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Stability and boundedness are two of the most important topics in the study of stochastic functional differential equations (SFDEs).
This paper mainly discusses the almost sure asymptotic stability and the boundedness of nonlinear SFDEs satisfying the local
Lipschitz condition but not the linear growth condition.Herewe assume that the coefficients of SFDEs are polynomial or dominated
by polynomial functions. We give sufficient criteria on the almost sure asymptotic stability and the boundedness for this kind of
nonlinear SFDEs. Some nontrivial examples are provided to illustrate our results.

1. Introduction

Stochastic modeling plays an important role in many
branches of sciences and industries. Since Itô introduced his
stochastic calculus, stochastic delay or functional differential
equations (SDDEs or SFDEs) have been used successfully to
model those systems which depend not only on the present
history of the state but also on the past ones (see, e.g., [1–5]).
Stability and boundedness are two of the most important
topics in the study of SDDEs or SFDEs in modern control
theory. Many researchers have done a lot of works for these
two topics (see, e.g., [6–18]).

In general, a SFDE has the form

dx (𝑡) = f (x
𝑡
, 𝑡) d𝑡 + g (x

𝑡
, 𝑡) d𝐵 (𝑡) (1)

on 𝑡 ≥ 0 with initial data 𝜁 ∈ 𝐶
𝑏

F0
([−𝜏, 0]; 𝑅

𝑛
), where

f : 𝐶([−𝜏, 0]; 𝑅𝑛) × 𝑅
+

→ 𝑅𝑛 and g : 𝐶([−𝜏, 0]; 𝑅𝑛) ×

𝑅
+
→ 𝑅𝑛×𝑚 (the notations used here will be illustrated in

Section 2). Most of the existing stability criteria of SFDEs
require the coefficients of corresponding systems to satisfy
the local Lipschitz condition and the linear growth condition
or the one-side linear growth condition (see, e.g., [2, 4, 5]).
However, many SDDEs or SFDEs can not be dominated by

the linear growth condition, such as stochastic population
system, Lotka-Volterra systems, and system (2) as follows:

dx (𝑡) = (−4x3 (𝑡) − 3x (𝑡) + 2𝐷2
1
(x
𝑡
)) d𝑡

+ (x5/3 (𝑡) + 𝐷
2
(x
𝑡
)) d𝐵 (𝑡)

(2)

with initial data 𝜁 ∈ 𝐶𝑏F0
([−𝜏, 0]; 𝑅𝑛), where 𝐵(𝑡) is a scalar

Brownian motion, 𝐷
𝑖
are bounded linear operators from

𝐶([−𝜏, 0]; 𝑅) to 𝑅 satisfying |𝐷
𝑖
(x
𝑡
)| ≤ ∫

0

−𝜏
|x(𝑡 + 𝜃)|d𝜂

𝑖
(𝜃),

and 𝜂
𝑖
(⋅) are probability measures on [−𝜏, 0], 𝑖 = 1, 2.

So it is necessary to consider the cases of the nonlinear
growth condition. Recently, Liu et al. [10] study the asymp-
totic stability of nonlinear stochastic differential equations
(SDEs) with polynomial growth condition, and they also
develop their results to the case of SDDEs [11]. In this paper,
we mainly establish some new results on the almost sure
asymptotic stability and the boundedness in the sense of
the pth moment and the trajectory with large probability of
SFDEs with polynomial growth condition, which imply the
results in [10, 11].

Here we would like to mention the work of Luo et al. [12].
It proposes a generalized theory for the asymptotic stability
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and the boundedness for SFDEs based on a Lyapunov-
type condition without the linear growth condition; more
precisely, the diffusion operator of a Lyapunov function 𝑉 is
required to satisfy the following condition:

L𝑉 (𝜑, 𝑡) ≤ 𝑎
1
− 𝑎
2
𝑉 (𝜑 (0) , 𝑡)

+ 𝑎
3
∫
0

−𝜏

𝑉 (𝜑 (𝜃) , 𝑡 + 𝜃) d𝜇 (𝜃) − 𝑈 (𝜑 (0) , 𝑡)

+ 𝑎∫
0

−𝜏

𝑈 (𝜑 (𝜃) , 𝑡 + 𝜃) d𝜇 (𝜃) ,

(3)

where 𝜇 and 𝜇 are probability measures on [−𝜏, 0], 𝑎
1
≥

0, 𝑎
2
> 𝑎
3
≥ 0, 𝑎 ∈ (0, 1). However as to system (2), setting

𝑉(x, 𝑡) = |x|2, we can get

L𝑉 (𝜑, 𝑡) = −8
󵄨󵄨󵄨󵄨𝜑 (0)

󵄨󵄨󵄨󵄨
4

− 4
󵄨󵄨󵄨󵄨𝜑 (0)

󵄨󵄨󵄨󵄨
2

+ 2∫
0

−𝜏

󵄨󵄨󵄨󵄨𝜑 (𝜃)
󵄨󵄨󵄨󵄨
4d𝜂
1
(𝜃)

+ (
󵄨󵄨󵄨󵄨𝜑 (0)

󵄨󵄨󵄨󵄨
5/3

+ ∫
0

−𝜏

󵄨󵄨󵄨󵄨𝜑 (𝜃)
󵄨󵄨󵄨󵄨 d𝜂2 (𝜃))

2

≤ −8
󵄨󵄨󵄨󵄨𝜑 (0)

󵄨󵄨󵄨󵄨
4

− 4
󵄨󵄨󵄨󵄨𝜑 (0)

󵄨󵄨󵄨󵄨
2

+ 2∫
0

−𝜏

󵄨󵄨󵄨󵄨𝜑 (𝜃)
󵄨󵄨󵄨󵄨
4d𝜂
1
(𝜃)

+ 2
󵄨󵄨󵄨󵄨𝜑 (0)

󵄨󵄨󵄨󵄨
10/3

+ 2∫
0

−𝜏

󵄨󵄨󵄨󵄨𝜑 (𝜃)
󵄨󵄨󵄨󵄨
2d𝜂
2
(𝜃) .

(4)

Since the above L𝑉(𝜑, 𝑡) includes the positive term
|𝜑(0)|10/3, it does not satisfy (3). So their work does not
imply ours. Also Shen et al. [13] use the LaSall technique to
study the almost sure asymptotical stability of SFDEs under
different settings.

The organization of this paper is as follows: Section 2
describes some necessary notations and lemmas; the exis-
tence of the global solution and the bounedness of SFDEs
are stated in Section 3; sufficient conditions are proposed for
the almost sure asymptotic stability in Section 4; to show
the applications of our results, some illustrative examples are
given in the final section.

2. Preliminaries

Through this paper, let (Ω,F, {F
𝑡
}
𝑡≥0
,P) be a complete

probability space with a filtration {F
𝑡
}
𝑡≥0

satisfying the usual
conditions and 𝐵(𝑡) an 𝑚-dimensional Brownian motion
defined on the probability space. Let 𝜏 > 0 and let
𝐶([−𝜏, 0]; 𝑅

𝑛) denote the family of all continuous 𝑅𝑛-valued
functions 𝜑 on [−𝜏, 0] with the norm ‖𝜑‖ = sup

−𝜏≤𝜃≤0
|𝜑(𝜃)|.

Let 𝐶 = 𝐶𝑏F0
([−𝜏, 0]; 𝑅𝑛) be the family of all bounded,

F
0
-measurable, 𝐶([−𝜏, 0]; 𝑅𝑛)-valued, F

𝑡
-adapted stochas-

tic processes. Let 𝜂
𝑖
be probability measures on [−𝜏, 0], which

satisfy ∫0
−𝜏
𝑑𝜂
𝑖
(𝜃) = 1 (𝑖 = 1, 2, 3, 4). Let 𝐿1(𝑅

+
; 𝑅
+
) be the

family of all functions 𝜉 : 𝑅
+
→ 𝑅
+
such that ∫+∞

0
𝜉(𝑡)d𝑡 <

∞. x(𝑡) is a continuous 𝑅-valued stochastic process on 𝑡 ∈

[−𝜏,∞). We assume x
𝑡
= {x(𝑡 + 𝜃) : −𝜏 ⩽ 𝜃 ⩽ 0} for all

𝑡 ≥ 0, which is regarded as a 𝐶([−𝜏, 0]; 𝑅𝑛)-valued stochastic
process.

Consider an 𝑛-dimensional SFDE

dx (𝑡) = f (x
𝑡
, 𝑡) d𝑡 + g (x

𝑡
, 𝑡) d𝐵 (𝑡) , (5)

on 𝑡 ≥ 0 with initial data {x(𝜃) : −𝜏 ≤ 𝜃 ≤ 0} = 𝜁 ∈
𝐶𝑏F0

([−𝜏, 0]; 𝑅𝑛), where

f : 𝐶 ([−𝜏, 0] ; 𝑅𝑛) × 𝑅
+
󳨀→ 𝑅

𝑛
,

g : 𝐶 ([−𝜏, 0] ; 𝑅𝑛) × 𝑅
+
󳨀→ 𝑅

𝑛×𝑚
.

(6)

Assume furthermore that f(0, 𝑡) = 0 and g(0, 𝑡) = 0, so
system (5) has the solution x(𝑡) = 0. The solution is called the
trial solution or equilibrium solution.

To get our main results, we firstly put forward the
following hypothesis.

Assumption 1 (the local Lipschitz condition). For each integer
𝑘 = 1, 2, . . ., there exists a positive constant d

𝑘
> 0 such that

󵄨󵄨󵄨󵄨f (𝜑, 𝑡) − f (𝜓, 𝑡)󵄨󵄨󵄨󵄨 ∨
󵄨󵄨󵄨󵄨g (𝜑, 𝑡) − g (𝜓, 𝑡)󵄨󵄨󵄨󵄨 ≤ d

𝑘

󵄩󵄩󵄩󵄩𝜑 − 𝜓
󵄩󵄩󵄩󵄩 , (7)

for all 𝜑, 𝜓 ∈ 𝐶([−𝜏, 0]; 𝑅𝑛), 𝑡 ∈ 𝑅
+
with ‖𝜑‖ ∨ ‖𝜓‖ ≤ 𝑘.

Remark 2. ByTheorem 3.1 in [15] or Lemma 2.3 in [16], this
assumption with conditions f(0, 𝑡) = 0 and g(0, 𝑡) = 0 can
guarantee a unique maximal local solution to system (5) for
any initial data.

However, to ensure the unique maximal local solution is
in fact the global solution, we need to impose the following
additional polynomial growth condition.

Assumption 3 (the polynomial growth condition). There exist
constants 𝜅, 𝜅, 𝜅, 𝛾 ≥ 0, probability measures 𝜂

𝑖
on [−𝜏, 0], 𝑖 =

1, 2, 3, 4, and positive numbers 𝑛
1
> 1, 𝑛

2
> 1 satisfying 𝑛

1
+

1 > 2𝑛
2
, and bounded functions 𝜉

1
(𝑡), 𝜉
2
(𝑡) ∈ 𝐿1(𝑅

+
; 𝑅
+
) such

that

𝜑(0)
𝑇f (𝜑, 𝑡) ≤ −𝜅󵄨󵄨󵄨󵄨𝜑 (0)

󵄨󵄨󵄨󵄨
𝑛1+1 + 𝜅∫

0

−𝜏

󵄨󵄨󵄨󵄨𝜑 (𝜃)
󵄨󵄨󵄨󵄨
𝑛1+1𝑑𝜂

1
(𝜃)

−
󵄨󵄨󵄨󵄨𝜑 (0)

󵄨󵄨󵄨󵄨
2

+ 𝜅∫
0

−𝜏

󵄨󵄨󵄨󵄨𝜑 (𝜃)
󵄨󵄨󵄨󵄨
2

𝑑𝜂
2
(𝜃) + 𝜉

1
(𝑡) ,

󵄨󵄨󵄨󵄨g (𝜑, 𝑡)
󵄨󵄨󵄨󵄨 ≤ 𝛾 (

󵄨󵄨󵄨󵄨𝜑 (0)
󵄨󵄨󵄨󵄨
𝑛2 + ∫

0

−𝜏

󵄨󵄨󵄨󵄨𝜑 (𝜃)
󵄨󵄨󵄨󵄨
𝑛2𝑑𝜂
3
(𝜃) +

󵄨󵄨󵄨󵄨𝜑 (0)
󵄨󵄨󵄨󵄨

+ ∫
0

−𝜏

󵄨󵄨󵄨󵄨𝜑 (𝜃)
󵄨󵄨󵄨󵄨 𝑑𝜂4 (𝜃)) + 𝜉2 (𝑡) ,

(8)

for all 𝜑 ∈ 𝐶([−𝜏, 0]; 𝑅𝑛), 𝑡 ∈ 𝑅
+
.

Remark 4. The probability measures 𝜂
𝑖
, 𝑖 = 1, 2, 3, 4, can be

weakened to any right continuous nondecreasing functions
(see [19]). Compared with [10, 11], Assumption 3 in this paper
is a generalization of Assumption 3 of [10] and Assumption 2
of [11].
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Let 𝐶2,1(𝑅𝑛 × [−𝜏, +∞); 𝑅
+
) denote the family of all

continuous nonnegative functions 𝑉(𝑥, 𝑡) on 𝑅𝑛 × [−𝜏, +∞),
which are continuously twice differentiable in 𝑥 and once
differentiable in 𝑡. For each 𝑉 ∈ 𝐶2,1(𝑅𝑛 × [−𝜏, +∞); 𝑅

+
),

denote an operatorL𝑉 from 𝐶([−𝜏, 0]; 𝑅𝑛) × 𝑅
+
to 𝑅 by

L𝑉 (𝜑, 𝑡) = 𝑉
𝑡
(𝜑 (0) , 𝑡) + 𝑉

𝑥
(𝜑 (0) , 𝑡) f (𝜑, 𝑡)

+
1

2
trace [g𝑇 (𝜑, 𝑡) 𝑉

𝑥𝑥
(𝜑 (0) , 𝑡) g (𝜑, 𝑡)] ,

(9)

where 𝑉
𝑡
(x, 𝑡) = 𝜕𝑉(x, 𝑡)/𝜕𝑡, 𝑉

𝑥𝑥
(x, 𝑡) = (𝜕2𝑉(x, 𝑡)/

𝜕𝑥
𝑖
𝑥
𝑗
)
𝑛×𝑛

, and 𝑉
𝑥
(x, 𝑡) = (𝜕𝑉(x, 𝑡)/𝜕𝑥

1
, . . . , 𝜕𝑉(x, 𝑡)/𝜕𝑥

𝑛
).

Then let us recall a number of lemmas.

Lemma 5 (cf. [20]). If ℎ(𝑡) is a bounded function on [0,∞)

and ℎ(𝑡) ∈ 𝐿1(𝑅
+
; 𝑅
+
), then for any 𝛽 ≥ 1, ∫+∞

0
ℎ𝛽(𝑡)𝑑𝑡 < ∞.

Lemma 6 (cf. [11]). Assume 𝑎, 𝑏, 𝑞 > 0, 𝑏 ≥ 𝑞, 𝛼 > 𝛽 > 0. If
the following condition holds,

𝑎

𝑏
> (𝛼 − 𝛽)

𝛽/(𝛼−𝛽)

𝛽𝛼
−𝛼/(𝛼−𝛽)

, (10)

then there exists 𝑎 ∈ (0, 𝑎) satisfying

𝑎 + 𝑏𝑡
𝛼
− 𝑞𝑡
𝛽
> 𝑎, (11)

for all 𝑡 ≥ 0.

Lemma 7 (cf. [14]). Assume 𝛼, 𝛽 > 0. For any ℎ(𝑡) ∈ 𝐶(𝑅𝑛;

𝑅), if lim sup
|𝑡|→∞

(ℎ(𝑡)/|𝑡|𝛼) = 0, then there exists a constant
𝐻 satisfying

sup
𝑡∈𝑅
𝑛

{−𝛽|𝑡|
𝛼
+ ℎ (𝑡)} < 𝐻. (12)

Lemma 8 (Kolmogorov-Chentsov theorem [21]). Suppose
that a stochastic process 𝑋(𝑡) on 𝑡 ≥ 0 satisfies the condition

𝐸|𝑋 (𝑡) − 𝑋 (𝑠)|
𝛼
≤ 𝐷|𝑡 − 𝑠|

1+𝛽
, 0 ≤ 𝑠, 𝑡 < ∞ (13)

for some positive constants 𝛼, 𝛽, and 𝐷. Then there exists a
continuous modification 𝑋(𝑡) of 𝑋(𝑡), which has the property
that, for every 𝛾 ∈ (0, 𝛽/𝛼), there is a positive random variable
𝛿(𝜔) such that

𝑃{𝜔 : sup
0<𝑡−𝑠<𝛿(𝜔),0≤𝑠,𝑡<∞

󵄨󵄨󵄨󵄨󵄨
𝑋 (𝑡, 𝜔) − 𝑋 (𝑠, 𝜔)

󵄨󵄨󵄨󵄨󵄨

|𝑡 − 𝑠|
𝛾

≤
2

1 − 2𝛾
} = 1.

(14)

In other words, almost every sample path of 𝑋(𝑡) is locally but
uniformly Hölder-continuous with exponent 𝛾.

3. Boundedness of SFDEs

For a stochastic differential equation to have a unique global
solution for any given initial value, the coefficients of this
equation are generally required to satisfy the linear growth

condition and the local Lipschitz condition (see [2, 4, 5])
or a given non-Lipschitz condition and the linear growth
condition (see [22]). However, when the coefficients of the
system (5) satisfy the local Lipschitz condition and the
polynomial growth condition, the solution of the system (5)
may explode at a finite time. So it is necessary to examine the
existence and uniqueness of the global solution of the system
(5). Here we state the following existence-and-uniqueness
result.

Lemma 9. If Assumptions 1 and 3 and 𝜅 > 𝜅 hold, then for
any initial data 𝜁 ∈ 𝐶𝑏F0

([−𝜏, 0]; 𝑅𝑛), there is a unique global
solution x(𝑡, 𝜁) of system (5) on 𝑡 ≥ −𝜏.

Remark 10. This result is the special case of Theorem 3.2
of [15]. Since it is not so easy to see this fact directly, we
give the proof in the Appendix. The fact that we write down
our Lemma 9 here is to keep our paper completely based on
Assumptions 1 and 3.

We now show the following asymptotic boundedness of
the global solution in the sense of the pth moment and the
trajectory with large probability.

Theorem 11. If Assumptions 1 and 3 and 𝜅 > 𝜅 hold, then for
any initial data 𝜁 ∈ 𝐶 and any 𝑝 ≥ 0, the global solution x(𝑡, 𝜁)
of system (5) is bounded in the sense of 𝑝th moment; that is,
there exists a constant𝑀

𝑝
> 0 such that

sup
−𝜏≤𝑡<+∞

𝐸|x (𝑡, 𝜁)|𝑝 ≤ 𝑀
𝑝
. (15)

Proof. Since 𝜅 > 𝜅, the existence and uniqueness of the
solution follow from Lemma 9. And there exists at least a
sufficiently small positive constant 𝜀 satisfying 𝜅 > 𝜅𝑒𝜀𝜏. So
by the continuity, define 𝜀󸀠󸀠 = sup{𝜀 > 0 : 𝜅 > 𝜅𝑒𝜀𝜏}. For the
sake of simplicity, write x(𝑡) = x(𝑡, 𝜁), x

𝑡
= x𝜁
𝑡
. For any 𝑝 ≥ 2,

applying Itô’s formula to 𝑉(x, 𝑡) = 𝑒𝜀𝑡|x(𝑡)|𝑝, 𝜀 ∈ (0, 𝜀󸀠󸀠], we
yield

L𝑉 (x, 𝑡)

= 𝑒
𝜀𝑡
(L|x (𝑡)|𝑝 + 𝜀|x (𝑡)|𝑝)

≤ 𝑒
𝜀𝑡
[
𝑝

2
|x (𝑡)|𝑝−2

× (2x𝑇 (𝑟) f (x
𝑟
, 𝑟) + (𝑝 − 1)

󵄨󵄨󵄨󵄨g (x𝑟, 𝑟)
󵄨󵄨󵄨󵄨
2

)

+𝜀|x (𝑡)|𝑝]

≤ 𝑒
𝜀𝑡𝑝

2
|x (𝑡)|𝑝−2

× [2(−𝜅|x (𝑡)|𝑛1+1 + 𝜅∫
0

−𝜏

|x (𝑡 + 𝜃)|𝑛1+1𝑑𝜂
1
(𝜃)

−|x (𝑡)|2 + 𝜅∫
0

−𝜏

|x (𝑡 + 𝜃)|2𝑑𝜂
2
(𝜃) + 𝜉

1
(𝑡) )

+ 5 (𝑝 − 1)
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× (𝛾
2
[|x (𝑡)|2𝑛2 + ∫

0

−𝜏

|x (𝑡 + 𝜃)|2𝑛2𝑑𝜂
3
(𝜃)

+|x (𝑡)|2 + ∫
0

−𝜏

|x (𝑡 + 𝜃)|2𝑑𝜂
4
(𝜃)]

+𝜉
2

2
(𝑡) ) +

2

𝑝
𝜀|x (𝑡)|2]

≤
𝑝

2
𝑒
𝜀𝑡
[−2 (𝜅 − 𝜅𝑒

𝜀𝜏
) |x (𝑡)|𝑝+𝑛1−1 + 𝑜 (|x (𝑡)|𝑝+𝑛1−1)]

+ 2𝜅𝑒
𝜀𝑡
𝐽
2
+ 5 (𝑝 − 1) 𝛾

2
𝑒
𝜀𝑡
𝐽
4
+
𝑝

2
5 (𝑝 − 1) 𝛾

2

×
2𝑛
2

𝑝 + 2𝑛
2
− 2

𝑒
𝜀𝑡
𝐽
3
+ 𝑝𝜅

𝑛
1
+ 1

𝑝 + 𝑛
1
− 1

𝑒
𝜀𝑡
𝐽
1
+ 2𝑒
𝜀𝑡
𝜉
𝑝/2

1
(𝑡)

+ 5 (𝑝 − 1) 𝑒
𝜀𝑡
𝜉
𝑝

2
(𝑡) ,

(16)

where 𝐽
1
= ∫
0

−𝜏
|x(𝑡 + 𝜃)|𝑝+𝑛1−1d𝜂

1
(𝜃) − 𝑒𝜀𝜏|x(𝑡)|𝑝+𝑛1−1, 𝐽

2
=

∫
0

−𝜏
|x(𝑡 + 𝜃)|𝑝d𝜂

2
(𝜃) − 𝑒𝜀𝜏|x(𝑡)|𝑝, 𝐽

3
= ∫
0

−𝜏
|x(𝑡 + 𝜃)|𝑝+2𝑛2−2d𝜂

3

(𝜃)−𝑒𝜀𝜏|x(𝑡)|𝑝+2𝑛2−2, and 𝐽
4
= ∫
0

−𝜏
|x(𝑡+𝜃)|𝑝d𝜂

4
(𝜃)−𝑒𝜀𝜏|x(𝑡)|𝑝.

Noting that 𝜅 > 𝜅𝑒𝜀𝜏 and |x(𝑡)| ≥ 0 for any 𝑡 ≥ 0,
by Lemma 7 and the same technique as (A.3), 𝐺(|x(𝑡)|) =

−2(𝜅−𝜅𝑒𝜀𝜏)|x(𝑡)|𝑝+𝑛1−1+𝑜(|x(𝑡)|𝑝+𝑛1−1), as a function of |x(𝑡)|,
has a positive upper-boundedness; that is, there is a positive
constant 𝑄 such that

𝐺 (|x (𝑡)|) = −2 (𝜅 − 𝜅𝑒𝜀𝜏) |x (𝑡)|𝑝+𝑛1−1 + 𝑜 (|x (𝑡)|𝑝+𝑛1−1) ≤ 𝑄.
(17)

And in view of the fact that

∫
𝑡

0

𝑒
𝜀𝑠
𝐽
𝑖
d𝑠

= ∫
𝑡

0

𝑒
𝜀𝑠
(∫
0

−𝜏

|x (𝑠 + 𝜃)|𝑤𝑖d𝜂
𝑖
(𝜃) − 𝑒

𝜀𝜏
|x (𝑠)|𝑤𝑖) d𝑠

≤ 𝑒
𝜀𝜏
∫
0

−𝜏

|x (𝑠)|𝑤𝑖d𝑠,

(18)

for 𝑤
1
= 𝑝 + 𝑛

1
− 1, 𝑤

3
= 𝑝 + 2𝑛

2
− 2, and 𝑤

2
= 𝑤
4
= 𝑝, we

yield that, for 𝑡 ≥ 0,

𝐸𝑒
𝜀𝑡
|x (𝑡)|𝑝 ≤ 𝐸|x (0)|𝑝 +

𝑝

2
𝑄∫
𝑡

0

𝑒
𝜀𝑠d𝑠

+ 𝑝𝜅
𝑛
1
+ 1

𝑝 + 𝑛
1
− 1

𝑒
𝜀𝜏
∫
0

−𝜏

|x (𝑠)|𝑝+𝑛1−1d𝑠

+ 2𝜅𝑒
𝜀𝜏
∫
0

−𝜏

|x (𝑠)|𝑝d𝑠

+
𝑝

2
5 (𝑝 − 1) 𝛾

2 2𝑛
2

𝑝 + 2𝑛
2
− 2

𝑒
𝜀𝜏

× ∫
0

−𝜏

|x (𝑠)|𝑝+2𝑛2−2d𝑠

+ 5 (𝑝 − 1) 𝛾
2
𝑒
𝜀𝜏
∫
0

−𝜏

|x (𝑠)|𝑝d𝑠

+ ∫
𝑡

0

𝑒
𝜀𝑠
[2𝜉
𝑝/2

1
(𝑠) + 5 (𝑝 − 1) 𝜉

𝑝

2
(𝑠)] d𝑠.

(19)

By virtue of the boundedness of 𝜉
1
(𝑡), 𝜉
2
(𝑡), there is a con-

stant Ψ > 0 such that 𝜉
1
(𝑡) ∨ 𝜉

2
(𝑡) ≤ Ψ, which implies that

𝐸𝑒
𝜀𝑡
|x (𝑡)|𝑝 ≤ 𝑐 + [2Ψ𝑝/2 + 5 (𝑝 − 1)Ψ𝑝 +

𝑝

2
𝑄]∫
𝑡

0

𝑒
𝜀𝑠d𝑠,

(20)

where 𝑐 = 𝑝𝜅((𝑛
1
+ 1)/(𝑝 + 𝑛

1
− 1))𝑒𝜀𝜏 ∫

0

−𝜏
|x(𝑠)|𝑝+𝑛1−1d𝑠 +

(𝑝/2)5(𝑝 − 1)𝛾2(2𝑛
2
/(𝑝 + 2𝑛

2
− 2))𝑒𝜀𝜏 ∫

0

−𝜏
|x(𝑠)|𝑝+2𝑛2−2d𝑠 +

2𝜅𝑒𝜀𝜏 ∫
0

−𝜏
|x(𝑠)|𝑝d𝑠+ 5(𝑝−1)𝛾2𝑒𝜀𝜏 ∫0

−𝜏
|x(𝑠)|𝑝d𝑠+𝐸|x(0)|𝑝.This

implies

𝐸|x (𝑡)|𝑝 ≤ 𝑐𝑒−𝜀𝑡 +
2Ψ𝑝/2 + 5 (𝑝 − 1)Ψ𝑝 + (𝑝/2)𝑄

𝜀

× (1 − 𝑒
−𝜀𝑡
) .

(21)

From the boundedness of initial data 𝜁 ∈ 𝐶, we claim that,
for any 𝑝 ≥ 2, there exists a constant 𝑀

𝑝
> 0 such that

sup
−𝜏≤𝑡<+∞

𝐸|x(𝑡, 𝜁)|𝑝 ≤ 𝑀
𝑝
. When 𝑝 ∈ (0, 2), using the

Lyapunov inequality, we claim that

sup
−𝜏≤𝑡<∞

𝐸|x (𝑡)|𝑝 ≤ ( sup
−𝜏≤𝑡<∞

𝐸|x (𝑡)|2)
𝑝/2

≤ 𝑀
𝑝/2

2
.

(22)

From Theorem 11 and the Chebyshev inequality, we get
the following proposition about the asymptotic boundedness
of the global solution in the sense of the trajectory with large
probability.

Proposition 12. If Assumptions 1 and 3 and 𝜅 > 𝜅 hold, then
for any initial data 𝜁 ∈ 𝐶, the global solution x(𝑡, 𝜁) of system
(5) is stochastically ultimately bounded; namely, for any 𝜀 ∈

(0, 1), there exists a constant 𝐿 = 𝐿(𝜀) > 0 such that

lim sup
𝑡→∞

𝑃 {|x (𝑡, 𝜁)| ≤ 𝐿} ≥ 1 − 𝜀. (23)

Proof. For any 𝜀 ∈ (0, 1), letting 𝐿 = (𝑀
𝑝
/𝜀)
1/𝑝, applying

Theorem 11 and the Chebyshev inequality, we have

𝑃 {|x (𝑡, 𝜁)| > 𝐿} ≤ 𝐸|x (𝑡, 𝜁)|𝑝

𝐿𝑝
≤ 𝜀. (24)

So we get the required assertion.

Further we continue to discuss the asymptotic bounded-
ness of the norm of x

𝑡
in system (5) in the sense of the 𝑝th

moment and the trajectory with large probability.
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Theorem 13. If Assumptions 1 and 3 and 𝜅 > 𝜅 hold, then for
any initial data 𝜁 ∈ 𝐶, the norm of x

𝑡
in system (5) is bounded

in the sense of 𝑝th moment; that is, there exists a constant
𝑁
𝑝
> 0 such that the global solution x(𝑡, 𝜁) of system (5) has

the property

sup
0≤𝑡<+∞

𝐸
󵄩󵄩󵄩󵄩x𝑡

󵄩󵄩󵄩󵄩
𝑝

≤ 𝑁
𝑝
. (25)

Proof. For the sake of simplicity, write x(𝑡) = x(𝑡, 𝜁). From
Theorem 11, set sup

−𝜏≤𝑡<∞
𝐸|x(𝑡)|𝑝 ≤ 𝑀

𝑝
. For 𝑝 ≥ 2, 𝑡 ≥ 0,

and 𝛽 ∈ [0, 𝜏], using Itô’s formula, we compute that

󵄨󵄨󵄨󵄨x (𝑡 − 𝛽)
󵄨󵄨󵄨󵄨
𝑝

= |x (𝑡 − 𝜏)|𝑝

+ ∫
𝑡−𝛽

𝑡−𝜏

𝑝

2
|x (𝑠)|𝑝−2

× [2x𝑇 (𝑠) f (x
𝑠
, 𝑠) +

󵄨󵄨󵄨󵄨g (x𝑠, 𝑠)
󵄨󵄨󵄨󵄨
2

+ (𝑝 − 2) |x (𝑠)|−2󵄨󵄨󵄨󵄨󵄨x
𝑇
(𝑠) g (x

𝑠
, 𝑠)
󵄨󵄨󵄨󵄨󵄨

2

] d𝑠

+ ∫
𝑡−𝛽

𝑡−𝜏

𝑝|x (𝑠)|𝑝−2x𝑇 (𝑠) g (x
𝑠
, 𝑠) d𝐵 (𝑠)

= |x (𝑡 − 𝜏)|𝑝 +
𝑝

2
𝐼
1

+ ∫
𝑡−𝛽

𝑡−𝜏

𝑝|x (𝑠)|𝑝−2x𝑇 (𝑠) g (x
𝑠
, 𝑠) d𝐵 (𝑠) ,

(26)

where 𝐼
1

= ∫
𝑡−𝛽

𝑡−𝜏
|x(𝑠)|𝑝−2[2x𝑇(𝑠)f(x

𝑠
, 𝑠) + |g(x

𝑠
, 𝑠)|2 +

(𝑝−2)|x(𝑠)|−2‖x𝑇(𝑠)g(x
𝑠
, 𝑠)|2]d𝑠. Using Young’s inequality, we

compute that

𝐼
1

≤ ∫
𝑡−𝛽

𝑡−𝜏

|x (𝑠)|𝑝−2

× [2x𝑇 (𝑠) f (x
𝑠
, 𝑠) + (𝑝 − 1)

󵄨󵄨󵄨󵄨g (x𝑠, 𝑠)
󵄨󵄨󵄨󵄨
2

] d𝑠

≤ ∫
𝑡−𝛽

𝑡−𝜏

|x (𝑠)|𝑝−2

× [ − 2𝜅|x (𝑠)|𝑛1+1

+ 2𝜅∫
0

−𝜏

|x (𝑠 + 𝜃)|𝑛1+1d𝜂
1
(𝜃) − 2|x (𝑠)|2

+ 2𝜅∫
0

−𝜏

|x (𝑠 + 𝜃)|2d𝜂
2
(𝜃)

+ 2𝜉
1
(𝑠) + 5 (𝑝 − 1) 𝛾

2

× (|x (𝑠)|2𝑛2

+ ∫
0

−𝜏

|x (𝑠 + 𝜃)|2𝑛2d𝜂
3
(𝜃) + |x (𝑠)|2

+ ∫
0

−𝜏

|x (𝑠 + 𝜃)|2d𝜂
4
(𝜃))

+5 (𝑝 − 1) 𝜉
2

2
(𝑠) ] d𝑠

≤ ∫
𝑡−𝛽

𝑡−𝜏

[ (−2𝜅 + 2𝜅) |x (𝑠)|𝑝+𝑛1−1

+ 10 (𝑝 − 1) 𝛾
2
|x (𝑠)|𝑝+2𝑛2−2

+ ( − 2 + 2𝜅 + 10 (𝑝 − 1) 𝛾
2

+
2 (𝑝 − 2)

𝑝
+ 5 (𝑝 − 1)

𝑝 − 2

𝑝
)

× |x (𝑠)|𝑝 + 2𝜅 𝑛
1
+ 1

𝑝 + 𝑛
1
− 1

𝐽
1
+ 2𝜅

2

𝑝
𝐽
2

+ 5 (𝑝 − 1) 𝛾
2 2𝑛

2

𝑝 + 2𝑛
2
− 2

𝐽
3
+ 5 (𝑝 − 1) 𝛾

2

×
2

𝑝
𝐽
4
+
4

𝑝
𝜉
𝑝/2

1
(𝑠) + 5 (𝑝 − 1)

2

𝑝
𝜉
𝑝

2
(𝑠) ] d𝑠,

(27)

where 𝐽
1
= ∫
0

−𝜏
|x(𝑠 + 𝜃)|𝑝+𝑛1−1d𝜂

1
(𝜃) − |x(𝑠)|𝑝+𝑛1−1, 𝐽

2
=

∫
0

−𝜏
|x(𝑠+𝜃)|𝑝d𝜂

2
(𝜃)−|x(𝑠)|𝑝, 𝐽

3
= ∫
0

−𝜏
|x(𝑠+ 𝜃)|𝑝+2𝑛2−2d𝜂

3
(𝜃)−

|x(𝑠)|𝑝+2𝑛2−2, and 𝐽
4
= ∫
0

−𝜏
|x(𝑠+𝜃)|𝑝d𝜂

4
(𝜃)− |x(𝑠)|𝑝. However

we can get ∫𝑡−𝛽
𝑡−𝜏

𝐽
𝑖
d𝑠 = ∫𝑡−𝛽

𝑡−𝜏
∫
0

−𝜏
|x(𝑠+𝜃)|𝑤𝑖𝑑𝜂

𝑖
(𝜃)−|x(𝑠)|𝑤𝑖d𝑠 ≤

∫
𝑡−𝜏

𝑡−2𝜏
|x(𝑠)|𝑤𝑖d𝑠, for 𝑤

1
= 𝑝 + 𝑛

1
− 1, 𝑤

3
= 𝑝 + 2𝑛

2
− 2, and

𝑤
2
= 𝑤
4
= 𝑝, respectively.

Let 𝑄(|x(𝑡)|) = (−2𝜅 + 2𝜅)|x(𝑡)|𝑝+𝑛1−1 + 10(𝑝 −

1)𝛾2|x(𝑡)|𝑝+2𝑛2−2 + (−2+2𝜅+10(𝑝−1)𝛾2 + 2(𝑝−2)/𝑝+5(𝑝−
1)((𝑝 − 2)/𝑝))|x(𝑡)|𝑝. Since 𝜅 > 𝜅, 𝑛

1
+ 1 > 2𝑛

2
≥ 2, by the

same technique as (A.3) in the Appendix, we get that there
exists a positive constant𝐾 such that𝑄(|x(𝑡)|) ≤ 𝐾. By virtue
of the boundedness of 𝜉

1
, 𝜉
2
, assuming 𝜉

1
(𝑡) ∨ 𝜉

2
(𝑡) ≤ Ψ, we

have

𝐼
1
≤ 𝐾𝜏 + 2𝜅

𝑛
1
+ 1

𝑝 + 𝑛
1
− 1

∫
𝑡−𝜏

𝑡−2𝜏

|x (𝑠)|𝑝+𝑛1−1d𝑠

+ 5 (𝑝 − 1) 𝛾
2 2𝑛

2

𝑝 + 2𝑛
2
− 2

∫
𝑡−𝜏

𝑡−2𝜏

|x (𝑠)|𝑝+2𝑛2−2d𝑠

+ (2𝜅 + 5 (𝑝 − 1) 𝛾
2
)
2

𝑝
∫
𝑡−𝜏

𝑡−2𝜏

|x (𝑠)|𝑝 d𝑠

+ (
4

𝑝
Ψ
𝑝/2

+ 5 (𝑝 − 1)
2

𝑝
Ψ
𝑝
) 𝜏

:= 𝐼
2
.

(28)
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By virtue of the boundedness of sup
−𝜏≤𝑡<∞

𝐸|x(𝑡)|𝑝, we
have

𝐸 (𝐼
2
)

= 𝐾𝜏 + 2𝜅
𝑛
1
+ 1

𝑝 + 𝑛
1
− 1

𝐸∫
𝑡−𝜏

𝑡−2𝜏

|x (𝑠)|𝑝+𝑛1−1d𝑠

+ (2𝜅 + 5 (𝑝 − 1) 𝛾
2
)
2

𝑝
𝐸∫
𝑡−𝜏

𝑡−2𝜏

|x (𝑠)|𝑝d𝑠

+ 5 (𝑝 − 1) 𝛾
2 2𝑛

2

𝑝 + 2𝑛
2
− 2

× 𝐸∫
𝑡−𝜏

𝑡−2𝜏

|x (𝑠)|𝑝+2𝑛2−2d𝑠

+ (
4

𝑝
Ψ
𝑝/2

+ 5 (𝑝 − 1)
2

𝑝
Ψ
𝑝
) 𝜏

≤ 𝐾𝜏 + 2𝜅
𝑛
1
+ 1

𝑝 + 𝑛
1
− 1

𝑀
𝑝+𝑛1−1

𝜏

+ 5 (𝑝 − 1) 𝛾
2 2𝑛

2

𝑝 + 2𝑛
2
− 2

𝑀
𝑝+2𝑛2−2

𝜏

+ (2𝜅 + 5 (𝑝 − 1) 𝛾
2
)
2

𝑝
𝑀
𝑝
𝜏

+ (
4

𝑝
Ψ
𝑝/2

+ 5 (𝑝 − 1)
2

𝑝
Ψ
𝑝
) 𝜏

=: 𝑀
1
.

(29)

Therefore, from (26), we have

𝐸 sup
0≤𝛽≤𝜏

󵄨󵄨󵄨󵄨x (𝑡 − 𝛽)
󵄨󵄨󵄨󵄨
𝑝

≤ 𝐸|x (𝑡 − 𝜏)|𝑝 +
𝑝

2
𝑀
1

+ 𝐸 sup
0≤𝛽≤𝜏

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
𝑡−𝛽

𝑡−𝜏

𝑝|x (𝑠)|𝑝−2x𝑇 (𝑠) g (x
𝑠
, 𝑠) d𝐵 (𝑠)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝑀
𝑝
+
𝑝

2
𝑀
1

+ 𝐸 sup
0≤𝛽≤𝜏

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
𝑡−𝛽

𝑡−𝜏

𝑝|x (𝑠)|𝑝−2x𝑇 (𝑠) g (x
𝑠
, 𝑠) d𝐵 (𝑠)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
.

(30)

Using B-D-G inequality, we get that

𝐸 sup
0≤𝛽≤𝜏

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
𝑡−𝛽

𝑡−𝜏

𝑝|x (𝑠)|𝑝−2x𝑇 (𝑠) g (x
𝑠
, 𝑠) d𝐵 (𝑠)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ √32𝐸[∫
𝑡

𝑡−𝜏

𝑝
2
|x (𝑠)|2𝑝−4|x (𝑠)|2󵄨󵄨󵄨󵄨g (x𝑠, 𝑠)

󵄨󵄨󵄨󵄨
2d𝑠]
1/2

≤ √32𝑝𝐸[ sup
0≤𝛽≤𝜏

󵄨󵄨󵄨󵄨x (𝑡 − 𝛽)
󵄨󵄨󵄨󵄨
𝑝

∫
𝑡

𝑡−𝜏

|x (𝑠)|𝑝−2󵄨󵄨󵄨󵄨g (x𝑠, 𝑠)
󵄨󵄨󵄨󵄨
2d𝑠]
1/2

≤
1

2
𝐸 sup
0≤𝛽≤𝜏

󵄨󵄨󵄨󵄨x (𝑡 − 𝛽)
󵄨󵄨󵄨󵄨
𝑝

+ 16𝑝
2
𝐸∫
𝑡

𝑡−𝜏

|x (𝑠)|𝑝−2󵄨󵄨󵄨󵄨g (x𝑠, 𝑠)
󵄨󵄨󵄨󵄨
2d𝑠

≤
1

2
𝐸 sup
0≤𝛽≤𝜏

󵄨󵄨󵄨󵄨x (𝑡 − 𝛽)
󵄨󵄨󵄨󵄨
𝑝

+𝑀
2
,

(31)

where the boundedness of 𝐸∫𝑡
𝑡−𝜏

|x(𝑠)|𝑝−2|g(x
𝑠
, 𝑠)|2d𝑠 can be

obtained from the boundedness of 𝐼
1
and sup

−𝜏≤𝑡<∞
𝐸|x(𝑡)|𝑝

above and 𝑀
2
is a constant which is not necessary to know

exactly. Substituting it into (30), we yield

𝐸
󵄩󵄩󵄩󵄩x𝑡

󵄩󵄩󵄩󵄩
𝑝

≤ 2𝑀
𝑝
+ 𝑝𝑀

1
+ 2𝑀

2
. (32)

So we claim that there exists a 𝑁
𝑝

> 0 such that
sup
0≤𝑡<∞

𝐸‖x
𝑡
‖𝑝 < 𝑁

𝑝
for any 𝑝 ≥ 2. When 𝑝 ∈ (0, 2), using

the Lyapunov inequality, we claim that

sup
0≤𝑡<∞

𝐸
󵄩󵄩󵄩󵄩x𝑡

󵄩󵄩󵄩󵄩
𝑝

≤ ( sup
0≤𝑡<∞

𝐸
󵄩󵄩󵄩󵄩x𝑡

󵄩󵄩󵄩󵄩
2

)

𝑝/2

≤ 𝑁
𝑝/2

2
.

(33)

Remark 14. Clearly, the key of the proof is the upper-
boundedness of function 𝑄(|x(𝑡)|), which depends on the
condition 𝜅 > 𝜅. And the theoremwill play an important role
to ensure the almost sure asymptotic stability of the solution.

In the same way as Proposition 12, we get the following
proposition.

Proposition 15. If Assumptions 1 and 3 and 𝜅 > 𝜅 hold, then
for any initial data 𝜁 ∈ 𝐶, the norm of x

𝑡
in system (5) is

stochastically ultimately bounded; namely, for any 𝜀󸀠 ∈ (0, 1),
there exists a constant 𝐿󸀠 = 𝐿󸀠(𝜀󸀠) > 0 such that the global
solution x(𝑡, 𝜁) of system (5) has the property

lim sup
𝑡→∞

𝑃 {
󵄩󵄩󵄩󵄩x𝑡

󵄩󵄩󵄩󵄩 ≤ 𝐿
󸀠
} ≥ 1 − 𝜀

󸀠
. (34)

4. Almost Sure Asymptotic Stability of SFDEs

In this section, we aim to study the almost sure asymptotic
stability of system (5).The following theorem establishes new
criteria on the almost sure asymptotic stability.

Theorem 16. If Assumptions 1 and 3 and the following
condition (35) hold,

𝛾
2

𝜅 − 𝜅
+

𝛾2

(1 − 𝜅) − 𝐿 (𝜅 − 𝜅)
<
1

2
,

(1 − 𝜅) − 𝐿 (𝜅 − 𝜅) > 0, 𝜅 − 𝜅 > 0,

(35)

then for any initial data 𝜁 ∈ 𝐶, there is a unique global solution
x(𝑡, 𝜁) of system (5) on 𝑡 ≥ −𝜏, and x(𝑡, 𝜁) is almost surely
asymptotically stable; that is,

lim
𝑡→∞

x (𝑡, 𝜁) = 0 a.s., (36)

where 𝐿 = (𝑛
1
− 2𝑛
2
+ 1)(2𝑛

2
− 2)
(2𝑛2−2)/(𝑛1−2𝑛2+1)(𝑛

1
−

1)
(1−𝑛1)/(𝑛1−2𝑛2+1).

Proof. The existence and uniqueness of the global solution
follow fromLemma 9directly. For the sake of simplicity, write
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x(𝑡) = x(𝑡, 𝜁). Applying Itô’s formula to 𝑉(x, 𝑡) = |x(𝑡)|2, we
yield

L𝑉 = 2x𝑇 (𝑡) f (x
𝑡
, 𝑡) +

󵄨󵄨󵄨󵄨g (x𝑡, 𝑡)
󵄨󵄨󵄨󵄨
2

≤ 2 [−𝜅|x (𝑡)|𝑛1+1 + 𝜅∫
0

−𝜏

|x (𝑡 + 𝜃)|𝑛1+1d𝜂
1
(𝜃)

−|x (𝑡)|2 + 𝜅∫
0

−𝜏

|x (𝑡 + 𝜃)|2d𝜂
2
(𝜃) + 𝜉

1
(𝑡) ]

+
1

𝜌
1

2𝛾
2
(|x (𝑡)|2𝑛2 + ∫

0

−𝜏

|x (𝑡 + 𝜃)|2𝑛2d𝜂
3
(𝜃))

+
1

𝜌
2
(1 − 𝜌

1
)
2𝛾
2

× (|x (𝑡)|2 + ∫
0

−𝜏

|x (𝑡 + 𝜃)|2d𝜂
4
(𝜃))

+
1

(1 − 𝜌
1
) (1 − 𝜌

2
)
𝜉
2

2
(𝑡)

≤ [−2 (𝜅 − 𝜅) |x (𝑡)|𝑛1+1 − (2 − 2𝜅 − 1

𝜌
2
(1 − 𝜌

1
)
4𝛾
2
)

× |x (𝑡)|2 + 1

𝜌
1

4𝛾
2
|x (𝑡)|2𝑛2]

+ 2𝜅𝐽
2
+

1

𝜌
2
(1 − 𝜌

1
)
2𝛾
2
𝐽
4
+
1

𝜌
1

2𝛾
2
𝐽
3

+ 2𝜅𝐽
1
+ 2𝜉
1
(𝑡) +

1

1 − 𝜌
1

1

1 − 𝜌
2

𝜉
2

2
(𝑡) ,

(37)

where 𝜌
1
, 𝜌
2
∈ (0, 1), 𝐽

1
= ∫
0

−𝜏
|x(𝑡 + 𝜃)|𝑛1+1d𝜂

1
(𝜃) − |x(𝑡)|𝑛1+1,

𝐽
2
= ∫
0

−𝜏
|x(𝑡+𝜃)|2d𝜂

2
(𝜃)−|x(𝑡)|2, 𝐽

3
= ∫
0

−𝜏
|x(𝑡+𝜃)|2𝑛2d𝜂

3
(𝜃)−

|x(𝑡)|2𝑛2 , and 𝐽
4
= ∫
0

−𝜏
|x(𝑡 + 𝜃)|2d𝜂

4
(𝜃) − |x(𝑡)|2, and we have

used the elemental inequality: for any 𝑐, 𝑏 ∈ 𝑅, 0 < 𝜃 < 1,

(𝑐 + 𝑏)
2
≤

𝑐2

1 − 𝜃
+
𝑏
2

𝜃
. (38)

Let𝐻(|x(𝑡)|) = (2(1−𝜅)−(4𝛾2/(1−𝜌
1
)))+2(𝜅−𝜅)|x(𝑡)|𝑛1−1−

(4𝛾2/𝜌
1
)|x(𝑡)|2𝑛2−2. Since 𝛾2/(𝜅−𝜅)+𝛾2/((1−𝜅)−𝐿(𝜅−𝜅)) <

1/2, there exists𝑤
0
> 1 such that (2𝛾2/(𝜅 − 𝜅))𝑤

0
+ 2𝛾2/((1 −

𝜅)−𝐿(𝜅−𝜅)) = 1. Setting 𝜌(𝑤) = (2𝛾2/(𝜅−𝜅))𝑤,𝑤 ∈ (1, 𝑤
0
),

satisfying 𝜅 − 𝜅 ≥ 2𝛾2/𝜌(𝑤), (1 − 𝜅) − 2𝛾2/(1 − 𝜌(𝑤)) > (𝜅 −

𝜅)𝐿. By using Lemma 6, we get that there exists a constant
𝑎 > 0 satisfying inf

𝑡≥0
𝐻(|x(𝑡)|) > 𝑎. Then choose 𝜌

2
which is

sufficiently close to 1 such that

(2 (1 − 𝜅) −
4𝛾2

(1 − 𝜌
1
) 𝜌
2

) −
4𝛾2

𝜌
1

|x (𝑡)|2𝑛2−2

+ 2 (𝜅 − 𝜅) |x (𝑡)|𝑛1−1 > 𝑎.

(39)

We therefore have

L𝑉 ≤ −𝑎|x (𝑡)|2 + 2𝜅𝐽
1
+
2𝛾
2

𝜌
1

𝐽
3
+ 2𝜅𝐽
2
+

2𝛾
2

𝜌
2
(1 − 𝜌

1
)
𝐽
4

+ 2𝜉
1
(𝑡) +

1

1 − 𝜌
1

1

1 − 𝜌
2

𝜉
2

2
(𝑡) .

(40)

In view of the fact that ∫𝑡
0
𝐽
𝑖
d𝑠 = ∫

𝑡

0
(∫
0

−𝜏
|x(𝑠 + 𝜃)|𝑤

󸀠

𝑖 d𝜂
𝑖
(𝜃) −

|x(𝑠)|𝑤
󸀠

𝑖 )d𝑠 ≤ ∫
0

−𝜏
|x(𝑠)|𝑤

󸀠

𝑖 d𝑠, for 𝑤󸀠
1
= 𝑛
1
+ 1, 𝑤󸀠

3
= 2𝑛
2
, and

𝑤
󸀠

2
= 𝑤
󸀠

4
= 2, respectively, we get

|x (𝑡)|2 ≤ |x (0)|2 − 𝑎∫
𝑡

0

|x (𝑠)|2d𝑠

+
2𝛾2

𝜌
1

∫
0

−𝜏

|x (𝑠)|2𝑛2d𝑠 + 2𝜅∫
0

−𝜏

|x (𝑠)|𝑛1+1d𝑠

+ (2𝜅 +
2𝛾2

𝜌
2
(1 − 𝜌

1
)
)∫
0

−𝜏

|x (𝑠)|2d𝑠

+ ∫
𝑡

0

[
1

1 − 𝜌
1

1

1 − 𝜌
2

𝜉
2

2
(𝑠) + 2𝜉

1
(𝑠)] d𝑠 + 𝑀 (𝑡) ,

(41)

where 𝑀(𝑡) = ∫
𝑡

0
2x𝑇(𝑠)g(x

𝑠
, 𝑠)d𝐵(𝑠), which is a local

martingale with the initial value𝑀(0) = 0. From Lemma 5,
we get ∫+∞

0
[(1/(1 − 𝜌

1
))(1/(1 − 𝜌

2
))𝜉2
2
(𝑠) + 2𝜉

1
(𝑠)]d𝑠 <

∞. Applying the nonnegative semimartingale convergence
theorem (see [23]), we obtain that

lim sup
0≤𝑡<∞

|x (𝑡)|2 < ∞, ∫
∞

0

|x (𝑡)|2d𝑠 < ∞ a.s. (42)

To obtain our main result, we need to claim that
almost every sample path of |x(𝑡)|2 is uniformly continu-
ous on [0,∞). Let |x(𝑡)|2 = |x(0)|2 + y(𝑡) + z(𝑡), where
y(𝑡) = ∫𝑡

0
(2x𝑇(𝑟)f(x

𝑟
, 𝑟) + |g(x

𝑟
, 𝑟)|2)d𝑟, z(𝑡) = ∫𝑡

0
2x𝑇(𝑟)g(x

𝑟
,

𝑟)d𝐵(𝑟). From (42), we get that there is a constant 𝐿
1
> 0

such that sup
0≤𝑡<∞

|x(𝑡)| ≤ 𝐿
1
. By the boundedness of |x(𝑡)|

and initial data 𝜁, we get that there is a constant 𝐿
2
> 0 such

that sup
0≤𝑡<∞

‖x
𝑡
‖ = sup

0≤𝑡<∞,−𝜏≤𝜃≤0
|x(𝑡 + 𝜃)| ≤ 𝐿

2
. By virtue

of the boundedness of 𝜉
1
(𝑡), 𝜉
2
(𝑡), assume 𝜉

1
(𝑡) ∨ 𝜉

2
(𝑡) ≤ Ψ.

From Assumption 3, it is easy to conclude that

x(𝑡)𝑇f (x
𝑡
, 𝑡) ≤ − 𝜅|x (𝑡)|𝑛1+1 + 𝜅󵄩󵄩󵄩󵄩x𝑡

󵄩󵄩󵄩󵄩
𝑛1+1

− |x (𝑡)|2 + 𝜅󵄩󵄩󵄩󵄩x𝑡
󵄩󵄩󵄩󵄩
2

+ 𝜉
1
(𝑡) ,

󵄨󵄨󵄨󵄨g (x𝑡, 𝑡)
󵄨󵄨󵄨󵄨 ≤ 𝛾 (|x (𝑡)|𝑛2 + 󵄩󵄩󵄩󵄩x𝑡

󵄩󵄩󵄩󵄩
𝑛2 + |x (𝑡)| + 󵄩󵄩󵄩󵄩x𝑡

󵄩󵄩󵄩󵄩)

+ 𝜉
2
(𝑡) .

(43)
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Then we get

󵄨󵄨󵄨󵄨y (𝑡, 𝜔) − y (𝑠, 𝜔)󵄨󵄨󵄨󵄨

=
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
𝑡

𝑠

2x𝑇 (𝑟) f (x
𝑟
, 𝑟) +

󵄨󵄨󵄨󵄨g (x𝑟, 𝑟)
󵄨󵄨󵄨󵄨
2d𝑟

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ ∫
𝑡

𝑠

2
󵄨󵄨󵄨󵄨󵄨
x𝑇 (𝑟) f (x

𝑟
, 𝑟)

󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨g (x𝑟, 𝑟)

󵄨󵄨󵄨󵄨
2d𝑟

≤ ∫
𝑡

𝑠

2 (𝜅|x (𝑟)|𝑛1+1 + 𝜅󵄩󵄩󵄩󵄩x𝑟
󵄩󵄩󵄩󵄩
𝑛1+1 + |x (𝑟)|2

+𝜅
󵄩󵄩󵄩󵄩x𝑟

󵄩󵄩󵄩󵄩
2

+ 𝜉
1
(𝑟))

+ 5𝛾
2
(|x (𝑟)|2𝑛2 + 󵄩󵄩󵄩󵄩x𝑟

󵄩󵄩󵄩󵄩
2𝑛2 + |x (𝑟)|2 + 󵄩󵄩󵄩󵄩x𝑟

󵄩󵄩󵄩󵄩
2

)

+ 5𝜉
2

2
(𝑟) d𝑟

≤ [2 (𝜅𝐿
𝑛1+1

1
+ 𝜅𝐿
𝑛1+1

2
+ 𝐿
2

1
+ 𝜅𝐿
2

2
+ Ψ)

+5𝛾
2
(𝐿
2𝑛2

1
+ 𝐿
2𝑛2

2
+ 𝐿
2

1
+ 𝐿
2

2
) + 5Ψ

2
] (𝑡 − 𝑠)

(44)

for any 0 ≤ 𝑠 < 𝑡 < ∞. This means y(𝑡, 𝜔) is uniformly
continuous on 𝑡 ≥ 0.

For any 𝑝 > 2, using B-D-G inequality, fromTheorems 11
and 13, we get

𝐸|z (𝑡, 𝜔) − z (𝑠, 𝜔)|𝑝

= 𝐸
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
𝑡

𝑠

2x𝑇 (𝑟) g (x
𝑟
, 𝑟) d𝐵 (𝑟)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝

≤ [
𝑝 (𝑝 − 1)

2
]

𝑝/2

|𝑡 − 𝑠|
𝑝/2−1

∫
𝑡

𝑠

𝐸
󵄨󵄨󵄨󵄨󵄨
2x𝑇 (𝑟) g (x

𝑟
, 𝑟)

󵄨󵄨󵄨󵄨󵄨

𝑝

d𝑟

≤ [
𝑝 (𝑝 − 1)

2
]

𝑝/2

2
𝑝
|𝑡 − 𝑠|

𝑝/2−1

× ∫
𝑡

𝑠

𝐸(|x (𝑟)| 󵄨󵄨󵄨󵄨g (x𝑟, 𝑟)
󵄨󵄨󵄨󵄨)
𝑝d𝑟

≤ [
𝑝 (𝑝 − 1)

2
]

𝑝/2

2
𝑝
|𝑡 − 𝑠|

𝑝/2−1

× ∫
𝑡

𝑠

𝐸 (𝛾 (|x (𝑡)|𝑛2+1 + |x (𝑡)| 󵄩󵄩󵄩󵄩x𝑡
󵄩󵄩󵄩󵄩
𝑛2 + |x (𝑡)|2

+ |x (𝑡)| 󵄩󵄩󵄩󵄩x𝑡
󵄩󵄩󵄩󵄩) + |x (𝑡)| 𝜉2 (𝑡) )

𝑝

d𝑟

≤ [
𝑝 (𝑝 − 1)

2
]

𝑝/2

2
𝑝
|𝑡 − 𝑠|

𝑝/2−1

× ∫
𝑡

𝑠

𝐸(𝛾|x (𝑡)|𝑛2+1 +
𝛾

2

󵄩󵄩󵄩󵄩x𝑡
󵄩󵄩󵄩󵄩
2𝑛2 + (2𝛾 +

1

2
) |x (𝑡)|2

+
𝛾

2

󵄩󵄩󵄩󵄩x𝑡
󵄩󵄩󵄩󵄩
2

+
1

2
𝜉
2

2
(𝑡))
𝑝

d𝑟

≤ [
𝑝 (𝑝 − 1)

2
]

𝑝/2

2
𝑝
5
𝑝−1

|𝑡 − 𝑠|
𝑝/2−1

× ∫
𝑡

𝑠

𝐸(𝛾
𝑝
|x (𝑡)|𝑝(𝑛2+1) + (

𝛾

2
)
𝑝
󵄩󵄩󵄩󵄩x𝑡

󵄩󵄩󵄩󵄩
2𝑝𝑛2

+ (2𝛾 +
1

2
)
𝑝

|x (𝑡)|2𝑝 + (
𝛾

2
)
𝑝
󵄩󵄩󵄩󵄩x𝑡

󵄩󵄩󵄩󵄩
2𝑝

+(
1

2
)
𝑝

𝜉
2𝑝

2
(𝑡)) d𝑟

≤ [
𝑝 (𝑝 − 1)

2
]

𝑝/2

2
𝑝
5
𝑝−1

× (𝛾
𝑝
𝑀
𝑝(𝑛2+1)

+ (
𝛾

2
)
𝑝

𝑁
2𝑝𝑛2

+ (2𝛾 +
1

2
)
𝑝

𝑀
2𝑝

+(
𝛾

2
)
𝑝

𝑁
2𝑝
+ (

1

2
)
𝑝

Ψ
2𝑝
) |𝑡 − 𝑠|

𝑝/2
.

(45)

From the Kolmogorov-Chentsov theorem (see Lemma 8),
we obtain that almost every sample path of 𝑧(𝑡) is locally
but uniformly Hölder-continuous with exponent 𝜆 for every
𝜆 ∈ (0, (𝑝 − 2)/2𝑝). So we have that almost every sample
path of 𝑧(𝑡) is uniformly continuous.Therefore, we claim that
almost every sample path of |x(𝑡)|2 is uniformly continuous
on [0,∞).Then fromBarbalat Lemma (see [20]) and (42), we
claim that

lim
𝑡→∞

x (𝑡) = 0 a.s. (46)

Remark 17. Clearly, the key of the proof is the positive
lower-boundedness of function 𝐻(|x(𝑡)|), which depends
on condition (35). Since the positive lower-boundedness of
𝐻(|x(𝑡)|) can guarantee (41), so we can use the nonnegative
semimartingale convergence theorem to get the asymptotic
stability.

Remark 18. From the proof above, Assumptions 1 and 3 are
enough to guarantee the asymptotic stability of system (5).
And the coefficients of system (2) donot satisfy the conditions
which are similar to Assumptions 2 of [10] or Assumptions
3 of [11]. So compared with [10, 11], the three conditions of
guaranteeing the asymptotic stability are weakened to the two
conditions by this paper.

5. Example

In this section, we will discuss some examples to illustrate our
results.

Example 1. Let us return to the SFDE (2). We can compute
that

x𝑇f (x
𝑡
, 𝑡) ≤ −4|x (𝑡)|4 + ∫

0

−𝜏

|x (𝑡 + 𝜃)|4d𝜂
1
(𝜃) − 2|x (𝑡)|2,

󵄨󵄨󵄨󵄨g (x𝑡, 𝑡)
󵄨󵄨󵄨󵄨 ≤ |x (𝑡)|

5/3
+ ∫
0

−𝜏

|x (𝑡 + 𝜃)| d𝜂
2
(𝜃) .

(47)
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Sowe obtain that𝐿 = (𝑛
1
−2𝑛
2
+1)(2𝑛

2
−2)
(2𝑛2−2)/(𝑛1−2𝑛2+1)(𝑛

1
−

1)
(1−𝑛1)/(𝑛1−2𝑛2+1) = 4/27, and condition (35) holds. Through

Theorems 13 and 16, the global solution x(𝑡, 𝜁) of system (2)
has the following properties:

sup
0≤𝑡<+∞

𝐸
󵄩󵄩󵄩󵄩x𝑡

󵄩󵄩󵄩󵄩
𝑝

≤ 𝑁
𝑝
, ∀𝑝 ≥ 0,

lim
𝑡→∞

x (𝑡, 𝜁) = 0,
(48)

where𝑁
𝑝
is some positive constant.

Example 2. Let us consider the scalar SFDE as follows:

dx (𝑡) = (−4x5 (𝑡) − 6x (𝑡) + 2𝐷3
1
(x
𝑡
)

+2𝐷
2
(x
𝑡
) + 𝜉 (𝑡) ) d𝑡

+
1

2
(x2 (𝑡) + x (𝑡) + 𝐷2

3
(x
𝑡
)

+𝐷
4
(x
𝑡
) + 𝜉 (𝑡) ) d𝐵 (𝑡)

(49)

with initial data {x(𝜃) : −𝜏 ≤ 𝜃 ≤ 0} = 𝜁 ∈ 𝐶,
where 𝐵(𝑡) is a scalar Brownian motion. And𝐷

𝑖
are bounded

linear operators from 𝐶([−𝜏, 0]; 𝑅) to 𝑅 satisfying |𝐷
𝑖
(x
𝑡
)| ≤

∫
0

−𝜏
|x(𝑡 + 𝜃)|d𝜂

𝑖
(𝜃), where 𝜂

𝑖
(⋅) are probability measures on

[−𝜏, 0], 𝑖 = 1, 2, 3, 4.
We compute that

x𝑇f (x
𝑡
, 𝑡) = −4|x (𝑡)|6 + 2x(𝑡)𝑇𝐷3

1
(x
𝑡
) − 6|x (𝑡)|2

+ 2x(𝑡)𝑇𝐷
2
(x
𝑡
) + x(𝑡)𝑇𝜉 (𝑡)

≤ −4|x (𝑡)|6 + ∫
0

−𝜏

|x (𝑡 + 𝜃)|6d𝜂
1
(𝜃)

−
7

2
|x (𝑡)|2 + ∫

0

−𝜏

|x (𝑡 + 𝜃)|2d𝜂
2
(𝜃) +

1

2
𝜉
2
(𝑡) ,

󵄨󵄨󵄨󵄨g (x𝑡, 𝑡)
󵄨󵄨󵄨󵄨 ≤

1

2
(|x (𝑡)|2 + |x (𝑡)| + 󵄨󵄨󵄨󵄨𝐷3 (x𝑡)

󵄨󵄨󵄨󵄨
2

+
󵄨󵄨󵄨󵄨𝐷4 (x𝑡)

󵄨󵄨󵄨󵄨 + 𝜉 (𝑡) )

≤
1

2
(|x (𝑡)|2 + ∫

0

−𝜏

|x (𝑡 + 𝜃)|2d𝜂
3
(𝜃)

+ |x (𝑡)| + ∫
0

−𝜏

|x (𝑡 + 𝜃)| d𝜂
4
(𝜃) + 𝜉 (𝑡)) .

(50)

Sowe obtain that𝐿 = (𝑛
1
−2𝑛
2
+1)(2𝑛

2
−2)
(2𝑛2−2)/(𝑛1−2𝑛2+1)(𝑛

1
−

1)
(1−𝑛1)/(𝑛1−2𝑛2+1) = 1/4, and condition (35) holds.
If the function 𝜉(𝑡) is defined by

𝜉 (𝑡) =

{{{

{{{

{

1 − 6
𝑛
|𝑡 − 𝑛| , 𝑡 ∈ [𝑛 −

1

6𝑛
, 𝑛 +

1

6𝑛
] ,

𝑛 = 1, 2, 3, . . .

0, others

or 𝜉 (𝑡) = 𝑒−𝑡,

(51)

then it is easy to show that 𝜉(𝑡) is bounded and that
∫
+∞

0
𝜉(𝑡)d𝑡 = 1. ThroughTheorem 13, the 𝑝th moment of the

norm of x
𝑡
in system (49) is bounded for any 𝑝 ≥ 0; namely,

there exists a constant𝑁
𝑝
> 0 such that

sup
0≤𝑡<+∞

𝐸
󵄩󵄩󵄩󵄩x𝑡

󵄩󵄩󵄩󵄩
𝑝

≤ 𝑁
𝑝
. (52)

Through Theorem 16, we claim that, for any given initial
data 𝜁 ∈ 𝐶, the solution of system (49) is almost surely
asymptotically stable; that is,

lim
𝑡→∞

x (𝑡, 𝜁) = 0. (53)

Appendix

Proof of Lemma 9. For any given initial data 𝜁 ∈ 𝐶, by
Theorem 3.1 in [15] or Lemma 2.3 in [16], Assumption 1 and
conditions f(0, 𝑡) = 0 and g(0, 𝑡) = 0 guarantee a unique
maximal local solution x(𝑡, 𝜁) to system (5) on 𝑡 ∈ [−𝜏, 𝜎

∞
),

where 𝜎
∞

is the explosion time. Let 𝑘
0
> 0 be sufficiently

large satisfying ‖𝜁‖ < 𝑘
0
. For each integer 𝑘 ≥ 𝑘

0
, define the

stopping time

𝜏
𝑘
= inf {𝑡 ∈ [0, 𝜎

∞
) : |𝑥 (𝑡)| ≥ 𝑘} . (A.1)

Obviously, 𝜏
𝑘
is increasing as 𝑘 → ∞. Let 𝜏

∞
= lim

𝑡→∞
𝜏
𝑘
,

so 𝜏
∞

≤ 𝜎
∞

a.s.; if we can obtain that 𝜏
∞

= ∞ a.s., then
𝜎
∞

= ∞ a.s. For the sake of simplicity, write x(𝑡) = x(𝑡, 𝜁).
Using Itô’s formula to 𝑉(x, 𝑡) = |x(𝑡)|2, we yield

L𝑉 (x, 𝑡)

= 2x𝑇 (𝑡) f (x
𝑡
, 𝑡) +

󵄨󵄨󵄨󵄨g (x𝑡, 𝑡)
󵄨󵄨󵄨󵄨
2

≤ 2(−𝜅|x (𝑡)|𝑛1+1 + 𝜅∫
0

−𝜏

|x (𝑡 + 𝜃)|𝑛1+1d𝜂
1
(𝜃)

−|x (𝑡)|2 + 𝜅∫
0

−𝜏

|x (𝑡 + 𝜃)|2d𝜂
2
(𝜃) + 𝜉

1
(𝑡))

+ 5(𝛾
2
|x (𝑡)|2𝑛2

+ 𝛾
2
∫
0

−𝜏

|x (𝑡 + 𝜃)|2𝑛2d𝜂
3
(𝜃) + 𝛾

2
|x (𝑡)|2

+𝛾
2
∫
0

−𝜏

|x (𝑡 + 𝜃)|2d𝜂
4
(𝜃) + 𝜉

2

2
(𝑡))

≤ −2 (𝜅 − 𝜅) |x (𝑡)|𝑛1+1 + 10𝛾2|x (𝑡)|2𝑛2

+ (10𝛾
2
− (2 − 2𝜅)) |x (𝑡)|2 + 2𝜅𝐽

1

+ 2𝜅𝐽
2
+ 5𝛾
2
𝐽
3
+ 5𝛾
2
𝐽
4
+ 2𝜉
1
(𝑡) + 5𝜉

2

2
(𝑡) ,

(A.2)

where 𝐽
1
= ∫
0

−𝜏
|x(𝑡 + 𝜃)|𝑛1+1d𝜂

1
(𝜃) − |x(𝑡)|𝑛1+1, 𝐽

2
= ∫
0

−𝜏
|x(𝑡 +

𝜃)|2d𝜂
2
(𝜃) − |x(𝑡)|2, 𝐽

3
= ∫
0

−𝜏
|x(𝑡 + 𝜃)|2𝑛2d𝜂

3
(𝜃) − |x(𝑡)|2𝑛2 ,

and 𝐽
4
= ∫
0

−𝜏
|x(𝑡 + 𝜃)|2d𝜂

4
(𝜃) − |x(𝑡)|2.
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Noting that 𝜅 > 𝜅, 𝑛
1
+ 1 > 2𝑛

2
≥ 2, and |x(𝑡)| ≥ 0

for any 𝑡 ≥ 0, by Lemma 7, 𝑅(|x(𝑡)|) = −2(𝜅 − 𝜅)|x(𝑡)|𝑛1+1 +
10𝛾2|x(𝑡)|2𝑛2 + (10𝛾2 − (2 − 2𝜅))|x(𝑡)|2, as a function of |x(𝑡)|,
has a positive upper-boundedness; that is, there is a positive
constant 𝑅̃ such that

𝑅 (|x (𝑡)|) = − 2 (𝜅 − 𝜅) |x (𝑡)|𝑛1+1 + 10𝛾2|x (𝑡)|2𝑛2

+ (10𝛾
2
− (2 − 2𝜅)) |x (𝑡)|2 ≤ 𝑅̃.

(A.3)

(This technique has been used by many researchers, e.g., [10,
14].)

From Lemma 5, we have ∫+∞
0

(5𝜉2
2
(𝑠) + 2𝜉

1
(𝑠))d𝑠 < ∞.

And in view of the fact that

∫
𝑡∧𝜏𝑘

0

𝐽
𝑖
d𝑠

= ∫
𝑡∧𝜏𝑘

0

(∫
0

−𝜏

|x (𝑠 + 𝜃)|𝑤
󸀠

𝑖 d𝜂
𝑖
(𝜃) − |x (𝑠)|𝑤

󸀠

𝑖) d𝑠

≤ ∫
0

−𝜏

|x (𝑠)|𝑤
󸀠

𝑖 d𝑠,

(A.4)

for𝑤󸀠
1
= 𝑛
1
+1, 𝑤󸀠

3
= 2𝑛
2
, and𝑤󸀠

2
= 𝑤󸀠
4
= 2, we yield that, for

𝑡 ≥ 0,

𝐸
󵄨󵄨󵄨󵄨x (𝑡 ∧ 𝜏𝑘)

󵄨󵄨󵄨󵄨
2

= 𝐸|x (0)|2 + 𝐸∫
𝑡∧𝜏𝑘

0

[2x𝑇 (𝑠) f (x
𝑠
, 𝑠) +

󵄨󵄨󵄨󵄨g (x𝑠, 𝑠)
󵄨󵄨󵄨󵄨
2

] d𝑠

≤ 𝐸|x (0)|2

+ 𝐸∫
𝑡∧𝜏𝑘

0

[𝑅̃ + 2𝜅𝐽
1
+ 2𝜅𝐽
2
+ 5𝛾
2
𝐽
3

+5𝛾
2
𝐽
4
+ 2𝜉
1
(𝑠) + 5𝜉

2

2
(𝑠)] d𝑠

≤ 𝐸|x (0)|2 + 𝑅̃𝐸 (𝑡 ∧ 𝜏
𝑘
)

+ 2𝜅∫
0

−𝜏

|x (𝑠)|𝑛1+1d𝑠 + 2𝜅∫
0

−𝜏

|x (𝑠)|2d𝑠

+ 5𝛾
2
∫
0

−𝜏

|x (𝑠)|2𝑛2d𝑠 + 5𝛾2 ∫
0

−𝜏

|x (𝑠)|2d𝑠

+ ∫
∞

0

[2𝜉
1
(𝑠) + 5𝜉

2

2
(𝑠)] d𝑠

≤ 𝑅 + 𝑅̃𝑡,

(A.5)

where 𝑅 = 𝐸|x(0)|2 + 2𝜅 ∫0
−𝜏
|x(𝑠)|𝑛1+1d𝑠 + 2𝜅 ∫0

−𝜏
|x(𝑠)|2d𝑠 +

5𝛾2 ∫
0

−𝜏
|x(𝑠)|2𝑛2d𝑠 + 5𝛾2 ∫0

−𝜏
|x(𝑠)|2d𝑠 + ∫∞

0
[2𝜉
1
(𝑠) + 5𝜉2

2
(𝑠)]d𝑠.

Noting that

𝐸
󵄨󵄨󵄨󵄨x (𝑡 ∧ 𝜏𝑘)

󵄨󵄨󵄨󵄨
2

≥ 𝐸 (
󵄨󵄨󵄨󵄨x (𝑡 ∧ 𝜏𝑘)

󵄨󵄨󵄨󵄨
2

𝐼
{𝜏𝑘≤𝑡}

) ≥ 𝑘
2
𝑃 {𝜏
𝑘
≤ 𝑡} ,

(A.6)

we get that

𝑃 {𝜏
∞
≤ 𝑡} = lim

𝑘→∞

𝑃 {𝜏
𝑘
≤ 𝑡} ≤ lim

𝑘→∞

𝑅 + 𝑅̃𝑡

𝑘2
= 0. (A.7)

Since 𝑡 is arbitrary, we must have that 𝜏
∞

= ∞ a.s. and this
completes the proof.
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