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We cast aside the restriction of the simple pole in the Tumura-Clunie type theorems for meromorphic functions and obtain a better
result which improves the earlier results of Y. D. Ren. Furthermore, as an application, we improve a theorem given by B. Y. Su.

1. Introduction and Main Results

A meromorphic function will always mean meromorphic in
the complex plane C. We adopt the standard notation in
the Nevanlinna value distribution theory of meromorphic
functions such as 𝑇(𝑟, 𝑓), 𝑚(𝑟, 𝑓), 𝑁(𝑟, 𝑓), and 𝑁(𝑟, 𝑓)

as explained in [1, 2]. For any nonconstant meromorphic
function 𝑓, we denote by 𝑆(𝑟, 𝑓) any quantity satisfying
𝑆(𝑟, 𝑓) = 𝑜(𝑇(𝑟, 𝑓)) as 𝑟 → ∞ possibly outside a set of
finite linear measures that is not necessarily the same at each
occurrence.

Definition 1 (see [1]). A meromorphic function “𝑎(𝑧)” is said
to be a small function of 𝑓 if 𝑇(𝑟, 𝑎(𝑧)) = 𝑆(𝑟, 𝑓).

Definition 2. Throughout this paper one denotes by 𝑎𝑗(𝑧)
meromorphic functions satisfying (𝑟, 𝑎𝑗(𝑧)) = 𝑆(𝑟, 𝑓)(𝑗 =

0, 1, . . . , 𝑛). If 𝑎𝑛 ̸≡ 0, we call 𝑃[𝑓] = 𝑎𝑛𝑓
𝑛
+ 𝑎𝑛−1𝑓

𝑛−1
+ ⋅ ⋅ ⋅ +

𝑎1𝑓 + 𝑎0 a polynomial in 𝑓 with degree 𝑛. If 𝑛0, 𝑛1, . . . , 𝑛𝑘 are
nonnegative integers, we call𝑀[𝑓] = 𝑓

𝑛0(𝑓
󸀠
)
𝑛1 ⋅ ⋅ ⋅ (𝑓

(𝑘)
)
𝑛𝑘 a

differentialmonomial in𝑓 of degreeΥ𝑀 = 𝑛0+𝑛1+⋅ ⋅ ⋅+𝑛𝑘 and
of weight Γ𝑀 = 𝑛0+2𝑛1+⋅ ⋅ ⋅+(𝑘+1)𝑛𝑘. If𝑀1,𝑀2, . . . ,𝑀𝑛 are
differential monomials in 𝑓, we call𝑄[𝑓] = ∑𝑛𝑗=1 𝑎𝑗(𝑧)𝑀𝑗[𝑓]
a differential polynomial in 𝑓 and define the degree Υ𝑄 and
the weight Γ𝑄 by Υ𝑄 = max𝑛𝑗=1Υ𝑀𝑗 and Γ𝑄 = max𝑛𝑗=1Γ𝑀𝑗 ,
respectively.

Also 𝑄[𝑓] is called a quasi-differential polynomial gen-
erated by 𝑓 if, instead of assuming 𝑇(𝑟, 𝑎𝑗(𝑧)) = 𝑆(𝑟, 𝑓), we
just assume that 𝑚(𝑟, 𝑎𝑗(𝑧)) = 𝑆(𝑟, 𝑓) for the coefficients
𝑎𝑗(𝑧)(𝑗 = 1, 2, . . . , 𝑛).

Definition 3. Let 𝑘 be a positive integer; for any 𝑎 in the
complex plane, one denotes by𝑁𝑘)(𝑟, 1/(𝑓−𝑎)) the counting
function of 𝑎-points of 𝑓 with multiplicity less than or equal
to 𝑘, by 𝑁(𝑘(𝑟, 1/(𝑓 − 𝑎)) the counting function of 𝑎-points
of 𝑓 with multiplicity more than or equal to 𝑘, and by
𝑁𝑘(𝑟, 1/(𝑓 − 𝑎)) the counting function of 𝑎-points of 𝑓 with
multiplicity of 𝑘. Denote the reduced counting function by
𝑁𝑘)(𝑟, 1/(𝑓 − 𝑎)), 𝑁(𝑘(𝑟, 1/(𝑓 − 𝑎)), and 𝑁𝑘(𝑟, (1/𝑓 − 𝑎)),
respectively.

Let 𝑓 be a nonconstant meromorphic function and let

ϝ = 𝑓
𝑛
+ 𝑄 [𝑓] (1)

be a differential polynomial, where 𝑄[𝑓] is also a differential
polynomial and Υ𝑄 ≤ 𝑛 − 1.

Hua (see [3, page 69]) proved the following result.

Theorem A. Let 𝑓 be a nonconstant meromorphic function
and let ϝ be given by (1) with Υ𝑄 ≤ 𝑛 − 1. If

𝑁(𝑟, 𝑓) + 𝑁(𝑟,
1

ϝ
) = 𝑆 (𝑟, 𝑓) , (2)

then

ϝ = (𝑓 +
𝑎 (𝑧)

𝑛
)

𝑛

, (3)

where 𝑎(𝑧) is a small function of 𝑓.
Then ϝ = 𝑔

𝑛, 𝑔 = 𝑓 + (𝑎(𝑧)/𝑛), and 𝑎(𝑧)𝑔𝑛−1 is obtained
by substituting 𝑔 for 𝑓, 𝑔󸀠 for 𝑓󸀠, and so forth in the terms of
degree 𝑛 − 1 in 𝑄[𝑓].
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Remark 4. The conclusion still holds good if condition (2) is
replaced with

𝑁(𝑟, 𝑓) + 𝑁(𝑟,
1

ϝ
) = 𝑆𝑜 (𝑟, 𝑓) , (4)

where 𝑆𝑜(𝑟, 𝑓) denotes any quantity which satisfies 𝑆𝑜(𝑟, 𝑓) =
𝑜(𝑇(𝑟, 𝑓)) as 𝑟 → +∞ through a set of 𝑟 of infinite measure.

Hua (see [3]) improved Theorem A and obtained the
following result.

Theorem B. Let 𝑓 be a nonconstant meromorphic function
and let ϝ be given by (1) with Υ𝑄 ≤ 𝑛 − 1. If

𝑁(𝑟, 𝑓) + 𝑁(𝑟,
1

ϝ
) = 𝑆 (𝑟, 𝑓) , (5)

then

ϝ = (𝑓 +
𝑎 (𝑧)

𝑛
)

𝑛

, (6)

where 𝑎(𝑧) is a small function of 𝑓.

Another theorem is due to Zhang and Li (see [4]), which
can be stated as follows.

Theorem C. Let 𝑓 be a nonconstant meromorphic function
and let ϝ be given by (1), where 𝑛(≥Υ𝑄 + 1) is an integer. Then
one of the following occurs.

(i) If Γ𝑄 > 𝑛 − 1, then

𝑇 (𝑟, 𝑓) ≤ {1 + 2 (Γ𝑄 − 𝑛 + 1)}𝑁 (𝑟, 𝑓)

+ (Γ𝑄 − 𝑛 + 2)𝑁(𝑟,
1

ϝ
) + 𝑆 (𝑟, 𝑓) .

(7)

Or there exists a small proximity function 𝑎(𝑧) of 𝑓 such that

ϝ = (𝑓 +
𝑎 (𝑧)

𝑛
)

𝑛

, (8)

and𝑁(𝑟, 𝑎(𝑧)) ≤ (Γ𝑄 − 𝑛 + 1){𝑁(𝑟, 𝑓) + 𝑁(𝑟, 1/ϝ)} + 𝑆(𝑟, 𝑓).
(ii) If Γ𝑄 ≤ 𝑛 − 1, then

𝑇 (𝑟, 𝑓) ≤ 2𝑁 (𝑟, 𝑓) + 𝑁(𝑟,
1

ϝ
) + 𝑆 (𝑟, 𝑓) , (9)

or

ϝ = (𝑓 +
𝑎 (𝑧)

𝑛
)

𝑛

, (10)

where 𝑎(𝑧) is a small function of 𝑓.
(iii) In the special case, if 𝑄[𝑓] = 𝑎𝑛−1𝑓𝑛−1 + 𝑃[𝑓], where

Γ𝑃 ≤ 𝑛 − 2, then

𝑇 (𝑟, 𝑓) ≤ 𝑁 (𝑟, 𝑓) + 𝑁(𝑟,
1

ϝ
) + 𝑆 (𝑟, 𝑓) , (11)

or

ϝ = (𝑓 +
𝑎 (𝑧)

𝑛
)

𝑛

, (12)

where 𝑎(𝑧) is a small function of 𝑓.

Corollary 5. FromTheorem C we know that if condition (2) is
replaced with “𝑁(𝑟, 𝑓) + 𝑁(𝑟, 1/ϝ) = 𝑆(𝑟, 𝑓)” in Theorem A,
then the conclusion remains valid.

In this direction Ren (see [5]) also generalized Tumura-
Clunie’s theorem concerning differential polynomials.

Combining the methods used in their proofs we show the
following theorem.

Theorem 6. Let 𝑓 be a nonconstant meromorphic function
and let ϝ be given by (1), where 𝑛(≥ Υ𝑄 + 1) is an integer and
Γϝ( ̸= 2) is the weight of ϝ. If

𝑁(2 (𝑟, 𝑓) + 𝑁(𝑟,
1

ϝ
) = 𝑆 (𝑟, 𝑓) , (13)

then

ϝ = (𝑓 +
𝑎 (𝑧)

𝑛
)

𝑛

, (14)

where 𝑎(𝑧) is a small function of 𝑓.

It is easily seen from the following example that Γϝ ̸= 2 in
Theorem 6 is necessary.

Example 7. Let 𝑓 = tan 𝑧 and ϝ = 𝑓
2
+ 1. Obviously, (13) is

obtained but (14) does not hold.

2. Some Lemmas

To prove our results, we need some lemmas.

Lemma8 (see [1]). Let𝑓1 and𝑓2 be twononzeromeromorphic
functions in the complex plane; then

𝑁(𝑟, 𝑓1𝑓2) − 𝑁(𝑟,
1

𝑓1𝑓2

)

= 𝑁 (𝑟, 𝑓1) + 𝑁 (𝑟, 𝑓2) − 𝑁(𝑟,
1

𝑓1

) − 𝑁(𝑟,
1

𝑓2

) .

(15)

Lemma 9. If 𝑁(𝑟, 0; 𝑓(𝑘) | 𝑓 ̸= 0) denotes the counting func-
tions of those zeros of 𝑓(𝑘) which are not the zeros of 𝑓, where
a zero of 𝑓(𝑘) is counted according to its multiplicity, then

𝑁(𝑟, 0; 𝑓
(𝑘)
| 𝑓 ̸= 0) ≤ 𝑘𝑁 (𝑟, 𝑓) + 𝑁 (𝑟, 0; 𝑓 |< 𝑘)

+ 𝑘𝑁 (𝑟, 0; 𝑓 |≥ 𝑘) + 𝑆 (𝑟, 𝑓) .

(16)

Lemma 10. Suppose that 𝑄[𝑓] is given in Definition 2. Let
𝑧0 be a pole of 𝑓 of order 𝑝 and neither a zero nor a pole of
coefficients of 𝑄[𝑓]. Then 𝑧0 is a pole of 𝑄[𝑓] of order at most
𝑝Υ𝑄 + (Γ𝑄 − Υ𝑄).

Lemma 11 (see [6]). Let 𝑓 be a nonconstant meromorphic
function and let 𝑄[𝑓] be given in Definition 2. Then

𝑚(𝑟, 𝑄 [𝑓]) ≤ Υ𝑄𝑚(𝑟, 𝑓) +

𝑛

∑

𝑗=1

𝑚(𝑟, 𝑎𝑗) + 𝑆 (𝑟, 𝑓) ,

𝑁 (𝑟, 𝑄 [𝑓]) ≤ Γ𝑄𝑁(𝑟, 𝑓) +

𝑛

∑

𝑗=1

𝑁(𝑟, 𝑎𝑗) + 𝑆 (𝑟, 𝑓) .

(17)
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Lemma 12. Suppose that 𝑓 is a nonconstant meromorphic
function and 𝑄[𝑓] is given in Definition 2. Then 𝑆(𝑟, 𝑄) =

𝑆(𝑟, 𝑓).

Proof. It is straightforward by Lemma 11.

Lemma 13 (see [7]). Let 𝑓 be a nonconstant meromorphic
function in the complex plane and let 𝑄1[𝑓] and 𝑄2[𝑓] be
quasi-differential polynomials in 𝑓. If Υ𝑄2 ≤ 𝑛 and 𝑓

𝑛
𝑄1[𝑓] =

𝑄2[𝑓], then𝑚(𝑟, 𝑄1[𝑓]) = 𝑆(𝑟, 𝑓).

Lemma 14. Let𝑓 be a nonconstantmeromorphic function and
let ϝ be given by (1). Then

(Γϝ − 2)𝑁1 (𝑟, 𝑓) ≤ 2𝑁(2 (𝑟, 𝑓)

+ 2𝑁(𝑟,
1

ϝ
) + 𝑆 (𝑟, 𝑓) .

(18)

Proof. If Γϝ ≤ 2, the conclusion of Lemma 14 holds obviously.
In the following we suppose that Γϝ > 2.
With ϝ = 𝑓𝑛 + 𝑄[𝑓], we set

𝑔 (𝑧) =

{ϝ
󸀠
}
Γϝ

{ϝ}
Γϝ+1

. (19)

Let 𝑧0 be a simple pole of 𝑓 and not a zero of coefficients of
𝑄[𝑓]; then

𝑓 (𝑧) =
𝑎

𝑧 − 𝑧0

+ 𝑂 (1) , 𝑎 ̸= 0 as 𝑧 󳨀→ 𝑧0. (20)

From Lemma 10 we know that 𝑧0 is a pole of ϝ of order at
most Γϝ; then we have

ϝ (𝑧) =
𝑏

(𝑧 − 𝑧0)
Γϝ
+ 𝑂 (1) ,

ϝ
󸀠
(𝑧) = −

𝑏Γϝ

(𝑧 − 𝑧0)
Γϝ+1

+ 𝑂 (1) ,

(21)

where 𝑏 ̸= 0.
Then

ϝ (𝑧) =
𝑏

(𝑧 − 𝑧0)
Γϝ
{1 + 𝑂(𝑧 − 𝑧0)

Γϝ
} ,

ϝ
󸀠
(𝑧) = −

𝑏Γϝ

(𝑧 − 𝑧0)
Γϝ+1

{1 + 𝑂(𝑧 − 𝑧0)
Γϝ+1

} ,

𝑔 (𝑧) =
(−1)
ΓϝΓϝ
Γϝ

𝑏
{1 + 𝑂(𝑧 − 𝑧0)

Γϝ
} .

(22)

So 𝑔(𝑧0) ̸= 0,∞. But 𝑧0 is a zero of 𝑔󸀠(𝑧) of order at least
Γϝ − 1. Then

(Γϝ − 1)𝑁1 (𝑟, 𝑓) ≤ 𝑁0 (𝑟,
1

𝑔󸀠
) , (23)

where𝑁0(𝑟, 1/𝑔
󸀠
) denotes the counting function of the zeros

of 𝑔󸀠, not of 𝑔.

By Lemma 8 and Nevanlinna first fundamental theorem,
we get

𝑁(𝑟,
𝑔

𝑔󸀠
) − 𝑁(𝑟,

𝑔
󸀠

𝑔
)

= 𝑁(𝑟,
1

𝑔󸀠
) + 𝑁 (𝑟, 𝑔) − 𝑁(𝑟, 𝑔

󸀠
) − 𝑁(𝑟,

1

𝑔
)

= 𝑁0 (𝑟,
1

𝑔󸀠
) − 𝑁 (𝑟, 𝑔) − 𝑁(𝑟,

1

𝑔
) ,

𝑁(𝑟,
𝑔

𝑔󸀠
) − 𝑁(𝑟,

𝑔
󸀠

𝑔
) = 𝑚(𝑟,

𝑔
󸀠

𝑔
) − 𝑚(𝑟,

𝑔

𝑔󸀠
) + 𝑂 (1) .

(24)

From (24), we have

𝑁0 (𝑟,
1

𝑔󸀠
) ≤ 𝑁(𝑟,

1

𝑔
) + 𝑁 (𝑟, 𝑔) + 𝑚(𝑟,

𝑔
󸀠

𝑔
) + 𝑂 (1)

≤ 𝑁(𝑟,
1

𝑔
) + 𝑁 (𝑟, 𝑔) + 𝑆 (𝑟, 𝑓) .

(25)

From (19), we know that the poles and zeros of 𝑔(𝑧) can only
occur at the multiple zeros of 𝑓(𝑧), the zeros of ϝ, and the
zeros of ϝ󸀠. Hence

𝑁(𝑟, 𝑔) + 𝑁(𝑟,
1

𝑔
) ≤ 𝑁(2 (𝑟, 𝑓) + 𝑁(𝑟,

1

ϝ
)

+ 𝑁0 (𝑟,
1

ϝ󸀠
) + 𝑆 (𝑟, 𝑓) ,

(26)

where𝑁0(𝑟, 1/ϝ
󸀠
) denotes the counting function of the zeros

of ϝ󸀠, not of ϝ.
By Lemmas 9 and 12, we obtain

𝑁0 (𝑟,
1

ϝ󸀠
) ≤ 𝑁 (𝑟, ϝ) + 𝑁(𝑟,

1

ϝ
) + 𝑆 (𝑟, ϝ)

≤ 𝑁 (𝑟, 𝑓) + 𝑁(𝑟,
1

ϝ
) + 𝑆 (𝑟, 𝑓) ,

𝑁 (𝑟, 𝑓) = 𝑁1 (𝑟, 𝑓) + 𝑁(2 (𝑟, 𝑓) .

(27)

Combining (23), (25), (26), and (27), we obtain (18).
This completes the proof of Lemma 14.

Proof of Theorem 6. We consider two cases.

Case 1. If Γϝ = 1, (14) holds obviously.

Case 2. If Γϝ > 2, by Lemma 14 and (13) we have

𝑁(𝑟, 𝑓) = 𝑁1 (𝑟, 𝑓) + 𝑁(2 (𝑟, 𝑓)

≤

Γϝ

Γϝ − 2
𝑁(2 (𝑟, 𝑓) +

2

Γϝ − 2
𝑁(𝑟,

1

ϝ
) + 𝑆 (𝑟, 𝑓)

≤ 𝑆 (𝑟, 𝑓) .

(28)
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This shows that

𝑁(𝑟, 𝑓) = 𝑆 (𝑟, 𝑓) . (29)
Suppose that ϝ ≡ 0.

So we have 𝑓𝑛 = −𝑄[𝑓] and 𝑄[𝑓] ̸≡ 0; moreover
𝑇(𝑟, 𝑄[𝑓]) = 𝑛𝑇(𝑟, 𝑓) + 𝑆(𝑟, 𝑓).

By Lemma 11 we get𝑚(𝑟, 𝑄[𝑓]) ≤ Υ𝑄𝑚(𝑟, 𝑓) + 𝑆(𝑟, 𝑓).
On the other hand, we have
𝑛𝑚 (𝑟, 𝑓) = 𝑚 (𝑟, 𝑓

𝑛
) = 𝑚 (𝑟, ϝ − 𝑄 [𝑓])

≤ 𝑚 (𝑟, ϝ) + 𝑚 (𝑟, 𝑄 [𝑓]) + 𝑆 (𝑟, 𝑓)

≤ Υ𝑄𝑚(𝑟, 𝑓) + 𝑆 (𝑟, 𝑓) .

(30)

It follows that𝑚(𝑟, 𝑓) = 𝑆(𝑟, 𝑓), which is impossible.
Therefore, ϝ ̸≡ 0.
Then

𝑇(𝑟,
ϝ
󸀠

ϝ
) ≤ 𝑁 (𝑟, ϝ) + 𝑁(𝑟,

1

ϝ
) + 𝑚(𝑟,

ϝ
󸀠

ϝ
) + 𝑆 (𝑟, 𝑓)

≤ 𝑁 (𝑟, 𝑓) + 𝑁(𝑟,
1

ϝ
) + 𝑆 (𝑟, 𝑓) .

(31)
From (29) and the condition of the theorem, we know

𝑇(𝑟, ϝ
󸀠
/ϝ) = 𝑆(𝑟, 𝑓).

By ϝ = 𝑓𝑛 + 𝑄[𝑓], we have

ϝ
󸀠
=
ϝ
󸀠

ϝ
𝑓
𝑛
+
ϝ
󸀠

ϝ
𝑄 [𝑓] , ϝ

󸀠
= 𝑛𝑓
𝑛−1
𝑓
󸀠
+ 𝑄
󸀠
[𝑓] . (32)

And hence

𝑓
𝑛−1

(𝑓
ϝ
󸀠

ϝ
− 𝑛𝑓
󸀠
) = 𝑄 [𝑓](

𝑄
󸀠
[𝑓]

𝑄 [𝑓]
−
ϝ
󸀠

ϝ
) . (33)

Let

Ω1 [𝑓] = 𝑓
ϝ
󸀠

ϝ
− 𝑛𝑓
󸀠
,

Ω2 [𝑓] = 𝑄 [𝑓](
𝑄
󸀠
[𝑓]

𝑄 [𝑓]
−
ϝ
󸀠

ϝ
) .

(34)

Then

𝑓
𝑛−1
Ω1 [𝑓] = Ω2 [𝑓] , (35)

whereΩ1[𝑓] andΩ2[𝑓] are quasi-differential polynomials.
By Lemma 13 we have

𝑚(𝑟,Ω1 [𝑓]) = 𝑆 (𝑟, 𝑓) . (36)
By Lemma 10 and (35) we obtain

𝑁(𝑟,Ω1 [𝑓]) = 𝑁 (𝑟, Ω2 [𝑓]) − (𝑛 − 1)𝑁 (𝑟, 𝑓) + 𝑆 (𝑟, 𝑓)

≤ Υ𝑄𝑁(𝑟, 𝑓) + (Γ𝑄 − Υ𝑄 + 1)𝑁 (𝑟, 𝑓)

− (𝑛 − 1)𝑁 (𝑟, 𝑓) + 𝑆 (𝑟, 𝑓)

≤ (Γ𝑄 − Υ𝑄 + 1)𝑁 (𝑟, 𝑓) + 𝑆 (𝑟, 𝑓) .

(37)

Note that𝑁(𝑟, 𝑓) = 𝑆(𝑟, 𝑓).
So 𝑇(𝑟, Ω1[𝑓]) = 𝑆(𝑟, 𝑓).

From (34) we know that 𝑄[𝑓] is a polynomial and Υ𝑄 ≤
𝑛 − 1.

Set

𝑄 [𝑓] = 𝑏 (𝑧) 𝑓
𝑛−1

+ 𝑃 [𝑓] , (38)

where 𝑃[𝑓] is a polynomial and 𝑏(𝑧) is a small function of 𝑓;
moreover Υ𝑃 ≤ 𝑛 − 2.

Set 𝑔 = 𝑓 + (𝑏(𝑧)/𝑛); we have

ϝ = 𝑔
𝑛
+ 𝑅 [𝑔] , (39)

where 𝑅[𝑔] is a polynomial and Υ𝑅 ≤ 𝑛 − 2.
Now proceeding as the above proof, we get

𝑔
𝑛−1

(𝑔
ϝ
󸀠

ϝ
− 𝑛𝑔
󸀠
) = 𝑅 [𝑔](

𝑅
󸀠
[𝑔]

𝑅 [𝑔]
−
ϝ
󸀠

ϝ
) . (40)

By Lemma 13 we obtain

𝑚(𝑟, (𝑔
ϝ
󸀠

ϝ
− 𝑛𝑔
󸀠
)𝑔) = 𝑆 (𝑟, 𝑓) ,

𝑚(𝑟, 𝑔
ϝ
󸀠

ϝ
− 𝑛𝑔
󸀠
) = 𝑆 (𝑟, 𝑓) .

(41)

Therefore we have

𝑇(𝑟, (𝑔
ϝ
󸀠

ϝ
− 𝑛𝑔
󸀠
)𝑔) = 𝑆 (𝑟, 𝑓) ,

𝑇(𝑟, 𝑔
ϝ
󸀠

ϝ
− 𝑛𝑔
󸀠
) = 𝑆 (𝑟, 𝑓) .

(42)

Notice that 𝑇(𝑟, 𝑔) = 𝑇(𝑟, 𝑓) + 𝑆(𝑟, 𝑓) ̸= 𝑆(𝑟, 𝑓).
We can get 𝑔(ϝ󸀠/ϝ) − 𝑛𝑔󸀠 ≡ 0.
So ϝ ≡ 𝑐𝑔𝑛, where 𝑐 is a constant. Obviously 𝑐 = 1.
This proves Theorem 6.

3. Application

Very recently, Yi (see [8, 9]) proved the following result.

TheoremD. Let 𝑓 be a transcendental meromorphic function
and let 𝑝(𝑧) be a polynomial, 𝑝(𝑧) ̸≡ 0. If 𝑓 and 𝑓󸀠 share 0 in
C, then 𝑓󸀠 − 𝑝(𝑧) has infinitely many zeros.

Remark 15. From the hypothesis ofTheoremE, it can be easily
seen that all zeros of 𝑓 have multiplicity at least two.

Ren andYang 2013 (see [10]) obtained the following result.

Theorem E. Let 𝑓 be a transcendental meromorphic function
and let 𝑅 be a rational function, 𝑅 ̸≡ 0. Suppose that, with the
exception of possibly finitely many, all zeros and poles of 𝑓 are
multiple. Then 𝑓󸀠 − 𝑅 has infinitely many zeros.

It is natural to ask the following question: what can we say
if𝑓󸀠 is replaced by𝑓(𝑘) and 𝑝(𝑧) and𝑅 are replaced by a small
function relative to 𝑓 in Theorems D and E?

Later, Yang (see [11]) answered the above question and
obtained the following result.
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Theorem F. Let 𝑓 be a transcendental meromorphic function
satisfying

𝑁(𝑟,
1

𝑓
) = 𝑆 (𝑟, 𝑓) . (43)

Then, for any 𝑘 ≥ 1 and any small function 𝑎(𝑧)( ̸≡ 0,∞) of
𝑓,

𝑁(𝑟,
1

𝑓(𝑘) − 𝑎 (𝑧)
) ̸= 𝑆 (𝑟, 𝑓) . (44)

We supplement Theorems D and E, improve Theorem F,
and obtain the following result.

Theorem 16. Let ℎ be a transcendental meromorphic function
satisfying

𝑁(2 (𝑟,
1

ℎ
) = 𝑆 (𝑟, ℎ) . (45)

Then, for any 𝑛 ≥ 2 and any small function 𝑎(𝑧)( ̸≡ 0,∞) of ℎ,

𝑁(𝑟,
1

ℎ(𝑛) − 𝑎 (𝑧)
) ̸= 𝑆 (𝑟, ℎ) . (46)

The method of our proof essentially belongs to Yang. For
the completeness, we give the proof here.

Proof. Set

ℎ =
1

𝑓
. (47)

Then

𝑇 (𝑟, 𝑓) = 𝑇 (𝑟, ℎ) + 𝑂 (1) ,

𝑁(2 (𝑟,
1

ℎ
) = 𝑁(2 (𝑟, 𝑓) .

(48)

Obviously

𝑆 (𝑟, 𝑓) = 𝑆 (𝑟, ℎ) . (49)

Now

ℎ
󸀠󸀠
=

−𝑓𝑓
󸀠
+ 2(𝑓

󸀠
)
2

𝑓3
,

ℎ
󸀠󸀠󸀠
=

−6(𝑓
󸀠
)
3
− 𝑓
2
𝑓
󸀠󸀠
+ 2𝑓(𝑓

󸀠
)
2
+ 4𝑓𝑓

󸀠
𝑓
󸀠󸀠

𝑓4
⋅ ⋅ ⋅ .

(50)

Thus, in general,

ℎ
(𝑛)
=
𝑄𝑛 (𝑓)

𝑓𝑛+1
, (51)

where𝑄𝑛(𝑓) denotes a homogeneous differential polynomial
in 𝑓 of degree 𝑛. So

ℎ
(𝑛)
− 𝑎 (𝑧) =

𝑄𝑛 (𝑓) − 𝑎 (𝑧) 𝑓
𝑛+1

𝑓𝑛+1
. (52)

If the assertion of the theorem was false, that is,

𝑁(𝑟,
1

ℎ(𝑛) − 𝑎 (𝑧)
) = 𝑆 (𝑟, 𝑓) , (53)

then from (52) we have

ϝ = 𝑓
𝑛+1

−
𝑄𝑛 (𝑓)

𝑎 (𝑧)
. (54)

Thus from (48), (53), and (54), we obtain

𝑁(2 (𝑟, 𝑓) + 𝑁(𝑟,
1

ϝ
) = 𝑆 (𝑟, 𝑓) . (55)

CombiningTheorem 6, (55) gives

ϝ = (𝑓 +
𝑐

𝑛 + 1
)

𝑛+1

, (56)

where 𝑐 (a small function of 𝑓) is determined by the two
equations: 𝑔 = 𝑓 + (𝑐/(𝑛 + 1)) and 𝑐𝑔𝑛 = −(𝑄𝑛(𝑔)/𝑎(𝑧)).

We may claim that

(i) 𝑆(𝑟, 𝑓) = 𝑆(𝑟, 𝑔);
(ii) 𝑁(𝑟, 𝑔) = 𝑆(𝑟, 𝑔);

(iii) 𝑇(𝑟, 𝑔(𝑘)/𝑔) = 𝑆(𝑟, 𝑔) for all 𝑘 ∈ N.

In fact, from the definition of 𝑔 we know that the claim
(i) above holds.

By (54) we have Γϝ > 2.
From 𝑔 = 𝑓 + (𝑐/(𝑛 + 1)), Γϝ > 2, and (29) we get

𝑁(𝑟, 𝑔) = 𝑁 (𝑟, 𝑓) + 𝑁 (𝑟, 𝑐) = 𝑆 (𝑟, 𝑓) = 𝑆 (𝑟, 𝑔) . (57)

That is, the claim (ii) above holds.
Combining (53) and the claims (i) and (ii), wemay deduce

𝑇(𝑟,
𝑔
(𝑘)

𝑔
) = 𝑁(𝑟,

𝑔
(𝑘)

𝑔
) + 𝑚(𝑟,

𝑔
(𝑘)

𝑔
)

≤ 𝑘𝑁 (𝑟, 𝑔) + 𝑁(𝑟,
1

𝑔
) + 𝑆 (𝑟, 𝑔)

≤ 𝑘𝑁 (𝑟, 𝑔) + 𝑁(𝑟,
1

ϝ
) + 𝑆 (𝑟, 𝑔)

≤ 𝑆 (𝑟, 𝑔) .

(58)

Then the claim (iii) is true also.
Thus, by (54) and (56), we obtain

(𝑓 +
𝑐

𝑛 + 1
)

𝑛+1

= 𝑓
𝑛+1

+ 𝑐𝑓
𝑛
+

𝑛+1

∑

𝑘=2

𝐶
𝑘
𝑛+1(

𝑐

𝑛 + 1
)

𝑘

𝑓
𝑛+1−𝑘

= 𝑓
𝑛+1

−
𝑄𝑛 (𝑓)

𝑎 (𝑧)
.

(59)
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Since 𝑐𝑓𝑛 ≡ −(𝑄𝑛(𝑓)/𝑎(𝑧)), it follows that

𝑛+1

∑

𝑘=2

𝐶
𝑘
𝑛+1(

𝑐

𝑛 + 1
)

𝑘

𝑓
𝑛+1−𝑘

≡ 0, (60)

which is impossible unless 𝑐 ≡ 0.
But then, from (59), −(𝑄𝑛(𝑓)/𝑎(𝑧)) ≡ 0 and we have

ℎ
(𝑛)

≡ 0 which contradicts the fact that ℎ is a transcendental
meromorphic function.

This completes the proof of Theorem 16.

Remark 17. For 𝑛 = 1, from the proof of Theorem 16 and
Corollary 5, we know that if the condition “𝑁(2(𝑟, 1/ℎ) =

𝑆(𝑟, ℎ)” is replaced with “𝑁(𝑟, 1/ℎ) = 𝑆(𝑟, ℎ)” in Theorem 16,
then the conclusion still holds.
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