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A class of neural networks described by nonlinear impulsive neutral nonautonomous differential equations with delays is
considered. By means of Lyapunov functionals and differential inequality technique, criteria on global exponential stability of this
model are derived. Many adjustable parameters are introduced in criteria to provide flexibility for the design and analysis of the
system.The results of this paper are new and they supplement previously known results. An example is given to illustrate the results.

1. Introduction

Many evolution processes in nature exhibit abrupt changes of
states at certain moments. That was the reason for the devel-
opment of the theory of impulsive differential equations and
impulsive delay differential equations; see themonographs [1,
2]. But the theory of impulsive neutral differential equations
is not well developed due to some theoretical and technical
difficulties. For impulsive neutral differential equations, some
existence results and oscillation criteria are obtained in [3–5]
and some stability conditions are derived in [6]; for neural
networks described by impulsive neutral differential equa-
tionswith delays, the exponential stability results are obtained
in [7–11], but their work focuses on the autonomous system.
So in this paper, the exponential stability for neural networks
described by nonlinear impulsive neutral nonautonomous
differential equations with delays is considered.

The purpose of this paper is to study the stability of
the following impulsive neural networks with variable coef-
ficients and several time-varying delays:
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where 𝑛 corresponds to the number of units in a neural
network; for 𝑖, 𝑗 = 1, 2, . . . , 𝑛, 𝑥
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(𝑡) denotes the potential of
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transmission delays. (1a) (called continuous part) describes
the continuous evolution processes of the neural networks.
For 𝑖, 𝑗 = 1, 2, . . . , 𝑛, 𝑎
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(called discrete part) describes that the evolution processes
experience abrupt change of states at the moments of 𝑡
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.
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The theory on linear matrix inequality (LMI) or 𝑀-
Matrix provides effective methods for the analysis of expo-
nential stability of autonomous neural networks. See [7, 9, 10]
and the reference therein. But for nonautonomous neural
networks, it is invalid. Differential inequalities are important
tools for investigating the stability of impulsive differential
equations. See [7, 8, 12, 13] and the reference therein. The
method in this paper is partially motivated by the work in
[7].

In this paper, we will investigate the global exponential
stability of the nonautonomous neural networks and focus on
the effect of impulse on the dynamic behavior of (1a) and (1b).
The results do not require the boundedness of {𝑡
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𝑘−1
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previously known results.
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We assume that (1a) and (1b) are with the following initial
conditions:

𝑥 (𝑠) = 𝜙 (𝑠) , 𝑠 ∈ [−𝜏, 0] , (8)

where 𝜙 ∈ 𝑃𝐶([−𝜏, 0], 𝑅

𝑛
). According to [13], the initial value

problems (1a), (1b), and (8) have the unique solution 𝑥(𝑡, 𝜙)

under assumptions (H
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3
).
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2. The Main Result

To study the exponential stability of (1a) and (1b), we need the
following lemma.
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𝑡≥0

{𝜆 (𝑡) > 0, 𝜆 (𝑡)

−

[

[

𝑏

𝑖 (
𝑡) −

1

𝑝

𝑖

𝑛

∑

𝑗=1

𝑝

𝑗
𝐹

𝑖𝑗
𝑎

+

𝑖𝑗
(𝑡)

]

]

+

1

𝑝

𝑖

𝑛

∑

𝑗=1

(𝑝

𝑗
𝐺

𝑖𝑗
𝑐

+

𝑖𝑗
(𝑡) + 𝑞

𝑗
𝐻

𝑖𝑗
𝑑

+

𝑖𝑗
(𝑡))

× 𝑒

𝜆(𝑡)𝜏
= 0} > 0,

̂

𝜆

∗

𝑖
= inf
𝑡≥0

{𝜆 (𝑡) > 0,

−

[

[

1 −

𝑝

𝑖

𝑞

𝑖

𝑏

𝑖 (
𝑡) −

1

𝑞

𝑖

𝑛

∑

𝑗=1

𝑝

𝑗
𝐹

𝑖𝑗
𝑎

+

𝑖𝑗
(𝑡)

]

]

+

1

𝑞

𝑖

𝑛

∑

𝑗=1

(𝑝

𝑗
𝐺

𝑖𝑗
𝑐

+

𝑖𝑗
(𝑡) + 𝑞

𝑗
𝐻

𝑖𝑗
𝑑

+

𝑖𝑗
(𝑡))

× 𝑒

𝜆(𝑡)𝜏
= 0} > 0.

(13)

Proof. By the similar analysis in [14, Lemma 4.1], we can
deduce that 𝜆

∗

𝑖
and ̂

𝜆

∗

𝑖
exist uniquely and 𝜆

∗

𝑖
> 0, ̂𝜆∗

𝑖
> 0

under the assumption of (H
1
) and (H

4
). Consequently, 𝜆∗ >
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0. Choose a positive constant 𝜃 such that min{𝑝
𝑖
, 𝑞

𝑖
| 𝑖 ∈

𝑁}𝜃 > 1. Let

Φ

𝑖 (
𝑡) = max{

1

𝑝

𝑖

𝑉

𝑖 (
𝑡) ,

1

𝑞

𝑖

𝑊

𝑖 (
𝑡)} ,

Ψ (𝑡) = 𝜃

𝑛

∑

𝑙=1

max {









𝑉

𝑙0







𝜏
,









𝑊

𝑙0







𝜏
} 𝑒

−(𝜆
∗
−𝜇)𝑡

,

𝑖 ∈ 𝑁.

(14)

Then for all 𝑡 ∈ [−𝜏, 0] and 𝛾 > 1, we have

𝛾Ψ (𝑡) = 𝛾𝜃

𝑛

∑

𝑙=1

max {









𝑉

𝑙0







𝜏
,









𝑊

𝑙0







𝜏
} 𝑒

−(𝜆
∗
−𝜇)𝑡

> Φ

𝑖 (
𝑡) . (15)

Then

Φ

𝑖 (
𝑡) < 𝛾Ψ (𝑡) , ∀𝑡 ∈ [0,∞) , 𝑖 ∈ 𝑁. (16)

For the sake of contradiction, assume that there exist 𝑖 ∈ 𝑁

and 𝑡 > 0 such that

Φ

𝑖
(𝑡

+

) ≥ 𝛾Ψ (𝑡) , Φ

𝑗 (
𝑡) < 𝛾Ψ (𝑡) ,

for 𝑡 ∈ [0, 𝑡) , 𝑗 ∈ 𝑁.

(17)

From (17), we have











𝑉

𝑗𝑡









𝜏
= 𝑝

𝑗
sup
−𝜏≤𝜃≤0

1

𝑝

𝑗

𝑉

𝑗
(𝑡 + 𝜃)

≤ 𝑝

𝑗
sup
−𝜏≤𝜃≤0

𝛾Ψ (𝑡 + 𝜃) ≤ 𝛾𝑝

𝑗
Ψ (𝑡 − 𝜏) ;

(18)

similarly,










𝑊

𝑗𝑡









𝜏
≤ 𝛾𝑞

𝑗
Ψ (𝑡 − 𝜏) . (19)

Then we have the following cases.

(I) (1/𝑝

𝑖
)𝑉

𝑖
(𝑡

+

) ≥ 𝛾Ψ(𝑡); then we have the following
subcases.

(i) 𝑡 ̸= 𝑡

𝑘
, 𝑘 ∈ 𝑁

∗. So 𝑉

𝑖
(𝑡) is continuous at 𝑡. By (17), we

have
1

𝑝

𝑖

𝑉

𝑖
(𝑡) = 𝛾Ψ (𝑡) ,

1

𝑝

𝑖

𝐷

−
𝑉

𝑖
(𝑡) > 𝛾Ψ


(𝑡) . (20)

From (H
4
), (17)–(19), and the definition of 𝜆∗, we have

1

𝑝

𝑖

𝐷

−
𝑉

𝑖
(𝑡) − 𝛾Ψ


(𝑡)

≤ −𝛾𝑏

𝑖
(𝑡) Ψ (𝑡) +

𝑛

∑

𝑗=1

𝑝

𝑗

𝑝

𝑖

𝛾𝑎

+

𝑖𝑗
(𝑡) 𝐹

𝑖𝑗
Ψ (𝑡)

+

𝑛

∑

𝑗=1

𝛾(

𝑝

𝑗

𝑝

𝑖

𝑐

+

𝑖𝑗
(𝑡) 𝐺

𝑖𝑗
+

𝑞

𝑗

𝑝

𝑖

𝑑

+

𝑖𝑗
(𝑡)𝐻

𝑖𝑗
)

× Ψ (𝑡 − 𝜏) + 𝛾𝜆

∗
Ψ (𝑡) < 0,

(21)

which is a contradiction with (20).

(ii) There exists a 𝑘

0
∈ 𝑁

∗ such that 𝑡 = 𝑡

𝑘
0

. By (17), we
have

1

𝑝

𝑖

𝑉

𝑖
(𝑡) ≤ 𝛾Ψ (𝑡) ≤

1

𝑝

𝑖

𝑉

𝑖
(𝑡

+

) . (22)

Noting (1/𝑝

𝑖
)𝑉

𝑖
(𝑡

+

) ̸= (1/𝑝

𝑖
)𝑉

𝑖
(𝑡

−

), we have (1/𝑝

𝑖
)𝑉

𝑖
(𝑡

−

) <

𝛾Ψ(𝑡) or 𝛾Ψ(𝑡) < (1/𝑝

𝑖
)𝑉

𝑖
(𝑡

+

). Without loss of generality, we
assume that 𝛾Ψ(𝑡) < (1/𝑝

𝑖
)𝑉

𝑖
(𝑡

+

). From (10c) and (22), we get
that

𝛾Ψ (𝑡) <

1

𝑝

𝑖

𝑉

𝑖
(𝑡

+

) ≤ 𝛾 (𝐼

∗

𝑖𝑘
0

+ 𝐽

∗

𝑖𝑘
0

𝑒

(𝜆
∗
−𝜇)𝜏

)Ψ (𝑡) . (23)

Simplifying (23), we obtain 𝜇 < 𝜆

∗
+ (1/𝜏) ln(𝐽∗

𝑖𝑘
0

/(1 − 𝐼

∗

𝑖𝑘
0

)),
which contradict (12).

If (I) does not hold, then
(II)

1

𝑞

𝑖

𝑊

𝑖
(𝑡

+

) ≥ 𝛾Ψ (𝑡) ,

1

𝑞

𝑗

𝑊

𝑗 (
𝑡) < 𝛾Ψ (𝑡) ,

1

𝑝

𝑗

𝑉

𝑗 (
𝑡) < 𝛾Ψ (𝑡)

for 𝑡 ∈ [0, 𝑡) , 𝑗 ∈ 𝑁.

(24)

Then from (10b) and (17)–(19), we have

0 ≤ −𝑊

𝑖
(𝑡

+

) + 𝑏

𝑖
(𝑡) 𝑉

𝑖
(𝑡

+

) +

𝑛

∑

𝑗=1

𝑎

+

𝑖𝑗
(𝑡) 𝐹

𝑖𝑗
𝑉

𝑗
(𝑡

+

)

+

𝑛

∑

𝑗=1

𝑐

+

𝑖𝑗
(𝑡) 𝐺

𝑖𝑗













𝑉

𝑗𝑡
+











𝜏

+

𝑛

∑

𝑗=1

𝑑

+

𝑖𝑗
(𝑡)𝐻

𝑖𝑗













𝑊

𝑗𝑡
+











𝜏

,

≤ 𝛾Ψ (𝑡)

[

[

−𝑞

𝑖
+ 𝑝

𝑖
𝑏

𝑖
(𝑡) +

𝑛

∑

𝑗=1

𝑝

𝑗
𝑎

+

𝑖𝑗
(𝑡) 𝐹

𝑖𝑗

+

𝑛

∑

𝑗=1

(𝑝

𝑗
𝑐

+

𝑖𝑗
(𝑡) 𝐺

𝑖𝑗
+ 𝑞

𝑗
𝑑

+

𝑖𝑗
(𝑡)𝐻

𝑖𝑗
) 𝑒

𝜆
∗
𝜏
]

]

< 0,

(25)

which is a contradiction.
From (I) and (II), (16) holds. Letting 𝛾 → 1

+ in (16), we
have

Φ

𝑖 (
𝑡) ≤ Ψ (𝑡) , ∀𝑡 ∈ [0,∞) , 𝑖 ∈ 𝑁. (26)

So (1/𝑝

𝑖
)𝑉

𝑖
(𝑡) ≤ Ψ(𝑡) for all 𝑡 ∈ [0,∞), 𝑖 ∈ 𝑁. Let 𝐿 =

max
𝑖∈𝑁

{𝜃𝑝

𝑖
}; then for 𝑡 ≥ 0 and 𝑖 ∈ 𝑁, we have

𝑉

𝑖 (
𝑡) ≤ 𝐿

𝑛

∑

𝑙=1

max {









𝑉

𝑙0







𝜏
,









𝑊

𝑙0







𝜏
} 𝑒

−(𝜆
∗
−𝜇)𝑡

. (27)

The proof of Lemma 3 is complete.

Theorem 4. Assume that (H
1
)–(H
4
) hold. Then systems (1a)

and (1b) are globally exponentially stable.
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Proof. Let 𝑋(𝑡) = (𝑥

1
(𝑡), 𝑥

2
(𝑡), . . . , 𝑥

𝑛
(𝑡))

𝑇 and 𝑌(𝑡) =

(𝑦

1
(𝑡), 𝑦

2
(𝑡), . . . , 𝑦

𝑛
(𝑡))

𝑇 be solutions of (1a), (1b), and (8)with
𝜙 = 𝜑 and 𝜙 = 𝜓, respectively. Let

𝑉

𝑖 (
𝑡) =









𝑥

𝑖 (
𝑡) − 𝑦

𝑖 (
𝑡)









, 𝑊

𝑖 (
𝑡) =











𝑥



𝑖
(𝑡) − 𝑦



𝑖
(𝑡)











,

𝑡 ∈ 𝑅

+
, 𝑖 ∈ 𝑁.

(28)

By (1a) and (1b), for 𝑖 ∈ 𝑁, we have

𝐷

−
𝑉

𝑖
(𝑡

−
) ≤ −𝑏

𝑖 (
𝑡) 𝑉𝑖

(𝑡

−
) +

𝑛

∑

𝑗=1

𝑎

+

𝑖𝑗
(𝑡) 𝐹𝑖𝑗

𝑉

𝑗
(𝑡

−
)

+

𝑛

∑

𝑗=1

𝑐

+

𝑖𝑗
(𝑡) 𝐺𝑖𝑗











𝑉

𝑗𝑡
−









𝜏

+

𝑛

∑

𝑗=1

𝑑

+

𝑖𝑗
(𝑡)𝐻𝑖𝑗











𝑊

𝑗𝑡
−









𝜏
, 𝑡 > 0,

(29)

𝑊

𝑖
(𝑡

+
) ≤ 𝑏

𝑖 (
𝑡) 𝑉𝑖

(𝑡

+
)

+

𝑛

∑

𝑗=1

𝑎

+

𝑖𝑗
(𝑡) 𝐹𝑖𝑗

𝑉

𝑗
(𝑡

+
) +

𝑛

∑

𝑗=1

𝑐

+

𝑖𝑗
(𝑡) 𝐺𝑖𝑗











𝑉

𝑗𝑡
+









𝜏

+

𝑛

∑

𝑗=1

𝑑

+

𝑖𝑗
(𝑡)𝐻𝑖𝑗











𝑊

𝑗𝑡
+









𝜏
, 𝑡 > 0.

(30)

By (1b) and (H
3
), we have

𝑉

𝑖
(𝑡

+

𝑘
) =









𝑥

𝑖
(𝑡

+

𝑘
) − 𝑦

𝑖
(𝑡

+

𝑘
)









≤ 𝐼

∗

𝑖𝑘
𝑉

𝑖
(𝑡

𝑘
) + 𝐽

∗

𝑖𝑘
𝑉

𝑖
(𝑡

𝑘
− 𝜍

𝑖
(𝑡

𝑘
)) .

(31)

By (29)–(31) and Lemma 3, there exists a positive constant
𝑀 such that

𝑉

𝑖 (
𝑡) ≤ 𝑀

𝑛

∑

𝑙=1

max {









𝑉

𝑙0







𝜏
,









𝑊

𝑙0







𝜏
} 𝑒

−(𝜆
∗
−𝜇)𝑡

≤ 𝑀𝑛









𝜙 − 𝜓









𝑛

1𝜏
𝑒

−(𝜆
∗
−𝜇)𝑡

,

(32)

where 𝜆

∗ and 𝜇 are defined in (12).

Remark 5. For autonomous system, the exponential stability
of the zero solution of (1a) with 𝑥

𝑖
(𝑡

+

𝑘
) = 𝐼

𝑖𝑘
(𝑥

1
(𝑡

𝑘
),

. . . , 𝑥

𝑛
(𝑡

𝑘
)), 𝑘 ∈ 𝑁

∗, is considered in [7]. But the results
require that {𝑡

𝑘
− 𝑡

𝑘−1
} is bounded.

When there is no impulse in systems (1a) and (1b), (1a)
and (1b) reduce to the following model which has been
studied in [9, 10]:

�̇�

𝑖 (
𝑡) = −𝑏

𝑖 (
𝑡) 𝑥i (𝑡) +

𝑛

∑

𝑗=1

𝑎

𝑖𝑗 (
𝑡) 𝑓𝑖𝑗

(𝑥

𝑗 (
𝑡))

+

𝑛

∑

𝑗=1

𝑐

𝑖𝑗 (
𝑡) 𝑔𝑖𝑗

(𝑥

𝑗
(𝑡 − 𝜏

𝑖𝑗 (
𝑡)))

+

𝑛

∑

𝑗=1

𝑑

𝑖𝑗 (
𝑡) ℎ𝑖𝑗

(𝑥



𝑗
(𝑡 − 𝜏

𝑖𝑗 (
𝑡)))

+ 𝑘

𝑖 (
𝑡) , 𝑡 > 0, 𝑖 ∈ 𝑁.

(33)

Corollary 6. Assume that (𝐻
1
), (𝐻
2
), and (𝐻

4
) hold. (33) is

globally exponentially stable.

Remark 7. For autonomous system, the stability of (33) with
ℎ

𝑖𝑗
(𝑥) = 𝑥, 𝑓

𝑖𝑗
= 𝑔

𝑖𝑗
, is considered in [10]. However, the

authors assume that 𝑓

𝑖𝑗
, 𝑖, 𝑗 = 1, 2, . . . , 𝑛, are monotonic,

bounded and 𝜏ij, 𝑖, 𝑗 = 1, 2, . . . , 𝑛, are constants.

Remark 8. The stability results about the zero solution of
𝑥


(𝑡) = −𝑏(𝑡)𝑥(𝑡)+𝑐(𝑡)𝑥(𝑡−𝜏(𝑡))+𝑑(𝑡)𝑥


(𝑡−𝜏(𝑡)) are obtained

by the fixed-point theory in [15]. But the differentiability of 𝜏
is needed.

3. An Illustrative Example

To show the effectiveness of Theorem 4, consider the follow-
ing nonautonomous neural networks with impulse:

�̇�

𝑖 (
𝑡) = −𝑏

𝑖 (
𝑡) 𝑥𝑖 (

𝑡) +

2

∑

𝑗=1

𝑎

𝑖𝑗 (
𝑡) 𝑓𝑖𝑗

(𝑥

𝑗 (
𝑡))

+

2

∑

𝑗=1

𝑐

𝑖𝑗 (
𝑡) 𝑔𝑖𝑗

(𝑥

𝑗
(𝑡 − 𝜏

𝑖𝑗 (
𝑡)))

+

2

∑

𝑗=1

𝑑

𝑖𝑗 (
𝑡) ℎ𝑖𝑗

(𝑥



𝑗
(𝑡 − 𝜏

𝑖𝑗 (
𝑡)))

+ 𝑘

𝑖 (
𝑡) , a.e. 𝑡 > 0,

(34a)

𝑥

𝑖
(𝑡

+

𝑘
) = 𝑔

𝑖
𝑥

𝑖
(𝑡

𝑘
) + 𝐼

𝑖
,

𝑡

𝑘
= 5𝑘, 𝑖 = 1, 2; 𝑘 = 1, 2, . . . ,

(34b)

where

(

𝑏

1 (
𝑡)

𝑏

2 (
𝑡)

) = (

7 + sin 𝑡

5 − cos 𝑡) , (

𝑘

1 (
𝑡)

𝑘

2 (
𝑡)

) = (

𝑒

−𝑡

𝑒

−2𝑡) ,

(

𝑔

1

𝑔

2

) = (

0.6

0.3

) , (

𝐼

1

𝐼

2

) = (

0.3

−0.1

) ,

(𝑎

𝑖𝑗 (
𝑡))

2×2
= (

0,

1

3

cos 3𝑡
cos 2𝑡

2

, 0

) ,

(𝑐

𝑖𝑗 (
𝑡))

2×2
= (

sin 2𝑡, 0

0,

cos 𝑡
2

) ,

(𝑑

𝑖𝑗 (
𝑡))

2×2
= (

1

6

sin 3𝑡,

1

8

sin 𝑡

1

9

cos 𝑡, 1

10

cos 2𝑡
) ,
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Figure 1: (a) Time response of state variables 𝑥
1
, 𝑢
1
without impulsive effects. (b) Time response of state variables 𝑥

1
,𝑢
1
with impulsive effects.
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Figure 2: (a) Time response of state variables 𝑥

2
, 𝑢
2
without impulsive effects. (b) Time response of state variables 𝑥

2
, 𝑢
2
with impulsive

effects.

(𝑓

𝑖𝑗 (
𝑥))

2×2
= (

0,

|𝑥 + 1| − |𝑥 − 1|

2

|𝑥 + 1| + |𝑥 − 1|

2

, 0

) ,

(𝑔

𝑖𝑗 (
𝑥))

2×2
= (

|𝑥 + 1| + |𝑥 − 1|

3

, 0

0,

|𝑥 + 1| − |𝑥 − 1|

3

) ,

(ℎ

𝑖𝑗 (
𝑥))

2×2
= (

sin𝑥, cos𝑥
cos𝑥, sin𝑥

) ,

(𝜏

𝑖𝑗 (
𝑡))

2×2
= (

2sin2𝑡, 0

0, 2 |cos 𝑡|) ,

(𝜏

𝑖𝑗 (
𝑡))

2×2
= (

0,

1 − sin 𝑡

2

1 + cos 𝑡
2

, 0

) .

(35)

Obviously, (𝐹

𝑖𝑗
)

2×2
= (

0, 1

1, 0
), (𝐺
𝑖𝑗
)

2×2
= (

2/3, 0

0, 2/3
), and

(𝐻

𝑖𝑗
)

2×2
= (

1, 1

1, 1
).

Let 𝑝

1
= 𝑝

2
= 1 and 𝑞

1
= 18, 𝑞

2
= 10. From the

above assumption, the conditions of Theorem 4 are satisfied.
Therefore, (34a) and (34b) are globally exponentially stable.
(𝑥

1
(𝑡), 𝑥

2
(𝑡))

𝑇 and (𝑢

1
(𝑡), 𝑢

2
(𝑡))

𝑇 are the solutions of (34a)
and (34b) with 𝑥

1
(0) = 0.5, 𝑥

2
(0) = −0.8 and 𝑢

1
(0) =

−0.5, 𝑢
2
(0) = 0.8, respectively. Figures 1(a) and 1(b) depict
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Figure 3: (a) Phase plot in space (𝑡, 𝑥

1
, 𝑥

2
), (𝑡, 𝑢

1
, 𝑢

2
) without impulsive effects. (b) Phase plot in space (𝑡, 𝑥

1
, 𝑥

2
), (𝑡, 𝑢

1
, 𝑢

2
) with impulsive

effects.

time response of state variables 𝑥

1
, 𝑢
1
without and with

impulse effects; Figures 2(a) and 2(b) depict time response
of state variables 𝑥

2
, 𝑢
2
without and with impulse effects;

Figures 3(a) and 3(b) depict the phase plot in the space
(𝑡, 𝑥

1
, 𝑥

2
), (𝑡, 𝑢

1
, 𝑢

2
) without and with impulse effects.
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