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A kind of delayed predator-prey system with harvesting is considered in this paper. The influence of harvesting and delay is
investigated. Our results show that Hopf bifurcations occur as the delay 𝜏 passes through critical values. By using of normal form
theory and center manifold theorem, the direction of Hopf bifurcation and the stability of the bifurcating periodic solutions are
obtained. Finally, numerical simulations are given to support our theoretical predictions.

1. Introduction

The classical predator-prey systems have been extensively
investigated in recent years, and they will continue to be one
of the dominant themes in the future due to their universal
existence and importance. Many biological phenomena are
always described by differential equations, difference equa-
tions, and other type equations. In general, delay differential
equations exhibit more complicated dynamical behaviors
than ordinary ones; for example, the delay can induce the loss
of stability, various oscillations, and periodic solutions. The
dynamical behaviors of delay differential equations, stability,
bifurcation and chaos, and so forth have been paid much
attention by many researchers. Especially, the direction and
stability of Hopf bifurcation to delay differential equations
have been investigated extensively in recent work (see [1–7]
and references therein).

After the classical predator-preymodel was first proposed
and discussed by May in [8], there were some similar topics,
regarding persistence, local and global stabilities of equilibria,
and other dynamical behaviors (see [5, 9, 10] and references
therein). Recently, Song and Wei in [7] had considered a
delayed predator-prey system as follows:

𝑥̇ (𝑡) = 𝑥 (𝑡) [𝑟
1
− 𝑎
11
𝑥 (𝑡 − 𝜏) − 𝑎

12
𝑦 (𝑡)] ,

̇𝑦 (𝑡) = 𝑦 (𝑡) [−𝑟
2
+ 𝑎
21
𝑥 (𝑡) − 𝑎

22
𝑦 (𝑡)] ,

(1)

where 𝑥(𝑡) and 𝑦(𝑡) were the densities of prey species and
predator species at time 𝑡, respectively. The local Hopf bifur-
cation and the existence of the periodic solution bifurcating of
system (1) was investigated in [7]. When selective harvesting
was put into the predator-prey model similar to (1), Kar [11]
studied two predator-prey models with selective harvesting;
that is, in the first model, selective harvesting of predator
species:

𝑥̇ (𝑡) = 𝑥 (𝑡) [𝑔 (𝑥) − 𝑦𝑝 (𝑥)] ,

̇𝑦 (𝑡) = 𝑦 (𝑡) [−𝑑 + 𝛼𝑥𝑝 (𝑥)] − 𝑞𝐸𝑦 (𝑡 − 𝜏) ,

(2)

and, in the secondmodel, selective harvesting of prey species:

𝑥̇ (𝑡) = 𝑥 (𝑡) [𝑔 (𝑥) − 𝑦𝑝 (𝑥)] − 𝑞𝐸𝑥 (𝑡 − 𝜏) ,

̇𝑦 (𝑡) = 𝑦 (𝑡) [−𝑑 + 𝛼𝑥𝑝 (𝑥)]

(3)

had been considered by incorporating time delay on the
harvesting term. They found that the delay for selective
harvesting could induce the switching of stability and Hopf
bifurcation occurred at 𝜏 = 𝜏

0
.
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Recently, Kar and Ghorai [9] had investigated a predator-
prey model with harvesting:

𝑥̇ (𝑡) = 𝑟
1
𝑥 (𝑡) − 𝑏

1
𝑥
2
(𝑡) −

𝑎
1
𝑥 (𝑡) 𝑦 (𝑡)

𝑥 (𝑡) + 𝑘
1

− 𝑐
1
𝑥 (𝑡) ,

̇𝑦 (𝑡) = 𝑦 (𝑡) [𝑟
2
−

𝑎
2
𝑦 (𝑡 − 𝜏)

𝑥 (𝑡 − 𝜏) + 𝑘
2

] − 𝑐
2
𝑦 (𝑡) .

(4)

They obtained the local stability, global stability, influence of
the harvesting, direction of Hopf bifurcation and the stability
to system (4). Motivated by models (1)–(4), we will consider
a predator-prey system with delay incorporating harvests to
predator and prey:

𝑥̇ (𝑡) = 𝑥 (𝑡) [1 −

𝑥 (𝑡)

𝑘
1
− 𝑎𝑦 (𝑡)

] − ℎ
1
𝑥 (𝑡) ,

̇𝑦 (𝑡) = 𝑦 (𝑡) [1 −

𝑦 (𝑡 − 𝜏)

𝑘
2
+ 𝑏𝑥 (𝑡 − 𝜏)

] − ℎ
2
𝑦 (𝑡) ,

(5)

where 𝑥(𝑡) and𝑦(𝑡) represent the population densities of prey
species and predator species, respectively, at time 𝑡; 𝑎, 𝑏, ℎ

1
,

ℎ
2
, 𝑘
1
, and 𝑘

2
are model parameters assuming only positive

values; 𝑘
1
measures the scale whose environment provides

protection to prey 𝑥; 𝑘
2
denotes the scale whose environment

provides protection to predator 𝑦; 𝜏 means the period of
pregnancy; 𝑥(𝑡 − 𝜏) represents the number of prey species
which was born at time 𝑡 − 𝜏 and still survived at time 𝑡; ℎ

1

and ℎ
2
represent the coefficients of prey species and predator

species, respectively. We always assume that 0 ≤ ℎ
1
≤ ℎ
2
< 1

in this paper.
The organization of the paper is as follows. The stability

of the positive equilibrium and the existence of the Hopf
bifurcation are discussed in Section 2. The effect of harvest-
ing to prey species and predator species is investigated in
Section 3. The direction of Hopf bifurcation and stability
of the corresponding periodic solution are obtained in
Section 4. Numerical simulations are carried out to illustrate
our results in Section 5.

2. Stability of Positive Equilibrium and
Hopf Bifurcation

By simple computation, if 𝑘
1
+ 𝑘
2
𝑎(ℎ
2
− 1) > 0 holds, system

(5) admits a unique positive equilibrium 𝐸∗(𝑥∗, 𝑦∗):

𝑥
∗
=

(1 − ℎ
1
) [𝑘
1
+ 𝑘
2
𝑎 (ℎ
2
− 1)]

1 + 𝑎𝑏 (1 − ℎ
1
) (1 − ℎ

2
)

,

𝑦
∗
=

(1 − ℎ
2
) [𝑘
2
+ 𝑘
1
𝑏 (1 − ℎ

1
)]

1 + 𝑎𝑏 (1 − ℎ
1
) (1 − ℎ

2
)

.

(6)

Let 𝑥
1
= 𝑥−𝑥

∗, 𝑥
2
= 𝑦−𝑦

∗, and thenwe get the linear system
of (5):

𝑥̇
1
(𝑡) = −𝑎

11
𝑥
1
(𝑡) − 𝑎

12
𝑥
2
(𝑡) ,

𝑥̇
2
(𝑡) = 𝑎

21
𝑥
1
(𝑡 − 𝜏) − 𝑎

22
𝑥
2
(𝑡 − 𝜏) ,

(7)

where 𝑎
11
= 𝑥
∗
/(𝑘
1
− 𝑎𝑦
∗
), 𝑎
12
= 𝑎𝑥
∗2
/(𝑘
1
− 𝑎𝑦
∗
)
2, 𝑎
21
=

𝑏𝑦
∗2
/(𝑘
2
+𝑏𝑥
∗
)
2
, 𝑎
22
= 𝑦
∗
/(𝑘
2
+𝑏𝑥
∗
). From linear system (5)

the characteristic equation is as follows:

𝜆
2
+ 𝜆 (𝑎

11
+ 𝑎
22
𝑒
−𝜆𝜏
) + (𝑎

11
𝑎
22
+ 𝑎
12
𝑎
21
) 𝑒
−𝜆𝜏
= 0. (8)

Roots of system (8) imply the stability of the equilibrium 𝐸∗
and Hopf bifurcation of system (5). Obviously, 𝜆 = 0 is not a
root of system (8). For 𝜏 = 0, system (8) becomes

𝜆
2
+ (𝑎
11
+ 𝑎
22
) 𝜆 + (𝑎

11
𝑎
22
+ 𝑎
12
𝑎
21
) = 0. (9)

It is obvious that the root of system (9) has negative real part.
Now, for 𝜏 > 0, if 𝜆 = 𝑖𝜔(𝜔 > 0) is a root of (8), then we have

−𝜔
2
+ 𝑖𝜔 (𝑎

11
+ 𝑎
22
𝑒
−𝑖𝜔𝜏
) + (𝑎

11
𝑎
22
+ 𝑎
12
𝑎
21
) 𝑒
−𝑖𝜔𝜏

= 0.

(10)

Furthermore,

−𝜔
2
+ 𝑎
22
𝜔 sin𝜔𝜏 + (𝑎

11
𝑎
22
+ 𝑎
12
𝑎
21
) cos𝜔𝜏 = 0,

𝑎
11
𝜔 + 𝑎
22
𝜔 cos𝜔𝜏 − (𝑎

11
𝑎
22
+ 𝑎
12
𝑎
21
) sin𝜔𝜏 = 0,

(11)

which lead to polynomial equation

𝜔
4
+ (𝑎
2

11
− 𝑎
2

22
) 𝜔
2
− (𝑎
11
𝑎
22
+ 𝑎
12
𝑎
21
)
2

= 0. (12)

It is easy to see that (12) has one positive root

𝜔 =

√2

2

(𝑎
2

22
− 𝑎
2

11
+ √Δ)

1/2

, (13)

where Δ = (𝑎2
11
− 𝑎
2

22
)
2
+ 4(𝑎
11
𝑎
22
+ 𝑎
12
𝑎
21
). By (11), one gets

that

𝜏
𝑗
=

1

𝜔

arc cos 𝑎
12
𝑎
21
𝜔
2

𝜔
2
𝑎
2

22
+ (𝑎
11
𝑎
22
+ 𝑎
12
𝑎
21
)
2
+

2𝜋𝑗

𝜔

,

𝑗 = 0, 1, . . . .

(14)

Let

𝜆 (𝜏) = 𝛼 (𝜏) + 𝑖𝜔 (𝜏) (15)

be a pair of purely imaginary roots of (8), such that

𝛼 (𝜏
𝑗
) = 0, 𝜔 (𝜏

𝑗
) = 𝜔. (16)

Next, we will prove 𝜆(𝜏
𝑗
)meets the transversality conditions;

taking the derivative of system (8) with respect to 𝜏, one
derives that

[

d𝜆
d𝜏
]

−1

=

2𝜆 + 𝑎
11
+ 𝑎
22
𝑒
−𝜆𝜏
− 𝜏𝑒
−𝜆𝜏
[𝜆𝑎
22
+ (𝑎
11
𝑎
22
+ 𝑎
12
𝑎
21
)]

𝜆𝑒
−𝜆𝜏
[𝜆𝑎
22
+ (𝑎
11
𝑎
22
+ 𝑎
12
𝑎
21
)]

=

2𝜆 + 𝑎
11
+ 𝑎
22
𝑒
−𝜆𝜏

𝜆𝑒
−𝜆𝜏
[𝜆𝑎
22
+ (𝑎
11
𝑎
22
+ 𝑎
12
𝑎
21
)]

−

𝜏

𝜆

,

(17)
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which, together with (11), leads to

Re [d𝜆
d𝜏
]

−1

𝜏=𝜏𝑗

= Re{ 2𝜆 + 𝑎
11
+ 𝑎
22
𝑒
−𝜆𝜏

𝜆𝑒
−𝜆𝜏
[𝜆𝑎
22
+ (𝑎
11
𝑎
22
+ 𝑎
12
𝑎
21
)]

−

𝜏

𝜆

}

𝜏=𝜏𝑗

= Re{ 2𝜆 + 𝑎
11
+ 𝑎
22
𝑒
−𝜆𝜏

𝜆𝑒
−𝜆𝜏
[𝜆𝑎
22
+ (𝑎
11
𝑎
22
+ 𝑎
12
𝑎
21
)]

}

𝜏=𝜏𝑗

= (2𝑎
2

22
𝜔
4
+ [2(𝑎

11
𝑎
22
+ 𝑎
12
𝑎
21
)
2

+ (𝑎
2

11
− 𝑎
2

22
) 𝑎
2

22
] 𝜔
2

+ (𝑎
2

11
− 𝑎
2

22
) (𝑎
11
𝑎
22
+ 𝑎
12
𝑎
21
) )

× (𝜔
2
𝑎
2

22
+ (𝑎
11
𝑎
22
+ 𝑎
12
𝑎
21
)
2
)

−1

> 0.

(18)

So, we have

sign{Re [d𝜆
d𝜏
]}

𝜏=𝜏𝑗

> 0. (19)

Thus, we can obtain the following lemma.

Lemma 1. If 𝑘
1
+ 𝑘
2
𝑎(ℎ
2
− 1) > 0 holds, then the following

results are true:

(i) when 𝜏 = 0, the positive equilibrium of 𝐸∗ of system (5)
is locally asymptotically stable;

(ii) when 0 < 𝜏 < 𝜏
0
, the positive equilibrium of 𝐸∗ of

system (5) is locally asymptotically stable, and 𝐸∗ is
unstable when 𝜏 > 𝜏

0
, where 𝜔, 𝜏

𝑗
(𝑗 = 0, 1, . . .) can

be defined in (13), (14).

3. The Influence of Harvesting

Next, wewill discuss the influence of the harvesting on system
(5).

Case 1 (only predator species is harvested). For ℎ
1
= 0, and

the positive equilibrium of system (5) changes to 𝐸∗
1
(𝑥
∗

1
, 𝑦
∗

1
),

where

𝑥
∗

1
=

𝑘
1
+ 𝑘
2
𝑎 (ℎ
2
− 1)

1 + 𝑎𝑏 (1 − ℎ
2
)

, 𝑦
∗

1
=

(1 − ℎ
2
) (𝑘
2
+ 𝑘
1
𝑏)

1 + 𝑎𝑏 (1 − ℎ
2
)

,

(20)

it is obvious that 𝑦∗
1
> 0 and 𝑥∗

1
> 0 if and only if 𝑘

1
+𝑘
2
𝑎(ℎ
2
−

1) > 0. Obviously, 𝑥∗
1
and𝑦∗
1
are the continuous differentiable

functions with respect to ℎ
2
; then, we have

d𝑥∗
1

dℎ
2

=

𝑘
2
𝑎 + 𝑘
1
𝑎𝑏

[1 + 𝑎𝑏 (1 − ℎ
2
)]
2
> 0,

d𝑦∗
1

dℎ
2

=

−𝑘
2
− 𝑘
1
𝑏

[1 + 𝑎𝑏 (1 − ℎ
2
)]
2
< 0. (21)

Theorem 2. If 𝑘
1
+ 𝑘
2
𝑎(ℎ
2
− 1) > 0 holds, then 𝑥∗

1
is

the monotonic increasing function of ℎ
2
, 𝑦∗
1
is the monotonic

decreasing function of ℎ
2
; that is, when ℎ

2
increases, the density

of prey species will increase, the density of predator species will
decrease.

Case 2 (only prey species is harvested). For ℎ
2
= 0, and

the positive equilibrium of system (5) changes to 𝐸∗
2
(𝑥
∗

2
, 𝑦
∗

2
),

where

𝑥
∗

2
=

(1 − ℎ
1
) (𝑘
1
− 𝑘
2
𝑎)

1 + 𝑎𝑏 (1 − ℎ
1
)

, 𝑦
∗

2
=

𝑘
2
+ 𝑘
1
𝑏 (1 − ℎ

1
)

1 + 𝑎𝑏 (1 − ℎ
1
)

,

(22)

it is obvious that 𝑦∗
2
> 0 and 𝑥∗

2
> 0 if and only if 𝑘

1
− 𝑘
2
𝑎 >

0. Obviously, 𝑥∗
2
and 𝑦∗

2
are the continuous differentiable

functions with respect to ℎ
1
; then, one get that

d𝑥∗
2

dℎ
1

=

𝑘
2
𝑎 − 𝑘
1

[1 + 𝑎𝑏 (1 − ℎ
1
)]
2
< 0,

d𝑦∗
2

dℎ
1

=

𝑘
2
𝑎𝑏 − 𝑘

1
𝑏

[1 + 𝑎𝑏 (1 − ℎ
1
)]
2
< 0.

(23)

Theorem 3. If 𝑘
1
− 𝑘
2
𝑎 > 0 holds, then 𝑥∗

2
and 𝑦∗

2
are the

monotonic decreasing functions of ℎ
1
; that is, if ℎ

1
increases,

then the density of prey species and predator species will
decrease; on the contrary, if ℎ

1
decreases, the density of prey

species and predator species will increase.

Case 3 (predator species and prey species are harvested
simultaneously). For ℎ

1
ℎ
2
̸= 0, themixed derivative of 𝑥∗ and

𝑦
∗ are given by

𝜕𝑥
∗

𝜕ℎ
1

=

− [𝑘
1
+ 𝑎𝑘
2
(ℎ
2
− 1)]

[1 + 𝑎𝑏 (1 − ℎ
1
) (1 − ℎ

2
)]
2
< 0,

𝜕𝑥
∗

𝜕ℎ
2

=

(1 − ℎ
1
) [𝑘
2
+ 𝑘
1
𝑏 (1 − ℎ

1
)] 𝑎

[1 + 𝑎𝑏 (1 − ℎ
1
) (1 − ℎ

2
)]
2
> 0,

𝜕𝑦
∗

𝜕ℎ
1

=

𝑏 (ℎ
2
− 1) [𝑘

1
+ 𝑎𝑘
2
(ℎ
2
− 1)]

[1 + 𝑎𝑏 (1 − ℎ
1
) (1 − ℎ

2
)]
2
< 0,

𝜕𝑦
∗

𝜕ℎ
2

=

− [𝑘
2
+ 𝑘
1
𝑏 (1 − ℎ

1
)]

[1 + 𝑎𝑏 (1 − ℎ
1
) (1 − ℎ

2
)]
2
< 0.

(24)

Theorem 4. If 𝑘
1
+ 𝑘
2
𝑎(ℎ
2
− 1) > 0 is valid, then the densities

of prey species and predator species will both decrease when
harvesting rate ℎ

1
increases; on the contrary, the density of prey

species will increase and predator species will decrease when
harvesting rate ℎ

2
increases.

4. Direction and Stability of Hopf Bifurcation

Motivated by the ideas of Hassard et al. [12], by applying the
normal form theory and the center manifold theorem, the
properties of the Hopf bifurcation at the critical value 𝜏 = 𝜏

𝑗

are derived in this section.
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Let 𝑡 = 𝑠𝜏, 𝑥
𝑖
(𝑠𝜏) = 𝑥

𝑖
(𝑠), 𝑖 = 1, 2, 𝜏 = 𝜏

0
+ 𝜇, 𝜇 ∈ 𝑅; 𝜏

0

is defined by (14), we still denote 𝑥
𝑖
(𝑠) = 𝑢

𝑖
(𝑠) and 𝑠 = 𝑡,

then system (5) is transformed into functional differential
equations in 𝐶([−1, 0], 𝑅2) as

𝑢̇ (𝑡) = 𝐿
𝜇
(𝑢
𝑡
) + 𝑓 (𝜇, 𝑢

𝑡
) , (25)

where 𝑢(𝑡) = (𝑢
1
(𝑡), 𝑢
2
(𝑡))
𝑇
∈ 𝑅
2, 𝑢
𝑡
(𝜃) = 𝑢(𝑡+𝜃), 𝜃 ∈ [−1, 0],

and 𝐿
𝜇
: 𝐶([−1, 0]; 𝑅

2
) → 𝑅, 𝑓 : 𝑅×𝐶([−1, 0]; 𝑅2) → 𝑅 are

given by

𝐿
𝜇
(𝜙) = (𝜏

0
+ 𝜇) (

−𝑎
11
−𝑎
12

0 0
)(

𝜙
1
(0)

𝜙
2
(0)
) + (𝜏

0
+ 𝜇) (

0 0

𝑎
21
−𝑎
22

)(

𝜙
1
(−1)

𝜙
2
(−1)

) , (26)

𝑓 (𝜇, 𝜙) = (𝜏
0
+ 𝜇)(

𝑐
1
𝜙
2

2
(0) + 𝑐

2
𝜙
1
(0) 𝜙
2
(0) + 𝑐

3
𝜙
2

1
(0)

𝑒
1
− 𝑒
2
𝜙
2
(0)

𝑐
4
𝜙
1
(−1) 𝜙

2
(0) − 𝑐

5
𝜙
2

1
(−1) + 𝑐

6
𝜙
1
(−1) 𝜙

2
(−1) − 𝑐

7
𝜙
2
(0) 𝜙
2
(−1)

𝑒
3
+ 𝑒
4
𝜙
1
(−1)

) , (27)

where

𝑐
1
= 𝑎
2
(𝑥
∗
)
2

, 𝑐
2
= 2𝑎
2
𝑥
∗
𝑦
∗
− 2𝑎𝑘

1
𝑥
∗
,

𝑐
3
= 2𝑎𝑘

1
𝑦
∗
− 𝑎
2
𝑐𝑘
2

1
𝑦
∗
, 𝑐

4
= 𝑏𝑘
2
𝑦
∗
+ 𝑏
2
𝑥
∗
𝑦
∗
,

𝑐
5
= 𝑏
2
(𝑦
∗
)
2

, 𝑐
6
= 𝑘
2
𝑏𝑦
∗
+ 𝑏
2
𝑥
∗
𝑦
∗
,

𝑐
7
= 2𝑘
2
𝑏𝑥
∗
+ 𝑘
2

2
+ 𝑏
2
(𝑥
∗
)
2

,

𝑒
1
= (𝑘
1
− 𝑎𝑦
∗
)
3

, 𝑒
2
= 𝑎(𝑘

1
− 𝑎𝑦
∗
)
2

,

𝑒
3
= (𝑘
2
+ 𝑏𝑥
∗
)
3

, 𝑒
4
= 𝑏(𝑘
2
+ 𝑏𝑥
∗
)
2

.

(28)

By Riesz representation theorem, there exists a function
𝜂(𝜃, 𝜇) of bounded variation for 𝜃 ∈ [−1, 0], such that

𝐿
𝜇
𝜙 = ∫

0

−1

d𝜂 (𝜃, 𝜇) 𝜙 (𝜃) . (29)

We choose

𝜂 (𝜃, 𝜇) = (𝜏
0
+ 𝜇) (

−𝑎
11
−𝑎
12

0 0
) 𝛿 (𝜃)

+ (𝜏
0
+ 𝜇) (

0 0

𝑎
21
−𝑎
22

)𝛿 (𝜃 + 1) ,

(30)

where 𝛿 is the Dirac delta function. For 𝜙 ∈ 𝐶1([−1, 0], 𝑅2),
we define

𝐴 (𝜇) 𝜙 (𝜃) =

{
{

{
{

{

d𝜙 (𝜃)
d𝜃

, −1 ≤ 𝜃 < 0

∫

0

−1
d𝜂 (𝑠, 𝜇) 𝜙 (𝑠) , 𝜃 = 0,

𝑅 (𝜇) 𝜙 (𝜃) = {

0, −1 ≤ 𝜃 < 0

𝑓 (𝜇, 𝜙) , 𝜃 = 0.

(31)

Then, system (25) can be transformed into an operator
differential equation of the form

𝑢̇
𝑡
= 𝐴 (𝜇) 𝑢

𝑡
+ 𝑅 (𝜇) 𝑢

𝑡
, (32)

where 𝑢
𝑡
(𝜃) = 𝑢(𝑡 + 𝜃), for 𝜃 ∈ [−1, 0]. For 𝜓 ∈ 𝐶1 ([0, 1],

(𝑅
2
)
∗
), we define

𝐴
∗
(𝜇) 𝜓 (𝑠) =

{
{

{
{

{

−

d𝜓 (𝑠)
d𝑠

, 0 < 𝑠 ≤ 1,

∫

0

−1

d𝜂𝑇 (𝑡, 0) 𝜓 (−𝑡) , 𝑠 = 0

(33)

and a bilinear inner product

⟨𝜓 (𝜃) , 𝜙 (𝜃)⟩ = 𝜓
𝑇
(0) 𝜙 (0)

− ∫

0

−1

∫

𝜃

𝜉=0

𝜓
𝑇
(𝜉 − 𝜃) d𝜂 (𝜃) 𝜙 (𝜉) d𝜉,

(34)

where 𝜂(𝜃) = 𝜂(𝜃, 0); then,𝐴(0) and𝐴∗ are adjoint operators.
Noting that ±𝑖𝜔𝜏

0
are eigenvalues of 𝐴(0), thus, they are also

eigenvalues of 𝐴∗. In order to calculate the eigenvector 𝑞(𝜃)
of 𝐴(0) corresponding to the eigenvalue 𝑖𝜔𝜏

0
and 𝑝(𝑠) of 𝐴∗

corresponding to the eigenvalue −𝑖𝜔𝜏
0
, let 𝑞(𝜃) = (1, 𝛼)

𝑇

𝑒
𝑖𝜔𝜏0𝜃 be the eigenvector of 𝐴(0) corresponding to 𝑖𝜔𝜏

0
; then,

𝐴(0)𝑞(𝜃) = 𝑖𝜔𝜏
0
𝑞(𝜃).

By the definition of 𝐴(0) and (26), (30), then,

𝜏
0
(

−𝑖𝜔 − 𝑎
11

−𝑎
12

𝑎
21
𝑒
−𝑖𝜔𝜏0

−𝑖𝜔 − 𝑎
22
𝑒
−𝑖𝜔𝜏0

) 𝑞 (0) = (

0

0
) . (35)

Thus, we can get

𝑞 (0) = (1, 𝛼)
𝑇
= (1,

𝑎
11
+ 𝑖𝜔

−𝑎
12

)

𝑇

. (36)

Similarly, let 𝑝(𝑠) = 𝐷(1, 𝛽)𝑇𝑒𝑖𝜔𝜏0𝑠 be the eigenvector of 𝐴∗
corresponding to −𝑖𝜔𝜏

0
; by similar discussion, we get 𝛽 =

(𝑎
11
− 𝑖𝜔)/𝑎

21
𝑒
𝑖𝜔𝜏0 .
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In view of standardization of 𝑝(𝑠) and 𝑞(𝜃); that is,
⟨𝑝(𝑠), 𝑞(𝜃)⟩ = 1, we have

⟨𝑝 (𝑠) , 𝑞 (𝜃)⟩

= 𝐷 (1, 𝛽) (1, 𝛼)
𝑇

− ∫

0

−1

∫

𝜃

𝜉=0

𝐷(1, 𝛽) 𝑒
−𝑖𝜔𝜏0(𝜉−𝜃)d𝜂 (𝜃) (1, 𝛼)𝑇𝑒𝑖𝜔𝜏0𝜉𝑑𝜉

= 𝐷{1 + 𝛼𝛽 − ∫

0

−1

(1, 𝛽) 𝜃𝑒
𝑖𝜔𝜏0𝜃d𝜂 (𝜃) (1, 𝛼)𝑇}

= 𝐷{1 + 𝛼𝛽 + 𝜏
0
𝛽𝑒
−𝑖𝜔𝜏0

(𝑎
21
− 𝛼𝑎
22
)} .

(37)

Thus, choose 𝐷 = [1 + 𝛽𝛼 + 𝜏
0
𝛽𝑒
𝑖𝜔𝜏0
(𝑎
21
− 𝛼𝑎
22
)]
−1. Next,

we will quote the same notation (see [13]), we first compute
the coordinates to describe the center manifold 𝐶

0
at 𝜇 = 0.

Define

𝑧 (𝑡) = ⟨𝑝, 𝑢
𝑡
⟩ , 𝑊 (𝑡, 𝜃) = 𝑢

𝑡
(𝜃) − 2Re {𝑧 (𝑡) 𝑞 (𝜃)} .

(38)

On the center manifold 𝐶
0
, we have

𝑊(𝑡, 𝜃) = 𝑊 (𝑧 (𝑡) , 𝑧 (𝑡) , 𝜃)

= 𝑊
20
(𝜃)

𝑧
2

2

+𝑊
11
(𝜃) 𝑧𝑧 +𝑊

02
(𝜃)

𝑧
2

2

+ ⋅ ⋅ ⋅

(39)

𝑧 and 𝑧 are local coordinates for center manifold 𝐶
0
in the

direction 𝑝 and 𝑝; noting that𝑊 is real if 𝑢
𝑡
is real, we only

consider real solution 𝑢
𝑡
∈ 𝐶
0
of (25). Since 𝜇 = 0, then we

have

𝑧̇ (𝑡) = 𝑖𝜔𝜏
0
𝑧 + 𝑝 (0) 𝑓 (0,𝑊 (𝑧, 𝑧, 𝜃) + 2Re {𝑧 (𝑡) 𝑞 (0)})

def
= 𝑖𝜔𝜏

0
𝑧 + 𝑝 (0) 𝑓

0
(𝑧, 𝑧) .

(40)

We rewrite this equation as

𝑧̇ (𝑡) = 𝑖𝜔𝜏
0
𝑧 + 𝑔 (𝑧, 𝑧) , (41)

where

𝑔 (𝑧, 𝑧) = 𝑝 (0) 𝑓
0
(𝑧, 𝑧)

= 𝑔
20
(𝜃)

𝑧
2

2

+ 𝑔
11
(𝜃) 𝑧𝑧 + 𝑔

02
(𝜃)

𝑧
2

2

+ ⋅ ⋅ ⋅ .

(42)

Noting 𝑢
𝑡
(𝜃) = (𝜙

1
(𝜃), 𝜙
2
(𝜃))
𝑇
= 𝑊(𝑡, 𝜃) + 𝑧𝑞(𝜃) + 𝑧𝑞(𝜃) and

𝑞(𝜃) = (1, 𝛼)
𝑇
𝑒
𝑖𝜔𝜏0𝜃, we have

𝜙
1
(0) = 𝑧 + 𝑧 +𝑊

(1)

20
(0)

𝑧
2

2

+𝑊
(1)

11
(0) 𝑧𝑧 +𝑊

(1)

02
(0)

𝑧
2

2

+ ⋅ ⋅ ⋅ ,

𝜙
2
(0) = 𝑧𝛼 + 𝑧𝛼 +𝑊

(2)

20
(0)

𝑧
2

2

+𝑊
(2)

11
(0) 𝑧𝑧 +𝑊

(2)

02
(0)

𝑧
2

2

+ ⋅ ⋅ ⋅ ,

𝜙
1
(−1) = 𝑧𝑒

−𝑖𝜔𝜏0
+ 𝑧𝑒
𝑖𝜔𝜏0
+𝑊
(1)

20
(−1)

𝑧
2

2

+𝑊
(1)

11
(−1) 𝑧𝑧 +𝑊

(1)

02
(−1)

𝑧
2

2

+ ⋅ ⋅ ⋅ ,

𝜙
2
(−1) = 𝑧𝛼𝑒

−𝑖𝜔𝜏0
+ 𝑧𝛼𝑒

𝑖𝜔𝜏0
+𝑊
(2)

20
(−1)

𝑧
2

2

+𝑊
(2)

11
(−1) 𝑧𝑧 +𝑊

(2)

02
(−1)

𝑧
2

2

+ ⋅ ⋅ ⋅ .

(43)

From (27), (42), we obtain that

𝑔
20
= 2𝐷𝜏

0
[

1

𝑒
1

(𝑐
3
+ 𝑐
1
𝛼
2
+ 𝑐
2
𝛼) +

𝛽

𝑒
3

× (−𝑐
5
𝑒
−2𝑖𝜔𝜏0

+ 𝑐
6
𝛼𝑒
−2𝑖𝜔𝜏0

+𝑐
4
𝛼𝑒
−𝑖𝜔𝜏0

− 𝑐
7
𝛼
2
𝑒
−𝑖𝜔𝜏0

) ] ,

𝑔
11
= 𝐷𝜏
0
{

1

𝑒
1

[2𝑐
3
+ 2𝑐
1
𝛼𝛼 + 𝑐

2
(𝛼 + 𝛼)] +

𝛽

𝑒
3

× [−2𝑐
5
+ 𝑐
6
(𝛼 + 𝛼) + 𝑐

4
(𝛼𝑒
−𝑖𝜔𝜏0

+ 𝛼𝑒
𝑖𝜔𝜏0
)

− 𝑐
7
(𝛼𝛼𝑒
−𝑖𝜔𝜏0

+ 𝛼𝛼𝑒
𝑖𝜔𝜏0
)] } ,

𝑔
02
= 2𝐷𝜏

0
[

1

𝑒
1

(𝑐
3
+ 𝑐
1
𝛼
2
+ 𝑐
2
𝛼) +

𝛽

𝑒
3

× (−𝑐
5
𝑒
2𝑖𝜔𝜏0

+ 𝑐
6
𝛼𝑒
2𝑖𝜔𝜏0

+ 𝑐
4
𝛼𝑒
𝑖𝜔𝜏0
− 𝑐
7
𝛼
2
𝑒
𝑖𝜔𝜏0
) ] ,
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𝑔
21
= 𝐷𝜏
0
{

1

𝑒
1

[𝑐
3
(2𝑊
(1)

20
(0) + 4𝑊

(1)

11
(0))

+ 𝑐
1
(2𝛼𝑊

(2)

20
(0) + 4𝛼𝑊

(2)

11
(0))

+ 𝑐
2
(𝛼𝑊
(1)

20
(0) + 𝑊

(2)

20
(0) + 2𝛼𝑊

(1)

11
(0)

+2𝑊
(2)

11
(0)) +

6𝑐
1
𝑒
2

𝑒
1

+ 2 (𝛼 + 2𝛼)

×

𝑒
2
𝑐
3

𝑒
1

+ 2 (𝛼
2
+ 2𝛼𝛼)

𝑒
2
𝑐
2

𝑒
1

] +

𝛽

𝑒
3

× [−𝑐
5
(2𝑒
𝑖𝜔𝜏0
𝑊
(1)

20
(−1) + 4𝑒

−𝑖𝜔𝜏0
𝑊
(1)

11
(−1))

+ 𝑐
6
(𝛼𝑒
𝑖𝜔𝜏0
𝑊
(1)

20
(−1) + 𝑒

𝑖𝜔𝜏0
𝑊
(2)

20
(−1)

+2𝑒
−𝑖𝜔𝜏0

𝑊
(2)

11
(−1)+2𝛼𝑒

−𝑖𝜔𝜏0
𝑊
(1)

11
(−1))

+ 𝑐
4
(𝛼𝑊
(1)

20
(−1) + 𝑒

𝑖𝜔𝜏0
𝑊
(2)

20
(0)

+2𝑒
−𝑖𝜔𝜏0

𝑊
(2)

11
(0) + 2𝛼𝑊

(1)

11
(−1))

− 𝑐
7
(𝛼𝑊
(2)

20
(−1) + 𝛼𝑒

𝑖𝜔𝜏0
𝑊
(2)

20
(0)

+2𝛼𝑒
−𝑖𝜔𝜏0

𝑊
(2)

11
(0) + 2𝛼𝑊

(2)

11
(−1))

+

6𝑒
4
𝑐
5

𝑒
3

𝑒
−𝑖𝜔𝜏0

−

2𝑒
4
𝑐
6

𝑒
3

× (𝛼𝑒
−𝑖𝜔𝜏0

+ 2𝛼𝑒
−𝑖𝜔𝜏0

) −

2𝑒
4
𝑐
4

𝑒
3

× (𝛼𝑒
−2𝑖𝜔𝜏0

+ 2𝛼) +

2𝑒
4
𝑐
7

𝑒
3

× (𝛼𝛼𝑒
−2𝑖𝜔𝜏0

+ 𝛼𝛼 + 𝛼
2
) ] } .

(44)

Because 𝑔
21

contains 𝑊
20

and 𝑊
11
, from (32) and (38), we

have

𝑊̇ = 𝑢̇
𝑡
− 𝑧̇𝑞 −

̇
𝑧𝑞

= {

𝐴𝑊 − 2Re {𝑝 (0) 𝑓
0
𝑞 (𝜃)} , −1 ≤ 𝜃 < 0,

𝐴𝑊 − 2Re {𝑝 (0) 𝑓
0
𝑞 (0)} + 𝑓

0
, 𝜃 = 0,

def
= 𝐴𝑊 +𝐻(𝑧, 𝑧, 𝜃) ,

(45)

where

𝐻(𝑧 (𝑡) , 𝑧 (𝑡) , 𝜃) = 𝐻
20
(𝜃)

𝑧
2

2

+ 𝐻
11
(𝜃) 𝑧𝑧

+ 𝐻
02
(𝜃)

𝑧
2

2

+ ⋅ ⋅ ⋅ .

(46)

Substituting the corresponding series into (45) and compar-
ing the coefficients, we have

(𝐴 − 2𝑖𝜔𝜏
0
)𝑊
20
(𝜃) = −𝐻

20
(𝜃) ,

𝐴𝑊
11
(𝜃) = −𝐻

11
(𝜃) , . . . .

(47)

From (45), we know that for 𝜃 ∈ [−1, 0), we have

𝐻(𝑧 (𝑡) , 𝑧 (𝑡) , 𝜃) = −𝑝 (0) 𝑓
0
𝑞 (𝜃) − 𝑝 (0) 𝑓

0
𝑞 (𝜃)

= −𝑔 (𝑧, 𝑧) 𝑞 (𝜃) − 𝑔 (𝑧, 𝑧) 𝑞 (𝜃) .

(48)

Comparing the coefficient with (46) yields that for 𝜃 ∈ [−1, 0)

𝐻
20
(𝜃) = −𝑔

20
(𝜃) − 𝑔

02
𝑞 (𝜃) , (49)

𝐻
11
(𝜃) = −𝑔

11
𝑞 (𝜃) − 𝑔

11
𝑞 (𝜃) . (50)

From (47), (49) and the definition of 𝐴, it follows that

𝑊̇
20
(𝜃) = 2𝑖𝜔𝜏

0
𝑊
20
(𝜃) + 𝑔

20
𝑞 (𝜃) + 𝑔

02
𝑞 (𝜃) , (51)

taking notice of 𝑞(𝜃) = (1, 𝛼)𝑇𝑒𝑖𝜔𝜏0𝜃; hence,

𝑊
20
(𝜃) =

𝑖𝑔
20

𝜔𝜏
0

𝑞 (0) 𝑒
𝑖𝜔𝜏0𝜃

−

𝑔
02

3𝑖𝜔𝜏
0

𝑞 (0) 𝑒
−𝑖𝜔𝜏0𝜃

+ 𝐸
1
𝑒
2𝑖𝜔𝜏0𝜃

,

(52)

where 𝐸
1
= (𝐸
(1)

1
, 𝐸
(2)

1
) ∈ 𝑅

2 is a constant vector. By the
similar way, we have

𝑊
11
(𝜃) = −

𝑖𝑔
11

𝜔𝜏
0

𝑞 (0) 𝑒
𝑖𝜔𝜏0𝜃

−

𝑔
11

𝑖𝜔𝜏
0

𝑞 (0) 𝑒
−𝑖𝜔𝜏0𝜃

+ 𝐸
2
, (53)

where 𝐸
2
= (𝐸
(1)

2
, 𝐸
(2)

2
) ∈ 𝑅
2 is a constant vector.

Next, computing 𝐸
1
and 𝐸

2
, from the definition of 𝐴 and

(47), one then obtains

∫

0

−1

d𝜂 (𝜃)𝑊
20
(𝜃) = 2𝑖𝜔𝜏

0
𝑊
20
(0) − 𝐻

20
(0) , (54)

∫

0

−1

d𝜂 (𝜃)𝑊
11
(𝜃) = −𝐻

11
(0) , (55)

where 𝜂(𝜃) = 𝜂(0, 𝜃). Furthermore, we have
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𝐻
20
(0) = −𝑔

20
𝑞 (0) − 𝑔

02
𝑞 (0) + 2𝜏

0
(

1

𝑒
1

(𝑐
3
+ 𝑐
1
𝛼
2
+ 𝑐
2
𝛼)

1

𝑒
3

(−𝑐
5
𝑒
−2𝑖𝜔𝜏0

+ 𝑐
6
𝛼𝑒
−2𝑖𝜔𝜏0

+ 𝑐
4
𝛼𝑒
−𝑖𝜔𝜏0

− 𝑐
7
𝛼
2
𝑒
−𝑖𝜔𝜏0

)

) , (56)

𝐻
11
(0) = −𝑔

11
𝑞 (0) − 𝑔

11
𝑞 (0) + 2𝜏

0
(

1

𝑒
1

(𝑐
3
+ 𝑐
1
𝛼𝛼 + 𝑐

2
Re {𝛼})

1

𝑒
3

(−𝑐
5
+ 𝑐
6
Re {𝛼} + 𝑐

4
Re {𝛼𝑒𝑖𝜔𝜏0} − 𝑐

7
Re {𝛼𝛼𝑒𝑖𝜔𝜏0})

) . (57)

Substituting (52) and (56) into (54) and noting that

(𝑖𝜔𝜏
0
𝐼 − ∫

0

−1

𝑒
𝑖𝜔𝜏0𝜃d𝜂 (𝜃)) 𝑞 (0) = 0,

(−𝑖𝜔𝜏
0
𝐼 − ∫

0

−1

𝑒
−𝑖𝜔𝜏0𝜃d𝜂 (𝜃)) 𝑞 (0) = 0,

(58)

it implies that

(2𝑖𝜔𝜏0𝐼 − ∫

0

−1

𝑒
2𝑖𝜔𝜏0𝜃d𝜂 (𝜃))𝐸1

= 2(

1

𝑒1

(𝑐3 + 𝑐1𝛼
2
+ 𝑐2𝛼)

1

𝑒3

(−𝑐5𝑒
−2𝑖𝜔𝜏0 + 𝑐6𝛼𝑒

−2𝑖𝜔𝜏0 + 𝑐4𝛼𝑒
−𝑖𝜔𝜏0 − 𝑐7𝛼

2
𝑒
−𝑖𝜔𝜏0)

) ,

(59)

Namely,

(
2𝑖𝜔 + 𝑎11 𝑎12

−𝑎21𝑒
−2𝑖𝜔𝜏0 2𝑖𝜔 + 𝑎22𝑒

−2𝑖𝜔𝜏0)𝐸1

= 2(

1

𝑒1

(𝑐3 + 𝑐1𝛼
2
+ 𝑐2𝛼)

1

𝑒3

(−𝑐5𝑒
−2𝑖𝜔𝜏0 + 𝑐6𝛼𝑒

−2𝑖𝜔𝜏0 + 𝑐4𝛼𝑒
−𝑖𝜔𝜏0 − 𝑐7𝛼

2
𝑒
−𝑖𝜔𝜏0)

) .

(60)

Then it yields that

𝐸
(1)

1
=

2

𝐴
1

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

1

𝑒
1

(𝑐
3
+ 𝑐
1
𝛼
2
+ 𝑐
2
𝛼) 𝑎

12

1

𝑒
3

[(−𝑐
5
+ 𝑐
6
𝛼) 𝑒
−2𝑖𝜔𝜏0

+ (𝑐
4
𝛼 − 𝑐
7
𝛼
2
) 𝑒
−𝑖𝜔𝜏0

] 2𝑖𝜔 + 𝑎
22
𝑒
−2𝑖𝜔𝜏0

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

,

𝐸
(2)

1
=

2

𝐴
1

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

2𝑖𝜔 + 𝑎
11

1

𝑒
1

(𝑐
3
+ 𝑐
1
𝛼
2
+ 𝑐
2
𝛼)

−𝑎
21
𝑒
−2𝑖𝜔𝜏0

1

𝑒
3

[(−𝑐
5
+ 𝑐
6
𝛼) 𝑒
−2𝑖𝜔𝜏0

+ (𝑐
4
𝛼 − 𝑐
7
𝛼
2
) 𝑒
−𝑖𝜔𝜏0

]

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

,

(61)

where

𝐴
1
=

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

2𝑖𝜔 + 𝑎
11

𝑎
12

−𝑎
21
𝑒
−2𝑖𝜔𝜏0

2𝑖𝜔 + 𝑎
22
𝑒
−2𝑖𝜔𝜏0

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

. (62)

Similarly, we get

𝐸
(1)

2
=

2

𝐴
2

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

1

𝑒
1

(𝑐
3
+ 𝑐
1
𝛼𝛼 + 𝑐

2
Re {𝛼}) 𝑎

12

1

𝑒
3

(−𝑐
5
+ 𝑐
6
Re {𝛼} + 𝑐

4
Re {𝛼𝑒𝑖𝜔𝜏0} − 𝑐

7
Re {𝛼𝛼𝑒𝑖𝜔𝜏0}) 𝑎

22

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

,

𝐸
(2)

2
=

2

𝐴
2

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑎
11

1

𝑒
1

(𝑐
3
+ 𝑐
1
𝛼𝛼 + 𝑐

2
Re {𝛼})

−𝑎
21

1

𝑒
3

(−𝑐
5
+ 𝑐
6
Re {𝛼} + 𝑐

4
Re {𝛼𝑒𝑖𝜔𝜏0} − 𝑐

7
Re {𝛼𝛼𝑒𝑖𝜔𝜏0})

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

,

(63)
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Figure 1: When ℎ
1
= 0.4 and ℎ

2
decreases, prey species 𝑥 decreases and predator species 𝑦 increases.
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Figure 2: When ℎ
1
= 0.4 and ℎ

2
increases, prey species 𝑥 increases and predator species 𝑦 decreases.
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Figure 3: When ℎ
2
= 0.5 and ℎ

1
decreases, prey species 𝑥 and predator species 𝑦 increase.
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Figure 4: When ℎ
2
= 0.5 and ℎ

1
increases, prey species 𝑥 and predator species 𝑦 decrease.
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Figure 5: When 𝜏 = 2.9 > 𝜏
0
≐ 2.8015, prey species 𝑥 and predator species 𝑦 coexist; when 𝜏 = 5 > 𝜏

0
≐ 2.8015, prey species 𝑥 goes to

extinct.

where

𝐴
2
=

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑎
11

𝑎
12

−𝑎
21
𝑎
22

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

. (64)

Through simple computation, we determine 𝑊
20
, 𝑊
11

from
(52) and (53); further, we can determine 𝑔

21
. Therefore, 𝑔

𝑖𝑗
in

(44) can be expressed by the parameter and delay; hence,

𝐶
1
(0) =

𝑖

2𝜔𝜏
0

(𝑔
20
𝑔
11
− 2
󵄨
󵄨
󵄨
󵄨
𝑔
11

󵄨
󵄨
󵄨
󵄨

2

−

󵄨
󵄨
󵄨
󵄨
𝑔
02

󵄨
󵄨
󵄨
󵄨

2

3

) +

𝑔
21

2

,

𝜇
2
= −

Re {𝐶
1
(0)}

Re {𝜆󸀠 (𝜏
0
)}

, 𝜁 = 2Re {𝐶
1
(0)} ,

𝑇 = −

Im {𝐶
1
(0)} + 𝜇 Im {𝜆󸀠 (𝜏

0
)}

𝜔𝜏
0

,

(65)

which determine the qualities of bifurcation periodic solution
of the critical value 𝜏

0
.

Theorem 5. (i) 𝜇
2
determines the direction of Hopf bifurca-

tion: if 𝜇
2
> 0 (<0), then Hopf bifurcation is supercritical

(subcritical), and the bifurcating periodic solutions exist for
𝜏 > 𝜏
0
(𝜏 < 𝜏

0
).

(ii) 𝜁 determines the stability of the bifurcating periodic
solutions: the bifurcating periodic solutions are stable (unsta-
ble) if 𝜁 < 0 (𝜁 > 0). 𝑇 determines the period of the bifurcating
periodic solution: the period increases (decrease) if 𝑇 > 0

(𝑇 < 0).

5. Numerical Simulations

In this section, we consider a delayed predator-prey system
with harvesting as follows:

𝑥̇ (𝑡) = 𝑥 (𝑡) (1 −

𝑥 (𝑡)

10 − 1.5𝑦 (𝑡)

) − 0.4𝑥 (𝑡) ,

̇𝑦 (𝑡) = 𝑦 (𝑡) (1 −

𝑦 (𝑡 − 𝜏)

6 + 0.3𝑥 (𝑡 − 𝜏)

) − 0.5𝑦 (𝑡) .

(66)

Because (𝐻
1
) holds, from (14), we obtain that

sign{Re [d𝜆
d𝜏
]}

𝜏=𝜏𝑗

> 0, 𝜏
0
≈ 2.8015. (67)

The unique positive equilibrium is 𝐸∗ = (2.907, 3.436).
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Figure 6: When 𝜏 = 2.9 > 𝜏
0
≈ 2.8015 and ℎ

1
increases, prey species 𝑥 and predator species 𝑦 become stable; when ℎ

2
increases, prey species

𝑥 and predator species 𝑦 also become stable.
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Figure 7: When 𝜏 = 2.7 < 𝜏
0
≈ 2.8015 and ℎ

2
decreases, prey species 𝑥 and predator species 𝑦 become unstable.
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Figure 8: When 𝜏 = 2.7 < 𝜏
0
≐ 2.8015, the positive equilibrium 𝐸∗ of system (5) is asymptotically stable.

If ℎ
1
= 0.4, when ℎ

2
decreases, then prey species

decreases and predator species increases (see Figure 1); when
ℎ
2
increases, prey species increases and predator species

decreases (see Figure 2); If ℎ
2
= 0.5, when the values of

harvesting ℎ
1
decreases, then both predator species and prey

species will increase (see Figure 3); on the other hand, when
ℎ
1
increases, then both predator species and prey species will

decrease (see Figure 4).
When parameter 𝜏 is little bigger than the critical value

𝜏
0
, system (5) will become unstable and predator species

and prey species can coexist; when 𝜏 increases much more,
prey species will go to extinct (see Figure 5). Moreover, from
Figure 6, we can see that system (5) is unstable when 𝜏 passes
through the critical value 𝜏

0
. By controlling the harvesting

rates ℎ
1
and ℎ

2
, respectively, the stability of positive equilib-

rium to system (5) can been changed. Similarly, when 𝜏 < 𝜏
0
,

system (5) is stable; if we decrease the harvesting rate ℎ
2
, then

the stable system becomes unstable one (see Figure 7).
Since 𝜇

2
< 0, 𝜁 < 0, Hopf bifurcation is subcritical and

the positive equilibrium 𝐸
∗ is asymptotically stable for 0 <

𝜏 < 𝜏
0
(see Figure 8); when 𝜏 > 𝜏

0
, 𝐸∗ loses its stability and

Hopf bifurcation occurs; that is, a family of periodic solutions
bifurcate from 𝐸∗ (see Figure 9).

As discussed, our results show that the delay 𝜏 affects the
stability of system (5) andharvesting ratesℎ

1
andℎ
2
also affect

the stability of system (5).

6. Conclusion

In our model, the harvesting term has been introduced
into the model (5); by applying the normal form theo-
rem and the center manifold theorem, we investigate the
dynamical behaviors of the delayed predator-prey model
with harvesting term and obtain the influence of harvesting
term on the prey species and predator species. Further,
we prove that the influence of the harvesting rates ℎ

1
and

ℎ
2
to the stability of system (5), by controlling harvesting

rates ℎ
1
and ℎ

2
of prey species and predator species, which

makes the unstable (stable) system become stable (unsta-
ble).

Our results show thatHopf bifurcations occur as the delay
𝜏 passes through critical values 𝜏

0
≈ 2.8015. When 𝜏 < 𝜏

0
, the

positive equilibrium 𝐸∗ of system (5) is asymptotically stable;
when 𝜏 > 𝜏

0
, the positive equilibrium 𝐸∗ of system (5) loses

its stability and Hopf bifurcations occur.
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Figure 9: When 𝜏 = 2.9 > 𝜏
0
≐ 2.8015, the positive equilibrium 𝐸∗ of system (5) loses its stability and a Hopf bifurcations occurs.
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