), we get

𝑎ℎ
𝑢𝑢
𝑢
𝑡
𝑢
𝑥𝑥
− 𝑐ℎ
𝑢
𝑢
𝑥𝑥
+ 𝑎ℎ
𝑡𝑢
𝑢
𝑥𝑥
+ 𝑎ℎ
𝑢𝑢𝑢

𝑢
𝑡
(𝑢
𝑥
)
2

− 𝑐ℎ
𝑢𝑢
(𝑢
𝑥
)
2

+ 𝑎ℎ
𝑡𝑢𝑢
(𝑢
𝑥
)
2

+ 2𝑎ℎ
𝑢𝑢
𝑢
𝑡𝑥
𝑢
𝑥

+ 2𝑎ℎ
𝑢𝑢𝑥

𝑢
𝑡
𝑢
𝑥
− 2𝑏ℎ

𝑢
𝑢𝑢
𝑥
− 2𝑐ℎ
𝑢𝑥
𝑢
𝑥
− ℎ
𝑢
𝑢
𝑥

+ 2𝑎ℎ
𝑡𝑢𝑥
𝑢
𝑥
+ 𝑎ℎ
𝑢
𝑢
𝑡𝑥𝑥

+ 2𝑎ℎ
𝑢𝑥
𝑢
𝑡𝑥
+ 𝑎ℎ
𝑢𝑥𝑥

𝑢
𝑡

− ℎ
𝑢
𝑢
𝑡
− 2𝑏ℎ

𝑥
𝑢 − 𝑐ℎ

𝑥𝑥
− ℎ
𝑥
+ 𝑎ℎ
𝑡𝑥𝑥

− ℎ
𝑡
− 𝑑ℎ = 0.

(11)

Now, we assume that

𝐹
∗
− 𝜆 (𝑢

𝑡
+ 𝑢
𝑥
+ 2𝑏𝑢𝑢

𝑥
− 𝑐𝑢
𝑥𝑥
− 𝑑𝑢 − 𝑎𝑢

𝑥𝑥𝑡
− 𝑓 (𝑥, 𝑡)) = 0,

(12)

where 𝜆 is an undetermined coefficient. Condition (12) reads

𝑐𝑢
𝑥𝑥
𝜆 − 2𝑏𝑢𝑢

𝑥
𝜆 − 𝑢
𝑥
𝜆 + 𝑎𝑢

𝑡𝑥𝑥
𝜆 − 𝑢
𝑡
𝜆

+ 𝑑𝑢𝜆 + 𝑓𝜆 + 𝑎ℎ
𝑢𝑢
𝑢
𝑡
𝑢
𝑥𝑥
− 𝑐ℎ
𝑢
𝑢
𝑥𝑥

+ 𝑎ℎ
𝑡𝑢
𝑢
𝑥𝑥
+ 𝑎ℎ
𝑢𝑢𝑢

𝑢
𝑡
(𝑢
𝑥
)
2

− 𝑐ℎ
𝑢𝑢
(𝑢
𝑥
)
2

+ 𝑎ℎ
𝑡𝑢𝑢
(𝑢
𝑥
)
2

+ 2𝑎ℎ
𝑢𝑢
𝑢
𝑡𝑥
𝑢
𝑥
+ 2𝑎ℎ

𝑢𝑢𝑥
𝑢
𝑡
𝑢
𝑥

− 2𝑏ℎ
𝑢
𝑢𝑢
𝑥
− 2𝑐ℎ
𝑢𝑥
𝑢
𝑥
− ℎ
𝑢
𝑢
𝑥
+ 2𝑎ℎ

𝑡𝑢𝑥
𝑢
𝑥

+ 𝑎ℎ
𝑢
𝑢
𝑡𝑥𝑥

+ 2𝑎ℎ
𝑢𝑥
𝑢
𝑡𝑥
+ 𝑎ℎ
𝑢𝑥𝑥

𝑢
𝑡

− ℎ
𝑢
𝑢
𝑡
− 2𝑏ℎ

𝑥
𝑢 − 𝑐ℎ

𝑥𝑥
− ℎ
𝑥
+ 𝑎ℎ
𝑡𝑥𝑥

− ℎ
𝑡
− 𝑑ℎ = 0.

(13)

Comparing the coefficients for the different derivatives of 𝑢,
we obtain

𝜆 = −ℎ
𝑢
,

ℎ = 𝑐
2
𝑒
2𝑐𝑡/𝑎

𝑢 + 𝛽,

(14)
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where𝑓 = 𝑓(𝑥, 𝑡) and𝛽(𝑥, 𝑡) satisfy the following conditions:

−2𝑐
2
𝑑𝑒
2𝑐𝑡/𝑎

−

2𝑐𝑐
2
𝑒
2𝑐𝑡/𝑎

𝑎

− 2𝑏𝛽
𝑥
= 0,

−𝑐
2
𝑓𝑒
2𝑐𝑡/𝑎

− 𝛽𝑑 − 𝛽
𝑥𝑥
𝑐 − 𝛽
𝑥
+ 𝑎𝛽
𝑡𝑥𝑥

− 𝛽
𝑡
= 0.

(15)

From above, we get that

𝛽 = 𝑓
3
−

(𝑎𝑐
2
𝑑 + 𝑐𝑐

2
) 𝑒
2𝑐𝑡/𝑎

𝑥

𝑎𝑏

(16)

with𝑓
3
= 𝑓
3
(𝑡) and the following conditionmust be satisfied:

𝑐
2
𝑑
2
𝑒
2𝑐𝑡/𝑎

𝑥

𝑏

+

3𝑐𝑐
2
𝑑𝑒
2𝑐𝑡/𝑎

𝑥

𝑎𝑏

+

2𝑐
2
𝑐
2
𝑒
2𝑐𝑡/𝑎

𝑥

𝑎
2
𝑏

− 𝑐
2
𝑓𝑒
2𝑐𝑡/𝑎

+

𝑐
2
𝑑𝑒
2𝑐𝑡/𝑎

𝑏

+

𝑐𝑐
2
𝑒
2𝑐𝑡/𝑎

𝑎𝑏

− 𝑓
3𝑡
− 𝑑𝑓
3
= 0.

(17)

We can now state the following theorem.

Theorem 4. Equation (3) is nonlinearly self-adjoint with

ℎ = −

(𝑎𝑐
2
𝑑 + 𝑐𝑐

2
) 𝑒
2𝑐𝑡/𝑎

𝑥

𝑎𝑏

+ 𝑐
2
𝑒
2𝑐𝑡/𝑎

𝑢 + 𝑓
3

(18)

for any functions 𝑓 = 𝑓(𝑥, 𝑡) and 𝑓
3
(𝑡) satisfying condition

(17).

In particular, we can state the following theorem.

Theorem 5. Equation (3) is nonlinearly self-adjoint for any
arbitrary function 𝑓 = 𝑓(𝑥, 𝑡) with

ℎ = 𝑐
3
𝑒
−𝑑𝑡
. (19)

3. Conservation Laws: General Theorem

We use the following theorem on conservation laws proved
in [12].

Theorem 6. Any Lie point, Lie-Bäcklund, or non-local sym-
metry

𝑋 = 𝜉
𝑖
(𝑥, 𝑢, 𝑢

(1)
, . . .)

𝜕

𝜕𝑥
𝑖
+ 𝜂 (𝑥, 𝑢, 𝑢

(1)
, . . .)

𝜕

𝜕𝑢

(20)

of (4) provides a conservation law 𝐷
𝑖
(𝐶
𝑖
) = 0 for system (4),

(5). The conserved vector is given by

𝐶
𝑖
= 𝜉
𝑖
L +𝑊[

𝜕L

𝜕𝑢
𝑖

− 𝐷
𝑗
(

𝜕L

𝜕𝑢
𝑖𝑗

) + 𝐷
𝑗
𝐷
𝑘
(

𝜕L

𝜕𝑢
𝑖𝑗𝑘

) − ⋅ ⋅ ⋅ ]

+ 𝐷
𝑗
(𝑊) [

𝜕L

𝜕𝑢
𝑖𝑗

− 𝐷
𝑘
(

𝜕L

𝜕𝑢
𝑖𝑗𝑘

) + ⋅ ⋅ ⋅ ]

+ 𝐷
𝑗
𝐷
𝑘
(𝑊) [

𝜕L

𝜕𝑢
𝑖𝑗𝑘

− ⋅ ⋅ ⋅ ] + ⋅ ⋅ ⋅ ,

(21)

where𝑊 andL are defined as follows:

𝑊 = 𝜂 − 𝜉
𝑗
𝑢
𝑗
, L = V𝐹 (𝑥, 𝑢, 𝑢

(1)
, . . . , 𝑢

(𝑠)
) . (22)

Let us apply Theorem 6 to the nonlinearly self-adjoint equa-
tion:

𝑢
𝑡
+ 𝑢
𝑥
+ 2𝑏𝑢𝑢

𝑥
− 𝑐𝑢
𝑥𝑥
− 𝑑𝑢 − 𝑎𝑢

𝑥𝑥𝑡
= 𝑓 (𝑥, 𝑡) , (23)

where

L = (𝑢
𝑡
+ 𝑢
𝑥
+ 2𝑏𝑢𝑢

𝑥
− 𝑐𝑢
𝑥𝑥
− 𝑑𝑢 − 𝑎𝑢

𝑥𝑥𝑡
− 𝑓 (𝑥, 𝑡)) V,

(24)

provided by the generator

k = 𝑘
1

𝜕

𝜕𝑡

+ 𝑘
2

𝜕

𝜕𝑥

. (25)

Here, 𝑓 = 𝑓(𝑥, 𝑡) must satisfy 𝑘
1
𝑓
𝑡
+ 𝑘
2
𝑓
𝑥
= 0. We get the

conservation law

𝐷
𝑡
(𝐶
1
) + 𝐷
𝑥
(𝐶
2
) = 0 (26)

with
𝐶
1
= −𝑘𝑘

1
𝑒
−𝑑𝑡

(𝑑𝑢 + 𝑓) + 𝐷
𝑥
(𝐵) ,

𝐶
2
= 𝑘𝑒
−𝑑𝑡

(𝑐𝑑𝑘
1
𝑢
𝑥
+ 𝑎𝑑𝑘

1
𝑢
𝑡𝑥
− 𝑏𝑑𝑘

1
𝑢
2

− 𝑑𝑘
1
𝑢 − 𝑓𝑘

2
) − 𝐷
𝑡
(𝐵) ,

(27)

where
𝐵 = (𝑘𝑒

−𝑑𝑡
(𝑎𝑘
2
𝑢
𝑥𝑥
− 3𝑐𝑘
1
𝑢
𝑥
− 2𝑎𝑘

1
𝑢
𝑡𝑥
+ 3𝑏𝑘

1
𝑢
2

− 3𝑘
2
𝑢 + 3𝑘

1
𝑢)) (3)

−1
.

(28)

We simplify the conserved vector by transferring the terms of
the form𝐷

𝑥
(⋅ ⋅ ⋅ ) from 𝐶

1 to 𝐶2 and obtain

𝐶
1
= −𝑘𝑘

1
𝑒
−𝑑𝑡

(𝑑𝑢 + 𝑓)

𝐶
2
= 𝑘𝑒
−𝑑𝑡

(𝑐𝑑𝑘
1
𝑢
𝑥
+ 𝑎𝑑𝑘

1
𝑢
𝑡𝑥

− 𝑏𝑑𝑘
1
𝑢
2
− 𝑑𝑘
1
𝑢 − 𝑓𝑘

2
) .

(29)

4. Exact Solutions

In this section, we obtain exact solutions of (3) when 𝑑 = 0

and 𝑓 = 0; that is, we consider the following equation:

𝑢
𝑡
+ 𝑢
𝑥
+ 2𝑏𝑢𝑢

𝑥
− 𝑐𝑢
𝑥𝑥
− 𝑎𝑢
𝑥𝑥𝑡

= 0. (30)

This equation has two translation symmetries; namely, 𝑋
1
=

𝜕/𝜕𝑥 and 𝑋
2
= 𝜕/𝜕𝑡. We first use these two symmetries and

transform (30) into an ordinary differential equation. Then,
employing the simplest equation method, we obtain exact
solutions.

4.1. Symmetry Reduction of (30). The symmetry ]𝑋
1
+ 𝑋
2

gives rise to the group-invariant solution

𝑢 = 𝐹 (𝑧) , (31)

where 𝑧 = 𝑥 − ]𝑡 is an invariant of ]𝑋
1
+ 𝑋
2
. Substitution

of (31) into (30) results in the nonlinear third-order ordinary
differential equation

𝑎]𝐹󸀠󸀠󸀠 (𝑧) − 𝑐𝐹󸀠󸀠 (𝑧) + 2𝑏𝐹 (𝑧) 𝐹󸀠 (𝑧) + (1 − ]) 𝐹󸀠 (𝑧) = 0.

(32)
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4.2. Exact Solutions Using Simplest Equation Method. Let us
briefly recall the simplest equation method [13, 14] here.
Consider the solutions of (32) in the form

𝐹 (𝑧) =

𝑀

∑

𝑖=0

𝐴
𝑖
(𝐻 (𝑧))

𝑖
, (33)

where 𝐻(𝑧) satisfies a Bernoulli or Riccati equation, 𝑀 is a
positive integer that can be determined by a balancing proce-
dure [14], and the coefficients 𝐴

0
, . . . , 𝐴

𝑀
are parameters to

be determined.
The Bernoulli equation we consider here is given by

𝐻
󸀠
(𝑧) = 𝛼𝐻 (𝑧) + 𝛽𝐻

2
(𝑧) , (34)

which has a solution in the form

𝐻(𝑧) = 𝛼{

cosh [𝛼 (𝑧 + 𝐶)] + sinh [𝛼 (𝑧 + 𝐶)]
1 − 𝛽 cosh [𝛼 (𝑧 + 𝐶)] − 𝛽 sinh [𝛼 (𝑧 + 𝐶)]

} .

(35)

For the Riccati equation

𝐻
󸀠
(𝑧) = 𝛼𝐻

2
(𝑧) + 𝛽𝐻 (𝑧) + 𝛾 (36)

we will use the two solutions

𝐻(𝑧) = −

𝛽

2𝛼

−

𝜃

2𝛼

tanh [1
2

𝜃 (𝑧 + 𝐶)] ,

𝐻 (𝑧) = −

𝛽

2𝛼

−

𝜃

2𝛼

tanh(1
2

𝜃𝑧)

+

sech (𝜃𝑧/2)
𝐶 cosh (𝜃𝑧/2) − (2𝛼/𝜃) sinh (𝜃𝑧/2)

,

(37)

where 𝜃2 = 𝛽
2
− 4𝛼𝛾 and 𝐶 is a constant of integration.

4.2.1. Solutions of (30) Using Bernoulli Equation as the
Simplest Equation. In this case, the balancing procedure [14]
gives𝑀 = 2 and therefore the solutions of (32) are of the form

𝐹 (𝑧) = 𝐴
0
+ 𝐴
1
𝐻 + 𝐴

2
𝐻
2
. (38)

Now, substituting (38) into (32) and making use of (34) and
then equating all coefficients of the functions 𝐻𝑖 to zero, we
obtain an algebraic system of equations in terms of 𝐴

0
, 𝐴
1
,

and 𝐴
2
.

Solving this system of algebraic equations, with the aid of
Mathematica, we obtain

𝑏 = −

6𝑎]𝛽2

𝐴
2

, 𝑐 = −5𝑎]𝛼,

𝐴
0
=

𝐴
2
(−] + 1 + 6𝑎]𝛼2)

12𝑎]𝛽2
, 𝐴

1
=

2𝐴
2
𝛼

𝛽

.

(39)

Thus, a solution of (30) is

𝑢 (𝑡, 𝑥)

= 𝐴
0
+ 𝐴
1
𝛼{

cosh [𝛼 (𝑧 + 𝐶)] + sinh [𝛼 (𝑧 + 𝐶)]
1 − 𝛽 cosh [𝛼 (𝑧 + 𝐶)] − 𝛽 sinh [𝛼 (𝑧 + 𝐶)]

}

+ 𝐴
2
𝛼
2
{

cosh [𝛼 (𝑧 + 𝐶)] + sinh [𝛼 (𝑧 + 𝐶)]
1 − 𝛽 cosh [𝛼 (𝑧 + 𝐶)] − 𝛽 sinh [𝛼 (𝑧 + 𝐶)]

}

2

,

(40)

where 𝑧 = 𝑥 − ]𝑡 and 𝐶 is a constant of integration.

4.2.2. Solutions of (30) Using Riccati Equation as the Simplest
Equation. The balancing procedure yields 𝑀 = 2 so the
solutions of (32) are of the form

𝐹 (𝑧) = 𝐴
0
+ 𝐴
1
𝐻 + 𝐴

2
𝐻
2
. (41)

Again substituting (41) into (32) andmaking use of the Riccati
equation (36), we obtain, as before, an algebraic system of
equations in terms of𝐴

0
, 𝐴
1
, 𝐴
2
. Solving the algebraic system

of equations, one obtains

𝑏 = −

6𝑎]𝛼2

𝐴
2

, 𝑐 = −

5𝑎] (𝐴
1
𝛼 − 𝐴

2
𝛽)

𝐴
2

,

𝛾 = −

𝐴
1
(𝐴
1
𝛼 − 2𝐴

2
𝛽)

4𝐴
2

2
,

𝐴
0

= −

3𝑎]𝛼2𝐴2
1
− 12𝑎]𝐴

1
𝛼𝛽𝐴
2
+ 6𝑎]𝐴2

2
𝛽
2
+ ]𝐴2
2
− 𝐴
2

2

12𝑎]𝐴
2
𝛼
2

,

(42)

and hence solutions of (30) are

𝑢 (𝑡, 𝑥) = 𝐴
0
+ 𝐴
1
{−

𝛽

2𝛼

−

𝜃

2𝛼

tanh [1
2

𝜃 (𝑧 + 𝐶)]}

+ 𝐴
2
{−

𝛽

2𝛼

−

𝜃

2𝛼

tanh [1
2

𝜃 (𝑧 + 𝐶)]}

2

,

(43)

𝑢 (𝑡, 𝑥) = 𝐴
0
+ 𝐴
1
{−

𝛽

2𝛼

−

𝜃

2𝛼

tanh(1
2

𝜃𝑧)

+

sech (𝜃𝑧/2)
𝐶 cosh (𝜃𝑧/2) − (2𝛼/𝜃) sinh (𝜃𝑧/2)

}

+ 𝐴
2
{−

𝛽

2𝛼

−

𝜃

2𝛼

tanh(1
2

𝜃𝑧)

+

sech (𝜃𝑧/2)
𝐶 cosh (𝜃𝑧/2) − (2𝛼/𝜃) sinh (𝜃𝑧/2)

}

2

,

(44)

where 𝑧 = 𝑥 − ]𝑡 and 𝐶 is a constant of integration.

5. Conclusions

We have proved that the generalized forced BBM equation
(3) is nonlinearly self-adjoint. We have determined, by using
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the Lie generators of (3) and the notation and techniques of
[12], some nontrivial conservation laws for (3). Finally, we
presented some exact solutions for a special case of (3).
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