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The multiple-sets split equality problem (MSSEP) requires finding a point 𝑥 ∈ ∩
𝑁

𝑖=1
𝐶
𝑖
, 𝑦 ∈ ∩

𝑀

𝑗=1
𝑄
𝑗
such that 𝐴𝑥 = 𝐵𝑦, where 𝑁

and𝑀 are positive integers, {𝐶
1
, 𝐶
2
, . . . , 𝐶

𝑁
} and {𝑄

1
, 𝑄
2
, . . . , 𝑄

𝑀
} are closed convex subsets of Hilbert spaces𝐻

1
,𝐻
2
, respectively,

and 𝐴 : 𝐻
1
→ 𝐻

3
, 𝐵 : 𝐻

2
→ 𝐻

3
are two bounded linear operators. When 𝑁 = 𝑀 = 1, the MSSEP is called the split equality

problem (SEP). If 𝐵 = 𝐼, then the MSSEP and SEP reduce to the well-known multiple-sets split feasibility problem (MSSFP) and
split feasibility problem (SFP), respectively. One of the purposes of this paper is to introduce an iterative algorithm to solve the SEP
andMSSEP in the framework of infinite-dimensional Hilbert spaces under some more mild conditions for the iterative coefficient.

1. Introduction and Preliminaries

1.1. Introduction. Let {𝐶
1
, 𝐶
2
, . . . , 𝐶

𝑁
} and {𝑄

1
, 𝑄
2
, . . . , 𝑄

𝑀
}

be nonempty closed convex subsets of real Hilbert spaces𝐻
1

and 𝐻
2
, respectively, and let 𝐴 : 𝐻

1
→ 𝐻

2
be a bounded

linear operator. The multiple-sets split feasibility problem
(MSSFP) is to find a point 𝑥 satisfying the property:

𝑥 ∈

𝑁

⋂

𝑖=1

𝐶
𝑖
, 𝐴𝑥 ∈

𝑀

⋂

𝑗=1

𝑄
𝑗
, (1)

if such point exists. If𝑁 = 𝑀 = 1, then the MSSFP reduce to
the well-known split feasibility problem (SFP).

The SFP and MSSFP were first introduced by Censor and
Elfving [1] and Censor et al. [2], respectively, which attract
many authors’ attention due to its applications in signal
processing [1] and intensity-modulated radiation therapy [2].
Various algorithms have been invented to solve it; see [1–8],
e.t.

Recently, Moudafi [9] propose a new split equality prob-
lem (SEP): let 𝐻

1
, 𝐻
2
, and 𝐻

3
be real Hilbert spaces; let

𝐶 ⊆ 𝐻
1
, 𝑄 ⊆ 𝐻

2
be two nonempty closed convex sets; and

let 𝐴 : 𝐻
1
→ 𝐻

3
, 𝐵 : 𝐻

2
→ 𝐻

3
be two bounded linear

operators. Find 𝑥 ∈ 𝐶, 𝑦 ∈ 𝑄 satisfying

𝐴𝑥 = 𝐵𝑦. (2)

When 𝐵 = 𝐼, SEP reduces to the well-known SFP.
Naturally, we propose the following multiple-sets split

equality problem (MSSEP) requiring to find a point 𝑥 ∈

∩
𝑁

𝑖=1
𝐶
𝑖
, 𝑦 ∈ ∩𝑀

𝑗=1
𝑄
𝑗
such that

𝐴𝑥 = 𝐵𝑦, (3)

where 𝑁 and 𝑀 are positive integers; {𝐶
1
, 𝐶
2
, . . . , 𝐶

𝑁
} and

{𝑄
1
, 𝑄
2
, . . . , 𝑄

𝑀
} are closed convex subsets of Hilbert spaces

𝐻
1
, 𝐻
2
, respectively, and 𝐴 : 𝐻

1
→ 𝐻

3
, 𝐵 : 𝐻

2
→ 𝐻

3
are

two bounded linear operators.
In the paper [9], Moudafi gave an alternating CQ-

algorithm and relaxed alternating CQ-algorithm iterative
algorithm for solving the split equality problem.

We use Γ to denote the solution set of SEP, that is,

Γ = {(𝑥, 𝑦) ∈ 𝐻
1
× 𝐻
2
, 𝐴𝑥 = 𝐵𝑦, 𝑥 ∈ 𝐶, 𝑦 ∈ 𝑄} , (4)

and assume consistency of SEP so that Γ is closed, convex, and
nonempty.

Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2014, Article ID 620813, 5 pages
http://dx.doi.org/10.1155/2014/620813

http://dx.doi.org/10.1155/2014/620813


2 Abstract and Applied Analysis

Let 𝑆 = 𝐶 × 𝑄 in𝐻 = 𝐻
1
× 𝐻
2
and define 𝐺 : 𝐻 → 𝐻

3

by 𝐺 = [𝐴, −𝐵]; then 𝐺∗𝐺 : 𝐻 → 𝐻 has the matrix form

𝐺
∗
𝐺 = [

𝐴
∗
𝐴 −𝐴

∗
𝐵

−𝐵
∗
𝐴 𝐵

∗
𝐵
] . (5)

The SEP problem can be reformulated as finding𝑤 = (𝑥, 𝑦) ∈

𝑆 with 𝐺𝑤 = 0 or solving the following minimization
problem:

min
𝑤∈𝑆

𝑓 (𝑤) =

1

2

‖𝐺𝑤‖
2
. (6)

In paper [10], we used the well-known Tychonov regular-
ization that got some algorithms to converge strongly to the
minimum-norm solution of the SEP.

Note that the convergence of the above algorithms
depends on the exact requirements of the iterative coefficient.
Therefore, the aim of this paper is to introduce an iterative
algorithm to solve the SEP and MSSEP in the framework of
infinite-dimensional Hilbert spaces under some more mild
conditions for the iterative coefficient.

Throughout the rest of this paper, 𝐼 denotes the identity
operator on Hilbert space𝐻 and Fix(𝑇) is the set of the fixed
points of an operator 𝑇. An operator 𝑇 on a Hilbert space
𝐻 is nonexpansive if, for each 𝑥 and 𝑦 in 𝐻, ‖𝑇𝑥 − 𝑇𝑦‖ ≤

‖𝑥 − 𝑦‖. 𝑇 is said to be averaged, if there exists 0 < 𝛼 < 1 and
a nonexpansive operator𝑁 such that 𝑇 = (1 − 𝛼)𝐼 + 𝛼𝑁.

Let 𝑃
𝑆
denote the projection from 𝐻 onto a nonempty

closed convex subset 𝑆 of𝐻; that is,

𝑃
𝑆 (
𝑤) = min

𝑥∈𝑆

‖𝑥 − 𝑤‖ . (7)

It is well known that 𝑃
𝑆
(𝑤) is characterized by the following

inequality:

⟨𝑤 − 𝑃
𝑆 (
𝑤) , 𝑥 − 𝑃𝑆 (

𝑤)⟩ ≤ 0, ∀𝑥 ∈ 𝑆, (8)

and 𝑃
𝑆
is nonexpansive and averaged.

We now collect some elementary facts which will be used
in the proofs of our main results.

Lemma 1 (see [11, 12]). Let 𝑋 be a Banach space, 𝐶 a closed
convex subset of 𝑋, and 𝑇 : 𝐶 → 𝐶 a nonexpansive mapping
with Fix(𝑇) ̸= 0. If {𝑥

𝑛
} is a sequence in 𝐶 weakly converging to

𝑥 and if {(𝐼 − 𝑇)𝑥
𝑛
} converges strongly to 𝑦, then (𝐼 − 𝑇)𝑥 = 𝑦.

Lemma 2 (see [13]). Let 𝐻 be a Hilbert space and {𝑤
𝑛
} a

sequence in 𝐻 such that there exists a nonempty set 𝑆 ⊆ 𝐻

satisfying the following.

(i) For every 𝑤 ∈ 𝑆, lim
𝑛→∞

‖𝑤
𝑛
− 𝑤‖ exists.

(ii) Any weak-cluster point of the sequence {𝑤
𝑛
} belongs to

𝑆.

Then, there exists 𝑤 ∈ 𝑠 such that {𝑤
𝑛
} weakly converges to

𝑤.

Lemma 3 (see [4]). Let 𝐴 and 𝐵 be averaged operators and
suppose that Fix(𝐴) ∩ Fix(𝐵) is nonempty. Then Fix(𝐴) ∩
Fix(𝐵) = Fix(𝐴𝐵) = Fix(𝐵𝐴).

The following lemma is vital in our main results.

Lemma 4. Let 𝑇 = 𝐼 − 𝛾𝐺
∗
𝐺, where 0 < 𝛾 < 𝜆 =

2/𝜌(𝐺
∗
𝐺) with 𝜌(𝐺∗𝐺) being the spectral radius of the self-

adjoint operator 𝐺∗𝐺 on𝐻. Then we have the following:
(1) ‖𝑇‖ ≤ 1 (i.e., 𝑇 is nonexpansive) and averaged;
(2) Fix(𝑇) = {(𝑥, 𝑦) ∈ 𝐻,𝐴𝑥 = 𝐵𝑦}, Fix(𝑃

𝑆
𝑇) = Fix(𝑃

𝑆
)∩

Fix(𝑇) = Γ;
(3) 𝑤 ∈ Fix(𝑃

𝑆
𝑇) if and only if 𝑤 is a solution of the

variational inequality ⟨𝐺∗𝐺𝑤, V−𝑤⟩ ≥ 0, for all V ∈ 𝑆.

Proof. (1) It is easily proved that ‖𝑇‖ ≤ 1; we only prove that
𝑇 = 𝐼−𝛾𝐺

∗
𝐺 is averaged. Indeed, choose 0 < 𝛽 < 1, such that

𝛾/(1 − 𝛽) < 2/𝜌(𝐺
∗
𝐺); then 𝑇 = 𝐼 − 𝛾𝐺

∗
𝐺 = 𝛽𝐼 + (1 − 𝛽)𝑉,

where𝑉 = 𝐼−𝛾/(1−𝛽)𝐺
∗
𝐺 is a nonexpansive mapping.That

is to say, 𝑇 is averaged.
(2) If 𝑤 ∈ {(𝑥, 𝑦) ∈ 𝐻,𝐴𝑥 = 𝐵𝑦}, it is obvious that 𝑤 ∈

Fix(𝑇). Conversely, assuming that 𝑤 ∈ Fix(𝑇), we have 𝑤 =

𝑤−𝛾𝐺
∗
𝐺𝑤. Hence 𝛾𝐺∗𝐺𝑤 = 0; then ‖𝐺𝑤‖2 = ⟨𝐺∗𝐺𝑤,𝑤⟩ =

0; we get that 𝑤 ∈ {(𝑥, 𝑦) ∈ 𝐻,𝐴𝑥 = 𝐵𝑦}. It follows Fix(𝑇) =
{(𝑥, 𝑦) ∈ 𝐻,𝐴𝑥 = 𝐵𝑦}.

Now we prove Fix(𝑃
𝑆
𝑇) = Fix(𝑃

𝑆
) ∩ Fix(𝑇) = Γ. By

Fix(𝑇) = {(𝑥, 𝑦) ∈ 𝐻,𝐴𝑥 = 𝐵𝑦}, Fix(𝑃
𝑆
) ∩ Fix(𝑇) = Γ is

obvious. On the other hand, since Fix(𝑃
𝑆
) ∩ Fix(𝑇) = Γ ̸= 0,

and both 𝑃
𝑆
and 𝑇 are averaged, from Lemma 3, we have

Fix(𝑃
𝑆
𝑇) = Fix(𝑃

𝑆
) ∩ Fix(𝑇).

(3) Consider
⟨𝐺
∗
𝐺𝑤, V − 𝑤⟩ ≥ 0, ∀V ∈ 𝑆

⇐⇒ ⟨𝑤 − (𝑤 − 𝛾𝐺
∗
𝐺𝑤) , V − 𝑤⟩

≥ 0, ∀V ∈ 𝑆

⇐⇒ 𝑤 = 𝑃
𝑆
(𝑤 − 𝛾𝐺

∗
𝐺𝑤)

⇐⇒ 𝑤 ∈ Fix (𝑃
𝑆
𝑇) .

(9)

2. Iterative Algorithm for SEP

In this section, we establish an iterative algorithm that
converges weakly to a solution of SEP.

Algorithm 5. Choose an arbitrary initial point 𝑤
0
= (𝑥
0
, 𝑦
0
),

and sequence {𝑤
𝑛
= (𝑥
𝑛
, 𝑦
𝑛
)} is generated by the following

iteration:
𝑤
𝑛+1

= (1 − 𝛼
𝑛
) (𝐼 − 𝛾𝐺

∗
𝐺)𝑤
𝑛
+ 𝛼
𝑛
𝑃
𝑆
(𝐼 − 𝛾𝐺

∗
𝐺)𝑤
𝑛
, (10)

where 𝛼
𝑛
⊆ (0, 1) and 0 < 𝛾 < 𝜆 = 2/𝜌(𝐺

∗
𝐺) with 𝜌(𝐺∗𝐺)

being the spectral radius of the self-adjoint operator 𝐺∗𝐺 on
𝐻.

To prove its convergence we need the following lemma.

Lemma 6. The sequence {𝑤
𝑛
} generated by algorithm (10) is

Féjer-monotone with respect to Γ; that is to say, for every𝑤 ∈ Γ,




𝑤
𝑛+1

− 𝑤




≤




𝑤
𝑛
− 𝑤





, ∀𝑛 ≥ 1, (11)

if {𝛼
𝑛
} ⊆ (0, 1) and 0 < 𝛾 < 𝜆 = 2/𝜌(𝐺∗𝐺).
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Proof. Let 𝑢
𝑛
= (𝐼−𝛾𝐺

∗
𝐺)𝑤
𝑛
and choose𝑤 ∈ Γ; by Lemma 4,

𝑤 ∈ Fix(𝑃
𝑆
) ∩ Fix(𝐼 − 𝛾𝐺∗𝐺), 𝐺𝑤 = 0 and we have





𝑤
𝑛+1

− 𝑤





2

=




(1 − 𝛼

𝑛
) 𝑢
𝑛
+ 𝛼
𝑛
𝑃
𝑆
(𝑢
𝑛
) − 𝑤






2

≤ (1 − 𝛼
𝑛
)




𝑢
𝑛
− 𝑤






2
+ 𝛼
𝑛





𝑃
𝑆
(𝑢
𝑛
) − 𝑤






2

− 𝛼
𝑛
(1 − 𝛼

𝑛
)




𝑢
𝑛
− 𝑃
𝑆
(𝑢
𝑛
)





2

≤ (1 − 𝛼
𝑛
)




𝑢
𝑛
− 𝑤






2
+ 𝛼
𝑛





𝑢
𝑛
− 𝑤






2

− 𝛼
𝑛
(1 − 𝛼

𝑛
)




𝑢
𝑛
− 𝑃
𝑆
(𝑢
𝑛
)





2

=




𝑢
𝑛
− 𝑤






2
− 𝛼
𝑛
(1 − 𝛼

𝑛
)




𝑢
𝑛
− 𝑃
𝑆
(𝑢
𝑛
)





2
.

(12)

Moreover, we have




𝑢
𝑛
− 𝑤






2
=




(𝐼 − 𝛾𝐺

∗
𝐺)𝑤
𝑛
− 𝑤






2

=




𝑤
𝑛
− 𝑤






2
+




𝛾𝐺
∗
𝐺𝑤
𝑛






2

− 2 ⟨𝑤
𝑛
− 𝑤, 𝛾𝐺

∗
𝐺𝑤
𝑛
⟩

=




𝑤
𝑛
− 𝑤






2
+ 𝛾
2
⟨𝐺𝑤
𝑛
, 𝐺𝐺
∗
𝐺𝑤
𝑛
⟩

− 2𝛾 ⟨𝐺𝑤
𝑛
− 𝐺𝑤,𝐺𝑤

𝑛
⟩

≤




𝑤
𝑛
− 𝑤






2
+ 𝛾
2
𝜆




𝐺𝑤
𝑛






2

− 2𝛾 ⟨𝐺𝑤
𝑛
− 0, 𝐺𝑤

𝑛
⟩

=




𝑤
𝑛
− 𝑤






2
− 𝛾 (2 − 𝜆𝛾)





𝐺𝑤
𝑛






2
.

(13)

Hence, we can get that





𝑤
𝑛+1

− 𝑤





2
≤




𝑤
𝑛
− 𝑤






2
− 𝛼
𝑛
(1 − 𝛼

𝑛
)




𝑢
𝑛
− 𝑃
𝑆
(𝑢
𝑛
)





2

− 𝛾 (2 − 𝜆𝛾)




𝐺𝑤
𝑛






2
.

(14)

It follows that ‖𝑤
𝑛+1

−𝑤‖ ≤ ‖𝑤
𝑛
−𝑤‖, for all𝑤 ∈ Γ, 𝑛 ≥ 1.

Theorem 7. If 0 < lim inf
𝑛→∞

𝛼
𝑛
≤ lim sup

𝑛→∞
𝛼
𝑛
< 1,

then the sequence {𝑤
𝑛
} generated by algorithm (10) converges

weakly to a solution of SEP (2).

Proof. Let 𝑤 be a solution of SEP; according to Lemma 6,
we can get that the sequence ‖𝑤

𝑛
− 𝑤‖ is monotonically

decreasing and converges to some positive real. Since 0 <

lim inf
𝑛→∞

𝛼
𝑛
≤ lim sup

𝑛→∞
𝛼
𝑛
< 1 and 0 < 𝛾 < 𝜆, by (14),

we have




𝑢
𝑛
− 𝑃
𝑆
(𝑢
𝑛
)




→ 0,





𝐺𝑤
𝑛





→ 0, when 𝑛 → ∞.

(15)

Since {𝑤
𝑛
} is Féjer-monotonicity, it follows that {𝑤

𝑛
} is

bounded. Let 𝑤 be a weak-cluster point of {𝑤
𝑛
} and let 𝑘 =

1, 2, . . . be the sequence of indices, such that 𝑤
𝑛𝑘

converges
weakly to 𝑤. By Lemma 1, we can get that 𝐺𝑤 = 0. It follows
that 𝑤 ∈ Fix(𝐼 − 𝛾𝐺∗𝐺).

Since 𝑢
𝑛
= (𝐼 − 𝛾𝐺

∗
𝐺)𝑤
𝑛
, it follows that 𝑢

𝑛𝑘
converges

weakly to 𝑤. On the other hand, ‖𝑢
𝑛
− 𝑃
𝑆
(𝑢
𝑛
)‖ → 0. Using

Lemma 1 again, we obtain that 𝑃
𝑆
(𝑤) = 𝑤. That is to say, 𝑤 ∈

Fix(𝑃
𝑆
).

Hence 𝑤 ∈ Fix(𝑃
𝑆
) ∩ Fix(𝐼 − 𝛾𝐺∗𝐺). By Lemma 4, we get

that 𝑤 is a solution of SEP (2).
The weak convergence of the whole sequence {𝑤

𝑛
} holds

true since all conditions of the well-known Opial’s lemma
(Lemma 2) are fulfilled with 𝑆 = Γ.

3. Iterative Algorithm for MSSEP

In this section, we establish an iterative algorithm that
converges weakly to a solution of MSSEP.

We use Γ to denote the solution set of MSSEP, that is,

Γ =

{

{

{

(𝑥, 𝑦) ∈ 𝐻
1
× 𝐻
2
, 𝐴𝑥 = 𝐵𝑦, 𝑥 ∈

𝑁

⋂

𝑖=1

𝐶
𝑖
, 𝑦 ∈

𝑀

⋂

𝑗=1

𝑄
𝑗

}

}

}

,

(16)

and assume consistency of MSSEP so that Γ is closed, convex,
and nonempty.

Without loss of generality, we assume that𝑁 = 𝑀. In fact,
if𝑁 > 𝑀, let 𝑄

𝑗
= 𝐻
2
, for 𝑗 > 𝑀.

Let 𝑆
𝑖
= 𝐶
𝑖
×𝑄
𝑖
in𝐻 = 𝐻

1
×𝐻
2
and define 𝐺 : 𝐻 → 𝐻

3

by𝐺 = [𝐴, −𝐵]; then𝐺∗𝐺 : 𝐻 → 𝐻 has the followingmatrix
form:

𝐺
∗
𝐺 = [

𝐴
∗
𝐴 −𝐴

∗
𝐵

−𝐵
∗
𝐴 𝐵

∗
𝐵
] . (17)

The original problem now can be reformulated as finding𝑤 =

(𝑥, 𝑦) ∈ ∩
𝑁

𝑖=1
𝑆
𝑖
with 𝐺𝑤 = 0, or, more generally, minimizing

the function ‖𝐺𝑤‖ over 𝑤 ∈ ∩
𝑁

𝑖=1
𝑆
𝑖
.

Algorithm 8. For an arbitrary initial point 𝑤
0
= (𝑥
0
, 𝑦
0
),

sequence {𝑤
𝑛

= (𝑥
𝑛
, 𝑦
𝑛
)} is generated by the following

iteration:

𝑤
𝑛+1

= (1 − 𝛼
𝑛
) (𝐼 − 𝛾𝐺

∗
𝐺)𝑤
𝑛
+ 𝛼
𝑛
𝑃
𝑆𝑖(𝑛)

(𝐼 − 𝛾𝐺
∗
𝐺)𝑤
𝑛
,

(18)

where 𝑖(𝑛) = 𝑛(mod𝑁) + 1, 𝛼
𝑛
> 0 is a sequence in (0, 1),

and 0 < 𝛾 < 𝜆 = 2/𝜌(𝐺
∗
𝐺) with 𝜌(𝐺∗𝐺) being the spectral

radius of the self-adjoint operator 𝐺∗𝐺 on𝐻.

The proof of the following lemma is similar to Lemma 4,
and we omit its proof.

Lemma 9. Let 𝑇 = 𝐼 − 𝛾𝐺
∗
𝐺, where 0 < 𝛾 < 𝜆 =

2/𝜌(𝐺
∗
𝐺) with 𝜌(𝐺∗𝐺) being the spectral radius of the self-

adjoint operator 𝐺∗𝐺 on𝐻. Then we have Fix(𝑇) = {(𝑥, 𝑦) ∈
𝐻, 𝐴𝑥 = 𝐵𝑦}, Fix(𝑃

∩𝑆𝑖
𝑇) = Fix(𝑃

∩𝑆𝑖
) ∩ Fix(𝑇) = Γ, and

∩ Fix(𝑃
𝑆𝑖
𝑇) = ∩[Fix(𝑃

𝑆𝑖
) ∩ Fix(𝑇)] = Γ.

To prove its convergence we also need the following
lemma.
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Lemma 10. Any sequence {𝑤
𝑛
} generated by algorithm (18) is

the Féjer-monotone with respect to Γ; namely, for every 𝑤 ∈ Γ,




𝑤
𝑛+1

− 𝑤




≤




𝑤
𝑛
− 𝑤





, ∀𝑛 ≥ 1, (19)

provided that 𝛼
𝑛
> 0 is a sequence in (0, 1) and 0 < 𝛾 < 𝜆 =

2/𝜌(𝐺
∗
𝐺).

Proof. Let 𝑢
𝑛
= (𝐼 − 𝛾𝐺

∗
𝐺)𝑤
𝑛
and take 𝑤 ∈ Γ; by Lemma 9,

𝑤 ∈ Fix(𝑃
𝑆𝑖
) ∩ Fix(𝐼 − 𝛾𝐺∗𝐺), for all𝑁 ≥ 𝑖 ≥ 1, 𝐺𝑤 = 0 and

we have





𝑤
𝑛+1

− 𝑤





2
=






(1 − 𝛼

𝑛
) 𝑢
𝑛
+ 𝛼
𝑛
𝑃
𝑆𝑖(𝑛)

(𝑢
𝑛
) − 𝑤







2

≤ (1 − 𝛼
𝑛
)




𝑢
𝑛
− 𝑤






2
+ 𝛼
𝑛






𝑃
𝑆𝑖(𝑛)

(𝑢
𝑛
) − 𝑤







2

− 𝛼
𝑛
(1 − 𝛼

𝑛
)






𝑢
𝑛
− 𝑃
𝑆𝑖(𝑛)
(𝑢
𝑛
)







2

≤ (1 − 𝛼
𝑛
)




𝑢
𝑛
− 𝑤






2
+ 𝛼
𝑛





𝑢
𝑛
− 𝑤






2

− 𝛼
𝑛
(1 − 𝛼

𝑛
)






𝑢
𝑛
− 𝑃
𝑆𝑖(𝑛)

(𝑢
𝑛
)







2

=




𝑢
𝑛
− 𝑤






2
− 𝛼
𝑛
(1 − 𝛼

𝑛
)






𝑢
𝑛
− 𝑃
𝑆𝑖(𝑛)

(𝑢
𝑛
)







2

.

(20)

Moreover, all the same to the proof of Lemma 6, we have





𝑢
𝑛
− 𝑤






2
≤




𝑤
𝑛
− 𝑤






2
− 𝛾 (2 − 𝜆𝛾)





𝐺𝑤
𝑛






2
. (21)

Hence, we have





𝑤
𝑛+1

− 𝑤





2
≤




𝑤
𝑛
− 𝑤






2
− 𝛼
𝑛
(1 − 𝛼

𝑛
)






𝑢
𝑛
− 𝑃
𝑆𝑖(𝑛)

(𝑢
𝑛
)







2

− 𝛾 (2 − 𝜆𝛾)




𝐺𝑤
𝑛






2
.

(22)

It follows that ‖𝑤
𝑛+1

−𝑤‖ ≤ ‖𝑤
𝑛
−𝑤‖, for all𝑤 ∈ Γ, 𝑛 ≥ 1.

Theorem 11. If 0 < lim inf
𝑛→∞

𝛼
𝑛
≤ lim sup

𝑛→∞
𝛼
𝑛
< 1,

then the sequence {𝑤
𝑛
} generated by algorithm (18) converges

weakly to a solution of MSSEP (3).

Proof. From (22) and the fact that 0 < lim inf
𝑛→∞

𝛼
𝑛
≤

lim sup
𝑛→∞

𝛼
𝑛
< 1 and 0 < 𝛾 < 𝜆 = 2/𝜌(𝐺

∗
𝐺), we obtain

that
∞

∑

𝑛=0






𝑢
𝑛
− 𝑃
𝑆𝑖(𝑛)

(𝑢
𝑛
)







2

< ∞,

∞

∑

𝑛=0





𝐺𝑤
𝑛






2
< ∞. (23)

Therefore,

lim
𝑛→∞






𝑢
𝑛
− 𝑃
𝑆𝑖(𝑛)

(𝑢
𝑛
)






= 0, lim

𝑛→∞





𝐺𝑤
𝑛





= 0. (24)

Since {𝑤
𝑛
} is Féjer-monotone, it follows that {𝑤

𝑛
} is

bounded. Let 𝑤 be a weak-cluster point of {𝑤
𝑛
}. Taking a

subsequence {𝑤
𝑛𝑘
} of {𝑤

𝑛
} such that 𝑤

𝑛𝑘
converges weakly to

𝑤, then, by Lemma 1, we can get that 𝐺𝑤 = 0; it follows that
𝑤 ∈ Fix(𝐼 − 𝛾𝐺∗𝐺).

Let 𝑢
𝑛
= (𝐼 − 𝛾𝐺

∗
𝐺)𝑤
𝑛
; it follows that 𝑢

𝑛𝑘
converges

weakly to 𝑤.
Since




𝑤
𝑛+1

− 𝑤
𝑛






2

=






(1 − 𝛼

𝑛
) 𝑢
𝑛
+ 𝛼
𝑛
𝑃
𝑆𝑖(𝑛)

(𝑢
𝑛
) − 𝑤
𝑛







2

=






𝛼
𝑛
(𝑃
𝑆𝑖(𝑛)
𝑢
𝑛
− 𝑢
𝑛
) + 𝑢
𝑛
− 𝑤
𝑛







2

≤ 2𝛼
2

𝑛






(𝑃
𝑆𝑖(𝑛)
𝑢
𝑛
− 𝑢
𝑛
)







2

+ 2




𝛾𝐺
∗
𝐺𝑤
𝑛






2

= 2𝛼
2

𝑛






(𝑃
𝑆𝑖(𝑛)
𝑢
𝑛
− 𝑢
𝑛
)







2

+ 2𝛾
2
⟨𝐺𝑤
𝑛
, 𝐺𝐺
∗
𝐺𝑤
𝑛
⟩

≤ 2𝛼
2

𝑛






(𝑃
𝑆𝑖(𝑛)
𝑢
𝑛
− 𝑢
𝑛
)







2

+ 2𝛾
2
𝜆




𝐺𝑤
𝑛






2
,

(25)

it follows that
∞

∑

𝑛=0





𝑤
𝑛+1

− 𝑤
𝑛






2
< ∞. (26)

On the other hand




𝑢
𝑛+1

− 𝑢
𝑛






2

=




𝑤
𝑛+1

− 𝑤
𝑛
+ 𝛾𝐺
∗
𝐺(𝑤
𝑛+1

− 𝑤
𝑛
)





2

≤ 2 (




𝑤
𝑛+1

− 𝑤
𝑛






2
+




𝛾𝐺
∗
𝐺 (𝑤
𝑛+1

− 𝑤
𝑛
)





2
)

≤ 2 (




𝑤
𝑛+1

− 𝑤
𝑛






2
+ 𝛾
2
𝜆




(𝑤
𝑛+1

− 𝑤
𝑛
)





2
) .

(27)

Hence
∞

∑

𝑛=0





𝑢
𝑛+1

− 𝑢
𝑛






2
< ∞. (28)

We can get that lim
𝑛→∞

‖𝑢
𝑛+1

− 𝑢
𝑛
‖ = 0 and lim

𝑛→∞
‖𝑢
𝑛+𝑗

−

𝑢
𝑛
‖ = 0 for all 𝑗 = 1, 2, . . . , 𝑁.
Moreover, for any 𝑖 = 1, 2, . . . , 𝑁,





𝑢
𝑛
− 𝑃
𝑆𝑛+𝑖
𝑢
𝑛






≤




𝑢
𝑛
− 𝑢
𝑛+𝑖





+






𝑢
𝑛+𝑖

− 𝑃
𝑆𝑛+𝑖
𝑢
𝑛+𝑖







+






𝑃
𝑆𝑛+𝑖
𝑢
𝑛+𝑖

− 𝑃
𝑆𝑛+𝑖
𝑢
𝑛







≤ 2




𝑢
𝑛
− 𝑢
𝑛+𝑖





+






𝑢
𝑛+𝑖

− 𝑃
𝑆𝑛+𝑖
𝑢
𝑛+𝑖







→ 0.

(29)

Thus, lim
𝑛→∞

‖𝑢
𝑛
− 𝑃
𝑆𝑖
𝑢
𝑛
‖ = 0 for all 𝑖 = 1, 2, . . . , 𝑁. Using

Lemma 1 again, we obtain that 𝑃
𝑆𝑖
(𝑤) = 𝑤. That is to say, 𝑤 ∈

Fix(𝑃
𝑆𝑖
) for all 𝑖 = 1, 2, . . . , 𝑁.

Hence 𝑤 ∈ ∩ Fix(𝑃
𝑆𝑖
) ∩ Fix(𝐼 − 𝛾𝐺∗𝐺). By Lemma 9, we

obtain that 𝑤 is a solution of MSSEP (3).
The weak convergence of the whole sequence {𝑤

𝑛
} holds

true since all conditions of the well-known Opial’s lemma
(Lemma 2) are fulfilled with 𝑆 = Γ.
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