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We study the quadratic cost optimal control problems for the viscous Dullin-Gottwald-Holm equation. The main novelty of this
paper is to derive the necessary optimality conditions of optimal controls, corresponding to physically meaningful distributive
observations. For this we prove the Gâteaux differentiability of nonlinear solution mapping on control variables. Moreover by
making use of the second order Gâteaux differentiability of solution mapping on control variables, we prove the local uniqueness
of optimal control. This is another novelty of the paper.

1. Introduction

Recently, in the study of shallow water wave, Dullin et al. [1]
derived a new integrable shallow water wave equation with
linear and nonlinear dispersion as follows:

𝑦
𝑡
+ 2𝜔𝑦

𝑥
+ 3𝑦𝑦

𝑥
− 𝛼
2
(𝑦
𝑥𝑥𝑡

+ 2𝑦
𝑥
𝑦
𝑥𝑥

+ 𝑦𝑦
𝑥𝑥𝑥

) + 𝛾𝑦
𝑥𝑥𝑥

= 0,

(1)

where 𝑦 is fluid velocity, 𝛼2 and 𝛾/2𝜔 are squares of length
scales, and 2𝜔 = √𝑔ℎ is the linearwave speed for undisturbed
water at rest at spatial infinity, where 𝑦 and its spatial deriva-
tives are taken to vanish. Letting 𝛼

2
→ 0, (1) reduces to

the well-known Korteweg-de Vries (KDV) equation (linear
dispersion case). And when letting 𝛾 → 0, (1) reduces to the
Camassa-Holm equation of [2] (nonlinear dispersion case).
Usually we can rewrite (1) into

𝑚
𝑡
+ 2𝜔𝑦

𝑥
+ 𝑦𝑚
𝑥
+ 2𝑦
𝑥
𝑚 + 𝛾𝑦

𝑥𝑥𝑥
= 0, (2)

where𝑚 = 𝑦−𝛼
2
𝑦
𝑥𝑥

is a momentum variable. Physically, the
third and fourth terms of the left side of (2) represent con-
vection and stretching effects of unidirectional propagation
of shallow water waves over a flat bottom, respectively (see
[2, 3]).

Many researchers studied the well-posedness of Cauchy
problem for the DGH equation including various properties
of the solution of it (see [4–6]).

Recently, Shen et al. [7] studied the optimal control prob-
lem of the following viscous DGH equation (cf. [3]):

𝑚
𝑡
+ 2𝜔𝑦

𝑥
+ 𝑦𝑚
𝑥
+ 2𝑦
𝑥
𝑚 + 𝛾𝑦

𝑥𝑥𝑥
= ]𝑚
𝑥𝑥

, (3)

where𝑚 = 𝑦−𝑦
𝑥𝑥

and ] > 0 stands for the viscosity constant
of shallow water wave. As explained in Holm and Staley [8],
the small viscosity makes sense to take into account the bal-
ance or relaxation between convection and stretching dynam-
ics of shallow water wave.

In [7] Shen et al. studied the distributive optimal control
problems of (3) (cf. [3]). For this purpose, they modified (3)
to Dirichlet boundary value problem in short interval and
proved the existence and uniqueness of 𝑚 in (3) by weak
formulation. However the well-posedness of (3) with respect
to 𝑦 is unclear and the proof contained in [7] relies on the size
of ]which is an extra condition. Further, in [7] they employed
the quadratic cost objective functional to be minimized
within an admissible control set with the distributive obser-
vation of 𝑚 in (3) and only discussed the existence of
optimal controls which minimize the quadratic cost. But the
necessary optimality conditions of optimal controls have not
been studied there.
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As for the necessary optimality condition of optimal con-
trols, we can find a recent paper Sun [9]. By employing the
Dubovitskii and Milyutin functional analytic approach, Sun
has established in [9, Theorem 3] the Pontryagin maximum
principle of the optimal control for the viscousDGHequation
with the quite general cost which depends on 𝑚 and not on
𝑦. Meanwhile, in this paper, we propose the quadratic cost
functional for 𝑦, which is actually more reasonable than that
for 𝑚, and establish the necessary optimality conditions of
optimal controls due to Lions [10] in Theorems 5 and 7 for
the physically meaningful observations 𝑧 = 𝑦(𝑢) and 𝑧 =

𝑚(𝑢), respectively. To this end, we successfully characterize
the Gâteaux derivative 𝐷𝑦(𝑢)(V − 𝑢) of 𝑦(V) in the direction
V−𝑢 ∈ U, whereU is a Hilbert space of control variables and
𝑢 is an optimal control for quadratic cost.

Actually, the extension of optimal control theory to quasi-
linear equations is not easy. Some researches have been
devoted to the study of optimal control or identification prob-
lems in specific quasilinear equations. For instance, we can
refer to Hwang and Nakagiri [11, 12] and Hwang [13, 14].

The aim of this paper can be summarized as follows.
Firstly, we clarify the well-posedness of (3) with respect to
𝑦 in the Hadamard sense with appropriate initial value con-
dition in short interval as posed in [7]. Secondly, based on
the well-posedness result, we expand the optimal control
theory due to Lions [10] with emphasis on deriving necessary
optimality conditions of optimal controls in the following
distributive control system:

𝑚
𝑡
(V) − ]𝑚

𝑥𝑥
(V) + 2𝜔𝑦

𝑥
(V) + 2𝑦

𝑥
(V)𝑚 (V)

+ 𝑦 (V)𝑚
𝑥
(V) + 𝛾𝑦

𝑥𝑥𝑥
(V)

= 𝑓 + 𝐵V in (0, 𝑇) × (0, 1) ,

𝑦 (V; 0, 𝑡) = 𝑦 (V; 1, 𝑡) = 𝑦
𝑥
(V; 0, 𝑡)

= 𝑦
𝑥
(V; 1, 𝑡) = 𝑦

𝑥𝑥
(V; 0, 𝑡)

= 𝑦
𝑥𝑥

(V; 1, 𝑡) = 0, 𝑡 ∈ [0, 𝑇] ,

𝑚 (V; 𝑥, 0) = 𝑚
0
= 𝑦
0
− 𝑦
0,𝑥𝑥

in (0, 1) ,

(4)

where 𝑚(V) = 𝑦(V) − 𝑦
𝑥𝑥

(V), 𝑓 is a forcing term, 𝐵 is a
controller, V is a control, and 𝑦(V) denotes the state for a given
V ∈ U.

In order to apply the variational approach due to Lions
[10] to our problem, we propose the quadratic cost functional
𝐽(V) as studied in Lions [10] which is to be minimized within
Uad; Uad is an admissible set of control variables in U.
We show the existence of 𝑢 ∈ Uad which minimizes the
quadratic cost functional 𝐽(V). Then, we establish the nec-
essary conditions of optimality of the optimal control 𝑢 for
some physically meaningful observation cases employing the
associate adjoint systems. For this we successfully prove the
Gâteaux differentiability of the nonlinear solution mapping
V → 𝑦(V), which is used to define the associate adjoint
systems.

Moreover, in this paper we discuss the local uniqueness of
optimal control. Aswidely known, it is unclear and difficult to
verify the uniqueness of optimal control in nonlinear control

problems. By employing the idea given in Ryu [15], we show
the strict convexity of the quadratic cost 𝐽(V) in local time
interval by utilizing the secondorderGâteaux differentiability
of the nonlinear solution mapping V → 𝑦(V). Whence by
proving strict convexity of the quadratic cost with respect to
the control variable, we prove the local uniqueness of optimal
control. This is another novelty of the paper.

2. Preliminaries

For fixed 𝑇 > 0, we set Ω = (0, 1) and 𝑄 = Ω × (0, 𝑇).
The scalar products and norms on 𝐿

2
(Ω) and 𝐻

𝑘

0
(Ω), 𝑘 =

1, 2, 3, are denoted by (⋅, ⋅)
2
, | ⋅ |
2
and ((⋅, ⋅))

𝑘
, ‖ ⋅ ‖
𝑘
, 𝑘 =

1, 2, 3, respectively. Then, by virtue of Poincare inequality, we
can replace these scalar products and norms by ((⋅, ⋅))

𝑘
=

(𝜕
𝑘

𝑥
⋅, 𝜕
𝑘

𝑥
⋅)
2
and ‖ ⋅ ‖

𝑘
= |𝜕
𝑘

𝑥
⋅ |
2
, 𝑘 = 1, 2, 3, respectively. Let us

denote the topological dual spaces of 𝐻𝑘
0
(Ω), 𝑘 = 1, 2, 3, by

𝐻
−𝑘

(Ω), 𝑘 = 1, 2, 3. We denote their duality pairing between
𝐻
𝑘

0
(Ω) and𝐻

−𝑘
(Ω) by ⟨⋅, ⋅⟩

𝑘,−𝑘
, 𝑘 = 1, 2, 3.

We consider the following Dirichlet boundary value
problem for the viscous Dullin-Gottwald-Holm (DGH)
equation:

𝑚
𝑡
− ]𝑚
𝑥𝑥

+ 2𝜔𝑦
𝑥
+ 2𝑦
𝑥
𝑚 + 𝑦𝑚

𝑥
+ 𝛾𝑦
𝑥𝑥𝑥

= 𝑓 in 𝑄,

𝑦 (0, 𝑡) = 𝑦 (1, 𝑡) = 𝑦
𝑥
(0, 𝑡) = 𝑦

𝑥
(1, 𝑡)

= 𝑦
𝑥𝑥

(0, 𝑡) = 𝑦
𝑥𝑥

(1, 𝑡) = 0, 𝑡 ∈ [0, 𝑇] ,

𝑚 (𝑥, 0) = 𝑚
0
= 𝑦
0
− 𝑦
0,𝑥𝑥

in Ω,

(5)

where𝑚 = 𝑦−𝑦
𝑥𝑥
, 𝑓 is a forcing function, and𝑚

0
is an initial

value.
In order to define weak solutions of (5), we define some

Hilbert spaces. At first, S(0, 𝑇) is defined by

S (0, 𝑇) = {𝜙 | 𝜙 ∈ 𝐿
2
(0, 𝑇;𝐻

3

0
(Ω)) ,

𝜙
󸀠
∈ 𝐿
2
(0, 𝑇;𝐻

1

0
(Ω))}

(6)

endowed with the norm

󵄩󵄩󵄩󵄩𝜙
󵄩󵄩󵄩󵄩S(0,𝑇) = (

󵄩󵄩󵄩󵄩𝜙
󵄩󵄩󵄩󵄩
2

𝐿
2
(0,𝑇;𝐻

3

0
(Ω))

+
󵄩󵄩󵄩󵄩󵄩
𝜙
󸀠󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
(0,𝑇;𝐻

1

0
(Ω))

)

1/2

, (7)

where 𝜙
󸀠 denotes the first order distributional derivatives of

𝜙. Further,W(0, 𝑇) is defined by

W (0, 𝑇) = {𝜓 | 𝜓 ∈ 𝐿
2
(0, 𝑇;𝐻

1

0
(Ω)) ,

𝜓
󸀠
∈ 𝐿
2
(0, 𝑇;𝐻

−1
(Ω)) }

(8)

endowed with the norm

󵄩󵄩󵄩󵄩𝜓
󵄩󵄩󵄩󵄩W(0,𝑇) = (

󵄩󵄩󵄩󵄩𝜓
󵄩󵄩󵄩󵄩
2

𝐿
2
(0,𝑇;𝐻

1

0
(Ω))

+
󵄩󵄩󵄩󵄩󵄩
𝜓
󸀠󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
(0,𝑇;𝐻

−1
(Ω))

)

1/2

, (9)

where 𝜓
󸀠 denotes the first order distributional derivatives of

𝜓. We note here that S(0, 𝑇) and W(0, 𝑇) are continuously
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imbedded in 𝐶([0, 𝑇];𝐻
2

0
(Ω)) and 𝐶([0, 𝑇]; 𝐿

2
(Ω)), respec-

tively (cf. Dautray and Lions [16, page 555]).
From now on, we will omit writing the integral variables

in the definite integral without any confusion.

Lemma 1. Let 𝜙 satisfy the boundary conditions of (5) and
𝜙 − 𝜙
𝑥𝑥

∈ W(0, 𝑇). Then one has
󵄩󵄩󵄩󵄩𝜙

󵄩󵄩󵄩󵄩S(0,𝑇) ≤ 𝐶
󵄩󵄩󵄩󵄩𝜙 − 𝜙

𝑥𝑥

󵄩󵄩󵄩󵄩W(0,𝑇), (10)

where 𝐶 > 0 is a constant.

Proof. According to the boundary conditions of 𝜙, we have

󵄩󵄩󵄩󵄩𝜙 − 𝜙
𝑥𝑥

󵄩󵄩󵄩󵄩
2
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= ∫

𝑇

0

󵄨󵄨󵄨󵄨𝜙𝑥 − 𝜙
𝑥𝑥𝑥

󵄨󵄨󵄨󵄨
2

2
𝑑𝑡

+ ∫

𝑇

0

󵄩󵄩󵄩󵄩𝜙𝑡 − 𝜙
𝑥𝑥𝑡

󵄩󵄩󵄩󵄩
2

𝐻
−1
(Ω)

𝑑𝑡

= ∫

𝑇

0

(
󵄨󵄨󵄨󵄨𝜙𝑥

󵄨󵄨󵄨󵄨
2

2
+ 2

󵄨󵄨󵄨󵄨𝜙𝑥𝑥
󵄨󵄨󵄨󵄨
2

2
+
󵄨󵄨󵄨󵄨𝜙𝑥𝑥𝑥

󵄨󵄨󵄨󵄨
2

2
) 𝑑𝑡

+ ∫

𝑇

0

󵄩󵄩󵄩󵄩𝜙𝑡 − 𝜙
𝑥𝑥𝑡

󵄩󵄩󵄩󵄩
2

𝐻
−1
(Ω)

𝑑𝑡.

(11)

Since 𝐼 − 𝜕
2

𝑥
: 𝐻
1

0
(Ω) → 𝐻

−1
(Ω) is an isomorphism, we

can deduce that

R.H.S. of (11)

≥ ∫

𝑇

0

󵄨󵄨󵄨󵄨𝜙𝑥𝑥𝑥
󵄨󵄨󵄨󵄨
2

2
𝑑𝑡 + 𝑐

0
∫

𝑇

0

󵄨󵄨󵄨󵄨𝜙𝑡𝑥
󵄨󵄨󵄨󵄨
2

2
𝑑𝑡

≥ min {1, 𝑐
0
} (

󵄩󵄩󵄩󵄩𝜙
󵄩󵄩󵄩󵄩
2

𝐿
2(0,𝑇;𝐻30 (Ω))

+
󵄩󵄩󵄩󵄩󵄩
𝜙
󸀠󵄩󵄩󵄩󵄩󵄩

2

𝐿
2(0,𝑇;𝐻10 (Ω))

)

= 𝑐
1

󵄩󵄩󵄩󵄩𝜙
󵄩󵄩󵄩󵄩
2

S(0,𝑇)
,

(12)

where 𝑐
0
, 𝑐
1
> 0 are constants. Thus we prove this lemma.

The following variational formulation is used to define the
weak solution of (5).

Definition 2. A function 𝑦 ∈ S(0, 𝑇) is said to be a weak
solution of (5) if 𝑚 = 𝑦 − 𝑦

𝑥𝑥
∈ W(0, 𝑇) and 𝑚 = 𝑦 − 𝑦

𝑥𝑥

satisfies

⟨𝑚
󸀠
(⋅) , 𝜙⟩

−1,1
+ ](𝑚

𝑥
(⋅) , 𝜙
𝑥
)
2

+ 2𝜔(𝑦
𝑥
(⋅) , 𝜙)

2
+ 2(𝑦
𝑥
𝑚, 𝜙)
2

+ (𝑦 (⋅)𝑚
𝑥
(⋅) , 𝜙)

2
+ 𝛾(𝑦
𝑥𝑥𝑥

(⋅) , 𝜙)
2

= ⟨𝑓 (⋅) , 𝜙⟩
−1,1

for all 𝜙 ∈ 𝐻
1

0
(Ω) in the sense of D󸀠 (0, 𝑇) ,

𝑚 (0) = 𝑚
0
= 𝑦
0
− 𝑦
0,𝑥𝑥

.

(13)

In order to verify the well-posedness of (5), we partially
refer to the result by Shen et al. [7].The well-posedness of (5)
in the sense of Hadamard can be given as follows.

Theorem 3. Assume that ] > 0, 𝑓 ∈ 𝐿
2
(0, 𝑇;𝐻

−1
(Ω)), and

𝑦
0

∈ 𝐻
2

0
(Ω). Then the problem (5) has a unique solution 𝑦

in S(0, 𝑇). And the solution mapping 𝑝 = (𝑦
0
, 𝑓) → 𝑦(𝑝)

of 𝑃 ≡ 𝐻
2

0
(Ω) × 𝐿

2
(0, 𝑇;𝐻

−1
(Ω)) into S(0, 𝑇) is a local

Lipschitz continuous; that is, for each 𝑝
1
= (𝑦
1

0
, 𝑓
1
) ∈ 𝑃 and

𝑝
2
= (𝑦
2

0
, 𝑓
2
) ∈ 𝑃, one has the inequality

󵄩󵄩󵄩󵄩𝑦1 (𝑝1) − 𝑦
2
(𝑝
2
)
󵄩󵄩󵄩󵄩S(0,𝑇)

≤ 𝐶(
󵄩󵄩󵄩󵄩󵄩
𝑦
1

0
− 𝑦
2

0

󵄩󵄩󵄩󵄩󵄩𝐻2
0
(Ω)

+
󵄩󵄩󵄩󵄩𝑓1 − 𝑓

2

󵄩󵄩󵄩󵄩𝐿2(0,𝑇;𝐻−1(Ω))) ,

(14)

where 𝐶 is a constant which depends on 𝑦
1
and 𝑦

2
.

Remark 4. In [7], the well-posedness of (5) is partially veri-
fied, which is indeed the case that the viscosity constant ] > 0

is large enough.However, as wewill see in theAppendix, such
an extra assumption can be removed.

Proof of Theorem 3. By utilizing the result of [7], combined
with Lemma 1, we can know that (5) possesses a unique solu-
tion 𝑦 ∈ S(0, 𝑇) under the data condition 𝑝 = (𝑦

0
, 𝑓) ∈

𝐻
2

0
(Ω) × 𝐿

2
(0, 𝑇;𝐻

−1
(Ω)).

Based on the above result, we prove the inequality (14).
For that purpose, we denote 𝑦

1
−𝑦
2
≡ 𝑦(𝑝

1
)−𝑦(𝑝

2
) by 𝜓 and

𝑦
𝑖
− 𝑦
𝑖,𝑥𝑥

by𝑚
𝑖
, 𝑖 = 1, 2. Then, we can observe from (5) that

Ψ
𝑡
− ]Ψ
𝑥𝑥

+ 2𝜔𝜓
𝑥
+ 2𝜓
𝑥
𝑚
1
+ 2𝑦
2,𝑥

Ψ

+ 𝜓𝑚
1,𝑥

+ 𝑦
2
Ψ
𝑥
+ 𝛾𝜓
𝑥𝑥𝑥

= 𝑓
1
− 𝑓
2

in 𝑄,

𝜓 (0, 𝑡) = 𝜓 (1, 𝑡) = 𝜓
𝑥
(0, 𝑡) = 𝜓

𝑥
(1, 𝑡) = 𝜓

𝑥𝑥
(0, 𝑡)

= 𝜓
𝑥𝑥

(1, 𝑡) = 0, 𝑡 ∈ [0, 𝑇] ,

Ψ (𝑥, 0) = Ψ
0
= 𝑚
1

0
− 𝑚
2

0
in Ω,

(15)

where Ψ = 𝜓 − 𝜓
𝑥𝑥

and𝑚
𝑖

0
= 𝑦
𝑖

0
− 𝑦
𝑖

0,𝑥𝑥
, 𝑖 = 1, 2. Multiplying

Ψ in both sides of (15), we have
1

2

𝑑

𝑑𝑡
|Ψ|
2

2
+ ]󵄨󵄨󵄨󵄨Ψ𝑥

󵄨󵄨󵄨󵄨
2

2
= −2𝜔(𝜓

𝑥
, Ψ)
2

− (2𝜓
𝑥
𝑚
1
, Ψ)
2
− (2𝑦
2,𝑥

Ψ,Ψ)
2

− (𝜓𝑚
1,𝑥

, Ψ)
2
− (𝑦
2
Ψ
𝑥
, Ψ)
2

− 𝛾(𝜓
𝑥𝑥𝑥

, Ψ)
2
+ ⟨𝑓
1
− 𝑓
2
, Ψ⟩
−1,1

.

(16)

And we integrate (16) over [0, 𝑡] to have
1

2
|Ψ (𝑡)|

2

2
+ ]∫
𝑡

0

󵄨󵄨󵄨󵄨Ψ𝑥
󵄨󵄨󵄨󵄨
2

2
𝑑𝑠

=
1

2

󵄨󵄨󵄨󵄨Ψ0
󵄨󵄨󵄨󵄨
2

2
− 2𝜔∫

𝑡

0

(𝜓
𝑥
, Ψ)
2
𝑑𝑠 − ∫

𝑡

0

(2𝜓
𝑥
𝑚
1
, Ψ)
2
𝑑𝑠

− ∫

𝑡

0

(2𝑦
2,𝑥

Ψ,Ψ)
2
𝑑𝑠 − ∫

𝑡

0

(𝜓𝑚
1,𝑥

, Ψ)
2
𝑑𝑠

− ∫

𝑡

0

(𝑦
2
Ψ
𝑥
, Ψ)
2
𝑑𝑠 − 𝛾∫

𝑡

0

(𝜓
𝑥𝑥𝑥

, Ψ)
2
𝑑𝑠

+ ∫

𝑡

0

⟨𝑓
1
− 𝑓
2
, Ψ⟩
−1,1

𝑑𝑠.

(17)
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By Sobolev embedding theorem, 𝑚
𝑖

∈ W(0, 𝑇) 󳨅→

𝐶([0, 𝑇]; 𝐿
2
(Ω)), 𝑖 = 1, 2, and |Ψ|

2

2
= |𝜓|
2

2
+ 2|𝜓
𝑥
|
2

2
+ |𝜓
𝑥𝑥

|
2

2
,

the right members of (17) can be estimated as follows:

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
−2𝜔∫

𝑡

0

(𝜓
𝑥
, Ψ)
2
𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 2𝜔∫

𝑡

0

󵄨󵄨󵄨󵄨𝜓𝑥
󵄨󵄨󵄨󵄨2|Ψ|
2
𝑑𝑠

≤ 2𝜔∫

𝑡

0

|Ψ|
2

2
𝑑𝑠;

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
− ∫

𝑡

0

(2𝜓
𝑥
𝑚
1
, Ψ)
2
𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 2∫

𝑡

0

󵄩󵄩󵄩󵄩𝜓𝑥
󵄩󵄩󵄩󵄩𝐿∞(Ω)

󵄨󵄨󵄨󵄨𝑚1
󵄨󵄨󵄨󵄨2|Ψ|
2
𝑑𝑠

≤ 𝑐
0

󵄩󵄩󵄩󵄩𝑚1
󵄩󵄩󵄩󵄩𝐶([0,𝑇];𝐿2(Ω)) ∫

𝑡

0

󵄨󵄨󵄨󵄨𝜓𝑥𝑥
󵄨󵄨󵄨󵄨2|Ψ|
2
𝑑𝑠

≤ 𝑐
1
∫

𝑡

0

|Ψ|
2

2
𝑑𝑠;

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
− ∫

𝑡

0

(2𝑦
2,𝑥

Ψ,Ψ)
2
𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 2
󵄩󵄩󵄩󵄩𝑦2,𝑥

󵄩󵄩󵄩󵄩𝐿∞(𝑄)
∫

𝑡

0

|Ψ|
2

2
𝑑𝑠

≤ 𝑐
2
∫

𝑡

0

|Ψ|
2

2
𝑑𝑠;

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
− ∫

𝑡

0

(𝜓𝑚
1,𝑥

, Ψ)
2
𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ ∫

𝑡

0

󵄩󵄩󵄩󵄩𝜓
󵄩󵄩󵄩󵄩𝐿∞(Ω)

󵄨󵄨󵄨󵄨𝑚1,𝑥
󵄨󵄨󵄨󵄨2|

Ψ|
2
𝑑𝑠

≤ 𝑐
3
∫

𝑡

0

󵄨󵄨󵄨󵄨𝜓𝑥
󵄨󵄨󵄨󵄨2
󵄨󵄨󵄨󵄨𝑚1,𝑥

󵄨󵄨󵄨󵄨2|
Ψ|
2
𝑑𝑠

≤ 𝑐
4
∫

𝑡

0

󵄨󵄨󵄨󵄨𝑚1,𝑥
󵄨󵄨󵄨󵄨2|

Ψ|
2

2
𝑑𝑠;

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
− ∫

𝑡

0

(𝑦
2
Ψ
𝑥
, Ψ)
2
𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
󵄩󵄩󵄩󵄩𝑦2

󵄩󵄩󵄩󵄩𝐿∞(𝑄) ∫

𝑡

0

󵄨󵄨󵄨󵄨Ψ𝑥
󵄨󵄨󵄨󵄨2|Ψ|
2
𝑑𝑠

≤ 𝑐
5
∫

𝑡

0

|Ψ|
2

2
𝑑𝑠 +

]
6
∫

𝑡

0

󵄨󵄨󵄨󵄨Ψ𝑥
󵄨󵄨󵄨󵄨
2

2
𝑑𝑠;

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
−𝛾∫

𝑡

0

(𝜓
𝑥𝑥𝑥

, Ψ)
2
𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝛾 ∫

𝑡

0

(𝜓
𝑥𝑥

, Ψ
𝑥
)
2
𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝛾∫

𝑡

0

󵄨󵄨󵄨󵄨𝜓𝑥𝑥
󵄨󵄨󵄨󵄨2
󵄨󵄨󵄨󵄨Ψ𝑥

󵄨󵄨󵄨󵄨2𝑑𝑠

≤ 𝛾∫

𝑡

0

|Ψ|
2

󵄨󵄨󵄨󵄨Ψ𝑥
󵄨󵄨󵄨󵄨2𝑑𝑠

≤ 𝑐
6
∫

𝑡

0

|Ψ|
2

2
𝑑𝑠 +

]
6
∫

𝑡

0

󵄨󵄨󵄨󵄨Ψ𝑥
󵄨󵄨󵄨󵄨
2

2
𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

𝑡

0

⟨𝑓
1
− 𝑓
2
, Ψ⟩
−1,1

𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ ∫

𝑡

0

󵄩󵄩󵄩󵄩𝑓1 − 𝑓
2

󵄩󵄩󵄩󵄩𝐻−1(Ω)
󵄨󵄨󵄨󵄨Ψ𝑥

󵄨󵄨󵄨󵄨2𝑑𝑠

≤ 𝑐
7

󵄩󵄩󵄩󵄩𝑓1 − 𝑓
2

󵄩󵄩󵄩󵄩
2

𝐿
2
(0,𝑇;𝐻

−1
(Ω))

+
]
6
∫

𝑡

0

󵄨󵄨󵄨󵄨Ψ𝑥
󵄨󵄨󵄨󵄨
2

2
𝑑𝑠,

(18)

where 𝑐
0
, . . . , 𝑐

7
are constants. We replace the right hand side

of (17) by the right members of (18). Then we have

|Ψ (𝑡)|
2

2
+ ∫

𝑡

0

󵄨󵄨󵄨󵄨Ψ𝑥
󵄨󵄨󵄨󵄨
2

2
𝑑𝑠

≤ 𝑐
8
(
󵄨󵄨󵄨󵄨Ψ0

󵄨󵄨󵄨󵄨
2

2
+
󵄩󵄩󵄩󵄩𝑓1 − 𝑓

2

󵄩󵄩󵄩󵄩
2

𝐿
2
(0,𝑇;𝐻

−1
(Ω))

+ ∫

𝑡

0

󵄨󵄨󵄨󵄨𝑚1,𝑥
󵄨󵄨󵄨󵄨2|

Ψ|
2

2
𝑑𝑠) ,

(19)

where 𝑐
8
is a constant, depending on 𝑦

1
and 𝑦
2
. And we apply

the Gronwall inequality to (19) to obtain

|Ψ (𝑡)|
2

2
+ ∫

𝑡

0

󵄨󵄨󵄨󵄨Ψ𝑥
󵄨󵄨󵄨󵄨
2

2
𝑑𝑠

≤ 𝑐
8
(
󵄨󵄨󵄨󵄨Ψ0

󵄨󵄨󵄨󵄨
2

2
+
󵄩󵄩󵄩󵄩𝑓1 − 𝑓

2

󵄩󵄩󵄩󵄩
2

𝐿
2
(0,𝑇;𝐻

−1
(Ω))

)

× exp (𝑐
8

󵄩󵄩󵄩󵄩𝑚1
󵄩󵄩󵄩󵄩𝐿1(0,𝑇;𝐻1

0
(Ω))

)

≤ 𝑐
9
(
󵄨󵄨󵄨󵄨Ψ0

󵄨󵄨󵄨󵄨
2

2
+
󵄩󵄩󵄩󵄩𝑓1 − 𝑓

2

󵄩󵄩󵄩󵄩
2

𝐿
2
(0,𝑇;𝐻

−1
(Ω))

) ,

(20)

where 𝑐
9
is a constant, depending on 𝑦

1
and 𝑦

2
. Next we esti-

mate Ψ
𝑡
in (15) as follows:

󵄩󵄩󵄩󵄩Ψ𝑡
󵄩󵄩󵄩󵄩𝐻−1(Ω) ≤ ]󵄨󵄨󵄨󵄨Ψ𝑥

󵄨󵄨󵄨󵄨2 + 2𝜔
󵄨󵄨󵄨󵄨𝜓𝑥

󵄨󵄨󵄨󵄨2 + 2
󵄩󵄩󵄩󵄩𝑚1

󵄩󵄩󵄩󵄩𝐿∞(Ω)
󵄨󵄨󵄨󵄨𝜓𝑥

󵄨󵄨󵄨󵄨2

+ 2
󵄩󵄩󵄩󵄩𝑦2,𝑥

󵄩󵄩󵄩󵄩𝐿∞(𝑄)|
Ψ|
2

+
󵄩󵄩󵄩󵄩𝜓

󵄩󵄩󵄩󵄩𝐿∞(Ω)
󵄨󵄨󵄨󵄨𝑚1,𝑥

󵄨󵄨󵄨󵄨2
+
󵄩󵄩󵄩󵄩𝑦2

󵄩󵄩󵄩󵄩𝐿∞(𝑄)
󵄨󵄨󵄨󵄨Ψ𝑥

󵄨󵄨󵄨󵄨2

+ 𝛾
󵄨󵄨󵄨󵄨𝜓𝑥𝑥𝑥

󵄨󵄨󵄨󵄨2 +
󵄩󵄩󵄩󵄩𝑓1 − 𝑓

2

󵄩󵄩󵄩󵄩𝐻−1(Ω).

(21)

By Sobolev embedding theorem, we have the following
inequality:

R.H.S. of (21) ≤ 𝑐
10

󵄨󵄨󵄨󵄨Ψ𝑥
󵄨󵄨󵄨󵄨2 + 𝑐
11

(
󵄨󵄨󵄨󵄨𝑚1,𝑥

󵄨󵄨󵄨󵄨2
+ 1) |Ψ|

2

+
󵄩󵄩󵄩󵄩𝑓1 − 𝑓

2

󵄩󵄩󵄩󵄩𝐻−1(Ω),

(22)
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where 𝑐
10
, 𝑐
11
are constants, depending on 𝑦

1
and 𝑦

2
. By (21)

and (22) we can obtain
󵄩󵄩󵄩󵄩Ψ𝑡

󵄩󵄩󵄩󵄩
2

𝐿
2
(0,𝑇;𝐻

−1
(Ω))

≤ 𝑐
12

(‖Ψ‖
2

𝐿
2
(0,𝑇;𝐻

1

0
(Ω))

+ (
󵄩󵄩󵄩󵄩𝑚1

󵄩󵄩󵄩󵄩
2

𝐿
2
(0,𝑇;𝐻

1

0
(Ω))

+ 1)

×‖Ψ‖
2

𝐿
∞
(0,𝑇;𝐿

2
(Ω))

+
󵄩󵄩󵄩󵄩𝑓1 − 𝑓

2

󵄩󵄩󵄩󵄩
2

𝐿
2
(0,𝑇;𝐻

−1
(Ω))

)

≤ 𝑐
13

(
󵄨󵄨󵄨󵄨Ψ0

󵄨󵄨󵄨󵄨
2

2
+
󵄩󵄩󵄩󵄩𝑓1 − 𝑓

2

󵄩󵄩󵄩󵄩
2

𝐿
2
(0,𝑇;𝐻

−1
(Ω))

) ,

(23)

where 𝑐
12
, 𝑐
13
are constants, depending on 𝑦

1
and 𝑦

2
. We can

deduce that (20) and (23) imply

‖Ψ‖W(0,𝑇) ≤ 𝑐
14

(
󵄨󵄨󵄨󵄨Ψ0

󵄨󵄨󵄨󵄨2 +
󵄩󵄩󵄩󵄩𝑓1 − 𝑓

2

󵄩󵄩󵄩󵄩𝐿2(0,𝑇;𝐻−1(Ω))) , (24)

where 𝑐
14
is a constant, depending on 𝑦

1
and 𝑦

2
. Finally from

Lemma 1 and (24) we have
󵄩󵄩󵄩󵄩𝜓

󵄩󵄩󵄩󵄩S(0,𝑇) ≡
󵄩󵄩󵄩󵄩𝑦1 (𝑝1) − 𝑦

2
(𝑝
2
)
󵄩󵄩󵄩󵄩S(0,𝑇)

≤ 𝑐
15

(
󵄨󵄨󵄨󵄨Ψ0

󵄨󵄨󵄨󵄨2 +
󵄩󵄩󵄩󵄩𝑓1 − 𝑓

2

󵄩󵄩󵄩󵄩𝐿2(0,𝑇;𝐻−1(Ω)))

≤ 𝐶(
󵄩󵄩󵄩󵄩󵄩
𝑦
1

0
− 𝑦
2

0

󵄩󵄩󵄩󵄩󵄩𝐻2
0
(Ω)

+
󵄩󵄩󵄩󵄩𝑓1 − 𝑓

2

󵄩󵄩󵄩󵄩𝐿2(0,𝑇;𝐻−1(Ω))) ,

(25)

where 𝑐
15
, 𝐶 are constants, depending on 𝑦

1
and 𝑦

2
. Thus we

complete the proof.

3. Quadratic Cost Optimal Control Problems

In this section we study the quadratic cost optimal control
problems for the viscous DGH equation due to the theory of
Lions [10]. LetU be a Hilbert space of control variables, and
let 𝐵 be an operator,

𝐵 ∈ L (U, 𝐿
2
(0, 𝑇; 𝐿

2
(Ω))) , (26)

called a controller. We consider the following nonlinear
control system:

𝑚
𝑡
(V) − ]𝑚

𝑥𝑥
(V) + 2𝜔𝑦

𝑥
(V) + 2𝑦

𝑥
(V)𝑚 (V)

+ 𝑦 (V)𝑚
𝑥
(V) + 𝛾𝑦

𝑥𝑥𝑥
(V) = 𝑓 + 𝐵V in 𝑄,

𝑦 (V; 0, 𝑡) = 𝑦 (V; 1, 𝑡) = 𝑦
𝑥
(V; 0, 𝑡)

= 𝑦
𝑥
(V; 1, 𝑡) = 𝑦

𝑥𝑥
(V; 0, 𝑡)

= 𝑦
𝑥𝑥

(V; 1, 𝑡) = 0, 𝑡 ∈ [0, 𝑇] ,

𝑚 (V; 𝑥, 0) = 𝑚
0
= 𝑦
0
− 𝑦
0,𝑥𝑥

, in Ω,

(27)

where𝑚(V) = 𝑦(V)−𝑦
𝑥𝑥

(V),𝑚
0
∈ 𝐿
2
(Ω),𝑓 ∈ 𝐿

2
(0, 𝑇; 𝐿

2
(Ω)),

and V ∈ U is a control. By virtue of Theorem 3 and (26), we
can define uniquely the solution map V → 𝑦(V) of U into
S(0, 𝑇). We will call the solution 𝑦(V) of (27) the state of the
control system (27). The observation of the state is assumed
to be given by

𝑧 (V) = 𝐶𝑦 (V) , 𝐶 ∈ L (S (0, 𝑇) ,𝑀) , (28)

where 𝐶 is an operator called the observer and𝑀 is a Hilbert
space of observation variables. The quadratic cost function
associated with the control system (27) is given by

𝐽 (V) =
󵄩󵄩󵄩󵄩𝐶𝑦 (V) − 𝑌

𝑑

󵄩󵄩󵄩󵄩
2

𝑀
+ (𝑅V, V)U for V ∈ U, (29)

where 𝑌
𝑑
∈ 𝑀 is a desired value of 𝑦(V) and 𝑅 ∈ L(U,U) is

symmetric and positive; that is,

(𝑅V, V)U = (V, 𝑅V)U ≥ 𝑑‖V‖2U (30)

for some 𝑑 > 0. LetUad be a closed convex subset ofU, which
is called the admissible set. An element 𝑢 ∈ Uad which attains
theminimumof 𝐽(V) overUad is called an optimal control for
the cost (29).

In this section we will characterize the optimal controls
by giving necessary conditions for optimality. For this it is
necessary to write down the necessary optimality condition,

𝐷𝐽 (𝑢) (V − 𝑢) ≥ 0 for all V ∈ Uad, (31)

and to analyze (31) in view of the proper adjoint state system,
where 𝐷𝐽(𝑢) denote the Gâteaux derivative of 𝐽(V) at V = 𝑢.
And we study local uniqueness of the optimal control.

As indicated in Section 1, we show the existence of an
optimal control and give the characterizations of them.

3.1. Existence of the Optimal Control. Now we show the exis-
tence of an optimal control 𝑢 for the cost (29).

Theorem 5. Assume that the hypotheses of Theorem 3 are sat-
isfied. Then there exists at least one optimal control 𝑢 for the
control problem (27) with the cost (29).

Proof. Set 𝐽 = infV∈Uad
𝐽(V). SinceUad is nonempty, there is a

sequence {V
𝑛
} inU such that

inf
V∈Uad

𝐽 (V) = lim
𝑛→∞

𝐽 (V
𝑛
) = 𝐽. (32)

Obviously {𝐽(V
𝑛
)} is bounded in R+. Then by (30) there exists

a constant𝐾
0
> 0 such that

𝑑
󵄩󵄩󵄩󵄩V𝑛

󵄩󵄩󵄩󵄩
2

U
≤ (𝑅V

𝑛
, V
𝑛
)
U

≤ 𝐽 (V
𝑛
) ≤ 𝐾
0
. (33)

This shows that {V
𝑛
} is bounded inU. SinceUad is closed and

convex, we can choose a subsequence (denoted again by {V
𝑛
})

of {V
𝑛
} and find a 𝑢 ∈ Uad such that

V
𝑛
󳨀→ 𝑢 weakly in U (34)

as 𝑛 → ∞. From now on, each state 𝑦
𝑛
= 𝑦(V

𝑛
) ∈ S(0, 𝑇)

corresponding to V
𝑛
is the solution of

𝑚
𝑛,𝑡

− ]𝑚
𝑛,𝑥𝑥

+ 2𝜔𝑦
𝑛,𝑥

+ 2𝑦
𝑛,𝑥

𝑚
𝑛

+ 𝑦
𝑛
𝑚
𝑛,𝑥

+ 𝛾𝑦
𝑛,𝑥𝑥𝑥

= 𝑓 + 𝐵V
𝑛

in 𝑄,

𝑦
𝑛
(0, 𝑡) = 𝑦

𝑛
(1, 𝑡) = 𝑦

𝑛,𝑥
(0, 𝑡) = 𝑦

𝑛,𝑥
(1, 𝑡) = 𝑦

𝑛,𝑥𝑥
(0, 𝑡)

= 𝑦
𝑛,𝑥𝑥

(1, 𝑡) = 0, 𝑡 ∈ [0, 𝑇] ,

𝑚
𝑛
(𝑥, 0) = 𝑚

0
= 𝑦
0
− 𝑦
0,𝑥𝑥

in Ω,

(35)
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where𝑚
𝑛
= 𝑦
𝑛
− 𝑦
𝑛,𝑥𝑥

. By (33) the term 𝐵V
𝑛
is estimated as

󵄩󵄩󵄩󵄩𝐵V𝑛
󵄩󵄩󵄩󵄩𝐿2(0,𝑇;𝐿2(Ω)) ≤ ‖𝐵‖L(U,𝐿2(0,𝑇;𝐿2(Ω)))

󵄩󵄩󵄩󵄩V𝑛
󵄩󵄩󵄩󵄩U

≤ ‖𝐵‖L(U,𝐿2(0,𝑇;𝐿2(Ω)))√𝐾
0
𝑑−1 ≡ 𝐾

1
.

(36)

Hence we can deduce fromTheorem 3 that
󵄩󵄩󵄩󵄩𝑚𝑛

󵄩󵄩󵄩󵄩W(0,𝑇) ≤ 𝐶
0
(
󵄩󵄩󵄩󵄩𝑦0

󵄩󵄩󵄩󵄩𝐻2
0
(Ω)

+
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩𝐿2(0,𝑇;𝐿2(Ω)) + 𝐾
1
) (37)

for some 𝐶
0
> 0. And also from Lemma 1 we can know that

󵄩󵄩󵄩󵄩𝑦𝑛
󵄩󵄩󵄩󵄩S(0,𝑇) ≤ 𝐶

1
(
󵄩󵄩󵄩󵄩𝑦0

󵄩󵄩󵄩󵄩𝐻2
0
(Ω)

+
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩𝐿2(0,𝑇;𝐿2(Ω)) + 𝐾
1
) (38)

for some 𝐶
1

> 0. Therefore, by the extraction theorem of
Rellich’s, we can find a subsequence of {𝑚

𝑛
}, say again {𝑚

𝑛
},

and find a𝑚 = 𝑦 − 𝑦
𝑥𝑥

∈ W(0, 𝑇) such that

𝑚
𝑛
󳨀→ 𝑚 weakly in W (0, 𝑇) . (39)

By using the fact that 𝐻1
0
(Ω) 󳨅→ 𝐿

2
(Ω) is compact and by

virtue of (39), we can refer to the result of the Aubin-Lions-
Temam’s compact imbedding theorem (cf. Temam [17, page
271]) to verify that {𝑚

𝑛
} is precompact in 𝐿

2
(0, 𝑇; 𝐿

2
(Ω)).

Hence there exists a subsequence {𝑚
𝑛
𝑘

} ⊂ {𝑚
𝑛
} such that

𝑚
𝑛
𝑘

󳨀→ 𝑚 strongly in 𝐿
2
(0, 𝑇; 𝐿

2
(Ω)) as 𝑘 󳨀→ ∞.

(40)

Since 𝑚
𝑛

= 𝑦
𝑛
− 𝑦
𝑛,𝑥𝑥

∈ W(0, 𝑇) 󳨅→ 𝐶([0, 𝑇]; 𝐿
2
(Ω)), we

know that 𝑦
𝑛

∈ 𝐶([0, 𝑇];𝐻
2

0
(Ω)). And from (40) we can

choose a subsequence of {𝑦
𝑛
𝑘

}, denoted again by {𝑦
𝑛
𝑘

} such
that

𝑦
𝑛
𝑘
(𝑡) 󳨀→ 𝑦 (𝑡) strongly in 𝐻

2

0
(Ω) for a.e. 𝑡 ∈ [0, 𝑇] .

(41)

We use (39)–(41) and apply the Lebesgue dominated con-
vergence theorem to have

2𝑦
𝑛
𝑘
,𝑥
𝑚
𝑛
𝑘

󳨀→ 2𝑦
𝑥
𝑚 strongly in 𝐿

2
(0, 𝑇; 𝐿

2
(Ω)) ,

𝑦
𝑛
𝑘

𝑚
𝑛
𝑘
𝑥
󳨀→ 𝑦𝑚

𝑥
weakly in 𝐿

2
(0, 𝑇; 𝐿

2
(Ω))

(42)

as 𝑘 → ∞. We replace 𝑦
𝑛
and 𝑚

𝑛
by 𝑦
𝑛
𝑘

and 𝑚
𝑛
𝑘

, respec-
tively, and take 𝑘 → ∞ in (35). Then by the standard argu-
ment in Dautray and Lions [16, pages 561–565], we conclude
that the limit𝑚 satisfies

𝑚
𝑡
− ]𝑚
𝑥𝑥

+ 2𝜔𝑦
𝑥
+ 2𝑦
𝑥
𝑚 + 𝑦𝑚

𝑥
+ 𝛾𝑦
𝑥𝑥𝑥

= 𝑓 + 𝐵𝑢 in 𝑄,

𝑦 (0, 𝑡) = 𝑦 (1, 𝑡) = 𝑦
𝑥
(0, 𝑡) = 𝑦

𝑥
(1, 𝑡) = 𝑦

𝑥𝑥
(0, 𝑡)

= 𝑦
𝑥𝑥

(1, 𝑡) = 0, 𝑡 ∈ [0, 𝑇] ,

𝑚 (𝑥, 0) = 𝑚
0
= 𝑦
0
− 𝑦
0,𝑥𝑥

, in Ω

(43)

inweak sense, where𝑚 = 𝑦−𝑦
𝑥𝑥
.Moreover the uniqueness of

weak solutions in (43) via Theorem 3 enables us to conclude
that𝑦 = 𝑦(𝑢) inS(0, 𝑇), which implies𝑦(V

𝑛
) → 𝑦(𝑢)weakly

in S(0, 𝑇). Since 𝐶 is continuous on S(0, 𝑇) and ‖ ⋅ ‖
𝑀

is
lower semicontinuous, it follows that

󵄩󵄩󵄩󵄩𝐶𝑦 (𝑢) − 𝑧
𝑑

󵄩󵄩󵄩󵄩𝑀 ≤ lim inf
𝑛→∞

󵄩󵄩󵄩󵄩𝐶𝑦 (V
𝑛
) − 𝑧
𝑑

󵄩󵄩󵄩󵄩𝑀. (44)

It is also clear from lim inf
𝑘→∞

‖R1/2V
𝑛
‖U ≥ ‖𝑅

1/2V‖U that
lim inf

𝑘→∞
(𝑅V
𝑛
, V
𝑛
)U ≥ (𝑅𝑢, 𝑢)U. Hence

𝐽 = lim inf
𝑛→∞

𝐽 (V
𝑛
) ≥ 𝐽 (𝑢) . (45)

But since 𝐽(𝑢) ≥ 𝐽 by definition, we conclude that 𝐽(𝑢) =

infV∈Uad
𝐽(V). This completes the proof.

3.2. GâteauxDifferentiability of SolutionMapping. In order to
characterize the optimal control which satisfies the necessary
optimality condition (31), we need to prove the Gâteaux
differentiability of the mapping V → 𝑦(V) ofU → S(0, 𝑇).

Definition 6. The solution map V → 𝑦(V) of U into S(0, 𝑇)

is said to be Gâteaux differentiable at V = 𝑢 if for any 𝑤 ∈ U
there exists a𝐷𝑦(𝑢) ∈ L(U,S(0, 𝑇)) such that

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

1

𝜆
(𝑦 (𝑢 + 𝜆𝑤) − 𝑦 (𝑢)) − 𝐷𝑦 (𝑢)𝑤

󵄩󵄩󵄩󵄩󵄩󵄩󵄩S(0,𝑇)
󳨀→ 0 as 𝜆 󳨀→ 0.

(46)

The operator 𝐷𝑦(𝑢) denotes the Gâteaux derivative of 𝑦(𝑢)
at V = 𝑢 and the function 𝐷𝑦(𝑢)𝑤 ∈ S(0, 𝑇) is called the
Gâteaux derivative in the direction 𝑤 ∈ U, which plays an
important role in the nonlinear optimal control problem.

Theorem 7. Themap V → 𝑦(V) ofU intoS(0, 𝑇) is Gâteaux
differentiable at V = 𝑢 and such the Gâteaux derivative of 𝑦(V)
at V = 𝑢 in the direction V − 𝑢 ∈ U, say 𝑧 = 𝐷𝑦(𝑢)(V − 𝑢), is a
unique solution of the following problem:

Z
𝑡
− ]Z
𝑥𝑥

+ 2𝜔𝑧
𝑥
+ 2𝑧
𝑥
𝑚 + 2𝑦

𝑥
(𝑢)Z

+ 𝑧𝑚
𝑥
+ 𝑦 (𝑢)Z

𝑥
+ 𝛾𝑧
𝑥𝑥𝑥

= 𝐵 (V − 𝑢) in 𝑄,

𝑧 (0, 𝑡) = 𝑧 (1, 𝑡) = 𝑧
𝑥
(0, 𝑡) = 𝑧

𝑥
(1, 𝑡) = 𝑧

𝑥𝑥
(0, 𝑡)

= 𝑧
𝑥𝑥

(1, 𝑡) = 0, 𝑡 ∈ [0, 𝑇] ,

Z (𝑥, 0) = 0 in Ω,

(47)

where𝑚 = 𝑦(𝑢) − 𝑦
𝑥𝑥

(𝑢) andZ = 𝑧 − 𝑧
𝑥𝑥
.

Proof. Let 𝜆 ∈ (−1, 1), 𝜆 ̸= 0. We set 𝑤 = V − 𝑢 and

𝑧
𝜆
= 𝜆
−1

(𝑦 (𝑢 + 𝜆𝑤) − 𝑦 (𝑢)) . (48)

Then 𝑧
𝜆
satisfies

Z
𝜆,𝑡

− ]Z
𝜆,𝑥𝑥

+ 2𝜔𝑧
𝜆,𝑥

+ 2𝑧
𝜆,𝑥

𝑚
𝜆
+ 2𝑦
𝑥
(𝑢)Z

𝜆

+ 𝑧
𝜆
𝑚
𝜆,𝑥

+ 𝑦 (𝑢)Z
𝜆,𝑥

+ 𝛾𝑧
𝜆,𝑥𝑥𝑥

= 𝐵𝑤 in 𝑄,
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𝑧
𝜆
(0, 𝑡) = 𝑧

𝜆
(1, 𝑡) = 𝑧

𝜆,𝑥
(0, 𝑡) = 𝑧

𝜆,𝑥
(1, 𝑡) = 𝑧

𝜆,𝑥𝑥
(0, 𝑡)

= 𝑧
𝜆,𝑥𝑥

(1, 𝑡) = 0, 𝑡 ∈ [0, 𝑇] ,

Z
𝜆
(𝑥, 0) = 0 in Ω,

(49)

where𝑚
𝜆
= 𝑦(𝑢 + 𝜆𝑤) − 𝑦

𝑥𝑥
(𝑢 + 𝜆𝑤) andZ

𝜆
= 𝑧
𝜆
− 𝑧
𝜆,𝑥𝑥

.
By the continuity of (14), we have
󵄩󵄩󵄩󵄩𝑦 (𝑢 + 𝜆𝑤) − 𝑦 (𝑢)

󵄩󵄩󵄩󵄩S(0,𝑇) ≤ |𝜆| 𝐶‖𝐵𝑤‖
𝐿
2
(0,𝑇;𝐿

2
(Ω))

, (50)

where 𝐶 is a constant, depending on 𝑦(𝑢) and 𝑦(𝑢 + 𝜆𝑤).
Hence we have

󵄩󵄩󵄩󵄩𝑧𝜆
󵄩󵄩󵄩󵄩S(0,𝑇) ≤ 𝐶‖𝐵𝑤‖

𝐿
2
(0,𝑇;𝐿

2
(Ω))

< ∞. (51)

Therefore, we can infer that there exists a 𝑧 ∈ S(0, 𝑇) and a
sequence {𝜆

𝑘
} ⊂ (−1, 1) tending to 0 such that

𝑧
𝜆
𝑘

󳨀→ 𝑧 weakly in S (0, 𝑇) (52)

as 𝑘 → ∞. Since the imbedding S(0, 𝑇) 󳨅→ 𝐿
2
(0, 𝑇;𝐻

2

0
(Ω))

is compact ([17, page 271]), it is implied from (52) that

𝑧
𝜆
𝑘
(𝑡) 󳨀→ 𝑧 (𝑡) strongly in 𝐻

2

0
(Ω) a.e. 𝑡 ∈ [0, 𝑇] (53)

for some {𝜆
𝑘
} ⊂ (−1, 1) tending to 0 as 𝑘 → ∞. Whence by

(50)–(53) and Lebesgue dominated convergence theorem we
can easily show that

2𝑧
𝜆
𝑘
,𝑥
𝑚
𝜆
𝑘

󳨀→ 2𝑧
𝑥
𝑚 strongly in 𝐿

2
(0, 𝑇; 𝐿

2
(Ω)) , (54)

𝑧
𝜆
𝑘

𝑚
𝜆
𝑘
,𝑥

󳨀→ 𝑧𝑚
𝑥

strongly in 𝐿
2
(0, 𝑇; 𝐿

2
(Ω)) , (55)

Z
𝜆
𝑘

󳨀→ Z weakly in 𝐿
2
(0, 𝑇;𝐻

1

0
(Ω)) (56)

as 𝑘 → ∞, where 𝑚 = 𝑦(𝑢) − 𝑦
𝑥𝑥

(𝑢) andZ = 𝑧 − 𝑧
𝑥𝑥
. And

also we can deduce from (49), (52), and (56) that

Z
𝜆
𝑘
,𝑡
󳨀→ Z

𝑡
weakly in 𝐿

2
(0, 𝑇;𝐻

−1
(Ω)) (57)

as 𝑘 → ∞.
Hence we can see from (52) to (57) that 𝑧

𝜆
→ 𝑧 =

𝐷𝑦(𝑢)𝑤 weakly in S(0, 𝑇) as 𝜆 → 0 in which 𝑧 is a solution
of (47). This convergence can be improved by showing the
strong convergence of {𝑧

𝜆
} also in the topology of S(0, 𝑇).

Subtracting (47) from (49) and denoting 𝑧
𝜆
− 𝑧 by 𝜙

𝜆
, we

obtain that

Φ
𝜆,𝑡

− ]Φ
𝜆,𝑥𝑥

+ 2𝜔𝜙
𝜆,𝑥

+ 2𝑦
𝑥
(𝑢)Φ
𝜆

+ 𝑦 (𝑢)Φ
𝜆,𝑥

+ 𝛾𝜙
𝜆,𝑥𝑥𝑥

= 𝜖 (𝜆) in 𝑄,

𝜙
𝜆
(0, 𝑡) = 𝜙

𝜆
(1, 𝑡) = 𝜙

𝜆,𝑥
(0, 𝑡) = 𝜙

𝜆,𝑥
(1, 𝑡) = 𝜙

𝜆,𝑥𝑥
(0, 𝑡)

= 𝜙
𝜆,𝑥𝑥

(1, 𝑡) = 0, 𝑡 ∈ [0, 𝑇] ,

Φ
𝜆
(𝑥, 0) = 0 in Ω,

(58)

whereΦ
𝜆
= 𝜙
𝜆
−𝜙
𝜆,𝑥𝑥

and 𝜖(𝜆) = −2𝑧
𝜆,𝑥

𝑚
𝜆
+2𝑧
𝑥
𝑚−𝑧
𝜆
𝑚
𝜆,𝑥

+

𝑧𝑚
𝑥
.
From (54) and (55) we know that

𝜖 (𝜆) 󳨀→ 0 strongly in 𝐿
2
(0, 𝑇; 𝐿

2
(Ω)) as 𝜆 󳨀→ 0. (59)

In order to estimate 𝜙
𝜆
we multiply Φ

𝜆
in both sides of (58)

and integrate it over [0, 𝑡] to have

󵄨󵄨󵄨󵄨Φ𝜆 (𝑡)
󵄨󵄨󵄨󵄨
2

2
+ 2]∫

𝑡

0

󵄨󵄨󵄨󵄨Φ𝜆,𝑥
󵄨󵄨󵄨󵄨
2

2
𝑑𝑠

= −2∫

𝑡

0

(2𝜔𝜙
𝜆,𝑥

, Φ
𝜆
)
2
𝑑𝑠 − 2∫

𝑡

0

(2𝑦
𝑥
(𝑢)Φ
𝜆
, Φ
𝜆
)
2
𝑑𝑠

− 2∫

𝑡

0

(𝑦 (𝑢)Φ
𝜆,𝑥

, Φ
𝜆
)
2
𝑑𝑠

− 2∫

𝑡

0

(𝛾𝜙
𝜆,𝑥𝑥𝑥

, Φ
𝜆
)
2
𝑑𝑠 + 2∫

𝑡

0

(𝜖 (𝜆) , Φ
𝜆
)
2
𝑑𝑠.

(60)

The integral parts of the right member of (60) can be esti-
mated as follows:

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
−2∫

𝑡

0

(2𝜔𝜙
𝜆,𝑥

, Φ
𝜆
)
2
𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ 4𝜔∫

𝑡

0

󵄨󵄨󵄨󵄨𝜙𝜆,𝑥
󵄨󵄨󵄨󵄨2
󵄨󵄨󵄨󵄨Φ𝜆

󵄨󵄨󵄨󵄨2𝑑𝑠

≤ 4𝜔∫

𝑡

0

󵄨󵄨󵄨󵄨Φ𝜆
󵄨󵄨󵄨󵄨
2

2
𝑑𝑠;

(61)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
−2∫

𝑡

0

(2𝑦
𝑥
(𝑢)Φ
𝜆
, Φ
𝜆
)
2
𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ 4

󵄩󵄩󵄩󵄩𝑦𝑥 (𝑢)
󵄩󵄩󵄩󵄩𝐿∞(𝑄) ∫

𝑡

0

󵄨󵄨󵄨󵄨Φ𝜆
󵄨󵄨󵄨󵄨
2

2
𝑑𝑠

≤ 𝑐
0
∫

𝑡

0

󵄨󵄨󵄨󵄨Φ𝜆
󵄨󵄨󵄨󵄨
2

2
𝑑𝑠;

(62)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
−2∫

𝑡

0

(𝑦 (𝑢)Φ
𝜆,𝑥

, Φ
𝜆
)
2
𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ 2

󵄩󵄩󵄩󵄩𝑦 (𝑢)
󵄩󵄩󵄩󵄩𝐿∞(𝑄)

× ∫

𝑡

0

󵄨󵄨󵄨󵄨Φ𝜆,𝑥
󵄨󵄨󵄨󵄨2
󵄨󵄨󵄨󵄨Φ𝜆

󵄨󵄨󵄨󵄨2𝑑𝑠

≤
]
2
∫

𝑡

0

󵄨󵄨󵄨󵄨Φ𝜆,𝑥
󵄨󵄨󵄨󵄨
2

2
𝑑𝑠+𝑐
1
∫

𝑡

0

󵄨󵄨󵄨󵄨Φ𝜆
󵄨󵄨󵄨󵄨
2

2
𝑑𝑠;

(63)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
−2∫

𝑡

0

(𝛾𝜙
𝜆,𝑥𝑥𝑥

, Φ
𝜆
)
2
𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
2 ∫

𝑡

0

(𝛾𝜙
𝜆,𝑥𝑥

, Φ
𝜆,𝑥

)
2
𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 2𝛾∫

𝑡

0

󵄨󵄨󵄨󵄨Φ𝜆
󵄨󵄨󵄨󵄨2
󵄨󵄨󵄨󵄨Φ𝜆,𝑥

󵄨󵄨󵄨󵄨2
𝑑𝑠

≤
]
2
∫

𝑡

0

󵄨󵄨󵄨󵄨Φ𝜆,𝑥
󵄨󵄨󵄨󵄨
2

2
𝑑𝑠

+ 𝑐
2
∫

𝑡

0

󵄨󵄨󵄨󵄨Φ𝜆
󵄨󵄨󵄨󵄨
2

2
𝑑𝑠;

(64)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
2 ∫

𝑡

0

(𝜖 (𝜆) , Φ
𝜆
)
2
𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ 2∫

𝑡

0

|𝜖 (𝜆)|
2

󵄨󵄨󵄨󵄨Φ𝜆
󵄨󵄨󵄨󵄨2𝑑𝑠

≤ ∫

𝑡

0

|𝜖 (𝜆)|
2

2
𝑑𝑠 + ∫

𝑡

0

󵄨󵄨󵄨󵄨Φ𝜆
󵄨󵄨󵄨󵄨
2

2
𝑑𝑠,

(65)

where 𝑐
0
, 𝑐
1
, and 𝑐

2
are constants. We replace the right hand

side of (62) by the right members of (61)–(65). And we apply
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the Gronwall inequality to the replaced inequality; then we
arrive at

󵄨󵄨󵄨󵄨Φ𝜆 (𝑡)
󵄨󵄨󵄨󵄨
2

2
+ ∫

𝑡

0

󵄨󵄨󵄨󵄨Φ𝜆,𝑥
󵄨󵄨󵄨󵄨
2

2
𝑑𝑠 ≤ 𝐶‖𝜖(𝜆)‖

2

𝐿
2
(0,𝑇;𝐿

2
(Ω))

, (66)

where 𝐶 is a constant. By virtue of (59) and (66) we deduce
that

Φ
𝜆
󳨀→ 0 in 𝐶 ([0, 𝑇] ; 𝐿

2
(Ω)) ∩ 𝐿

2
(0, 𝑇;𝐻

1

0
(Ω))

as 𝜆 󳨀→ 0.

(67)

As in (21)–(23), we have from (58), (66), and (67) that

Φ
𝜆,𝑡

󳨀→ 0 strongly in 𝐿
2
(0, 𝑇;𝐻

−1
(Ω)) as 𝜆 󳨀→ 0.

(68)

Therefore (67) and (68) mean

Φ
𝜆
󳨀→ 0 strongly in W (0, 𝑇) as 𝜆 󳨀→ 0. (69)

Whence from Lemma 1

𝑧
𝜆
(⋅) 󳨀→ 𝑧 (⋅) strongly in S (0, 𝑇) as 𝜆 󳨀→ 0. (70)

This completes the proof.

Theorem 7 means that the cost 𝐽(V) is Gâteaux differen-
tiable at 𝑢 in the direction V − 𝑢 and the optimality condition
(31) is rewritten by

(𝐶𝑦 (𝑢) − 𝑌
𝑑
, 𝐶 (𝐷𝑦 (𝑢) (V − 𝑢)))

𝑀
+ (𝑅𝑢, V − 𝑢)U

= ⟨𝐶
∗
Λ
𝑀

(𝐶𝑦 (𝑢) − 𝑌
𝑑
) , 𝐷𝑦 (𝑢) (V − 𝑢)⟩

S(0,𝑇)
󸀠
,S(0,𝑇)

+ (𝑅𝑢, V − 𝑢)U ≥ 0, ∀V ∈ Uad,

(71)

whereΛ
𝑀
is the canonical isomorphism𝑀 onto𝑀

󸀠 and𝑌
𝑑
∈

𝑀 is a desired value.

3.3. Necessary Condition of Optimal Control. In this section
we will characterize the optimal controls by giving necessary
condition (71) for optimality for the following physically
meaningful observations.

(1) We take 𝑀 = 𝐿
2
(𝑄) and 𝐶

1
∈ L(S(0, 𝑇),𝑀) and

observe

𝑧 (V) = 𝐶
1
𝑦 (V) = 𝑦 (V; ⋅) ∈ 𝐿

2
(𝑄) . (72)

(2) We take 𝑀 = 𝐿
2
(𝑄) and 𝐶

2
∈ L(S(0, 𝑇),𝑀) and

observe

𝑧 (V) = 𝐶
2
𝑦 (V) = (𝐼 − 𝜕

2

𝑥
) 𝑦 (V; ⋅) ≡ 𝑚 (V; ⋅) ∈ 𝐿

2
(𝑄) . (73)

Since 𝑦 ∈ S(0, 𝑇) ⊂ 𝐶([0, 𝑇];𝐻
2

0
(Ω)) by Theorem 3, the

above observations are meaningful.
Due to Lions [10], we construct the necessary condition

of optimal control via appropriate adjoint equation. In order

to follow the idea we need to introduce and analyze the
following adjoint equation for distributive observations:

−P
𝑡
− ]P
𝑥𝑥

− 2𝜔𝑝
𝑥
(𝑢) − 2(𝑚 (𝑢) 𝑝 (𝑢))

,𝑥

+ (𝐼 − 𝜕
2

𝑥
) (2𝑦
𝑥
(𝑢) 𝑝 (𝑢)) + 𝑚

𝑥
(𝑢) 𝑝 (𝑢)

− (𝐼 − 𝜕
2

𝑥
) (𝑦 (𝑢) 𝑝 (𝑢))

,𝑥
− 𝛾𝑝
𝑥𝑥𝑥

(𝑢)

= 𝐶
∗
Λ
𝑀

(𝐶𝑦 (𝑢) − 𝑌
𝑑
) in 𝑄,

𝑝 (𝑢; 0, 𝑡) = 𝑝 (𝑢; 1, 𝑡) = 𝑝
𝑥
(𝑢; 0, 𝑡)

= 𝑝
𝑥
(𝑢; 1, 𝑡) = 0, 𝑡 ∈ [0, 𝑇] ,

P (𝑥, 𝑇) = 0 in Ω,

(74)

where 𝐶 = 𝐶
1
or 𝐶
2
, P = 𝑝(𝑢) − 𝑝

𝑥𝑥
(𝑢), and 𝑚(𝑢) =

𝑦(𝑢) − 𝑦
𝑥𝑥

(𝑢). In order to show the well-posedness of (74),
we introduce the solution Hilbert space 𝑊(𝐻

2

0
(Ω), 𝐿

2
(Ω))

defined by

𝑊(𝐻
2

0
(Ω) , 𝐿

2
(Ω))

≜ {𝜓 | 𝜓 ∈ 𝐿
2
(0, 𝑇;𝐻

2

0
(Ω)) , 𝜓

󸀠
∈ 𝐿
2
(0, 𝑇; 𝐿

2
(Ω))}

(75)

equipped with the norm

󵄩󵄩󵄩󵄩𝜓
󵄩󵄩󵄩󵄩𝑊(𝐻2

0
(Ω),𝐿
2
(Ω))

= (
󵄩󵄩󵄩󵄩𝜓

󵄩󵄩󵄩󵄩
2

𝐿
2
(0,𝑇;𝐻

2

0
(Ω))

+
󵄩󵄩󵄩󵄩󵄩
𝜓
󸀠󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
(0,𝑇;𝐿

2
(Ω))

)

1/2

.

(76)

We remark that𝑊(𝐻
2

0
(Ω), 𝐿

2
(Ω)) is continuously embedded

in 𝐶([0, 𝑇];𝐻
1

0
(Ω)) (cf. Dautray and Lions [16, page 555]).

In the following proposition we show the well-posedness
of (74).

Proposition 8. Assume that 𝐶∗Λ
𝑀
(𝐶𝑦(𝑢) − 𝑌

𝑑
) ∈ 𝐿

2
(0, 𝑇;

𝐻
−2
(Ω)); then by reversing the direction of time 𝑡 → 𝑇 − 𝑡,

(74) admits a unique solution 𝑝(𝑢) satisfying

(i) 𝑝 (𝑢) ∈ 𝑊(𝐻
2

0
(Ω) , 𝐿

2
(Ω)) ,

(ii) (𝑝
𝑡
(𝑢) − ]𝑝

𝑥𝑥
(𝑢) − 𝑦 (𝑢) 𝑝

𝑥
(𝑢) + 𝑦

𝑥
(𝑢) 𝑝 (𝑢) , Φ)

2

− (2𝜔𝑝
𝑥
(𝑢) − 𝑚

𝑥
(𝑢) 𝑝 (𝑢) , 𝜙)

2

+ (2𝑚 (𝑢) 𝑝 (𝑢) + 𝛾𝑝
𝑥𝑥

(𝑢) , 𝜙
𝑥
)
2

= ⟨𝑔, 𝜙⟩
−2,2

, ∀𝜙 ∈ 𝐻
2

0
(Ω)

in the sense of D󸀠 (0, 𝑇) ,

(iii)P (𝑥, 0) = 0 in Ω,

(77)

where 𝑔 = 𝐶
∗
Λ
𝑀
(𝐶𝑦(𝑢) − 𝑌

𝑑
) and Φ = 𝜙 − 𝜙

𝑥𝑥
.

The proof of Proposition 8 is given in the Appendix.
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Remark 9. As we will see, there are some merits in taking
𝑊(𝐻
2

0
(Ω), 𝐿

2
(Ω)) as the solution space for adjoint equations.

For the observation (72), even though we can take the adjoint
system in the spaceS(0, 𝑇) with additional boundary condi-
tions, we can derive the same necessary optimality condition
of optimal controls through the less regular solution 𝑝(𝑢) ∈

𝑊(𝐻
2

0
(Ω), 𝐿

2
(Ω)). Therefore, 𝑊(𝐻

2

0
(Ω), 𝐿

2
(Ω)) is preferred

solution space of adjoint equation for the observation (72).
And also, for the observation (73), we need to solve adjoint
equation in𝑊(𝐻

2

0
(Ω), 𝐿

2
(Ω)) because of the less regular data

condition than that of the observation (72).

3.3.1. Case of the Observation (72). In this subsection we con-
sider the cost functional expressed by

𝐽 (V) = ∫
𝑄

󵄨󵄨󵄨󵄨𝑦 (V; 𝑥, 𝑡) − 𝑌
𝑑
(𝑥, 𝑡)

󵄨󵄨󵄨󵄨
2

𝑑𝑥 𝑑𝑡 + (𝑅V, V)U,

∀V ∈ Uad ⊂ U,

(78)

where 𝑌
𝑑

∈ 𝐿
2
(𝑄) is a desired value. Let 𝑢 be the optimal

control subject to (27) and (78). Then the optimality condi-
tion (71) is represented by

∫
𝑄

(𝑦 (𝑢; 𝑥, 𝑡) − 𝑌
𝑑
(𝑥, 𝑡)) 𝑧 (𝑥, 𝑡) 𝑑𝑥 𝑑𝑡 + (𝑅𝑢, V − 𝑢)U ≥ 0,

∀V ∈ Uad,

(79)

where 𝑧 is the solution of (47).
Now we will formulate the following adjoint system to

describe the optimality condition:

−P
𝑡
− ]P
𝑥𝑥

− 2𝜔𝑝
𝑥
(𝑢) − 2(𝑚 (𝑢) 𝑝 (𝑢))

,𝑥

+ (𝐼 − 𝜕
2

𝑥
) (2𝑦
𝑥
(𝑢) 𝑝 (𝑢))

+ 𝑚
𝑥
(𝑢) 𝑝 (𝑢) − (𝐼 − 𝜕

2

𝑥
) (𝑦 (𝑢) 𝑝 (𝑢))

,𝑥

− 𝛾𝑝
𝑥𝑥𝑥

(𝑢) = 𝑦 (𝑢) − 𝑌
𝑑

in 𝑄,

𝑝 (𝑢; 0, 𝑡) = 𝑝 (𝑢; 1, 𝑡) = 𝑝
𝑥
(𝑢; 0, 𝑡)

= 𝑝
𝑥
(𝑢; 1, 𝑡) = 0, 𝑡 ∈ [0, 𝑇] ,

P (𝑥, 𝑇) = 0 in Ω,

(80)

whereP = 𝑝(𝑢) − 𝑝
𝑥𝑥

(𝑢) and𝑚(𝑢) = 𝑦(𝑢) − 𝑦
𝑥𝑥

(𝑢).

Remark 10. Taking into account the observation conditions
𝑦(𝑢) − 𝑌

𝑑
∈ 𝐿
2
(𝑄) = 𝐿

2
(0, 𝑇; 𝐿

2
(Ω)) ⊂ 𝐿

2
(0, 𝑇;𝐻

−2
(Ω)),

we can assert that (80), reversing the direction of time 𝑡 →

𝑇 − 𝑡, admits a unique solution 𝑝(𝑢) ∈ 𝑊(𝐻
2

0
(Ω), 𝐿

2
(Ω)) by

Proposition 8.

Now we proceed the calculations. We multiply both sides
of the weak form of (80) by 𝑧(𝑡) and integrate it over [0, 𝑇].
Then we have

∫

𝑇

0

⟨−P
𝑡
− ]P
𝑥𝑥

− 2𝜔𝑝
𝑥
(𝑢) − 2(𝑚 (𝑢) 𝑝 (𝑢))

,𝑥

+ (𝐼 − 𝜕
2

𝑥
) (2𝑦
𝑥
(𝑢) 𝑝 (𝑢)) , 𝑧⟩

−2,2
𝑑𝑡

+ ∫

𝑇

0

⟨𝑚
𝑥
(𝑢) 𝑝 (𝑢) − (𝐼 − 𝜕

2

𝑥
) (𝑦 (𝑢) 𝑝 (𝑢))

,𝑥

−𝛾𝑝
𝑥𝑥𝑥

(𝑢) , 𝑧⟩
−1,1

𝑑𝑡

= ∫

𝑇

0

(𝑦 (𝑢) − 𝑌
𝑑
, 𝑧)
2
𝑑𝑡,

(81)

where P = 𝑝(𝑢) − 𝑝
𝑥𝑥

(𝑢). By (47) for 𝑧, we can verify by
integration by parts that the left hand side of (81) yields

∫

𝑇

0

(𝑝 (𝑢) ,Z
𝑡
− ]Z
𝑥𝑥

+ 2𝜔𝑧
𝑥
+ 2𝑧
𝑥
𝑚(𝑢)

+2𝑦
𝑥
(𝑢)Z + 𝑚

𝑥
(𝑢) 𝑧 + 𝑦 (𝑢)Z

𝑥
+ 𝛾𝑧
𝑥𝑥𝑥

)
2
𝑑𝑡

= ∫

𝑇

0

(𝑝 (𝑢) , 𝐵 (V − 𝑢))
2
𝑑𝑡,

(82)

whereZ = 𝑧−𝑧
𝑥𝑥
.Therefore, by (81) and (82) we can deduce

that the optimality condition (79) is equivalent to

∫

𝑇

0

(𝑝 (𝑢) , 𝐵 (V − 𝑢))
2
𝑑𝑡 + (𝑅𝑢, V − 𝑢)U ≥ 0, ∀V ∈ Uad.

(83)

Hence, we give the following theorem.

Theorem 11. The optimal control 𝑢 for (78) is characterized by
the following system of equations and inequality:

𝑚
𝑡
(𝑢) − ]𝑚

𝑥𝑥
(𝑢) + 2𝜔𝑦

𝑥
(𝑢) + 2𝑦

𝑥
(𝑢)𝑚 (𝑢)

+ 𝑦 (𝑢)𝑚
𝑥
(𝑢) + 𝛾𝑦

𝑥𝑥𝑥
(𝑢)

= 𝑓 + 𝐵𝑢 in 𝑄,

𝑦 (𝑢; 0, 𝑡) = 𝑦 (𝑢; 1, 𝑡) = 𝑦
𝑥
(𝑢; 0, 𝑡)

= 𝑦
𝑥
(𝑢; 1, 𝑡) = 𝑦

𝑥𝑥
(𝑢; 0, 𝑡)

= 𝑦
𝑥𝑥

(𝑢; 1, 𝑡) = 0, 𝑡 ∈ [0, 𝑇] ,

𝑚 (𝑢; 𝑥, 0) = 𝑚
0
= 𝑦
0
− 𝑦
0,𝑥𝑥

, in Ω,

(84)
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−P
𝑡
− ]P
𝑥𝑥

− 2𝜔𝑝
𝑥
(𝑢) − 2(𝑚 (𝑢) 𝑝 (𝑢))

,𝑥

+ (𝐼 − 𝜕
2

𝑥
) (2𝑦
𝑥
(𝑢) 𝑝 (𝑢)) + 𝑚

𝑥
(𝑢) 𝑝 (𝑢)

− (𝐼 − 𝜕
2

𝑥
) (𝑦 (𝑢) 𝑝 (𝑢))

,𝑥
− 𝛾𝑝
𝑥𝑥𝑥

(𝑢)

= 𝑦 (𝑢) − 𝑌
𝑑

in 𝑄,

𝑝 (𝑢; 0, 𝑡) = 𝑝 (𝑢; 1, 𝑡) = 𝑝
𝑥
(𝑢; 0, 𝑡)

= 𝑝
𝑥
(𝑢; 1, 𝑡) = 0, 𝑡 ∈ [0, 𝑇] ,

P (𝑥, 𝑇) = 0 in Ω,

(85)

∫

𝑇

0

(𝑝 (𝑢) , 𝐵 (V − 𝑢))
2
𝑑𝑡 + (𝑅𝑢, V − 𝑢)U ≥ 0,

∀V ∈ U ad ,

(86)

where𝑚(𝑢) = 𝑦(𝑢) − 𝑦
𝑥𝑥

(𝑢) andP = 𝑝(𝑢) − 𝑝
𝑥𝑥

(𝑢).

3.3.2. Case of the Observation (73). Weconsider the following
momentum’s distributive cost functional expressed by

𝐽 (V) = ∫
𝑄

󵄨󵄨󵄨󵄨𝑚 (V) − 𝑌
𝑑

󵄨󵄨󵄨󵄨
2

𝑑𝑥 𝑑𝑡 + (𝑅V, V)U, ∀V ∈ Uad, (87)

where 𝑚(V) = 𝑦(V) − 𝑦
𝑥𝑥

(V) and 𝑌
𝑑

∈ 𝐿
2
(𝑄). Let 𝑢 be the

optimal control subject to (27) and (87). Then the optimality
condition (71) is rewritten as

∫

𝑇

0

(𝑚 (𝑢) − 𝑌
𝑑
, Z)
2
𝑑𝑥 𝑑𝑡 + (𝑅𝑢, V − 𝑢)U ≥ 0, ∀V ∈ Uad,

(88)

where Z = 𝑧 − 𝑧
𝑥𝑥

and 𝑧 is the solution of (47). As before
we formulate the following adjoint system to describe the
optimality condition:

−P
𝑡
− ]P
𝑥𝑥

− 2𝜔𝑝
𝑥
(𝑢) − 2(𝑚 (𝑢) 𝑝 (𝑢))

,𝑥

+ (𝐼 − 𝜕
2

𝑥
) (2𝑦
𝑥
(𝑢) 𝑝 (𝑢)) + 𝑚

𝑥
(𝑢) 𝑝 (𝑢)

− (𝐼 − 𝜕
2

𝑥
) (𝑦 (𝑢) 𝑝 (𝑢))

,𝑥
− 𝛾𝑝
𝑥𝑥𝑥

(𝑢)

= (𝐼 − 𝜕
2

𝑥
) (𝑚 (𝑢) − 𝑌

𝑑
) in 𝑄,

𝑝 (𝑢; 0, 𝑡) = 𝑝 (𝑢; 1, 𝑡) = 𝑝
𝑥
(𝑢; 0, 𝑡)

= 𝑝
𝑥
(𝑢; 1, 𝑡) = 0, 𝑡 ∈ [0, 𝑇] ,

P (𝑥, 𝑇) = 0 in Ω,

(89)

whereP = 𝑝(𝑢) − 𝑝
𝑥𝑥

(𝑢) and𝑚(𝑢) = 𝑦(𝑢) − 𝑦
𝑥𝑥

(𝑢).

Remark 12. Since the observation conditions 𝑚(𝑢) − 𝑌
𝑑

∈

𝐿
2
(𝑄) = 𝐿

2
(0, 𝑇; 𝐿

2
(Ω)), we know that (𝐼 − 𝜕

2

𝑥
)(𝑚(𝑢) − 𝑌

𝑑
) ∈

𝐿
2
(0, 𝑇;𝐻

−2
(Ω)). Hence by reversing the direction of time

𝑡 → 𝑇 − 𝑡 and applying Proposition 8, we deduce that (89)
admits a unique solution 𝑝(𝑢) ∈ 𝑊(𝐻

2

0
(Ω), 𝐿

2
(Ω)).

As we did before, wemultiply both sides of the weak form
of (89) by 𝑧(𝑡) and integrate it over [0, 𝑇]. Then we have

∫

𝑇

0

⟨−P
𝑡
− ]P
𝑥𝑥

− 2𝜔𝑝
𝑥
(𝑢) − 2(𝑚 (𝑢) 𝑝 (𝑢))

,𝑥

+ (𝐼 − 𝜕
2

𝑥
) (2𝑦
𝑥
(𝑢) 𝑝 (𝑢)) , 𝑧⟩

−2,2
𝑑𝑡

+ ∫

𝑇

0

⟨𝑚
𝑥
(𝑢) 𝑝 (𝑢) − (𝐼 − 𝜕

2

𝑥
) (𝑦 (𝑢) 𝑝 (𝑢))

,𝑥

−𝛾𝑝
𝑥𝑥𝑥

(𝑢) , 𝑧⟩
−1,1

𝑑𝑡

= ∫

𝑇

0

⟨(𝐼 − 𝜕
2

𝑥
) (𝑚 (𝑢) − 𝑌

𝑑
) , 𝑧⟩
−2,2

𝑑𝑡

= ∫

𝑇

0

(𝑚 (𝑢) − 𝑌
𝑑
,Z)
2
𝑑𝑡,

(90)

where P = 𝑝(𝑢) − 𝑝
𝑥𝑥

(𝑢), 𝑚(𝑢) = 𝑦(𝑢) − 𝑦
𝑥𝑥

(𝑢), and Z =

𝑧 − 𝑧
𝑥𝑥
. By (47) for 𝑧 the integration by parts of the left hand

side of (90) yields

∫

𝑇

0

(𝑝 (𝑢) ,Z
𝑡
− ]Z
𝑥𝑥

+ 2𝜔𝑧
𝑥
+ 2𝑧
𝑥
𝑚(𝑢) + 2𝑦

𝑥
(𝑢)Z

+𝑚
𝑥
(𝑢) 𝑧 + 𝑦 (𝑢)Z

𝑥
+ 𝛾𝑧
𝑥𝑥𝑥

)
2
𝑑𝑡

= ∫

𝑇

0

(𝑝 (𝑢) , 𝐵 (V − 𝑢))
2
𝑑𝑡,

(91)

where Z = 𝑧 − 𝑧
𝑥𝑥
. Therefore, combining (90) and (91), we

can deduce that the optimality condition (88) is equivalent to

∫

𝑇

0

(𝑝 (𝑢) , 𝐵 (V − 𝑢))
2
𝑑𝑡 + (𝑅𝑢, V − 𝑢)U ≥ 0, ∀V ∈ Uad.

(92)

Hence, we give the following theorem.

Theorem 13. The optimal control 𝑢 for (87) is characterized by
the following system of equations and inequality:

𝑚
𝑡
(𝑢) − ]𝑚

𝑥𝑥
(𝑢) + 2𝜔𝑦

𝑥
(𝑢) + 2𝑦

𝑥
(𝑢)𝑚 (𝑢)

+ 𝑦 (𝑢)𝑚
𝑥
(𝑢) + 𝛾𝑦

𝑥𝑥𝑥
(𝑢) = 𝑓 + 𝐵𝑢 in 𝑄,

𝑦 (𝑢; 0, 𝑡) = 𝑦 (𝑢; 1, 𝑡) = 𝑦
𝑥
(𝑢; 0, 𝑡)

= 𝑦
𝑥
(𝑢; 1, 𝑡) = 𝑦

𝑥𝑥
(𝑢; 0, 𝑡)

= 𝑦
𝑥𝑥

(𝑢; 1, 𝑡) = 0, 𝑡 ∈ [0, 𝑇] ,

𝑚 (𝑢; 𝑥, 0) = 𝑚
0
= 𝑦
0
− 𝑦
0,𝑥𝑥

in Ω,

(93)
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−P
𝑡
− ]P
𝑥𝑥

− 2𝜔𝑝
𝑥
(𝑢) − 2(𝑚 (𝑢) 𝑝 (𝑢))

,𝑥

+ (𝐼 − 𝜕
2

𝑥
) (2𝑦
𝑥
(𝑢) 𝑝 (𝑢)) + 𝑚

𝑥
(𝑢) 𝑝 (𝑢)

− (𝐼 − 𝜕
2

𝑥
) (𝑦 (𝑢) 𝑝 (𝑢))

,𝑥
− 𝛾𝑝
𝑥𝑥𝑥

(𝑢)

= (𝐼 − 𝜕
2

𝑥
) (𝑚 (𝑢) − 𝑌

𝑑
) in 𝑄,

𝑝 (𝑢; 0, 𝑡) = 𝑝 (𝑢; 1, 𝑡) = 𝑝
𝑥
(𝑢; 0, 𝑡)

= 𝑝
𝑥
(𝑢; 1, 𝑡) = 0, 𝑡 ∈ [0, 𝑇] ,

P (𝑥, 𝑇) = 0 in Ω,

(94)

∫

𝑇

0

(𝑝 (𝑢) , 𝐵 (V − 𝑢))
2
𝑑𝑡 + (𝑅𝑢, V − 𝑢)U ≥ 0, ∀V ∈ U ad ,

(95)

where𝑚(𝑢) = 𝑦(𝑢) − 𝑦
𝑥𝑥

(𝑢) andP = 𝑝(𝑢) − 𝑝
𝑥𝑥

(𝑢).

3.4. Local Uniqueness of anOptimal Control. Wenote that the
uniqueness of an optimal control in nonlinear problem is not
assured. However, referring to the result in [15], we can show
the local uniqueness of the optimal control for our problem.
In order to show the uniqueness of optimal control by using
strict convexity of quadratic cost (cf. [18]) we consider the
following proposition.

Proposition 14. The map V → 𝑦(V) ofU into S(0, 𝑇) is sec-
ond order Gâteaux differentiable at V = 𝑢 and such the second
order Gâteaux derivative of 𝑦(V) at V = 𝑢 in the direction
V − 𝑢 ∈ U, say 𝑔 = 𝐷

2
𝑦(𝑢)(V − 𝑢, V − 𝑢), is a unique solution

of the following problem:

G
𝑡
− ]G
𝑥𝑥

+ 2𝜔𝑔
𝑥
+ 𝑦 (𝑢)G

𝑥
+ 2𝑦
𝑥
(𝑢)G + 2𝑔

𝑥
𝑚

+ 𝑔𝑚
𝑥
+ 4𝑧
𝑥
Z + 2𝑧Z

𝑥
+ 𝛾𝑔
𝑥𝑥𝑥

= 0 in 𝑄,

𝑔 (0, 𝑡) = 𝑔 (1, 𝑡) = 𝑔
𝑥
(0, 𝑡) = 𝑔

𝑥
(1, 𝑡) = 𝑔

𝑥𝑥
(0, 𝑡)

= 𝑔
𝑥𝑥

(1, 𝑡) = 0, 𝑡 ∈ [0, 𝑇] ,

G (𝑥, 0) = 0 in Ω,

(96)

whereG = 𝑔 − 𝑔
𝑥𝑥
,Z = 𝑧 − 𝑧

𝑥𝑥
, and z is the solution of (47).

Proof. The proof is similar to that of Theorem 7.

Lemma 15. Let 𝑔 be the solution of (96). Then we can show
that

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩S(0,𝑇) ≤ 𝐶‖V − 𝑢‖

2

U, (97)

where 𝐶 > 0 is a constant.

Proof. Let 𝑧 be the solution of (47). Then, using the same
arguments as in (5), we can deduce that

‖Z‖W(0,𝑇) ≤ 𝑐
0
‖𝐵 (V − 𝑢)‖

𝐿
2
(0,𝑇;𝐿

2
(Ω))

≤ 𝑐
0
‖𝐵‖L(U;𝐿2(0,𝑇;𝐿2(Ω)))‖V − 𝑢‖U

≤ 𝑐
1
‖V − 𝑢‖U,

(98)

where Z = 𝑧 − 𝑧
𝑥𝑥

and 𝑐
0
, 𝑐
1
are constants which does not

depend on 𝑔. And also for the solution 𝑔 of (96), we can show
that

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩S(0,𝑇) ≤ 𝑐

2

󵄩󵄩󵄩󵄩−4𝑧𝑥Z − 2𝑧Z
𝑥

󵄩󵄩󵄩󵄩𝐿2(0,𝑇;𝐿2(Ω))

≤ 𝑐
3
(
󵄩󵄩󵄩󵄩𝑧𝑥

󵄩󵄩󵄩󵄩𝐿∞(𝑄) + ‖𝑧‖
𝐿
∞
(𝑄)

) ‖Z‖
𝐿
2
(0,𝑇;𝐻

1

0
(Ω))

≤ 𝑐
4
‖𝑧‖S(0,𝑇)‖Z‖W(0,𝑇)

≤ 𝑐
5
‖Z‖
2

W(0,𝑇),

(99)

where 𝑐
2
, . . . , 𝑐

5
are constants. Combining (98) with (99), we

have (97).

We prove the local uniqueness of the optimal control.

Theorem 16. When 𝑇 is small enough, then there is a unique
optimal control for the problem (29) for observations (72) and
(73).

Proof. We prove the case (73). Then the same result will be
followed for the case (72).

We show the local uniqueness by proving the strict con-
vexity of the map V ∈ Uad → 𝐽(V). Therefore as in [18], we
need to show for all 𝑢, V ∈ Uad (𝑢 ̸= V)

𝐷
2
𝐽 (𝑢 + 𝜉 (V − 𝑢)) (V − 𝑢, V − 𝑢) > 0 (0 < 𝜉 < 1) . (100)

For simplicity, we denote 𝑦(𝑢 + 𝜉(V − 𝑢)), 𝑧(𝑢 + 𝜉(V − 𝑢)),
and 𝑔(𝑢 + 𝜉(V − 𝑢)) by 𝑦(𝜉), 𝑧(𝜉), and 𝑔(𝜉), respectively.

We calculate

𝐷𝐽 (𝑢 + 𝜉 (V − 𝑢)) (V − 𝑢)

= lim
𝑙→ 0

𝐽 (𝑢 + (𝜉 + 𝑙) (V − 𝑢)) − 𝐽 (𝑢 + 𝜉 (V − 𝑢))

𝑙

= 2∫

𝑇

0

(𝑚 (𝜉) − 𝑌
𝑑
, Z (𝜉))

2
𝑑𝑠

+ 2(𝑅 (𝑢 + 𝜉 (V − 𝑢)) , V − 𝑢)U,

(101)

where 𝑚(𝜉) = 𝑦(𝜉) − 𝑦
𝑥𝑥

(𝜉) andZ(𝜉) = 𝑧(𝜉) − 𝑧
𝑥𝑥

(𝜉). From
(101) we obtain the second order Gâteaux derivative of 𝐽 as
follows:

𝐷
2
𝐽 (𝑢 + 𝜉 (V − 𝑢)) (V − 𝑢, V − 𝑢)

= lim
𝑘→0

( (𝐷𝐽 (𝑢 + (𝜉 + 𝑘) (V − 𝑢)) (V − 𝑢)

−𝐷𝐽 (𝑢 + 𝜉 (V − 𝑢)) (V − 𝑢)) × 𝑘
−1
)

= 2∫

𝑇

0

(𝑚 (𝜉) − 𝑌
𝑑
,G (𝜉))

2
𝑑𝑠 + 2∫

𝑇

0

󵄨󵄨󵄨󵄨Z (𝜉)
󵄨󵄨󵄨󵄨
2

2
𝑑𝑠

+ 2(𝑅 (V − 𝑢) , V − 𝑢)U

= 2∫

𝑇

0

⟨(𝐼 − 𝜕
2

𝑥
) (𝑚 (𝜉) − 𝑌

𝑑
) , 𝑔 (𝜉)⟩

−2,2
𝑑𝑠

+ 2∫

𝑇

0

󵄨󵄨󵄨󵄨Z (𝜉)
󵄨󵄨󵄨󵄨
2

2
𝑑𝑠 + 2(𝑅 (V − 𝑢) , V − 𝑢)U,

(102)

whereG(𝜉) = 𝑔(𝜉) − 𝑔
𝑥𝑥

(𝜉).
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By Lemma 15 and (102) we deduce that

𝐷
2
𝐽 (𝑢 + 𝜉 (V − 𝑢)) (V − 𝑢, V − 𝑢)

≥ −2
󵄩󵄩󵄩󵄩𝑔 (𝜉)

󵄩󵄩󵄩󵄩𝐿∞(0,𝑇;𝐻2
0
(Ω))

× ∫

𝑇

0

󵄩󵄩󵄩󵄩󵄩
(𝐼 − 𝜕

2

𝑥
) (𝑚 (𝜉) − 𝑌

𝑑
)
󵄩󵄩󵄩󵄩󵄩𝐻−2(Ω)

𝑑𝑠

+ 2∫

𝑇

0

󵄨󵄨󵄨󵄨Z (𝜉)
󵄨󵄨󵄨󵄨
2

2
𝑑𝑠 + 2𝑑‖V − 𝑢‖

2

U

≥ −2𝑐
0
√𝑇

󵄩󵄩󵄩󵄩𝑔 (𝜉)
󵄩󵄩󵄩󵄩S(0,𝑇)

󵄩󵄩󵄩󵄩𝑚 (𝜉) − 𝑌
𝑑

󵄩󵄩󵄩󵄩𝐿2(0,𝑇;𝐿2(Ω))

+ 2∫

𝑇

0

󵄨󵄨󵄨󵄨Z (𝜉)
󵄨󵄨󵄨󵄨
2

2
𝑑𝑠 + 2𝑑‖V − 𝑢‖

2

U

≥ 2 (𝑑 − 𝑐
1
√𝑇

󵄩󵄩󵄩󵄩𝑚 (𝜉) − 𝑌
𝑑

󵄩󵄩󵄩󵄩𝐿2(0,𝑇;𝐿2(Ω))) ‖V − 𝑢‖
2

U

+ 2∫

𝑇

0

󵄨󵄨󵄨󵄨Z (𝜉)
󵄨󵄨󵄨󵄨
2

2
𝑑𝑠,

(103)

where 𝑐
0
and 𝑐

1
are constants. Here we can take 𝑇 > 0

small enough so that the right hand side of (103) is strictly
greater than 0. Therefore we obtain the strict convexity of the
quadratic cost 𝐽(V), V ∈ Uad, which prove this theorem.

Remark 17. If we assume 𝑑 is large enough then we can obtain
the strict convexity of the quadratic cost (29) in global sense.
Therefore we can obtain the desired result of Theorem 16 in
global sense for the cost (29).

4. Conclusions

In conclusion, in this paper we considered the optimal dis-
tributed control for the viscousDullin-Gottwald-Holm equa-
tion due to Lions [10]. In order to apply the variational
approach due to Lions [10] to our problem, we proposed the
quadratic cost functional as studied in Lions [10] which is to
be minimized within an admissible set of control variables.
We showed the existence of optimal controls which min-
imizes the quadratic cost functional. Then, we established
the necessary conditions of optimality of the optimal control
for some physically meaningful observation cases employing
the associate adjoint systems. For this we successfully proved
the Gâteaux differentiability of the nonlinear solution map-
ping which is used to define the associate adjoint systems.
Moreover, by proving strict convexity of the quadratic cost
with respect to the control variable, we discussed the local
uniqueness of optimal control.

Appendix

Proof of Proposition 8. For simplicity we omit 𝑢 in (74) and
put 𝐶∗Λ

𝑀
(𝐶𝑦(𝑢) − 𝑌

𝑑
) = 𝑓. By reversing time 𝑡 → 𝑇 − 𝑡,

(74) is transformed as

P
𝑡
− ]P
𝑥𝑥

− 2𝜔𝑝
𝑥
− 2(𝑚𝑝)

,𝑥
+ (𝐼 − 𝜕

2

𝑥
) (2𝑦
𝑥
𝑝)

+ 𝑚
𝑥
𝑝 − (𝐼 − 𝜕

2

𝑥
) (𝑦𝑝)

,𝑥
− 𝛾𝑝
𝑥𝑥𝑥

= 𝑓 in 𝑄,

𝑝 (0, 𝑡) = 𝑝 (1, 𝑡) = 𝑝
𝑥
(0, 𝑡)

= 𝑝
𝑥
(1, 𝑡) = 0, 𝑡 ∈ [0, 𝑇] ,

P (𝑥, 0) = 0 in Ω.

(A.1)

We apply the Galerkin procedure as in Dautray and Lions
[16]. Let {𝑤

𝑛
}
∞

𝑛=1
be a basis of𝐻2

0
(Ω). For each 𝑛 ∈ 𝑁wedefine

an approximate solution of (A.1) by 𝑝
𝑛
(𝑡) = ∑

𝑛

𝑗=1
𝑔
𝑗𝑛
(𝑡)𝑤
𝑗

which satisfies

⟨P
𝑛,𝑡
, 𝑤
𝑗
⟩
−2,2

+ ]⟨P
𝑛,𝑥

, 𝑤
𝑗,𝑥

⟩
−1,1

− (2𝜔𝑝
𝑛,𝑥

, 𝑤
𝑗
)
2
+ (2𝑚𝑝

𝑛
, 𝑤
𝑗,𝑥

)
2

+ (2𝑦
𝑥
𝑝
𝑛
, (𝐼 − 𝜕

2

𝑥
)𝑤
𝑗
)
2
+ (𝑚
𝑥
𝑝
𝑛
, 𝑤
𝑗
)
2

− (𝑦
𝑥
𝑝
𝑛
+ 𝑦𝑝
𝑛,𝑥

, (𝐼 − 𝜕
2

𝑥
)𝑤
𝑗
)
2

− (𝛾𝑝
𝑛,𝑥𝑥𝑥

, 𝑤
𝑗
)
2
= ⟨𝑓,𝑤

𝑗
⟩
−2,2

, 1 ≤ 𝑗 ≤ 𝑛,

P
𝑛
(𝑥, 0) = 0 in Ω,

(A.2)

where P
𝑛
= 𝑝
𝑛
− 𝑝
𝑛,𝑥𝑥

. We multiply both sides of (A.2) by
𝑔
𝑗𝑛
(𝑡) and sum over 𝑗 to have

⟨P
𝑛,𝑡
, 𝑝
𝑛
⟩
−2,2

+ ]⟨P
𝑛,𝑥

, 𝑝
𝑛,𝑥

⟩
−1,1

+ (2𝑚𝑝
𝑛
, 𝑝
𝑛,𝑥

)
2

+ (2𝑦
𝑥
𝑝
𝑛
, 𝑝
𝑛
− 𝑝
𝑛,𝑥𝑥

)
2
+ (𝑚
𝑥
𝑝
𝑛
, 𝑝
𝑛
)
2

− (𝑦
𝑥
𝑝
𝑛
+ 𝑦𝑝
𝑛,𝑥

, 𝑝
𝑛
− 𝑝
𝑛,𝑥𝑥

)
2

− (𝛾𝑝
𝑛,𝑥𝑥𝑥

, 𝑝
𝑛
)
2
= ⟨𝑓, 𝑝

𝑛
⟩
−2,2

.

(A.3)

We note here that

(2𝜔𝑝
𝑛,𝑥

, 𝑝
𝑛
)
2
= (𝛾𝑝

𝑛,𝑥𝑥𝑥
, 𝑝
𝑛
)
2
= 0 a.e. in [0, 𝑇] . (A.4)

Hence we can rewrite (A.3) as follows:

1

2

𝑑

𝑑𝑡
(
󵄨󵄨󵄨󵄨𝑝𝑛

󵄨󵄨󵄨󵄨
2

2
+
󵄨󵄨󵄨󵄨𝑝𝑛,𝑥

󵄨󵄨󵄨󵄨
2

2
) + ] (󵄨󵄨󵄨󵄨𝑝𝑛,𝑥

󵄨󵄨󵄨󵄨
2

2
+
󵄨󵄨󵄨󵄨𝑝𝑛,𝑥𝑥

󵄨󵄨󵄨󵄨
2

2
)

= −(2𝑚𝑝
𝑛
, 𝑝
𝑛,𝑥

)
2
− (2𝑦
𝑥
𝑝
𝑛
, 𝑝
𝑛
− 𝑝
𝑛,𝑥𝑥

)
2
− (𝑚
𝑥
𝑝
𝑛
, 𝑝
𝑛
)
2

+ (𝑦
𝑥
𝑝
𝑛
+ 𝑦𝑝
𝑛,𝑥

, 𝑝
𝑛
− 𝑝
𝑛,𝑥𝑥

)
2
+ ⟨𝑓, 𝑝

𝑛
⟩ .

(A.5)

By employing Schwartz’s, Young’s inequality and Sobolev
imbedding theorem, we can estimate the right hand side of
(A.5) as follows:
󵄨󵄨󵄨󵄨󵄨
(2𝑚𝑝
𝑛
, 𝑝
𝑛,𝑥

)
2

󵄨󵄨󵄨󵄨󵄨
≤ 2‖𝑚‖

𝐿
∞
(Ω)

󵄨󵄨󵄨󵄨𝑝𝑛
󵄨󵄨󵄨󵄨2
󵄨󵄨󵄨󵄨𝑝𝑛,𝑥

󵄨󵄨󵄨󵄨2

≤ 𝑐
0

󵄨󵄨󵄨󵄨𝑚𝑥
󵄨󵄨󵄨󵄨2 (

󵄨󵄨󵄨󵄨𝑝𝑛
󵄨󵄨󵄨󵄨
2

2
+
󵄨󵄨󵄨󵄨𝑝𝑛,𝑥

󵄨󵄨󵄨󵄨
2

2
) ;

󵄨󵄨󵄨󵄨(2𝑦𝑥𝑝𝑛, 𝑝𝑛)2
󵄨󵄨󵄨󵄨 ≤ 𝑐
1

󵄨󵄨󵄨󵄨𝑝𝑛
󵄨󵄨󵄨󵄨
2

2
;

󵄨󵄨󵄨󵄨󵄨
(2𝑦
𝑥
𝑝
𝑛
, 𝑝
𝑛,𝑥𝑥

)
2

󵄨󵄨󵄨󵄨󵄨
≤ 𝑐
2

󵄨󵄨󵄨󵄨𝑝𝑛
󵄨󵄨󵄨󵄨2
󵄨󵄨󵄨󵄨𝑝𝑛,𝑥𝑥

󵄨󵄨󵄨󵄨2
≤ 𝑐
3
(𝜖)

󵄨󵄨󵄨󵄨𝑝𝑛
󵄨󵄨󵄨󵄨
2

2
+ 𝜖

󵄨󵄨󵄨󵄨𝑝𝑛,𝑥𝑥
󵄨󵄨󵄨󵄨
2

2
;
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󵄨󵄨󵄨󵄨(𝑚𝑥𝑝𝑛, 𝑝𝑛)2
󵄨󵄨󵄨󵄨 ≤

󵄩󵄩󵄩󵄩𝑝𝑛
󵄩󵄩󵄩󵄩𝐿∞(Ω)

󵄨󵄨󵄨󵄨𝑚𝑥
󵄨󵄨󵄨󵄨2
󵄨󵄨󵄨󵄨𝑝𝑛

󵄨󵄨󵄨󵄨2 ≤ 𝑐
4

󵄨󵄨󵄨󵄨𝑝𝑛,𝑥
󵄨󵄨󵄨󵄨2
󵄨󵄨󵄨󵄨𝑚𝑥

󵄨󵄨󵄨󵄨2
󵄨󵄨󵄨󵄨𝑝𝑛

󵄨󵄨󵄨󵄨2

≤ 𝑐
4

󵄨󵄨󵄨󵄨𝑚𝑥
󵄨󵄨󵄨󵄨2 (

󵄨󵄨󵄨󵄨𝑝𝑛
󵄨󵄨󵄨󵄨
2

2
+
󵄨󵄨󵄨󵄨𝑝𝑛,𝑥

󵄨󵄨󵄨󵄨
2

2
) ;

󵄨󵄨󵄨󵄨(𝑦𝑥𝑝𝑛, 𝑝𝑛)2
󵄨󵄨󵄨󵄨 ≤ 𝑐
5

󵄨󵄨󵄨󵄨𝑝𝑛
󵄨󵄨󵄨󵄨
2

2
;

󵄨󵄨󵄨󵄨󵄨
(𝑦
𝑥
𝑝
𝑛
, 𝑝
𝑛,𝑥𝑥

)
2

󵄨󵄨󵄨󵄨󵄨
≤ 𝑐
6

󵄨󵄨󵄨󵄨𝑝𝑛
󵄨󵄨󵄨󵄨2
󵄨󵄨󵄨󵄨𝑝𝑛,𝑥𝑥

󵄨󵄨󵄨󵄨2
≤ 𝑐
7
(𝜖)

󵄨󵄨󵄨󵄨𝑝𝑛
󵄨󵄨󵄨󵄨
2

2
+ 𝜖

󵄨󵄨󵄨󵄨𝑝𝑛,𝑥𝑥
󵄨󵄨󵄨󵄨
2

2
;

󵄨󵄨󵄨󵄨󵄨
(𝑦𝑝
𝑛,𝑥

, 𝑝
𝑛
)
2

󵄨󵄨󵄨󵄨󵄨
≤ 𝑐
8

󵄨󵄨󵄨󵄨𝑝𝑛,𝑥
󵄨󵄨󵄨󵄨2
󵄨󵄨󵄨󵄨𝑝𝑛

󵄨󵄨󵄨󵄨2 ≤ 𝑐
8
(
󵄨󵄨󵄨󵄨𝑝𝑛,𝑥

󵄨󵄨󵄨󵄨
2

2
+
󵄨󵄨󵄨󵄨𝑝𝑛

󵄨󵄨󵄨󵄨
2

2
) ;

󵄨󵄨󵄨󵄨󵄨
(𝑦𝑝
𝑛,𝑥

, 𝑝
𝑛,𝑥𝑥

)
2

󵄨󵄨󵄨󵄨󵄨
≤ 𝑐
9

󵄨󵄨󵄨󵄨𝑝𝑛,𝑥
󵄨󵄨󵄨󵄨2
󵄨󵄨󵄨󵄨𝑝𝑛,𝑥𝑥

󵄨󵄨󵄨󵄨2
≤ 𝑐
10

(𝜖)
󵄨󵄨󵄨󵄨𝑝𝑛,𝑥

󵄨󵄨󵄨󵄨
2

2
+ 𝜖

󵄨󵄨󵄨󵄨𝑝𝑛,𝑥𝑥
󵄨󵄨󵄨󵄨
2

2
;

󵄨󵄨󵄨󵄨⟨𝑓, 𝑝𝑛⟩
󵄨󵄨󵄨󵄨 ≤

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐻−2(Ω)

󵄩󵄩󵄩󵄩𝑝𝑛
󵄩󵄩󵄩󵄩𝐻2
0
(Ω)

≤ 𝑐
11

(𝜖)
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩
2

𝐻
−2
(Ω)

+ 𝜖
󵄨󵄨󵄨󵄨𝑝𝑛,𝑥𝑥

󵄨󵄨󵄨󵄨
2

2
,

(A.6)

where 𝑐
0
, . . . , 𝑐

11
are constants. We put 𝜖 = ]/8 and replace

the right hand side of (A.5) by those right members of (A.6)
to obtain

𝑑

𝑑𝑡
(
󵄨󵄨󵄨󵄨𝑝𝑛

󵄨󵄨󵄨󵄨
2

2
+
󵄨󵄨󵄨󵄨𝑝𝑛,𝑥

󵄨󵄨󵄨󵄨
2

2
) + (

󵄨󵄨󵄨󵄨𝑝𝑛,𝑥
󵄨󵄨󵄨󵄨
2

2
+
󵄨󵄨󵄨󵄨𝑝𝑛,𝑥𝑥

󵄨󵄨󵄨󵄨
2

2
)

≤ 𝑐
12

(1 +
󵄨󵄨󵄨󵄨𝑚𝑥

󵄨󵄨󵄨󵄨2) (
󵄨󵄨󵄨󵄨𝑝𝑛

󵄨󵄨󵄨󵄨
2

2
+
󵄨󵄨󵄨󵄨𝑝𝑛,𝑥

󵄨󵄨󵄨󵄨
2

2
) + 𝑐
13

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩
2

𝐻
−2
(Ω)

,

(A.7)

where 𝑐
12

and 𝑐
13

are constants. Integrating (A.7) over [0, 𝑡]

and applying the Gronwall’s inequality to it, we have

󵄨󵄨󵄨󵄨𝑝𝑛 (𝑡)
󵄨󵄨󵄨󵄨
2

2
+
󵄨󵄨󵄨󵄨𝑝𝑛,𝑥 (𝑡)

󵄨󵄨󵄨󵄨
2

2
+ ∫

𝑡

0

(
󵄨󵄨󵄨󵄨𝑝𝑛,𝑥

󵄨󵄨󵄨󵄨
2

2
+
󵄨󵄨󵄨󵄨𝑝𝑛,𝑥𝑥

󵄨󵄨󵄨󵄨
2

2
) 𝑑𝑠

≤ 𝑐
13
exp(𝑐

12
∫

𝑇

0

(1 +
󵄨󵄨󵄨󵄨𝑚𝑥

󵄨󵄨󵄨󵄨2) 𝑑𝑡)
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩
2

𝐿
2
(0,𝑇;𝐻

−2
(Ω))

.

(A.8)

Thus we know that
𝑝
𝑛
∈ a bounded subset of

𝐿
∞

(0, 𝑇;𝐻
1

0
(Ω)) ∩ 𝐿

2
(0, 𝑇;𝐻

2

0
(Ω)) .

(A.9)

Hence by replacing 𝑝 by 𝑝
𝑛
in (A.1) and dividing (𝐼 − 𝜕

2

𝑥
), we

obtain the following equality:

𝑝
𝑛,𝑡

= ]𝑝
𝑛,𝑥𝑥

+ 2𝜔(𝐼 − 𝜕
2

𝑥
)
−1

𝑝
𝑛,𝑥

+ 2(𝐼 − 𝜕
2

𝑥
)
−1

(𝑚𝑝
𝑛
)
,𝑥

− 2𝑦
𝑥
𝑝
𝑛
− (𝐼 − 𝜕

2

𝑥
)
−1

(𝑚
𝑥
𝑝
𝑛
)

+ (𝑦𝑝
𝑛
)
,𝑥

+ 𝛾(𝐼 − 𝜕
2

𝑥
)
−1

𝑝
𝑛,𝑥𝑥𝑥

+ (𝐼 − 𝜕
2

𝑥
)
−1

𝑓 ∈ 𝐿
2
(0, 𝑇; 𝐿

2
(Ω))

(A.10)

which implies via (A.9) that

𝑝
𝑛,𝑡

∈ a bounded subset of 𝐿2 (0, 𝑇; 𝐿2 (Ω)) . (A.11)

Therefore we have the boundedness of {𝑝
𝑛
} in 𝑊(𝐻

2

0
(Ω),

𝐿
2
(Ω)). Hence by standard manipulations of Dautray and

Lions [16], we can know that there exists a unique limit 𝑝

of {𝑝
𝑛
} in 𝑊(𝐻

2

0
(Ω), 𝐿

2
(Ω)) which is the unique solution of

(A.1). This proves the well-posedness of (74).
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