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We show the normal hyperbolicity property for the equilibria of the evolution equation 𝜕𝑚(𝑟, 𝑡)/𝜕𝑡 = −𝑚(𝑟, 𝑡) + 𝑔(𝛽𝐽 ∗

𝑚(𝑟, 𝑡) + 𝛽ℎ), ℎ, 𝛽 ≥ 0, and using the normal hyperbolicity property we prove the continuity (upper semicontinuity and lower
semicontinuity) of the global attractors of the flow generated by this equation, with respect to functional parameter 𝐽.

The first author dedicates this work to his daughter Luana Barros.

1. Introduction

We consider the nonlocal evolution equation
𝜕𝑚 (𝑟, 𝑡)

𝜕𝑡
= −𝑚 (𝑟, 𝑡) + 𝑔 (𝛽𝐽 ∗ 𝑚 (𝑟, 𝑡) + 𝛽ℎ) , (1)

where 𝑚(𝑟, 𝑡) is a real function on R × R
+
, ℎ and 𝛽 are

nonnegative constants, and 𝐽 ∈ 𝐶
1
(R) is a nonnegative even

function supported in the interval [−1, 1] with integral equal
to 1. The ∗ denotes the convolution product, namely,

(𝐽 ∗ 𝑚) (𝑥) = ∫
R

𝐽 (𝑥 − 𝑦)𝑚 (𝑦) 𝑑𝑦. (2)

There are several works in the literature dedicated to the
analysis of (1) or its particular case when 𝑔 ≡ tanh (see [1–8]).

In the particular case when 𝑔 ≡ tanh, the existence of a
compact global attractor for the flow of (1) was proved in [1]
for bounded domain and ℎ = 0 and in [9] for unbounded
domain.

If𝑔 is globally Lipschitz, theCauchy problem for (1) iswell
posed, for instance, in the space of continuous and bounded

functions 𝐶
𝑏
(R), with the sup norm since the function given

by the right hand side of (1) is uniformly Lipschitz in this
space (see [10, 11]).

It is an easy consequence of the uniqueness theorem that
the subspace P

2𝜏
of the 2𝜏 periodic functions is invariant for

the flow of (1).We consider here (1) restricted toP
2𝜏
, with 𝜏 >

1. As shown in the previous work [7], this leads naturally to
the consideration of the flow generated by (1) in 𝐿

2
(𝑆

1
)where

𝑆
1 is the unit sphere and ∗ the convolution product in it. In
what follows, we summarize the assumptions and results of
[7]. For sake of clarity, it is convenient to start with a list of
hypotheses satisfied by the function 𝑔.
(H1) The function 𝑔 : R → R is globally Lipschitz; that is,

there exists a positive constant 𝑘
1
such that

󵄨󵄨󵄨󵄨𝑔 (𝑥) − 𝑔 (𝑦)
󵄨󵄨󵄨󵄨 ≤ 𝑘

1

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨 , for all 𝑥, 𝑦 ∈ R, (3)

and there exist nonnegative constants 𝑘
2
and 𝑘

3
, with

𝑘
2
≤ 𝑘

1
, such that

󵄨󵄨󵄨󵄨𝑔 (𝑥)
󵄨󵄨󵄨󵄨 ≤ 𝑘

2
|𝑥| + 𝑘

3
, for all 𝑥 ∈ R. (4)
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If 𝑔 is globally Lipschitz with constant 𝑘
1
it follows

that (4) also holds with 𝑘
2

= 𝑘
1
and 𝑘

3
= |𝑔(0)|.

However, we are most interested in the case where
𝑘
2

< 𝑘
1
because 𝑘

1
𝛽 < 1 can leave the attractor to

the trivial case of only point.
(H2) The function 𝑔 ∈ 𝐶

1
(R) and 𝑔

󸀠 is Lipschitz with
Lipschitz constant 𝑘

4
. In particular, there exists a

nonnegative constant 𝑘
5
, such that

󵄨󵄨󵄨󵄨󵄨
𝑔
󸀠

(𝑥)
󵄨󵄨󵄨󵄨󵄨
≤ 𝑘

4
|𝑥| + 𝑘

5
, for all 𝑥 ∈ R. (5)

(H3) The function 𝑔 has positive derivative.
(H4) There exists 𝑎 > 0 such that, for all 𝑥 ∈ R, |𝑔(𝑥)| < 𝑎.

In particular, when 𝑎 < ∞ inequality (4) holds with
𝑘
2
= 0 and 𝑘

3
= 𝑎.

(H5) The function 𝑔
−1 is continuous in (−𝑎, 𝑎) and the

function

𝑓 (𝑚) = −
1

2
𝑚

2

− ℎ𝑚 − 𝛽
−1

𝑖 (𝑚) , 𝑚 ∈ [−𝑎, 𝑎] , (6)

where 𝑖 defined by

𝑖 (𝑚) = −∫

𝑚

0

𝑔
−1

(𝑠) 𝑑𝑠, 𝑚 ∈ [−𝑎, 𝑎] , (7)

has a global minimum 𝑚 in (−𝑎, 𝑎).

Under hypothesis (H1) it was proved in [7] that the
problem (1) is well posed in 𝐿

2
(𝑆

1
) and its flow is 𝐶

1 if we
assume hypothesis (H2). Furthermore, assuming (H1) and
(H2) the existence of a global compact attractor for the flow
of (1) in the sense of [12] was also proved in [7]. A comparison
result under the hypotheses (H1) and (H3) was also proved.
Assuming (H1), (H2), (H3), and (H4), the authors in [7]
showed an 𝐿

∞
estimate for the attractors; finally, assuming

(H5), they exhibited a continuous Lyapunov functional for
the flow of (1) and proved under hypotheses (H1), (H2), (H3),
(H4), and (H5) that its flow is gradient in the sense of [12].

The main purposes of this paper are showing normal
hyperbolicity property of curves of equilibria and proving
the continuity of global attractors for the flow of (1) with
respect to the function 𝐽. To the extent of our knowledge,
with the exception of [8], the proofs available in the literature
concerning the continuity of global attractors assume that
the equilibrium points of (1) are all hyperbolic and therefore
isolated (see, e.g., [13–17]). However, this property cannot
hold true in our case, due to the symmetries present in the
equation. In fact, it is a consequence of these symmetries that
the nonconstant equilibria arise in families and therefore it
cannot be hyperbolic. To overcome this difficulty, in [8], the
hypothesis of hyperbolicity of equilibria has been replaced by
normal hyperbolicity of curves of equilibria.

The difference between our proof and the proof given
in [8] is that in [8] the continuity with respect to scalar
parameters (ℎ, 𝛽) is studied and here we study the continuity
with respect to a functional parameter, namely, the function
𝐽. Moreover, in [8] it is assumed that the zero is a simple

eigenvalue of the Frechét derivative of (8) which implies in
normal hyperbolicity of curves of equilibria, and in this paper
this property is also proven (see Propositions 12 and 14). To
prove our results, we use some results given in [18] on the
permanence of normally hyperbolic invariant manifolds and
one result given in [19] concerning the continuity properties
of the local unstable manifolds of the (nonnecessarily iso-
lated) equilibriawith respect to the parameter 𝐽, togetherwith
some results of [20] regarding the limiting behavior of the
trajectories.

This paper is organized as follows. In Section 2, we show
some preliminary results. Section 3 is devoted to the proof of
the upper semicontinuity of the attractors. In Section 4, we
show that families of equilibria are normally hyperbolic and
we use this property to show the continuity of the families
of equilibria with respect to the parameter. In Section 5,
using the same techniques given in [8], we prove the lower
semicontinuity of attractors. Finally, in Section 6,we illustrate
our results with a concrete example.

2. Background Results

It is well known from [7] that under hypotheses (H1) and (H2)
the map

𝐹 (𝑢, 𝐽) = −𝑢 + 𝑔 (𝛽 (𝐽 ∗ 𝑢) + 𝛽ℎ) (8)

is continuously Frechet differentiable in 𝐿
2
(𝑆

1
), with ∗ being

now the convolution product in 𝐿
2
(𝑆

1
); that is

(𝐽 ∗ V) (𝑤) = ∫
𝑆
1

𝐽 (𝑤𝑧
−1

) V (𝑧) 𝑑𝑧. (9)

Hence, the problem

𝜕𝑢

𝜕𝑡
= 𝐹 (𝑢, 𝐽) = −𝑢 + 𝑔 (𝛽 (𝐽 ∗ 𝑢) + 𝛽ℎ) (P)

𝐽

generates a 𝐶
1 flow in 𝐿

2
(𝑆

1
) which depends on the function

𝐽, which is given by the variation of constants formula

𝑢 (𝑤, 𝑡) = 𝑒
−𝑡

𝑢 (𝑤, 0) + ∫

𝑡

0

𝑒
−(𝑡−𝑠)

[𝑔 (𝛽𝐽 ∗ 𝑢 (𝑤, 𝑠) + 𝛽ℎ)] 𝑑𝑠.

(10)

From now on we denote this flow for problem (P)
𝐽
by

𝑇
𝐽
(𝑡) or 𝑇(𝐽, 𝑡). It was proved in [7] that, in a certain range

of the parameters, 𝑇
𝐽
(𝑡) admits a compact global attractor.

Furthermore, assuming the hypotheses (H1)–(H5)we see that
𝑇
𝐽
(𝑡) has a gradient structure with Lyapunov functional 𝐹 :

𝐿
2
(𝑆

1
) → R given by

F (𝑢) = ∫
𝑆
1

[𝑓 (𝑢 (𝑤)) − 𝑓 (𝑚)] 𝑑𝑤

+
1

4
∬

𝑆
1

𝐽 (𝑤 ⋅ 𝑧
−1

) [𝑢 (𝑤) − 𝑢 (𝑧)]
2

𝑑𝑤𝑑𝑧,

(11)

where 𝑓 and 𝑚 are given in the hypothesis (H5).
A natural question to examine is the dependence of

the compact global attractor of 𝑇
𝐽
(𝑡) on the parameter 𝐽.
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We denote byA
𝐽
the global attractor of (P)

𝐽
whose existence

was proved in [7].
Let us recall that a family of subsets {A

𝐽
} is upper semi-

continuous at 𝐽
0
if

dist (A
𝐽
,A

𝐽
0

) 󳨀→ 0, as 𝐽 󳨀→ 𝐽
0
, (12)

where

dist (A
𝐽
,A

𝐽
0

) = sup
𝑥∈A
𝐽

dist (𝑥,A
𝐽
0

) = sup
𝑥∈A
𝐽

inf
𝑦∈A
𝐽0

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩𝐿2 .

(13)

Analogously, {A
𝐽
} is lower semicontinuous at 𝐽

0
if

dist (A
𝐽
0

,A
𝐽
) 󳨀→ 0, as 𝐽 󳨀→ 𝐽

0
. (14)

3. Upper Semicontinuity of the Attractors

In this section, we prove that the family of attractors 𝐴
𝐽
is

upper semicontinuous with respect to parameter 𝐽 at 𝐽
0
, with

𝐽, 𝐽
0
∈ J, where

J = {𝐽 ∈ 𝐶
1

(R) ,

even nonnegative, supported in [−1, 1] ,

‖𝐽‖
𝐿
1 = 1, and 󵄩󵄩󵄩󵄩𝐽 − 𝐽

0

󵄩󵄩󵄩󵄩𝐿1 ≤ 𝑅} .

(15)

Lemma 1. Assume that assumptions (H1) and (H2) hold and
that 𝑘

2
𝛽 < 1. Then, the flow 𝑇

𝐽
(𝑡) is continuous with respect

to 𝐽 in the 𝐿
1-𝑛𝑜𝑟𝑚 at 𝐽

0
, uniformly for 𝑢 in bounded sets and

𝑡 ∈ [0, 𝑏] with 𝑏 < ∞.

Proof. As shown in [7] the solutions of (P)
𝐽
satisfy the

“variations of constants formula”:

𝑇
𝐽
(𝑡) 𝑢 = 𝑒

−𝑡

𝑢 + ∫

𝑡

0

𝑒
−(𝑡−𝑠)

𝑔 (𝛽 (𝐽 ∗ 𝑇
𝐽
(𝑠) 𝑢) + 𝛽ℎ) 𝑑𝑠. (16)

Let 𝐽
0

∈ J. Given 𝜀 > 0, we want to find 𝛿 > 0 such that
‖𝐽 − 𝐽

0
‖
𝐿
1 < 𝛿 implies

󵄩󵄩󵄩󵄩󵄩
𝑇
𝐽
(𝑡) 𝑢 − 𝑇

𝐽
0
(𝑡) 𝑢

󵄩󵄩󵄩󵄩󵄩𝐿2
< 𝜀, (17)

for 𝑡 ∈ [0, 𝑏] and 𝑢 in 𝐶, where 𝐶 is a bounded set in 𝐿
2
(𝑆

1
).

Since𝑔 is globally Lipschitz, for any 𝑡 > 0 and 𝑢 ∈ 𝐶, it follows
that

󵄩󵄩󵄩󵄩󵄩
𝑇
𝐽
(𝑡) 𝑢 − 𝑇

𝐽
0
(𝑡) 𝑢

󵄩󵄩󵄩󵄩󵄩𝐿2

≤ ∫

𝑡

0

𝑒
−(𝑡−𝑠) 󵄩󵄩󵄩󵄩󵄩

𝑔 (𝛽𝐽 ∗ 𝑇
𝐽
(𝑠) 𝑢 + 𝛽ℎ)

−𝑔 (𝛽𝐽
0
∗ 𝑇

𝐽
0
(𝑠) 𝑢 + 𝛽ℎ)

󵄩󵄩󵄩󵄩󵄩𝐿2
𝑑𝑠

≤ ∫

𝑡

0

𝑒
−(𝑡−𝑠)

𝑘
1
[
󵄩󵄩󵄩󵄩󵄩
𝛽𝐽 ∗ (𝑇

𝐽
(𝑠) 𝑢)

− 𝛽 (𝐽
0
∗ 𝑇

𝐽
0
(𝑠) 𝑢)

󵄩󵄩󵄩󵄩󵄩𝐿2
] 𝑑𝑠.

(18)

Adding and subtracting the term 𝐽
0
∗ 𝑇

𝐽
(𝑠)𝑢 inside the

norm we get
󵄩󵄩󵄩󵄩󵄩
𝑇
𝐽
(𝑡) 𝑢 − 𝑇

𝐽
0
(𝑡) 𝑢

󵄩󵄩󵄩󵄩󵄩𝐿2

≤ ∫

𝑡

0

𝑒
−(𝑡−𝑠)

𝑘
1
𝛽 [

󵄩󵄩󵄩󵄩(𝐽 − 𝐽
0
) ∗ 𝑇

𝐽
(𝑠) 𝑢

󵄩󵄩󵄩󵄩𝐿2

+
󵄩󵄩󵄩󵄩󵄩
𝐽
0
∗ (𝑇

𝐽
(𝑠) 𝑢 − 𝑇

𝐽
0
(𝑠) 𝑢)

󵄩󵄩󵄩󵄩󵄩𝐿2
] 𝑑𝑠.

(19)

Using Young’s inequality, we obtain
󵄩󵄩󵄩󵄩󵄩
𝑇
𝐽
(𝑡) 𝑢 − 𝑇

𝐽
0
(𝑡) 𝑢

󵄩󵄩󵄩󵄩󵄩𝐿2

≤ 𝑘
1
𝛽
󵄩󵄩󵄩󵄩𝐽 − 𝐽

0

󵄩󵄩󵄩󵄩𝐿1 ∫

𝑡

0

𝑒
−(𝑡−𝑠)󵄩󵄩󵄩󵄩𝑇𝐽

(𝑠) 𝑢
󵄩󵄩󵄩󵄩𝐿2

𝑑𝑠

+ 𝑘
1
𝛽
󵄩󵄩󵄩󵄩𝐽0

󵄩󵄩󵄩󵄩𝐿1 ∫

𝑡

0

𝑒
−(𝑡−𝑠)󵄩󵄩󵄩󵄩󵄩

𝑇
𝐽
(𝑠) 𝑢 − 𝑇

𝐽
0
(𝑠) 𝑢

󵄩󵄩󵄩󵄩󵄩𝐿2
𝑑𝑠.

(20)

FromTheorem 3.3 of [7] it follows, for all nonnegative 𝐽 ∈ J,
that if 𝑘

2
𝛽 < 1 and (H1) and (H2) hold then ‖𝑇

𝐽
(𝑡)𝑢‖

𝐿
2 is

bounded by a positive constant𝐾 depending only on𝐶.Thus,
since ‖𝐽

0
‖
𝐿
1 = 1 we obtain

󵄩󵄩󵄩󵄩󵄩
𝑇
𝐽
(𝑡) 𝑢 − 𝑇

𝐽
0
(𝑡) 𝑢

󵄩󵄩󵄩󵄩󵄩𝐿2

≤ 𝐾𝑘
1
𝛽
󵄩󵄩󵄩󵄩𝐽 − 𝐽

0

󵄩󵄩󵄩󵄩𝐿1

+ 𝑘
1
𝛽∫

𝑡

0

𝑒
−(𝑡−𝑠)󵄩󵄩󵄩󵄩󵄩

𝑇
𝐽
(𝑠) 𝑢 − 𝑇

𝐽
0
(𝑠) 𝑢

󵄩󵄩󵄩󵄩󵄩𝐿2
𝑑𝑠.

(21)

Therefore, by Gronwall’s lemma, it follows that
󵄩󵄩󵄩󵄩󵄩
𝑇
𝐽
(𝑡) 𝑢 − 𝑇

𝐽
0
(𝑡) 𝑢

󵄩󵄩󵄩󵄩󵄩𝐿2
≤ 𝐶 (𝐽) 𝑒

𝑘
1
𝛽𝑡

, (22)

where 𝐶(𝐽) = 𝐾𝑘
1
𝛽‖𝐽 − 𝐽

0
‖
𝐿
1 . This last assertion completes

the proof.

Remark 2. Under hypotheses (H1) and (H2) and 𝑘
2
𝛽 < 1,

from Theorem 3.3 of [7] it follows that, for all nonnegative
𝐽 ∈ J, there exists a global attractor 𝐴

𝐽
in 𝐿

2
(𝑆

1
), which is

contained in the ball with center at the origin of 𝐿2
(𝑆1) and

radius 2√2𝜏(𝐾
2
𝛽ℎ + 𝑘

3
)/(1 − 𝑘

2
𝛽).

Now, using Remark 2 and proceeding as in [8], we obtain
the following result.

Theorem 3. Assume that hypotheses (H1) and (H2) hold and
that 𝑘

2
𝛽 < 1. Then the family of attractors A

𝐽
is upper

semicontinuous with respect to 𝐽 ∈ J at 𝐽
0
.

4. Normal Hyperbolicity and Lower
Semicontinuity of the Attractors

Due to the symmetries present in our model the nonconstant
equilibria are nonisolated. In fact, as we will see shortly, the
equivariance property of the map 𝐹 defined in (8) implies
that the nonconstant equilibria appear in curves. Therefore,



4 International Journal of Differential Equations

it cannot be hyperbolic preventing the use of tools like the
Implicit Function Theorem to obtain their continuity with
respect to the parameters. To overcome this difficulty, we
need the concept of normal hyperbolicity (see [18]) and we
also will need to assume the following additional hypotheses.

(H6) For each 𝐽
0
∈ J, the set 𝐸 of the equilibria of 𝑇

𝐽
0

(𝑡) is
such that 𝐸 = 𝐸

1
∪ 𝐸

2
, where

(a) the equilibria in 𝐸
1
are constant hyperbolic

equilibria;
(b) the equilibria in 𝐸

2
are nonconstant (conse-

quently, nonhyperbolic).

(H7) The function 𝑔 ∈ 𝐶
2
(R).

From hypotheses (H2) and (H7) it follows that 𝑔
󸀠 is

bounded; that is, there exists 𝑏 > 0 such that |𝑔󸀠
(𝑥)| ≤ 𝑏.

We start with some remarks on the spectrum of the
linearization for 𝐹 around equilibria.

Remark 4. A straightforward calculation shows that if 𝑢
0

is nonconstant equilibria of 𝑇
𝐽
0

(𝑡) then zero is always an
eigenvalue of the operator

𝐷𝐹
𝑢
(𝑢

0
, 𝐽

0
) V = −V + 𝑔

󸀠

(𝛽𝐽
0
∗ 𝑢

0
+ 𝛽ℎ) 𝛽 (𝐽

0
∗ V) (23)

with eigenfunction 𝑢
󸀠

0
.

Remark 5. Let 𝑢
0
∈ 𝐸

2
. It is easy to show that 𝐷𝐹

𝑢
(𝑢

0
, 𝐽

0
) is a

self-adjoint operator with respect to the inner product

(𝑢, V) = ∫
𝑆
1

𝑢 (𝑤) V (𝑤) 𝑑] (𝑤) , (24)

where 𝑑](𝑤) = 𝑑𝑤/𝑔
󸀠
(𝛽(𝐽

0
∗𝑢

0
)(𝑤)+𝛽ℎ) is equivalent to the

Lebesgue measure.

Remark 6. In [8] in the hypothesis (H6)-(b) it was also
assumed as hypothesis that, for each 𝑢

0
∈ 𝐸

2
, zero is

simple eigenvalue of the operator 𝐷𝐹
𝑢
(𝑢

0
, 𝐽

0
). However, in

this paper, this property is proved (see Proposition 12).

In what follows we enunciated a result on the structure of
the sets of nonconstant equilibria. The proof will be omitted
since it is very similar to Lemma 3.3 in [8].

Lemma7. Suppose that for some 𝐽
0
∈ J, (H1), (H6), and (H7)

hold. Given 𝑢 ∈ 𝐸
2
and 𝛼 ∈ 𝑆

1, define 𝛾(𝛼; 𝑢) ∈ 𝐿
2
(𝑆

1
) by

𝛾 (𝛼; 𝑢) (𝑤) = 𝑢 (𝛼𝑤) , 𝑤 ∈ 𝑆
1

. (25)

Then Γ = 𝛾(𝑆
1
; 𝑢) is a closed, simple 𝐶

2 curve of equilibria of
𝑇
𝐽
0

(𝑡) which is isolated in the set of equilibria; that is, no point
of Γ is an accumulation point of 𝐸 \ Γ.

Corollary 8. Let 𝑀 be a closed connected curve of equilibria
in 𝐸

2
and 𝑢

0
∈ 𝑀. Then M = Γ, where Γ = 𝛾(𝑆

1
, 𝑢

0
).

Proof. Suppose that Γ ̸⊂ 𝑀.Then there exist equilibria in𝑀\

Γ accumulating at 𝑢
0
contradicting Lemma 7. Therefore Γ ⊆

𝑀. Since Γ is a simple closed curve, it follows that𝑀 = Γ.

The main results of this section will be presented in the
next two subsections.

4.1. NormalHyperbolicity of the Equilibria. Recall that if𝑇(𝑡) :

𝑋 → 𝑋 is a semigroup a set 𝑀 ⊂ 𝑋 is invariant under 𝑇(𝑡)

if 𝑇(𝑡)𝑀 = 𝑀, for any 𝑡 > 0.

Definition 9. Suppose that𝑇(𝑡) is a𝐶
1 semigroup in a Banach

space𝑋 and that𝑀 ⊂ 𝑋 is an invariantmanifold for𝑇(𝑡). We
say that 𝑀 is normally hyperbolic under 𝑇(𝑡) if

(i) for each 𝑚 ∈ 𝑀 there is a decomposition

𝑋 = 𝑋
𝑐

𝑚
⊕ 𝑋

𝑢

𝑚
⊕ 𝑋

𝑠

𝑚
(26)

by closed subspaces with 𝑋
𝑐

𝑚
being the tangent space

to 𝑀 at 𝑚.
(ii) For each 𝑚 ∈ 𝑀 and 𝑡 ≥ 0, if 𝑚

1
= 𝑇(𝑡)(𝑚)

𝐷𝑇 (𝑡) (𝑚) |
𝑋
𝛼

𝑚

: 𝑋
𝛼

𝑚
󳨀→ 𝑋

𝛼

𝑚
1

, 𝛼 = 𝑐, 𝑢, 𝑠 (27)

and 𝐷𝑇(𝑡)(𝑚)|
𝑋
𝑢

𝑚

is an isomorphism from 𝑋
𝑢

𝑚
onto

𝑋
𝑢

𝑚
1

.
(iii) There is 𝑡

0
≥ 0 and 𝜇 < 1 such that for all 𝑡 ≥ 𝑡

0

𝜇 inf {󵄩󵄩󵄩󵄩𝐷𝑇 (𝑡) (𝑚) 𝑥
𝑢󵄩󵄩󵄩󵄩 : 𝑥

𝑢

∈ 𝑋
𝑢

𝑚
,
󵄩󵄩󵄩󵄩𝑥

𝑢󵄩󵄩󵄩󵄩 = 1}

> max {1,
󵄩󵄩󵄩󵄩󵄩
𝐷𝑇 (𝑡) (𝑚) |

𝑋
𝑐

𝑚

󵄩󵄩󵄩󵄩󵄩
} ,

(28)

𝜇min {1, inf {󵄩󵄩󵄩󵄩𝐷𝑇 (𝑡) (𝑚) 𝑥
𝑐󵄩󵄩󵄩󵄩 : 𝑥

𝑐

∈ 𝑋
𝑐

𝑚
,
󵄩󵄩󵄩󵄩𝑥

𝑐󵄩󵄩󵄩󵄩 = 1}}

>
󵄩󵄩󵄩󵄩󵄩
𝐷𝑇 (𝑡) (𝑚) |

𝑋
𝑠

𝑚

󵄩󵄩󵄩󵄩󵄩
.

(29)

Condition (28) suggests that, near 𝑚 ∈ 𝑀, 𝑇(𝑡) is
expansive in the direction of 𝑋

𝑢

𝑚
and at rate greater than

that on 𝑀, while (29) suggests that 𝑇(𝑡) is contractive in the
direction of 𝑋𝑠

𝑚
and at a rate greater than that on 𝑀.

The following result has been proved in [18].

Theorem 10 (normal hyperbolicity). Suppose that 𝑇(𝑡) is a
𝐶

1 semigroup on a Banach space 𝑋 and 𝑀 is a 𝐶
2 compact

connected invariant manifold which is normally hyperbolic
under𝑇(𝑡) (i.e., (i) and (ii) of Definition 9 hold and there exists
0 ≤ 𝑡

0
< ∞ such that (iii) holds for all 𝑡 ≥ 𝑡

0
). Let 𝑇̃(𝑡)

be a 𝐶
1 semigroup on 𝑋 and 𝑡

1
> 𝑡

0
. Consider 𝑁(𝜀), the 𝜀-

neighborhood of 𝑀, given by

𝑁(𝜀) = {𝑚 + 𝑥
𝑢

+ 𝑥
𝑠

, 𝑥
𝑢

∈ 𝑋
𝑢

𝑚
, 𝑥

𝑠

∈ 𝑋
𝑠

𝑚
,
󵄩󵄩󵄩󵄩𝑥

𝑢󵄩󵄩󵄩󵄩 ,
󵄩󵄩󵄩󵄩𝑥

𝑠󵄩󵄩󵄩󵄩 < 𝜀} .

(30)

Then, there exists 𝜀∗ > 0 such that, for each 𝜀 < 𝜀
∗, there exists

𝜎 > 0 such that if

sup
𝑢∈𝑁(𝜀)

{
󵄩󵄩󵄩󵄩󵄩
𝑇̃ (𝑡

1
) 𝑢 − 𝑇 (𝑡

1
) 𝑢

󵄩󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩󵄩
𝐷𝑇̃ (𝑡

1
) (𝑢) − 𝐷𝑇 (𝑡

1
) (𝑢)

󵄩󵄩󵄩󵄩󵄩
} < 𝜎,

sup
𝑢∈𝑁(𝜀)

󵄩󵄩󵄩󵄩󵄩
𝑇̃ (𝑡) 𝑢 − 𝑇 (𝑡) 𝑢

󵄩󵄩󵄩󵄩󵄩
< 𝜎, for 0 ≤ 𝑡 ≤ 𝑡

1
,

(31)
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there is a unique compact connected invariant manifold of class
𝐶

1, 𝑀̃, in𝑁(𝜀). Furthermore, 𝑀̃ is normally hyperbolic under
𝑇̃(𝑡) and, for each 𝑡 ≥ 0, 𝑇̃(𝑡) is a 𝐶

1-diffeomorphism from 𝑀̃

to 𝑀̃.

Remark 11. For 𝑢 ∈ 𝐿
2
(𝑆

1
) we have

|(𝐽 ∗ 𝑢) (𝑤)| ≤ ∫
𝑆
1

󵄨󵄨󵄨󵄨󵄨
𝐽 (𝑤𝑧

−1

)
󵄨󵄨󵄨󵄨󵄨
|𝑢 (𝑧)| 𝑑𝑧

≤ ∫
𝑆
1

‖𝐽‖
∞

|𝑢 (𝑧)| 𝑑𝑧

≤ √2𝜏‖𝐽‖
∞

‖𝑢‖
𝐿
2 ,

(32)

where we have used Hölder’s inequality in the last estimate.

Motivated by [21] we prove below that, for each 𝑢
0
∈ 𝐸

2
,

zero is simple eigenvalue of 𝐷𝐹
𝑢
(𝑢

0
, 𝐽). But specifically we

have the following result.

Proposition 12. Assume that 𝑏𝛽2𝜏‖𝐽‖
∞

< 1. Then, for
each 𝑢

0
∈ 𝐸

2
, zero is simple eigenvalue of 𝐷𝐹

𝑢
(𝑢

0
, 𝐽) with

eigenfunction 𝑢
󸀠

0
.

Proof. From Remark 5, 𝐷𝐹
𝑢
(𝑢

0
, 𝐽) is self-adjoint operator.

Then, to prove that zero is simple eigenvalue, it is enough to
show that if V ∈ ker(𝐷𝐹

𝑢
(𝑢

0
, 𝐽)) then V = 𝜆

0
𝑢
󸀠

0
, for some

𝜆
0
∈ R. For this, let V ∈ 𝐿

2
(𝑆

1
) be such that 𝐷𝐹

𝑢
(𝑢

0
, 𝐽)V = 0.

Then

V = 𝑔
󸀠

(𝛽𝐽 ∗ 𝑢
0
+ 𝛽ℎ) (𝛽𝐽 ∗ V) . (33)

Suppose that, in 𝐿
2
(𝑆

1
), V ̸= 𝜆𝑢

󸀠

0
for all 𝜆 ∈ R; that is,

󵄩󵄩󵄩󵄩󵄩
V − 𝜆𝑢

󸀠

0

󵄩󵄩󵄩󵄩󵄩𝐿2
> 0, ∀𝜆 ∈ R. (34)

But, using Remark 11, for any 𝜆 ∈ R and almost every point
of 𝑆1, we have

󵄨󵄨󵄨󵄨󵄨
V (𝑤) − 𝜆𝑢

󸀠

0
(𝑤)

󵄨󵄨󵄨󵄨󵄨

=
󵄨󵄨󵄨󵄨󵄨
𝑔
󸀠

(𝛽 (𝐽 ∗ 𝑢
0
+ 𝛽ℎ)) (𝛽𝐽 ∗ V)

−𝜆𝑔
󸀠

(𝛽 (𝐽 ∗ 𝑢
0
) + 𝛽ℎ) (𝛽𝐽 ∗ 𝑢

󸀠

0
)
󵄨󵄨󵄨󵄨󵄨

=
󵄨󵄨󵄨󵄨󵄨
𝑔
󸀠

(𝛽 (𝐽 ∗ 𝑢
0
+ 𝛽ℎ)) (𝛽𝐽 ∗ V)

−𝑔
󸀠

(𝛽 (𝐽 ∗ 𝑢
0
) + 𝛽ℎ) (𝛽𝐽 ∗ (𝜆𝑢

󸀠

0
))

󵄨󵄨󵄨󵄨󵄨

=
󵄨󵄨󵄨󵄨󵄨
𝑔
󸀠

(𝛽𝐽 ∗ 𝑢
0
+ 𝛽ℎ) 𝛽 [𝐽 ∗ V − 𝐽 ∗ (𝜆𝑢

󸀠

0
)]

󵄨󵄨󵄨󵄨󵄨

=
󵄨󵄨󵄨󵄨󵄨
𝑔
󸀠

(𝛽𝐽 ∗ 𝑢
0
+ 𝛽ℎ)

󵄨󵄨󵄨󵄨𝛽
󵄨󵄨󵄨󵄨 𝐽 ∗ [V − 𝜆𝑢

󸀠

0
]
󵄨󵄨󵄨󵄨󵄨

≤ 𝑏𝛽‖𝐽‖
∞

󵄩󵄩󵄩󵄩󵄩
V − 𝜆𝑢

󸀠

0

󵄩󵄩󵄩󵄩󵄩𝐿2
√2𝜏.

(35)

Hence
󵄩󵄩󵄩󵄩󵄩
V − 𝜆𝑢

󸀠

0

󵄩󵄩󵄩󵄩󵄩𝐿2
≤ 𝑏𝛽2𝜏‖𝐽‖

∞

󵄩󵄩󵄩󵄩󵄩
V − 𝜆𝑢

󸀠

0

󵄩󵄩󵄩󵄩󵄩𝐿2
. (36)

Since 𝑏𝛽2𝜏‖𝐽‖
∞

< 1, and ‖V − 𝜆𝑢
󸀠

0
‖
𝐿
2 > 0, we obtain a

contradiction. Therefore, there exists 𝜆
0

∈ R such that V =

𝜆𝑢
󸀠

0
.

Remark 13. Since

V 󳨃󳨀→ 𝑔
󸀠

(𝛽𝐽
0
∗ 𝑢

0
+ 𝛽ℎ) 𝛽 (𝐽

0
∗ V) (37)

is a compact operator in 𝐿
2
(𝑆

1
), it follows from (H6) that

𝜎 (𝐷𝐹
𝑢
(𝑢

0
, 𝐽

0
)) \ {0} (38)

contains only real eigenvalues of finite multiplicity with −1 as
the unique possible accumulation point.

Proposition 14. Assume that the hypotheses (H1), (H2), and
(H6) and that 𝑏𝛽‖𝐽‖

∞
2𝜏 < 1 holds. Then, for each 𝐽 ∈ J, any

curve of equilibria of 𝑇
𝐽
(𝑡) is a normally hyperbolic invariant

manifold under 𝑇
𝐽
(𝑡).

Proof. Here we follow closely a proof given in Pereira and
Silva [8]. Let 𝑀 be a curve of equilibria of 𝑇

𝐽
(𝑡) and 𝑚 ∈ 𝑀.

From Proposition 12 it follows that

Ker (𝐷𝐹
𝑢
(𝑚, 𝐽)) = span {𝑚

󸀠

} . (39)

Let 𝑌 = R(𝐷𝐹
𝑢
(𝑚, 𝐽)) be the range of 𝐷𝐹

𝑢
(𝑚, 𝐽). Since

𝐷𝐹
𝑢
(𝑚, 𝐽) is self-adjoint and Fredholm of index zero, it

follows that

𝜎 (𝐷𝐹
𝑢
(𝑢

0
, 𝐽) |

𝑌
) = 𝜎

𝑢
∪ 𝜎

𝑠
, (40)

where 𝜎
𝑢
and 𝜎

𝑠
correspond to the positive and negative

eigenvalues, respectively.
From (H1) and (H2), it follows that 𝑇

𝐽
(𝑡) is a 𝐶

1 semi-
group. Consider the linear autonomous equation

V̇ = (𝐷𝐹
𝑢
(𝑚, 𝐽) |

𝑌
) V. (41)

Then 𝐷𝑇
𝐽
(𝑡)V

0
is the solution of (41) with initial condition

V
0
; that is, 𝐷𝑇

𝐽
(𝑡)(𝑚)V

0
= 𝑒

(𝐷𝐹
𝑢
(𝑚,𝐽))𝑡V

0
. In particular

𝐷𝑇
𝐽
(𝑡)(𝑚)|

𝑌
≡ 𝐷(𝑇

𝐽
(𝑡)|

𝑌
)(𝑚) = 𝑒

(𝐷𝐹
𝑢
(𝑚,𝐽)|

𝑌
)𝑡.

Let𝑃
𝑢
and𝑃

𝑠
be the spectral projections corresponding to

𝜎
𝑢
and 𝜎

𝑠
. Thus, the subspaces 𝑋

𝑢

𝑚
= 𝑃

𝑢
𝑌 and 𝑋

𝑠

𝑚
= 𝑃

𝑠
𝑌 are

invariant under 𝐷𝑇
𝐽
(𝑡) and the following estimates hold (see

[11, pages 73, 81] or [22, page 37]):
󵄩󵄩󵄩󵄩𝐷𝑇

𝐽
(𝑡) |

𝑌
V󵄩󵄩󵄩󵄩 ≤ 𝑁𝑒

−]𝑡
‖V‖ , for V ∈ 𝑋

𝑠

𝑚
, 𝑡 ≥ 0,

󵄩󵄩󵄩󵄩𝐷𝑇
𝐽
(𝑡) |

𝑌
V󵄩󵄩󵄩󵄩 ≤ 𝑁𝑒

]𝑡
‖V‖ , for V ∈ 𝑋

𝑢

𝑚
, 𝑡 ≤ 0,

(42)

for some positive constant ] and some constant 𝑁 > 1.
It is clear that 𝐷𝑇

𝐽
(𝑡) ≡ 0 when restricted to 𝑋

𝑐

𝑚
=

span{𝑚󸀠
}. Therefore, we have the decomposition

𝐿
2

(𝑆
1

) = 𝑋
𝑐

𝑚
⊕ 𝑋

𝑢

𝑚
⊕ 𝑋

𝑠

𝑚
. (43)

Since 𝐷𝐹
𝑢
(𝑚, 𝐽)|

𝑌
is an isomorphism, then

𝐷𝐹
𝑢
(𝑚, 𝐽) |

𝑋
𝛼

𝑚

: 𝑋
𝛼

𝑚
󳨀→ 𝑋

𝛼

𝑚
, 𝛼 = 𝑢, 𝑠, (44)

is an isomorphism. Consequently, the linear flow

𝐷𝑇
𝐽
(𝑡) (𝑚) |

𝑋
𝑢

𝑚

: 𝑋
𝑢

𝑚
󳨀→ 𝑋

𝑢

𝑚
(45)

is also an isomorphism.
Finally, the estimates (28) and (29) follow from estimate

(42).
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Proposition 15. Suppose that the hypotheses (H1) and (H2)
hold. Let𝐷𝑇

𝐽
(𝑡)(𝑢) be the linear flow generated by the equation

𝜕V
𝜕𝑡

= −V + 𝑔
󸀠

(𝛽𝐽 ∗ 𝑢 + 𝛽ℎ) 𝛽 (𝐽 ∗ V) . (46)

Then, for a fixed 𝐽
0
∈ J, we have

󵄩󵄩󵄩󵄩󵄩
𝑇
𝐽
(𝑡) 𝑢 − 𝑇

𝐽
0
(𝑡) 𝑢

󵄩󵄩󵄩󵄩󵄩𝐿2(𝑆1)

+
󵄩󵄩󵄩󵄩󵄩
𝐷𝑇

𝐽
(𝑡) (𝑢) − 𝐷𝑇

𝐽
0
(𝑡) (𝑢)

󵄩󵄩󵄩󵄩󵄩L(𝐿
2
(𝑆
1
),𝐿
2
(𝑆
1
))

󳨀→ 0,

(47)

when ‖𝐽 − 𝐽
0
‖
𝐿
1 → 0, uniformly for 𝑢 in bounded sets of

𝐿
2
(𝑆

1
) and 𝑡 ∈ [0, 𝑏], 𝑏 < ∞.

Proof. From Lemma 1 it follows that
󵄩󵄩󵄩󵄩󵄩
𝑇
𝐽
(𝑡)𝑢 − 𝑇

𝐽
0
(𝑡) 𝑢

󵄩󵄩󵄩󵄩󵄩𝐿2(𝑆1)
󳨀→ 0, as 󵄩󵄩󵄩󵄩𝐽 − 𝐽

0

󵄩󵄩󵄩󵄩𝐿1 󳨀→ 0, (48)

for 𝑢 in bounded sets of 𝐿2
(𝑆

1
) and 𝑡 ∈ [0, 𝑏].

By the variation of constants formula, we have

𝐷𝑇
𝐽
(𝑡) (𝑢) V

= 𝑒
−𝑡V + ∫

𝑡

0

𝑒
−(𝑡−𝑠)

𝑔
󸀠

(𝛽𝐽 ∗ 𝑢 + 𝛽ℎ) (𝛽𝐽 ∗ V) 𝑑𝑠.
(49)

Thus
󵄩󵄩󵄩󵄩󵄩
𝐷𝑇

𝐽
(𝑡) (𝑢) V − 𝐷𝑇

𝐽
0
(𝑡) (𝑢) V

󵄩󵄩󵄩󵄩󵄩𝐿2

≤ ∫

𝑡

0

𝑒
−(𝑡−𝑠) 󵄩󵄩󵄩󵄩󵄩

[𝑔
󸀠

(𝛽𝐽 ∗ 𝑢 + 𝛽ℎ) 𝛽 (𝐽 ∗ V)

−𝑔
󸀠

(𝛽𝐽
0
∗ 𝑢 + 𝛽ℎ) 𝛽 (𝐽

0
∗ V)]

󵄩󵄩󵄩󵄩󵄩𝐿2
𝑑𝑠.

(50)

Subtracting and adding the term 𝑔
󸀠
(𝛽𝐽 ∗ 𝑢+𝛽ℎ)𝛽(𝐽

0
∗ V), we

have
󵄩󵄩󵄩󵄩󵄩
𝐷𝑇

𝐽
(𝑡)(𝑢)V − 𝐷𝑇

𝐽
0

(𝑡)(𝑢)V
󵄩󵄩󵄩󵄩󵄩𝐿2

≤ ∫

𝑡

0

𝑒
−(𝑡−𝑠)

[
󵄩󵄩󵄩󵄩󵄩
𝑔
󸀠

(𝛽𝐽 ∗ 𝑢 + 𝛽ℎ) [𝛽 (𝐽 − 𝐽
0
) ∗ V]

󵄩󵄩󵄩󵄩󵄩𝐿2

+
󵄩󵄩󵄩󵄩󵄩
[𝑔

󸀠

(𝛽 (𝐽 ∗ 𝑢) + 𝛽ℎ)

−𝑔
󸀠

(𝛽 (𝐽
0
∗ 𝑢) + 𝛽ℎ)]

×𝛽(𝐽
0
∗ V)󵄩󵄩󵄩󵄩𝐿2] 𝑑𝑠.

(51)

Now, using hypothesis (H2) and Remark 11, we obtain
󵄩󵄩󵄩󵄩󵄩
𝑔
󸀠

(𝛽 (𝐽 ∗ 𝑢) + 𝛽ℎ) [𝛽 (𝐽 − 𝐽
0
) ∗ V]

󵄩󵄩󵄩󵄩󵄩

2

𝐿
2

≤ ∫
𝑆
1

[𝛽𝑘
4
|(𝐽 ∗ 𝑢) (𝑤)| + 𝛽ℎ + 𝑘

5
]
2

× 𝛽
2󵄨󵄨󵄨󵄨(𝐽 − 𝐽

0
) ∗ V (𝑤)

󵄨󵄨󵄨󵄨
2

𝑑𝑤

≤ ∫
𝑆
1

[𝛽𝑘
4
√2𝜏‖𝐽‖

∞
‖𝑢‖

𝐿
2 + 𝑘

5
]
2

𝛽
2

× ∫
𝑆
1

󵄨󵄨󵄨󵄨(𝐽 − 𝐽
0
) ∗ V (𝑤)

󵄨󵄨󵄨󵄨
2

𝑑𝑤.

(52)

Thus, by Young’s inequality and from the fact that 𝑢 belongs
to a bounded set (e.g., the ball in 𝐿

2 with radius𝐾), it follows
that

󵄩󵄩󵄩󵄩󵄩
𝑔
󸀠

(𝛽 (𝐽 ∗ 𝑢) + 𝛽ℎ) [𝛽 (𝐽 − 𝐽
0
) ∗ V]

󵄩󵄩󵄩󵄩󵄩𝐿2

≤ [𝛽𝑘
4
√2𝜏‖𝐽‖

∞
𝐾 + 𝑘

5
] 𝛽

󵄩󵄩󵄩󵄩𝐽 − 𝐽
0

󵄩󵄩󵄩󵄩𝐿1‖V‖𝐿2 .
(53)

From Remark 11 we obtain that
󵄩󵄩󵄩󵄩󵄩
[𝑔

󸀠

(𝛽 (𝐽 ∗ 𝑢) + 𝛽ℎ) − 𝑔
󸀠

(𝛽 (𝐽
0
∗ 𝑢) + 𝛽ℎ)] 𝛽 (𝐽

0
∗ V)

󵄩󵄩󵄩󵄩󵄩

2

𝐿
2

≤ 𝛽
2

(√2𝜏
󵄩󵄩󵄩󵄩𝐽0

󵄩󵄩󵄩󵄩∞‖V‖
𝐿
2)

2

× ∫
𝑆
1

󵄨󵄨󵄨󵄨󵄨
𝑔
󸀠

(𝛽 (𝐽 ∗ 𝑢) (𝑤) + 𝛽ℎ)

−𝑔
󸀠

(𝛽 (𝐽
0
∗ 𝑢 (𝑤)) + 𝛽ℎ)

󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑤.

(54)

Assuming (H2), Young’s inequality, and the fact that ‖𝑢‖
𝐿
2 ≤

𝐾 we get

∫
𝑆
1

󵄨󵄨󵄨󵄨󵄨
𝑔
󸀠

(𝛽 (𝐽 ∗ 𝑢) (𝑤) + 𝛽ℎ) − 𝑔
󸀠

(𝛽 (𝐽
0
∗ 𝑢 (𝑤)) + 𝛽ℎ)

󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑤

≤ ∫
𝑆
1

𝑘
2

4

󵄨󵄨󵄨󵄨𝛽 [(𝐽 − 𝐽
0
) ∗ 𝑢] (𝑤)

󵄨󵄨󵄨󵄨
2

𝑑𝑤

≤ 𝑘
2

4
𝛽
2

[
󵄩󵄩󵄩󵄩𝐽 − 𝐽

0

󵄩󵄩󵄩󵄩𝐿1‖𝑢‖𝐿2]
2

≤ [𝐾𝑘
4
𝛽
󵄩󵄩󵄩󵄩𝐽 − 𝐽

0

󵄩󵄩󵄩󵄩𝐿1]
2

.

(55)

Thus
󵄩󵄩󵄩󵄩󵄩
[𝑔

󸀠

(𝛽 (𝐽 ∗ 𝑢) + 𝛽ℎ) − 𝑔
󸀠

(𝛽 (𝐽
0
∗ 𝑢) + 𝛽ℎ)] 𝛽 ((𝐽

0
) ∗ V)

󵄩󵄩󵄩󵄩󵄩

2

𝐿
2

≤ 𝛽
2

(√2𝜏‖𝐽‖
∞

)𝐾𝑘
4

󵄩󵄩󵄩󵄩𝐽 − 𝐽
0

󵄩󵄩󵄩󵄩𝐿1‖V‖𝐿2 .
(56)

Hence, from (53) and (56) it follows that
󵄩󵄩󵄩󵄩󵄩
𝐷𝑇

𝐽
(𝑡) (𝑢) V − 𝐷𝑇

𝐽
0
(𝑡) (𝑢) V

󵄩󵄩󵄩󵄩󵄩𝐿2

≤ [(𝐾𝑘
4
𝛽
2√2𝜏‖𝐽‖

∞
+ 𝑘

5
𝛽)

󵄩󵄩󵄩󵄩𝐽 − 𝐽
0

󵄩󵄩󵄩󵄩𝐿1

+𝛽 (𝐾𝑘
4
𝛽√2𝜏‖𝐽‖

∞
)
󵄩󵄩󵄩󵄩𝐽 − 𝐽

0

󵄩󵄩󵄩󵄩𝐿1] ‖V‖
𝐿
2 .

(57)

Therefore
󵄩󵄩󵄩󵄩󵄩
𝐷𝑇

𝐽
(𝑡) (𝑢) − 𝐷𝑇

𝐽
0
(𝑡) (𝑢)

󵄩󵄩󵄩󵄩󵄩L(𝐿
2
(𝑆
1
),𝐿
2
(𝑆
1
))

= sup
‖V‖=1

󵄩󵄩󵄩󵄩󵄩
𝐷𝑇

𝐽
(𝑡) (𝑢) V − 𝐷𝑇

𝐽
0
(𝑡) (𝑢) V

󵄩󵄩󵄩󵄩󵄩𝐿2(𝑆1)

≤ sup
‖V‖=1

[(𝐾𝑘
4
𝛽
2√2𝜏‖𝐽‖

∞
+ 𝑘

5
𝛽)

󵄩󵄩󵄩󵄩𝐽 − 𝐽
0

󵄩󵄩󵄩󵄩𝐿1

+𝛽 (𝐾𝑘
4
𝛽√2𝜏‖𝐽‖

∞
)
󵄩󵄩󵄩󵄩𝐽 − 𝐽

0

󵄩󵄩󵄩󵄩𝐿1] ‖V‖
𝐿
2 .

(58)
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That is,
󵄩󵄩󵄩󵄩󵄩
𝐷𝑇

𝐽
(𝑡)(𝑢) − 𝐷𝑇

𝐽
0
(𝑡) (𝑢)

󵄩󵄩󵄩󵄩󵄩L(𝐿
2
(𝑆
1
),𝐿
2
(𝑆
1
))

≤ 𝐶 (𝐽) , (59)

where

𝐶 (𝐽) = [𝐾𝑘
4
𝛽
2√2𝜏‖𝐽‖

∞
+ 𝑘

5
𝛽]

󵄩󵄩󵄩󵄩𝐽 − 𝐽
0

󵄩󵄩󵄩󵄩𝐿1

+ 𝛽 (𝐾𝑘
4
𝛽√2𝜏‖𝐽‖

∞
)
󵄩󵄩󵄩󵄩𝐽 − 𝐽

0

󵄩󵄩󵄩󵄩𝐿1

(60)

tends to zero when ‖𝐽 − 𝐽
0
‖
𝐿
1 → 0.

4.2. Lower Semicontinuity of the Equilibria

Theorem 16. Suppose that the hypotheses (H1), (H2), and
(H5) with 𝑎 < ∞ and (H6) and (H7) hold. Then, if
𝑏𝛽2𝜏‖𝐽‖

∞
< 1, the set 𝐸

𝐽
of the equilibria of 𝑇

𝐽
(𝑡) is lower

semicontinuous with respect to 𝐽 at 𝐽
0
.

Proof. The continuity of the constant equilibria follows from
the Implicit FunctionTheorem and the hypothesis of normal
hyperbolicity.

Suppose now that 𝑚 is a nonconstant equilibrium of
(P)

𝐽
and let Γ = 𝛾(𝛼;𝑚) be the isolated curve of equilibria

containing 𝑚 given in Lemma 7. We wish to show that, for
every 𝜀 > 0, there exists 𝛿 > 0 so that if 𝐽 ∈ J there exists
Γ
𝐽

∈ 𝐸
𝐽
such that Γ ⊂ Γ

𝜀

𝐽
where Γ

𝜀

𝐽
is the 𝜀-neighborhood of

Γ
𝐽
.
From Lemma 7 and Propositions 14 and 15, the assump-

tions of the normal hyperbolicity theorem are satisfied.Thus,
given 𝜀 > 0, there is 𝛿 > 0 such that if ‖𝐽 − 𝐽

0
‖
𝐿
1 < 𝛿

there is a unique 𝐶
1 compact connected invariant manifold

Γ
𝐽
normally hyperbolic under𝑇

𝐽
(𝑡), such that Γ

𝐽
is 𝜀-close and

𝐶
1-diffeomorphic to Γ.
Since 𝑇

𝐽
(𝑡) is gradient and Γ

𝐽
is compact, there exists at

least one equilibrium𝑚
𝐽
∈ Γ

𝐽
. In fact, the𝜔 limit of any 𝑢 ∈ Γ

𝐽

is nonempty and belongs to Γ
𝐽
by invariance. From Lemma

3.8.2 of [12], it must contain an equilibrium. Since Γ
𝐽
is 𝜀-close

to Γ, there exists 𝑚 ∈ Γ such that ‖𝑚 − 𝑚
𝐽
‖
𝐿
2
(𝑆
1
)
< 𝜀.

Let Γ̃
𝐽

be the curve of equilibria given by Γ̃
𝐽

≡

{𝛾(𝛼;𝑚
𝐽
), 𝛼 ∈ 𝑆

1
} which is a normally hyperbolic invariant

manifold under 𝑇
𝐽
(𝑡) by Proposition 14. Then, for each 𝛼 ∈

𝑆
1, we have

󵄩󵄩󵄩󵄩𝛾 (𝛼;𝑚
𝐽
) − 𝛾 (𝛼;𝑚)

󵄩󵄩󵄩󵄩
2

𝐿
2

= ∫
𝑆
1

󵄨󵄨󵄨󵄨𝛾 (𝛼;𝑚
𝐽
) (𝑤) − 𝛾 (𝛼;𝑚) (𝑤)

󵄨󵄨󵄨󵄨
2

𝑑𝑤

= ∫
𝑆
1

󵄨󵄨󵄨󵄨𝑚𝐽
(𝛼𝑤) − 𝑚 (𝛼𝑤)

󵄨󵄨󵄨󵄨
2

𝑑𝑤

=
󵄩󵄩󵄩󵄩𝑚𝐽

− 𝑚
󵄩󵄩󵄩󵄩𝐿2

.

(61)

Thus
󵄩󵄩󵄩󵄩𝛾 (𝛼;𝑚

𝐽
) − 𝛾 (𝛼;𝑚)

󵄩󵄩󵄩󵄩𝐿2
=

󵄩󵄩󵄩󵄩𝑚𝐽
− 𝑚

󵄩󵄩󵄩󵄩𝐿2

< 𝜀.

(62)

And Γ is 𝜀-close to Γ̃
𝐽
. Since there are only a finite number of

curves of equilibria the result follows immediately.

The example given below shows that the curves of
equilibria of the equation

𝑥̇ = 𝐹 (𝑥) , (63)

generated by the action of a group, may disappear even when
the symmetry is preserved. In other words, we are unable
to obtain a result by using the Implicit Function Theorem
without additional hypotheses of normal hyperbolicity (see
[23]).

Example 17 (an example with symmetry, see [8, 23]). Con-
sider the planar system

𝑥̇ = 𝑥 (1 − 𝑥
2

− 𝑦
2

) ,

̇𝑦 = 𝑦 (1 − 𝑥
2

− 𝑦
2

) .

(64)

Note that (64) has, besides the origin, the curve of
equilibria given by

𝑥
2

+ 𝑦
2

= 1 (65)

which is generated, in polar coordinate, by the rotation of a
fixed equilibrium.

However, for any 𝜀 ̸= 0, the perturbed system

𝑥̇ = − 𝜀𝑦 + 𝑥 (1 − 𝑥
2

− 𝑦
2

) ,

̇𝑦 = 𝜀𝑥 + 𝑦 (1 − 𝑥
2

− 𝑦
2

)

(66)

has no nontrivial equilibrium, although the system is still
invariant under the action of 𝑆1.

5. Lower Semicontinuity of the Attractors

In this section, using the same techniques of [8] we present
the proof of the lower semicontinuity of the attractors in the
next two subsections below.

5.1. Existence and Continuity of the Local Unstable Manifolds.
Let us return to (P)

𝐽
. Recall that theunstable set𝑊𝑢

𝐽
= 𝑊

𝑢

𝐽
(𝑢

𝐽
)

of an equilibrium 𝑢
𝐽
is the set of initial conditions 𝜑 of (P)

𝐽
,

such that 𝑇
𝐽
(𝑡)𝜑 is defined for all 𝑡 ≤ 0 and 𝑇

𝐽
(𝑡)𝜑 → 𝑢

𝐽
as

𝑡 → −∞. For a given neighborhood 𝑉 of 𝑢
𝐽
, the set 𝑊𝑢

𝐽
∩ 𝑉

is called a local unstable set of 𝑢
𝐽
.

In the following, using results of [19] we show that
the local unstable sets are actually Lipschitz manifolds in a
sufficiently small neighborhood and vary continuously with
𝐽. More precisely, we have the following.

Lemma 18. If 𝑢
0
is a fixed equilibrium of (P)

𝐽
for 𝐽 = 𝐽

0
then

there is a 𝛿 > 0 such that if ‖𝐽 − 𝐽
0
‖
𝐿
1 + ‖𝑢

0
− 𝑢

𝐽
‖
𝐿
2 < 𝛿 and

𝑈
𝛿

𝐽
:= {𝑢 ∈ 𝑊

𝑢

𝐽
(𝑢

𝐽
) :

󵄩󵄩󵄩󵄩𝑢 − 𝑢
𝐽

󵄩󵄩󵄩󵄩𝐿2
< 𝛿} (67)

then 𝑈
𝛿

𝐽
is a Lipschitz manifold and

dist (𝑈𝛿

𝐽
, 𝑈

𝛿

𝐽
0

) + dist (𝑈𝛿

𝐽
0

, 𝑈
𝛿

𝐽
) 󳨀→ 0

as 󵄩󵄩󵄩󵄩𝐽 − 𝐽
0

󵄩󵄩󵄩󵄩𝐿1 +
󵄩󵄩󵄩󵄩𝑢0

− 𝑢
𝐽

󵄩󵄩󵄩󵄩𝐿2
󳨀→ 0,

(68)

with dist defined as in (13).
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Proof. As already mentioned, assuming (H1) and (H2), the
map 𝐹 : 𝐿

2
(𝑆

1
) × J → 𝐿

2
(𝑆

1
),

𝐹 (𝑢, 𝐽) = −𝑢 + 𝑔 (𝛽 (𝐽 ∗ 𝑢) + 𝛽ℎ) , (69)

defined by the right hand side of (P)
𝐽
is continuously Frechet

differentiable. Let 𝑢
𝐽
be an equilibrium of (P)

𝐽
. Writing 𝑢 =

𝑢
𝐽
+ V, it follows that 𝑢 is a solution of (P)

𝐽
if and only if V

satisfies
𝜕V
𝜕𝑡

= 𝐿 (𝐽) V + 𝑟 (𝑢
𝐽
, V, 𝐽) , (70)

where 𝐿(𝐽)V = (𝜕/𝜕𝑢)𝐹(𝑢
𝐽
, 𝐽) = −V+𝑔

󸀠
(𝛽(𝐽∗𝑢

𝐽
)+𝛽ℎ)𝛽(𝐽∗V)

and 𝑟(𝑢
𝐽
, V, 𝐽) = 𝐹(𝑢

𝐽
+ V, 𝐽) − 𝐹(𝑢

𝐽
, 𝐽) − 𝐿(𝐽)V. We rewrite

(70) in the form
𝜕V
𝜕𝑡

= 𝐿 (𝐽
0
) V + 𝑓 (V, 𝐽) , (71)

where 𝑓(V, 𝐽) = [𝐿(𝐽) − 𝐿(𝐽
0
)]V + 𝑟(𝑢

𝐽
, V, 𝐽) is the “nonlinear

part” of (71). Observe that now the “linear part” of (71) does
not depend on the parameter 𝐽, as required by Theorems 2.5
and 3.3 from [19].

Note that
󵄩󵄩󵄩󵄩󵄩
𝑔
󸀠

(𝛽 (𝐽 ∗ 𝑢
𝐽
) + 𝛽ℎ) 𝛽 (𝐽 ∗ V)

−𝑔
󸀠

(𝛽 (𝐽
0
∗ 𝑢J
0

) + 𝛽ℎ) 𝛽 (𝐽
0
∗ V)

󵄩󵄩󵄩󵄩󵄩𝐿2

≤
󵄩󵄩󵄩󵄩󵄩
[𝑔

󸀠

(𝛽 (𝐽 ∗ 𝑢
𝐽
) + 𝛽ℎ) − 𝑔

󸀠

(𝛽 (𝐽
0
∗ 𝑢

𝐽
0

) + 𝛽ℎ)]

× 𝛽 (𝐽 ∗ V)
󵄩󵄩󵄩󵄩󵄩𝐿2

+
󵄩󵄩󵄩󵄩󵄩
𝑔
󸀠

(𝛽(𝐽
0
∗ 𝑢

𝐽
0

) + 𝛽ℎ)𝛽(𝐽 − 𝐽
0
) ∗ V

󵄩󵄩󵄩󵄩󵄩𝐿2
.

(72)

So, using (H2) and Young’s inequality we obtain
󵄩󵄩󵄩󵄩󵄩
[𝑔

󸀠

(𝛽 (𝐽 ∗ 𝑢
𝐽
) + 𝛽ℎ) − 𝑔

󸀠

(𝛽 (𝐽
0
∗ 𝑢

𝐽
0

) + 𝛽ℎ)] 𝛽 (𝐽 ∗ V)
󵄩󵄩󵄩󵄩󵄩𝐿2

= (∫
𝑆
1

󵄨󵄨󵄨󵄨󵄨
𝑔
󸀠

(𝛽 (𝐽 ∗ 𝑢
𝐽
) (𝑤) + 𝛽ℎ)

−𝑔
󸀠

(𝛽 (𝐽
0
∗ 𝑢

𝐽
0

) (𝑤) + 𝛽ℎ)
󵄨󵄨󵄨󵄨󵄨

2

×𝛽 |(𝐽 ∗ V) (𝑤)|
2

𝑑𝑤)

1/2

≤ √2𝜏‖𝐽‖
∞

𝑘
4
𝛽‖V‖

𝐿
2

󵄩󵄩󵄩󵄩󵄩
𝐽 ∗ 𝑢

𝐽
− 𝐽

0
∗ 𝑢

𝐽
0

󵄩󵄩󵄩󵄩󵄩𝐿2
,

(73)

and consequently,
󵄩󵄩󵄩󵄩󵄩
[𝑔

󸀠

(𝛽 (𝐽 ∗ 𝑢
𝐽
) + 𝛽ℎ) − 𝑔

󸀠

(𝛽 (𝐽
0
∗ 𝑢

𝐽
0

) + 𝛽ℎ)] 𝛽 (𝐽 ∗ V)
󵄩󵄩󵄩󵄩󵄩𝐿2

≤ √2𝜏‖𝐽‖
∞

𝑘
4
𝛽‖V‖

𝐿
2

× [
󵄩󵄩󵄩󵄩󵄩
𝐽 ∗ (𝑢

𝐽
− 𝑢

𝐽
0

)
󵄩󵄩󵄩󵄩󵄩𝐿2

+
󵄩󵄩󵄩󵄩󵄩
(𝐽 − 𝐽

0
) ∗ 𝑢

𝐽
0

󵄩󵄩󵄩󵄩󵄩𝐿2
]

≤ [√2𝜏‖𝐽‖
∞

𝑘
4
𝛽‖𝐽‖

𝐿
1

󵄩󵄩󵄩󵄩󵄩
𝑢
𝐽
− 𝑢

𝐽
0

󵄩󵄩󵄩󵄩󵄩𝐿2

+√2𝜏‖𝐽‖
∞

𝑘
4
𝛽
󵄩󵄩󵄩󵄩𝐽 − 𝐽

0

󵄩󵄩󵄩󵄩𝐿1
󵄩󵄩󵄩󵄩󵄩
𝑢
𝐽
0

󵄩󵄩󵄩󵄩󵄩𝐿2
] ‖V‖

𝐿
2 .

(74)

On the other hand, since by hypothesis (H7) 𝑔 is 𝐶
2, the

functions 𝑔
󸀠
(𝛽(𝐽 ∗ 𝑢

𝐽
) + 𝛽(𝐽 ∗ V) + 𝛽ℎ) and 𝑔

󸀠󸀠
(𝛽(𝐽 ∗ 𝑢

𝐽
) +

𝛽(𝐽 ∗ V) + 𝛽ℎ) are bounded by a constant 𝑀; for any 𝐽 in a
neighborhood of 𝐽

0
with ‖V‖

𝐿
2 ≤ 1, we have

󵄩󵄩󵄩󵄩󵄩
𝑔
󸀠

(𝛽 (𝐽
0
∗ 𝑢

𝐽
0

) + 𝛽ℎ) 𝛽 (𝐽 − 𝐽
0
) ∗ V

󵄩󵄩󵄩󵄩󵄩𝐿2

≤ (∫
𝑆
1

𝑀
2

𝛽
2󵄨󵄨󵄨󵄨[(𝐽 − 𝐽

0
) ∗ V] (𝑤)

󵄨󵄨󵄨󵄨
2

𝑑𝑤)

1/2

≤ 𝑀𝛽
󵄩󵄩󵄩󵄩𝐽 − 𝐽

0

󵄩󵄩󵄩󵄩𝐿1‖V‖𝐿2 .

(75)

From (74) and (75) it follows that
󵄩󵄩󵄩󵄩󵄩
[𝑔

󸀠

(𝛽 (𝐽 ∗ 𝑢
𝐽
) + 𝛽ℎ) 𝛽 (𝐽 ∗ V)

−𝑔
󸀠

(𝛽 (𝐽
0
∗ 𝑢

𝐽
0

) + 𝛽ℎ)] 𝛽 (𝐽
0
∗ V)

󵄩󵄩󵄩󵄩󵄩𝐿2

= [√2𝜏‖𝐽‖
∞

𝑘
4
𝛽‖𝐽‖

𝐿
1

󵄩󵄩󵄩󵄩󵄩
𝑢
𝐽
− 𝑢

𝐽
0

󵄩󵄩󵄩󵄩󵄩𝐿2

+ √2𝜏‖𝐽‖
∞

𝑘
4
𝛽
󵄩󵄩󵄩󵄩𝐽 − 𝐽

0

󵄩󵄩󵄩󵄩𝐿1
󵄩󵄩󵄩󵄩󵄩
𝑢
𝐽
0

󵄩󵄩󵄩󵄩󵄩𝐿2

+𝑀𝛽
󵄩󵄩󵄩󵄩𝐽 − 𝐽

0

󵄩󵄩󵄩󵄩𝐿1] ‖V‖
𝐿
2 .

(76)

Therefore,
󵄩󵄩󵄩󵄩[𝐿 (𝐽) − 𝐿 (𝐽

0
)] V󵄩󵄩󵄩󵄩𝐿2

=
󵄩󵄩󵄩󵄩󵄩
[𝑔

󸀠

(𝛽 (𝐽 ∗ 𝑢
𝐽
) + 𝛽ℎ) 𝛽 (𝐽 ∗ V) − 𝑔

󸀠

(𝛽 (𝐽
0
∗ 𝑢

𝐽
0

) + 𝛽ℎ)]

× 𝛽 (𝐽
0
∗ V)󵄩󵄩󵄩󵄩𝐿2

≤ 𝐶
1
(𝐽) ‖V‖

𝐿
2 ,

(77)

where
𝐶

1
(𝐽)

= [√2𝜏‖𝐽‖
∞

𝑘
4
𝛽‖𝐽‖

𝐿
1

󵄩󵄩󵄩󵄩󵄩
𝑢
𝐽
− 𝑢

𝐽
0

󵄩󵄩󵄩󵄩󵄩𝐿2

+√2𝜏‖𝐽‖
∞

𝑘
4
𝛽
󵄩󵄩󵄩󵄩𝐽 − 𝐽

0

󵄩󵄩󵄩󵄩𝐿1
󵄩󵄩󵄩󵄩󵄩
𝑢
𝐽
0

󵄩󵄩󵄩󵄩󵄩𝐿2
+ 𝑀𝛽

󵄩󵄩󵄩󵄩𝐽 − 𝐽
0

󵄩󵄩󵄩󵄩𝐿1] 󳨀→ 0,

as 󵄩󵄩󵄩󵄩𝐽 − 𝐽
0

󵄩󵄩󵄩󵄩𝐿1 󳨀→ 0.

(78)

Now, note that

𝐹 (𝑢
𝐽
(𝑤) + V (𝑤) , 𝐽) − 𝐹 (𝑢

𝐽
0
(𝑤) + V (𝑤) , 𝐽

0
)

= [𝑢
𝐽
0

− 𝑢
𝐽
]

+ [𝑔 (𝛽 (𝐽 ∗ 𝑢
𝐽
) (𝑤) + 𝛽 (𝐽 ∗ V) (𝑤) + 𝛽ℎ)

−𝑔 (𝛽 (𝐽
0
∗ 𝑢

𝐽
0

) (𝑤) + 𝛽 (𝐽
0
∗ V) (𝑤) + 𝛽ℎ)]

= [𝑔 (𝛽 (𝐽
0
∗ 𝑢

𝐽
0

) (𝑤) + 𝛽ℎ)

−𝑔 (𝛽 (𝐽
0
∗ 𝑢

𝐽
0

) (𝑤) + 𝛽 (𝐽
0
∗ V) (𝑤) + 𝛽ℎ)]

+ [𝑔 (𝛽 (𝐽 ∗ 𝑢
𝐽
) (𝑤) + 𝛽 (𝐽 ∗ V) (𝑤) + 𝛽ℎ)

−𝑔 (𝛽 (𝐽 ∗ 𝑢
𝐽
) (𝑤) + 𝛽ℎ)] .

(79)
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Thus

𝐹 (𝑢
𝐽
(𝑤) + V (𝑤) , 𝐽) − 𝐹 (𝑢

𝐽
0
(𝑤) + V (𝑤) , 𝐽

0
)

= 𝑔
󸀠

(𝛽 (𝐽 ∗ 𝑢
𝐽
) (𝑤) + 𝛽 (𝐽 ∗ V) (𝑤) + 𝛽ℎ) 𝛽 (𝐽 ∗ V) (𝑤)

− 𝑔
󸀠

(𝛽 (𝐽
0
∗ 𝑢

𝐽
0

) (𝑤) + 𝛽 (𝐽 ∗ V) (𝑤) + 𝛽ℎ)

× 𝛽 (𝐽
0
∗ V) (𝑤) ,

(80)

for some V in the segment defined by 𝐽∗𝑢
𝐽
and 𝐽∗(𝑢

𝐽
+V) and

for some V in the segment defined by 𝐽
0
∗𝑢

𝐽
0

and 𝐽
0
∗(𝑢

𝐽
0

+V).
Then, using (H2) and the fact that 𝑔󸀠

(𝛽(𝐽∗𝑢
𝐽
)+𝛽(𝐽∗V)+𝛽ℎ)

is bounded by a constant 𝑀, for any 𝐽 in a neighborhood of
𝐽
0
with ‖V‖

𝐿
2 ≤ 1, we have

𝐹 (𝑢
𝐽
(𝑤) + V (𝑤) , 𝐽) − 𝐹 (𝑢

𝐽
0
(𝑤) + V (𝑤) , 𝐽

0
)

= 𝑔
󸀠

(𝛽 (𝐽 ∗ 𝑢
𝐽
) (𝑤) + 𝛽 (𝐽 ∗ V) (𝑤) + 𝛽ℎ)

× 𝛽 (𝐽 ∗ V) (𝑤)

− 𝑔
󸀠

(𝛽 (𝐽
0
∗ 𝑢

𝐽
0

) (𝑤) + 𝛽 (𝐽
0
∗ V) (𝑤) + 𝛽ℎ)

× 𝛽 (𝐽 ∗ V) (𝑤)

+ 𝑔
󸀠

(𝛽 (𝐽
0
∗ 𝑢

𝐽
0

) (𝑤) + 𝛽 (𝐽
0
∗ V) (𝑤) + 𝛽ℎ)

× 𝛽 (𝐽 ∗ V) (𝑤)

− 𝑔
󸀠

(𝛽 (𝐽
0
∗ 𝑢

𝐽
0

) (𝑤) + 𝛽 (𝐽 ∗ V) (𝑤) + 𝛽ℎ)

× 𝛽 (𝐽
0
∗ V) (𝑤) .

(81)

With this
󵄩󵄩󵄩󵄩󵄩
𝐹 (𝑢

𝐽
+ V, 𝐽) − 𝐹 (𝑢

𝐽
0

+ V, 𝐽
0
)
󵄩󵄩󵄩󵄩󵄩𝐿2

≤ 𝑀𝛽
󵄩󵄩󵄩󵄩󵄩
[(𝐽 ∗ 𝑢

𝐽
) − (𝐽

0
∗ 𝑢

𝐽
0

) + 𝐽 ∗ (V − V)] 𝛽 (𝐽 ∗ V)
󵄩󵄩󵄩󵄩󵄩

+ 𝑀𝛽
󵄩󵄩󵄩󵄩󵄩
𝐽
0
∗ V − 𝐽 ∗ V

󵄩󵄩󵄩󵄩󵄩𝐿2

≤ 𝑀𝛽
󵄩󵄩󵄩󵄩󵄩
[(𝐽 ∗ 𝑢

𝐽
) − (𝐽

0
∗ 𝑢

𝐽
0

) + 𝐽 ∗ (V − V)] 𝛽 (𝐽 ∗ V)
󵄩󵄩󵄩󵄩󵄩

+ 𝑀𝛽
󵄩󵄩󵄩󵄩(𝐽 − 𝐽

0
) ∗ V󵄩󵄩󵄩󵄩𝐿2 + 𝑀𝛽

󵄩󵄩󵄩󵄩󵄩
𝐽 ∗ (V − V)

󵄩󵄩󵄩󵄩󵄩𝐿2
.

(82)

Once the following estimates hold
󵄩󵄩󵄩󵄩󵄩
(𝐽 ∗ 𝑢

𝐽
− 𝐽

0
∗ 𝑢

𝐽
0

) (𝐽 ∗ V)
󵄩󵄩󵄩󵄩󵄩𝐿2

≤ √2𝜏‖𝐽‖
∞

× (‖𝐽‖
𝐿
1

󵄩󵄩󵄩󵄩󵄩
𝑢
𝐽
− 𝑢

𝐽
0

󵄩󵄩󵄩󵄩󵄩𝐿2
+

󵄩󵄩󵄩󵄩󵄩
𝑢
𝐽
0

󵄩󵄩󵄩󵄩󵄩𝐿2
󵄩󵄩󵄩󵄩𝐽 − 𝐽

0

󵄩󵄩󵄩󵄩𝐿1) ‖V‖
𝐿
2 ,

󵄩󵄩󵄩󵄩󵄩
𝐽 ∗ (V − V)(𝐽 ∗ V)

󵄩󵄩󵄩󵄩󵄩𝐿2

≤ √2𝜏‖𝐽‖
∞

(‖𝐽‖
𝐿
1

󵄩󵄩󵄩󵄩󵄩
V − V

󵄩󵄩󵄩󵄩󵄩𝐿2
) ‖V‖

𝐿
2 ,

󵄩󵄩󵄩󵄩[(𝐽 − 𝐽
0
) ∗ V] (𝑤)

󵄩󵄩󵄩󵄩𝐿2 ≤
󵄩󵄩󵄩󵄩𝐽 − 𝐽

0

󵄩󵄩󵄩󵄩𝐿1‖V‖𝐿2 ,

(83)

it follows that
󵄩󵄩󵄩󵄩󵄩
𝐹 (𝑢

𝐽
+ V, 𝐽) − 𝐹 (𝑢

𝐽
0

+ V, 𝐽
0
)
󵄩󵄩󵄩󵄩󵄩𝐿2

≤ 𝑀𝛽
2√2𝜏‖𝐽‖

∞
‖𝐽‖

𝐿
1

× (𝑘
4

󵄩󵄩󵄩󵄩󵄩
𝑢
𝐽
− 𝑢

𝐽
0

󵄩󵄩󵄩󵄩󵄩𝐿2
+

󵄩󵄩󵄩󵄩󵄩
V − V

󵄩󵄩󵄩󵄩󵄩𝐿2
) ‖V‖

𝐿
2

+ (𝑀𝛽
2√2𝜏‖𝐽‖

∞

󵄩󵄩󵄩󵄩󵄩
𝑢
𝐽
0

󵄩󵄩󵄩󵄩󵄩𝐿2
󵄩󵄩󵄩󵄩𝐽 − 𝐽

0

󵄩󵄩󵄩󵄩𝐿1 + 𝑀𝛽
󵄩󵄩󵄩󵄩𝐽 − 𝐽

0

󵄩󵄩󵄩󵄩𝐿1)

× ‖V‖
𝐿
2 .

(84)

Therefore, as ‖V − V‖
𝐿
2 → 0 provided that ‖𝐽 − 𝐽

0
‖
𝐿
2 → 0, it

follows that
󵄩󵄩󵄩󵄩󵄩
𝐹 (𝑢

𝐽
+ V, 𝐽) − 𝐹 (𝑢

𝐽
0

+ V, 𝐽
0
)
󵄩󵄩󵄩󵄩󵄩𝐿2

≤ 𝐶
2
(𝐽) ‖V‖

𝐿
2 , (85)

with 𝐶
2
(𝐽) → 0 when ‖𝐽 − 𝐽

0
‖
𝐿
2 → 0.

Since 𝑟(𝑢
𝐽
, V, 𝐽) = 𝐹(𝑢

𝐽
+V, 𝐽)−𝐿(𝐽)V, we obtain from (77)

and (85) that
󵄩󵄩󵄩󵄩󵄩
𝑟 (𝑢

𝐽
, V, 𝐽) − 𝑟 (𝑢

𝐽
0

, V, 𝐽)
󵄩󵄩󵄩󵄩󵄩
≤ 𝐶

3
(𝐽) ‖V‖

𝐿
2 . (86)

From (77) and (86), it follows that
󵄩󵄩󵄩󵄩𝑓 (V, 𝐽) − 𝑓 (V, 𝐽

0
)
󵄩󵄩󵄩󵄩 ≤ 𝐶

4
(𝐽) ‖V‖

𝐿
2 , (87)

where 𝐶
4
(𝐽) → 0 as ‖𝐽 − 𝐽

0
‖
𝐿
2 → 0.

In a similar way, we obtain that
󵄨󵄨󵄨󵄨𝑟 (𝑢

𝐽
(𝑧) , V (𝑧) , 𝐽) − 𝑟 (𝑢

𝐽
(𝑧) , 𝑤 (𝑧) , 𝐽)

󵄨󵄨󵄨󵄨

≤
󵄩󵄩󵄩󵄩󵄩
𝑔
󸀠󸀠

(𝛽𝐽 ∗ 𝑢
𝐽
(𝑧) + 𝛽𝐽 ∗ V (𝑧) + 𝛽ℎ) 𝛽𝐽 ∗ V (𝑧)

󵄩󵄩󵄩󵄩󵄩∞

× 𝛽
2√4𝜏2‖𝐽‖

2

∞
‖V‖

𝐿
2‖V − 𝑤‖

𝐿
2 ,

(88)

for any V, 𝑤 with ‖V‖
𝐿
2
(𝑆
1
)
and ‖𝑤‖

𝐿
2
(𝑆
1
)
smaller than 1, with V

in the segment defined by 𝛽𝐽∗V+𝛽ℎ and 𝛽𝐽∗𝑤+𝛽ℎ and V in
the segment defined by 0 and 𝛽(𝐽∗V)+𝛽ℎ. As ‖V‖

𝐿
2 , ‖𝑤‖

𝐿
2 →

0, it follows that
󵄩󵄩󵄩󵄩𝑟 (𝑢

𝐽
(𝑧) , V (𝑧) , 𝐽) − 𝑟 (𝑢

𝐽
(𝑧) , 𝑤 (𝑧) , 𝐽)

󵄩󵄩󵄩󵄩𝐿2

≤ ]
1
(𝜌) ‖V − 𝑤‖

𝐿
2 ,

(89)

with ](𝜌) → 0 when 𝜌 → 0 and ‖V‖
𝐿
2 , ‖𝑤‖

𝐿
2 < 𝜌.

Furthermore
󵄩󵄩󵄩󵄩[𝐿 (𝐽) − 𝐿 (𝐽

0
)] V − [𝐿 (𝐽) − 𝐿 (𝐽

0
)] 𝑤

󵄩󵄩󵄩󵄩𝐿2

≤ 𝐶
1
(𝐽) ‖(V − 𝑤)‖

𝐿
2 .

(90)

Thus
󵄩󵄩󵄩󵄩𝑓 (V, 𝐽) − 𝑓 (𝑤, 𝐽)

󵄩󵄩󵄩󵄩𝐿2 ≤ (] (𝜌) + 𝐶
1
(𝐽)) ‖V − 𝑤‖

𝐿
2 , (91)

with ](𝜌) → 0 when 𝜌 → 0, ‖V‖
𝐿
2 and ‖𝑤‖

𝐿
2 are less than

or equal to 𝜌, and 𝐶
1
(𝐽) → 0 when 𝐽 → 𝐽

0
.

Therefore, the conditions of Theorems 2.5 and 3.3 from
[19] are satisfied and we obtain the existence of locally in-
variant sets for (71) near the origin, given as graphics of



10 International Journal of Differential Equations

Lipschitz functions which depend continuously on the pa-
rameter 𝐽near 𝐽

0
. Using uniqueness of solutions, we can easily

prove that these sets coincide with the local unstable mani-
folds of (71).

Observing now that the translation

𝑢 󳨃󳨀→ (𝑢 − 𝑢
𝐽
) (92)

sends an equilibrium 𝑢
𝐽
of (P)

𝐽
into the origin (which is an

equilibrium of (71)), the results follow immediately.

Using the compactness of the set of equilibria, one can
obtain a “uniform version” of Lemma 18 that will be needed
later.

Lemma 19. Let 𝐽 = 𝐽
0
be fixed. Then, there exists a 𝛿 >

0 such that, for any equilibrium 𝑢
0
of (𝑃)

𝐽
0

, if ‖𝐽 − 𝐽
0
‖
𝐿
1 +

‖𝑢
0
− 𝑢

𝐽
‖
𝐿
2 < 𝛿 and

𝑈
𝛿

𝐽
:= {𝑢 ∈ 𝑈

𝐽
(𝑢

𝐽
) :

󵄩󵄩󵄩󵄩𝑢 − 𝑢
𝐽

󵄩󵄩󵄩󵄩𝐿2(𝑆1)
< 𝛿} (93)

then 𝑈
𝛿

𝐽
is a Lipschitz manifold and

sup
𝑢
0
∈𝐸
𝐽0

dist (𝑈𝛿

𝐽
, 𝑈

𝛿

𝐽
0

) + dist (𝑈𝛿

𝐽
0

, 𝑈
𝛿

𝐽
) 󳨀→ 0

as 󵄩󵄩󵄩󵄩𝐽 − 𝐽
0

󵄩󵄩󵄩󵄩𝐿1 +
󵄩󵄩󵄩󵄩𝑢0

− 𝑢
𝐽

󵄩󵄩󵄩󵄩𝐿2
󳨀→ 0,

(94)

with dist defined as in (13).

Proof. From Lemma 18 we know that, for any 𝑢
0
∈ 𝐸

𝐽
0

, there
exists a 𝛿 = 𝛿(𝑢

0
) such that 𝑈

𝛿

𝐽
is a Lipschitz manifold if

‖𝐽 − 𝐽
0
‖
𝐿
1 + ‖𝑢

0
− 𝑢

𝐽
‖
𝐿
2 < 2𝛿. In particular, 𝑈𝛿

𝐽
is a Lipschitz

manifold if ‖𝐽 − 𝐽
0
‖
𝐿
1 + ‖𝑢̃

0
− 𝑢

𝐽
‖
𝐿
2 < 𝛿 for any 𝑢̃

0
∈ 𝐸

𝐽
0

with
‖𝑢̃

0
− 𝑢

0
‖
𝐿
2 < 𝛿. Taking a finite subcovering of the covering

of 𝐸
𝐽
0

by balls 𝐵(𝑢
0
, 𝛿(𝑢

0
)), with 𝑢

0
varying in 𝐸

𝐽
0

, the first
part of the result follows with 𝛿 chosen as the minimum of
those 𝛿(𝑢

0
).

Now, if 𝜀 > 0 and 𝑢
0

∈ 𝐸
𝐽
0

there exists, by Lemma 18,
𝛿 = 𝛿(𝑢

0
) such that if ‖𝐽 − 𝐽

0
‖
𝐿
1 + ‖𝑢

0
− 𝑢

𝐽
‖
𝐿
2 < 2𝛿 then

dist (𝑈𝛿

𝐽
, 𝑈

𝛿

𝐽
0

) + dist (𝑈𝛿

𝐽0
, 𝑈

𝛿

𝐽
) <

𝜀

2
. (95)

If 𝑢̃
0

∈ 𝐸
𝐽
0

is such that ‖𝑢̃
0
− 𝑢

0
‖
𝐿
2 < 𝛿 and ‖𝐽 − 𝐽

0
‖
𝐿
1 +

‖𝑢̃
0
− 𝑢

𝐽
‖
𝐿
2 < 𝛿 then, since ‖𝐽 − 𝐽

0
‖
𝐿
1 + ‖𝑢

0
− 𝑢

𝐽
‖
𝐿
2 < 2𝛿,

dist (𝑈𝛿

𝐽
(𝑢

𝐽
) , 𝑈

𝛿

𝐽
0

(𝑢̃
0
)) + dist (𝑈𝛿

𝐽
0

(𝑢̃
0
) , 𝑈

𝛿

𝐽
(𝑢

𝐽
))

< dist (𝑈𝛿

𝐽
(𝑢

𝐽
) , 𝑈

𝛿

𝐽
0

(𝑢
0
)) + dist (𝑈𝛿

𝐽
0

(𝑢
0
) , 𝑈

𝛿

𝐽
(𝑢

𝐽
))

+ dist (𝑈𝛿

𝐽
0

(𝑢̃
0
) , 𝑈

𝛿

𝐽
0

(𝑢
0
))

+ dist (𝑈𝛿

𝐽
0

(𝑢
0
) , 𝑈

𝛿

𝐽
0

(𝑢̃
0
)) < 𝜀.

(96)

By the same procedure given above, taking a finite sub-
covering of the covering of𝐸

𝐽
0

by balls𝐵(𝑢
0
, 𝛿(𝑢

0
)) and 𝛿 the

minimum of those 𝛿(𝑢
0
), we conclude that

dist (𝑈𝛿

𝐽
(𝑢

𝐽
) , 𝑈

𝛿

𝐽
0

(𝑢̃
0
)) + dist (𝑈𝛿

𝐽
0

(𝑢̃
0
) , 𝑈

𝛿

𝐽
(𝑢

𝐽
)) < 𝜀 (97)

if ‖𝐽 − 𝐽
0
‖
𝐿
1 + ‖𝑢̃

0
− 𝑢

𝐽
‖
𝐿
2 < 𝛿 for any 𝑢̃

0
∈ 𝐸

𝐽
0

.

5.2. Characterization and Proof of Lower Semicontinuity of the
Attractors. As a consequence of its gradient structure (see
[7]), the attractor of the flow generated by (P)

𝐽
is given by

unstable set of the set of equilibria (see [12]). Using results of
[20], we obtain below a more precise characterization of the
attractors.

Consider an equation of the form

𝑥̇ + 𝐵𝑥 = 𝑔 (𝑥) , (98)

where 𝐵 is a bounded linear operator on a Banach space 𝑋

and 𝑔 : 𝑋 → 𝑋 is a 𝐶
2 function. We may write (98) in the

form

𝑥̇ + 𝐴𝑥 = 𝑓 (𝑥) , (99)

where 𝐴 = 𝐵 − 𝑔
󸀠
(𝑥

0
) and 𝑓(𝑥) = 𝑔(𝑥

0
) + 𝑟(𝑥), with 𝑟

differentiable and 𝑟(0) = 0.
The following result has been proved in [20].

Theorem 20. Suppose that the spectrum 𝜎(𝐴) contains 0 as a
simple eigenvalue, while the remainder of the spectrum has real
part outside some neighborhood of zero. Let 𝛾 be a 𝐶

2 curve
of equilibria of the flow generated by (99). Then there exists a
neighborhood 𝑈 of 𝛾 such that, for any 𝑥

0
∈ 𝑈 whose positive

orbit is precompact and whose 𝜔-limit set 𝜔(𝑥
0
) belongs to 𝛾,

there exists a unique point 𝑦(𝑥
0
) ∈ 𝛾 with 𝜔(𝑥

0
) = 𝑦(𝑥

0
).

Similarly, for any 𝑥
0

∈ 𝑈 with bounded negative orbit and 𝛼-
limit set 𝛼(𝑥

0
) in 𝛾, there exists a unique point 𝑦(𝑥

0
) ∈ 𝛾 such

that 𝛼(𝑥
0
) = 𝑦(𝑥

0
).

Proposition 21. Assume that the hypotheses (H1), (H2), and
(H5) with 𝑎 < ∞ and (H6) and (H7) hold. Let 𝐸

𝐽
be the set of

equilibria for 𝑇
𝐽
(𝑡). For 𝑢 ∈ 𝐸

𝐽
, let𝑊𝑢

𝐽
(𝑢) be the unstable set of

𝑢. Then the attractor of the flow 𝑇
𝐽
(𝑡) is given by

A
𝐽
= ⋃

𝑢∈𝐸
𝐽

𝑊
𝑢

𝐽
(𝑢) . (100)

Proof. FromTheorem 5.5 of [7] we have

A
𝐽
= ⋃

𝑢∈𝐸
𝐽

𝑊
𝑢

𝐽
(𝐸

𝐽
) . (101)

There exist only a finite number {𝑢
1
, . . . , 𝑢

𝑘
} of constant

equilibria since they are all hyperbolic. For each nonconstant
equilibrium 𝑢 ∈ 𝐸

𝐽
, there is a curve 𝑀

𝑢
⊂ 𝐸

𝐽
⊂ A

𝐽
. From

Lemma 7 these curves M
𝑢
are all isolated and, since A

𝐽
is

compact, it follows that there exist only a finite number of
them, namely, 𝑀

1
, . . . ,𝑀

𝑛
. Thus

A
𝐽
= (

𝑛

⋃

𝑖=1

𝑊
𝑢

𝐽
(𝑀

𝑖
))⋃(

𝑘

⋃

𝑗=1

𝑊
𝑢

𝐽
(𝑢

𝑗
)) . (102)

ByTheorem 20, it follows that

𝑊
𝑢

𝐽
(𝑀

𝑖
) = ⋃

V∈𝑀
𝑖

𝑊
𝑢

𝐽
(V) , 𝑖 = 1, . . . , 𝑛. (103)

Therefore

A
𝐽
= ⋃

V∈𝐸
𝐽

𝑊
𝑢

𝐽
(V) . (104)
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5.2.1. Proof of the Lower Semicontinuity. We now turn back
to the proof of our main result, starting with some auxiliary
results.

Lemma 22. Assume the same hypotheses of Proposition 21.
Thus, given 𝜀 > 0 there exists 𝑇 > 0 such that, for all 𝑢 ∈

A
𝐽
0

\ 𝐸
𝜀

𝐽
0

,

𝑇
𝐽
0
(−𝑡) 𝑢 ∈ 𝐸

𝜀

𝐽
0

, (105)

for some 𝑡 ∈ [0, 𝑇], where 𝐸
𝜀

𝐽
0

is the 𝜀-neighborhood of 𝐸
𝐽
0

.
Furthermore, when 𝜀 is sufficiently small,

𝑇
𝐽
0
(−𝑡) 𝑢 ∈ 𝑈

𝐽
0

(𝑢
0
) (106)

for some 𝑢
0
∈ 𝐸

𝐽
0

, where𝑈
𝐽
0

(𝑢
0
) is the local unstable manifold

of 𝑢
0
∈ 𝐸

𝐽
0

.

Proof. Let 𝜀 > 0 be given and 𝑢 ∈ A
𝐽
0

\ 𝐸
𝜀

𝐽
0

. From
Proposition 21, it follows that

𝑢 ∈ 𝑊
𝑢

𝐽
0

(𝑢) \ 𝐸
𝜀

𝐽
0

(107)

for some 𝑢 ∈ 𝐸
𝐽
0

. Thus, there exists 𝑡
𝑢
= 𝑡

𝑢
(𝜀) < ∞ such that

𝑇
𝐽
0

(−𝑡
𝑢
)𝑢 ∈ 𝐸

𝜀

𝐽
0

. By the continuity of the operator 𝑇
𝐽
0

(−𝑡
𝑢
),

there exists 𝜂
𝑢

> 0 such that 𝑇
𝐽
0

(−𝑡u)𝐵(𝑢, 𝜂
𝑢
) ⊂ 𝐸

𝜀

𝐽
0

, where
𝐵(𝑢, 𝜂

𝑢
) is the ball of center 𝑢 and radius 𝜂

𝑢
. By compactness,

there are 𝑢
1
, . . . , 𝑢

𝑛
∈ A

𝐽
0

\ 𝐸
𝜀

𝐽
0

such that

A
𝐽
0

\ 𝐸
𝜀

𝐽
0

⊂

𝑛

⋃

𝑗=1

𝐵 (𝑢
𝑗
, 𝜂

𝑢
𝑗

) (108)

with 𝑇
𝐽
0

(−𝑡
𝑢
𝑗

)𝐵(𝑢
𝑗
, 𝜂

𝑢
𝑗

) ⊂ 𝐸
𝜀

𝐽
0

, for 𝑗 = 1, . . . , 𝑛. Let 𝑇 =

max{𝑡
𝑢
1

, . . . , 𝑡
𝑢
𝑛

}. Then, for any 𝑢 ∈ A
0
\ 𝐸

𝜀

𝐽
0

,𝑇
𝐽
0

(−𝑡)𝑢 ∈ 𝐸
𝜀

𝐽
0

for some 𝑡 ∈ [0, 𝑇]. Since 𝑢 ∈ 𝑊
𝑢

𝐽
0

(𝑢) \ 𝐸
𝜀

𝐽
0

for some 𝑢 ∈ 𝐸
𝐽
0

and 𝑇
𝐽
0

(−𝑡)𝑢 ∈ 𝐸
𝜀

𝐽
0

then, to conclude that 𝑇
𝐽
0

(−𝑡)𝑢 ∈ 𝑈
𝐽
0

(𝑢)

when 𝜀 is sufficiently small, it is enough to show that there
exists 𝛿 > 0 such that𝑊𝑢

𝐽
0

(V)∩𝐵(V, 𝛿) ⊂ 𝑈
𝐽
0

(V), for all V ∈ 𝐸
𝐽
0

.
But this result follows immediately from Lemma 18.

Theorem 23. Assume the hypotheses (H1), (H2), and (H5)
with 𝑎 < ∞ and (H6) and (H7) hold. Then the family
of attractors A

𝐽
is lower semicontinuous with respect to the

parameter 𝐽 at 𝐽
0
∈ J.

Proof. Let 𝜀 > 0 be given. From Lemma 22 there is a 𝑇 > 0

such that, for all 𝑢 ∈ A
𝐽
0

\ 𝐸
𝜀

𝐽
0

, there exists 𝑡
𝑢

∈ [0, 𝑇] such
that

𝑢 := 𝑇
𝐽
0

(−𝑡
𝑢
) 𝑢 ∈ 𝑈

𝐽
0

(𝑢
0
) , (109)

for some 𝑢
0

∈ 𝐸
𝐽
0

. Since 𝑇
𝐽
0

(𝑡) is a continuous family of
bounded operators there exists 𝜂 > 0 such that, for all 𝑡 ∈

[0, 𝑇],

‖𝑧 − 𝑤‖
𝐿
2 < 𝜂 󳨐⇒

󵄩󵄩󵄩󵄩󵄩
𝑇
𝐽
0

(𝑡)𝑧 − 𝑇
𝐽
0

(𝑡)𝑤
󵄩󵄩󵄩󵄩󵄩𝐿2

<
𝜀

2
. (110)

Now, by the uniform continuity of the equilibria and
the local unstable manifolds with respect to the parameter 𝐽

guaranteed by Theorem 16 and Lemma 19, there exists 𝛿
∗

>

0 independent of 𝑢 such that ‖𝐽 − 𝐽
0
‖
𝐿
1 < 𝛿

∗ implies the
existence of 𝑢

𝐽
∈ 𝐸

𝐽
and some 𝑢

𝐽
∈ 𝑈

𝐽
(𝑢

𝐽
) with

󵄩󵄩󵄩󵄩󵄩
𝑢
𝐽
− 𝑢

󵄩󵄩󵄩󵄩󵄩𝐿2
< 𝜂, (111)

where 𝑈
𝐽
(𝑢

𝐽
) denotes the local unstable manifold of the

equilibrium 𝑢
𝐽
of 𝑇

𝐽
(𝑡). Hence, when ‖𝐽 − 𝐽

0
‖
𝐿
1 < 𝛿

∗ we
obtain, from (110) and (111),

󵄩󵄩󵄩󵄩󵄩
𝑇
𝐽
0
(𝑡) 𝑢

𝐽
− 𝑇

𝐽
0
(𝑡) 𝑢

󵄩󵄩󵄩󵄩󵄩𝐿2
<

𝜀

2
, for any 𝑡 ∈ [0, 𝑇] . (112)

On the other hand, from the continuity of the flow
with respect to parameter 𝐽, there exists 𝛿 > 0 such that
‖𝐽 − 𝐽

0
‖
𝐿
1 < 𝛿 implies

󵄩󵄩󵄩󵄩󵄩
𝑇
𝐽
(𝑡) (𝑢) − 𝑇

𝐽
0
(𝑡) (𝑢)

󵄩󵄩󵄩󵄩󵄩𝐿2
<

𝜀

2
, (113)

for any 𝑢 ∈ 𝐵(0, 2𝑎√2𝜏) and 𝑡 ∈ [0, 𝑇], and in particular for
𝑢 = 𝑢

𝐽
and 𝑡 = 𝑡

𝑢
.

Consider 𝛿 = min{𝛿∗
, 𝛿} and let V

𝐽
:= 𝑇

𝐽
(𝑡

𝑢
)𝑢

𝐽
. It is clear

that V
𝐽
∈ A

𝐽
since 𝑢

𝐽
∈ 𝑈

𝐽
(𝑢

𝐽
).

Using (112) and (113) we obtain
󵄩󵄩󵄩󵄩V𝐽 − 𝑢

󵄩󵄩󵄩󵄩𝐿2
=

󵄩󵄩󵄩󵄩󵄩
𝑇
𝐽
(𝑡

𝑢
)𝑢

𝐽
− 𝑇

𝐽
0

(𝑡
𝑢
)𝑢

󵄩󵄩󵄩󵄩󵄩𝐿2

≤
󵄩󵄩󵄩󵄩󵄩
𝑇
𝐽
(𝑡

𝑢
)𝑢

𝐽
− 𝑇

𝐽
0

(𝑡
𝑢
)𝑢

𝐽

󵄩󵄩󵄩󵄩󵄩𝐿2

+
󵄩󵄩󵄩󵄩󵄩
𝑇
𝐽
0

(𝑡
𝑢
) 𝑢

𝐽
− 𝑇

𝐽
0

(𝑡
𝑢
) 𝑢

󵄩󵄩󵄩󵄩󵄩𝐿2

< 𝜀,

(114)

provided that ‖𝐽 − 𝐽
0
‖
𝐿
1 < 𝛿.

When 𝑢 ∈ 𝐸
𝜀

𝐽
0

⊂ A
𝐽
0

this conclusion follows straight-
forwardly from the continuity of equilibria. Thus the lower
semicontinuity of attractors follows.

6. A Concrete Example

In this sectionwe illustrate the results of the previous sections
to the particular case of (1) where 𝑔(𝑥) = tanh(𝑥).

In this case, we can rewrite (P)
𝐽
as follows:

𝜕V (𝑤, 𝑡)

𝜕𝑡
= −] (𝑤, 𝑡) + tanh (𝛽 (𝐽 ∗ ]) (𝑤, 𝑡) + 𝛽ℎ) . (115)

In this case, if 𝛽 ≤ 1 (115) has only one (stable) equilibrium
(see [9]). If 𝛽 > 1, there is ℎ∗, implicity defined by (116), such
that, for 0 ≤ ℎ ≤ ℎ

∗, (115) has three equilibria, 𝑚−

𝛽
, 𝑚0

𝛽
, and

𝑚
+

𝛽
, each of which is identically equal to one of the roots of

the equations:

𝑚
𝛽
= tanh (𝛽𝑚

𝛽
+ 𝛽ℎ) . (116)

The Lyapunov functional for (115) is given by

F (𝑢) = ∫
𝑆
1

[𝑓 (𝑢 (𝑤)) − 𝑓 (𝑚)] 𝑑𝑤

+
1

4
∬

𝑆
1

𝐽 (𝑤 ⋅ 𝑧
−1

) [𝑢 (𝑤) − 𝑢 (𝑧)]
2

𝑑𝑤𝑑𝑧,

(117)
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where 𝑓 (the free energy density) is given by

𝑓 (𝑥) = −
1

𝑥2
− ℎ𝑥 − 𝛽

−1

𝑖 (𝑥) , 𝑥 ∈ [−1, 1] , (118)

and 𝑖 is the entropy density, given by

𝑖 (𝑥) = −
1 + 𝑥

2
ln(

1 + 𝑥

2
) −

1 − 𝑥

2
ln(

1 − 𝑥

2
) ,

𝑥 ∈ [−1, 1] .

(119)

As was observed in [4, 8, 9], the functional given in (117)
has minimum value at 𝑚+

𝛽
.

Note that 𝑔 satisfies (H1) and (H4) with 𝑘
1

= 𝑎 = 1.
Moreover, it is easy to see that (4) is satisfied with 𝑘

2
= 1/3

and 𝑘
3
= 3.

Now, we observe that 𝑔 ∈ 𝐶
2
(R), 𝑔󸀠

(𝑥) = sech2

(𝑥), and
𝑔
󸀠󸀠
(𝑥) = −2sech2

(𝑥) tanh(𝑥).Thus (H2), (H3), and (H7) hold.
In particular

󵄨󵄨󵄨󵄨󵄨
𝑔
󸀠

(𝑥)
󵄨󵄨󵄨󵄨󵄨
≤ 𝑘

4
|𝑥| + 𝑘

5
, (120)

where 𝑘
4
= 2 and 𝑘

5
= 0 and 𝑔

󸀠
(𝑥) ≤ 𝑏 with 𝑏 = 1.

Therefore all results of the previous sections are valid for
the particular case of the flow generated by (115).
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