
Research Article
Nonlinear Dynamic Surface Control of Chaos in Permanent
Magnet Synchronous Motor Based on the Minimum Weights of
RBF Neural Network

Shaohua Luo1,2

1 School of Automation, Chongqing University, Chongqing 400044, China
2Department of Mechanical Engineering, Chongqing Aerospace Polytechnic College, Chongqing 400021, China

Correspondence should be addressed to Shaohua Luo; hua66com@163.com

Received 4 April 2014; Accepted 7 May 2014; Published 22 June 2014

Academic Editor: Jun Hu

Copyright © 2014 Shaohua Luo.This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This paper is concerned with the problem of the nonlinear dynamic surface control (DSC) of chaos based on the minimum
weights of RBF neural network for the permanent magnet synchronous motor system (PMSM) wherein the unknown parameters,
disturbances, and chaos are presented. RBF neural network is used to approximate the nonlinearities and an adaptive law is
employed to estimate unknown parameters. Then, a simple and effective controller is designed by introducing dynamic surface
control technique on the basis of first-order filters. Asymptotically tracking stability in the sense of uniformly ultimate boundedness
is achieved in a short time. Finally, the performance of the proposed controller is testified through simulation results.

1. Introduction

The permanent magnet synchronous motor is widely used in
the industrial applications [1, 2]. But PMSMwith nonuniform
breath appears to be the chaotic behavior at specific param-
eters and working conditions. This behavior leads to the
intermittent oscillation of torque and speed, irregular current
noise of the system, and unstable control performance.
Furthermore, it intensively influences the stability and safety
of the system [3].

For ameliorating the performance of the PMSM system,
a large amount of literatures and control methods have been
attempted to apply to the motor. For example, to improve the
error convergence rate, the nonsingular fast terminal sliding
mode control (SMC) [4] which can reach finite-time stability
is applied. In [5], a high-order SMCmethod via backstepping
is presented to attain finite-time tracking control regardless of
mismatched disturbance. However, the controller appears to
be discontinuous phenomenon in dynamic slidingmanifolds.
In [6], an adaptive backstepping based terminal sliding mode
controller for parameter strict-feedback system is proposed,
where the finite-time convergence of the error is achieved.

Furthermore, the OGY method is a fundamental tech-
nology for controlling chaos [7, 8]. Unfortunately, choosing
an adjustable parameter usually becomes very difficult in real
practice. Control of chaos by using the time-delay feedback
control technology is introduced to the real applications,
but it suffers from some problems as the control objective
must be the equilibrium [9]. The dynamic surface control
developed by Swaroop et al. [10] is a control technique by
introducing a filter at each recursive step of the backstepping
design procedure, so the differentiation items on the virtual
function can be avoided.DSChas been pioneered by thework
of Swaroop et al. about 10 years ago, but it does not consider
nonlinear plant with uncertain time delays and disturbances.
Also, nonlinear items are assumed to be completely known
and the control gain is equal to one. In 2005, by incorporating
DSC into a neural network based adaptive control design
framework,Wang andHuang proposed a backstepping based
control design for a class of nonlinear systems in strict-
feedback form with arbitrary uncertainty [11]. However,
uncertain time delays and disturbances are not involved
in the model and the control gain is equal to one. Zhang
et al. in 2008 proposed adaptive DSC for a class of pure-
feedback nonlinear systems with unknown dead zone and
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Table 1: The denotation of the PMSM parameters.

Parameter Denotation
𝑖𝑑 The direct-axis currents (A)
𝜔 The velocity of the rotor (rad/s)
𝑢𝑑 The direct-axis voltage (V)
𝑇𝐿 The load torque (Nm)
𝐿𝑑 The direct-axis winding inductance (H)
𝜓𝑟 The permanent magnet flux (Wb)
𝐽 The polar moment of inertia (kgm2)
𝑖𝑞 The quadrature-axis currents (A)
𝑡 The time (s)
𝑢𝑞 The quadrature-axis voltage (V)
𝑅 The stator winding resistance (Ω)
𝐿
𝑞 The quadrature-axis winding inductance (H)

𝐵 The viscous damping coefficient (N/rad/s)
𝑛𝑝 The number of pole pairs

perturbed uncertainties using neural networks [12], Na et
al. in 2011 [13] presented adaptive neural dynamic surface
control for servo systems with unknown dead zone, Li et al.
in 2013 presented an adaptive fuzzy DSC output feedback
approach for a single-link robotic manipulator coupled to a
brushed direct current motor with a nonrigid joint [14], and
Tong et al. in 2013 presented an adaptive fuzzy decentralized
backstepping output feedback control approach for a class
of uncertain large-scale stochastic nonlinear systems without
the measurements of the states [15]. In their works, it is
assumed that there exists positive constant which satisfies
specified constraint condition. But it is very difficult to define
the boundedness of unknown control gain in real practice.
Incidentally, the PMSM is known to exhibit chaotic behav-
ior under certain conditions. Whether the latter methods
can suppress the chaos oscillation in PMSM needs further
research since DSC with RBF has been pioneered by the
work of Wang et al. In addition, Hu et al. overcame the
gain-constrained recursive filtering challenge for a class of
time-varying nonlinear stochastic systems with probabilistic
sensor delays and correlated noises [16] and solved the recur-
sive filtering problem for a class of discrete-time nonlinear
stochastic systemswith randomparametermatrices, multiple
fading measurements, and correlated noises [17]. He further
investigated the recursive finite-horizon filtering problem for
a class of nonlinear time-varying systems subject to mul-
tiplicative noises, missing measurements, and quantisation
effects [18, 19]. The issues discussed in these literatures offer
significant references to the research of chaos control in
PMSM.

Inspired by the work above, a new approach to design
the nonlinear dynamic surface controller based on the
minimum weights of RBF neural network is proposed for
permanent magnet synchronous motor with the unknown
parameters, disturbances, and chaos. During the controller
design process, RBF neural network is employed to approx-
imate unknown nonlinear functions. The main difficulty
encountered in the controller design process is how to deal

with the unknown control gain in the system. To overcome
this difficulty, the adaptive method was also introduced to
handle the problem. The proposed controller guarantees a
good tracking performance and the boundedness of all the
signals in the closed-loop system. Furthermore, the suggested
controller contains the minimum weights of RBF neural
network. As a result, the computational burden of the scheme
is greatly alleviated. This makes our design controller more
suitable for practical applications.

2. Mathematic Model

It is well known that the PMSM is applied widely in the
motor drives, servo systems, and household appliances owing
to advantages, for instance, simple structure, high efficiency,
high power density, and low manufacturing cost [20]. How-
ever, the PMSM is experiencing chaotic behavior when the
system parameters are falling into a special area, which can
lead to the enormous destruction. The mathematic model of
the PMSM based on the 𝑑-𝑞 axis is given as follows [21, 22]:

𝑑𝜔

𝑑𝑡
=

𝑛𝑝

𝐽
(𝐿𝑑 − 𝐿𝑞) 𝑖𝑑𝑖𝑞 +

𝑛𝑝

𝐽
𝜓𝑟𝑖𝑞 −

𝐵

𝐽
𝜔 −

1

𝐽
𝑇𝐿,

𝑑𝑖𝑞

𝑑𝑡
= −

𝑅

𝐿𝑞

𝑖𝑞 −
𝐿𝑑

𝐿𝑞

𝜔𝑖𝑑 −
𝜓𝑟

𝐿𝑞

𝜔 +
1

𝐿𝑞

𝑢𝑞,

𝑑𝑖𝑑

𝑑𝑡
= −

𝑅

𝐿𝑑

𝑖𝑑 +

𝐿𝑞

𝐿𝑑

𝜔𝑖𝑞 +
1

𝐿𝑑

𝑢𝑑.

(1)

The denotations of the PMSM parameters are shown in
Table 1. Suppose the direct and the quadrature-axis winding
inductances are equal; that is, 𝐿 = 𝐿𝑑 = 𝐿𝑞. Meanwhile
assume the time scale 𝜏 to be such that 𝜏 = 𝐿/𝑅 and define the
normalized time 𝑡 to be such that 𝑡 = 𝑡/𝜏 and the scalar 𝜅 to
be such that 𝜅 = 𝐵/(𝑛𝑝𝜏𝜓𝑟). Finally, the scaled state variables
𝜔, 𝑖𝑑, and 𝑖𝑞 are defined as follows:

𝜔 = 𝜔𝜏, 𝑖𝑑 =
𝑖𝑑

𝜅
, 𝑖𝑞 =

𝑖𝑞

𝜅
, (2)

where 𝜔, 𝑖𝑑, and 𝑖𝑞 are the normalized motor angular speed
and the normalized quadrature-axis and direct-axis currents,
respectively.

Then, the new normalized model for the PMSM is
rewritten as

𝑑𝜔

𝑑𝑡
= 𝜎 (𝑖𝑞 − 𝜔) − 𝑇𝐿,

𝑑𝑖𝑞

𝑑𝑡
= − 𝑖𝑞 − 𝑖𝑑𝜔 + 𝛾𝜔 + 𝑢𝑞,

𝑑𝑖𝑑

𝑑𝑡
= − 𝑖𝑑 + 𝑖𝑞𝜔 + 𝑢𝑑,

(3)

where 𝛾 = −𝜓𝑟/(𝜅𝐿), 𝜎 = 𝐵𝜏/𝐽, 𝑇𝐿 = 𝜏
2
𝑇𝐿/𝐽, 𝑢𝑞 =

𝑢𝑞/(𝜅𝑅), 𝑢𝑑 = 𝑢𝑑/(𝜅𝑅), 𝑢𝑞 and 𝑢𝑑 denote the normalized
quadrature-axis and direct-axis stator voltage, respectively,
𝑇𝐿 presents the normalized load torque, and 𝜎 and 𝛾 are
previously defined system parameter.
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Figure 1: Three-dimensional phase diagram with parameters 𝜎 =

5.45 and 𝛾 = 20.

Figures 1 and 2 reveal the chaotic behavior of the PMSM
for the situation of 𝜎 = 5.45, 𝛾 = 20, 𝑢𝑞 = 𝑢𝑑 = 0,
𝑇𝐿 = 0, 𝜔(0) = −5, 𝑖𝑞(0) = 0.01, and 𝑖𝑑(0) = 20, in which
it appears as an aperiodic, random, sudden, or intermittent
morbid oscillation.

It is obvious that the model of the PMSM has high non-
linearity because of the coupling between the speed and the
currents. In addition, the indeterminate system parameters
𝜎 and 𝛾 are enormously impacted by realistic conditions.
So as to control efficiently the PMSM, 𝑢𝑞 and 𝑢𝑑 are used
as the manipulated variables. Then, a nonlinear dynamics
surface control approach based on RBF neural network is
proposed to restrain the chaos, parameters variation, and
external disturbance in the PMSM.

For the sake of simplicity, the following symbols are
introduced:

𝑥1 = 𝜔, 𝑥2 = 𝑖𝑞, 𝑥3 = 𝑖𝑑. (4)

Then, the mathematic model of the PMSM can be
represented as follows:

𝑥̇1 = 𝜎𝑥2 − 𝜎𝑥1 − 𝑇𝐿 + Δ 1,

𝑥̇2 = − 𝑥2 − 𝑥1𝑥3 + 𝛾𝑥1 + 𝑢𝑞 + Δ 2,

𝑥̇3 = − 𝑥3 + 𝑥1𝑥2 + 𝑢𝑑 + Δ 3,

(5)

where Δ 𝑖, 𝑖 = 1–3, denote the external disturbance.

Assumption 1. The unknown disturbance terms Δ 𝑖 satisfy
|Δ 𝑖(𝑥, 𝑡)| < 𝑑𝑖, 𝑖 = 1–3, and the parameter 𝜎 is unknown and
bounded. Moreover, it is assumed that |𝜎| ≤ 𝐺.

Assumption 2. The desired trajectory 𝑦𝑟 is continuous, and
its first-order derivative ̇𝑦𝑟 and second-order derivative ̈𝑦𝑟 are
bounded and available.

3. Controller Design

3.1. RBF Neural Network. The type of RBF neural network
is considered as a two-layer network, which contains a
hidden layer and an output layer. In this paper, the RBF
neural network will be used to approximate the unknown
continuous function 𝑓(𝑧) : 𝑅

𝑛
→ 𝑅 as follows:

𝑓 (𝑧) = 𝜃
∗𝑇
𝜉 (𝑧) , (6)

where 𝑧 ∈ Ω ⊂ 𝑅
𝑛 is the input vector with 𝑛 being the neural

network input dimension, 𝜃∗ = [𝜃
∗

1
, 𝜃
∗

2
, . . . , 𝜃

∗

𝑙
]
𝑇
∈ 𝑅
𝑙 is the

weight vector, 𝑙 > 1 is the node number of neuron, and 𝜉(𝑧) =

[𝜉1(𝑧), 𝜉2(𝑧), . . . , 𝜉𝑛(𝑧)]
𝑇
∈ 𝑅
𝑙 is a basic function vector with

𝜉𝑖(𝑧) chosen as the commonly used Gaussian function in the
following form:

𝜉𝑖 (𝑧) = exp[−
󵄨󵄨󵄨󵄨𝑧 − 𝜇𝑖

󵄨󵄨󵄨󵄨

2

2𝜎
2

𝑖

]

= exp[−
(𝑧 − 𝜇𝑖)

𝑇
(𝑧 − 𝜇𝑖)

2𝜎
2

𝑖

] , 𝑖 = 1, 2, . . . , 𝑙,

(7)

where 𝜇𝑖 = [𝜇𝑖1, 𝜇𝑖2, . . . , 𝜇𝑖𝑛]
𝑇 is the center of the receptive

field and 𝜎𝑖 is the width of 𝜉𝑖(𝑧).
For given scalar 𝜀 > 0, by choosing sufficiently large

𝑙, the RBF neural network can approximate any continuous
function over a compact set Ω ∈ 𝑅

𝑛 to arbitrary accuracy as
follows:

𝑓 (𝑧) = 𝜃
𝑇
𝜉 (𝑧) + 𝜀 (𝑧) , ∀𝑧 ∈ Ω ∈ 𝑅

𝑛
, (8)

where 𝜀(𝑧) is the approximation error and 𝜃 is an unknown
ideal constant weight vector, which is an artificial quantity
required for analytical purpose. Typically, 𝜃 is chosen as the
value of 𝜃∗ that minimizes |𝜀(𝑧)|, for all 𝑧 ∈ Ω; that is,

𝜃 = arg min
𝜃∗∈𝑅𝑛

{sup
𝑧∈Ω

󵄨󵄨󵄨󵄨󵄨
𝑓 (𝑧) − 𝜃

∗𝑇
𝜉 (𝑧)

󵄨󵄨󵄨󵄨󵄨
} . (9)

Assumption 3. The approximation error 𝜀 is bounded, and it
has positive constant 𝜀𝑀 which satisfies |𝜀𝑖| ≤ 𝜀𝑀, 𝑖 = 1–3.

Assumption 4. There exists a positive and bounded constant
𝜌𝑖 which satisfies |𝜀𝑀 + 𝑑𝑖| ≤ 𝜌𝑖.

3.2. The Controller of Dynamics Surface Control Approach
Based on RBF Neural Network. In this section, the controller
of dynamics surface control approachwill be developed based
on the minimum weights of RBF neural network. The design
procedure consists of three steps.Then, the detail process will
be given.

Step 1. The first dynamic surface is defined as 𝑆1 = 𝑥1 − 𝑦𝑟.
Then, the time derivative of 𝑆1 can be obtained as follows:

̇𝑆1 = 𝜎𝑥2 + 𝑓1 + Δ 1 − ̇𝑦𝑟, (10)

where 𝑓1 = −𝜎𝑥1 − 𝑇𝐿.

The operating parameter 𝜎 is usually unknown due to the
effect of the work environment. It is difficult for traditional
methods to deal with the problem. In order to solve it, the
adaptive technique is introduced to estimate the 𝜎, and the
adaptive RBF neural network is used to approximate the
uncertain item 𝑓1 with little error. Therefore, for any given
𝜀1, there exists a RBF neural network 𝜃

𝑇

1
𝜉1 such that

𝑓1 = 𝜃
𝑇

1
𝜉1 + 𝜀1, (11)

where 𝜀1 is the approximation error and satisfies |𝜀1| ≤ 𝜀𝑀.
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Figure 2: The chaotic time series of the PMSM.

Substituting (11) into (10) yields the following:
̇𝑆1 ≤ 𝜎𝑥2 + 𝜃

𝑇

1
𝜉1 + 𝜌1 − ̇𝑦𝑟. (12)

The virtual control and related adaptive laws can be
designed as follows:

𝛼2 =
𝜎̂

𝜎̂2 + 𝜂
(−𝑘1𝑆1 −

1

2𝑎
2

1

𝜆̂1𝑆1𝜉
𝑇

1
𝜉1 −

1

2
𝑆1𝜌
2

1
+ ̇𝑦𝑟) , (13)

̇̂
𝜆1 =

1

2𝑎
2

1

𝛾1𝜉
𝑇

1
𝜉1𝑆
2

1
− 𝑚1𝜆̂1, (14)

̇̂𝜎 = Γ1 (𝑆1𝛼2 − 𝑐1𝜎̂) , (15)

where 𝜆̂1 = ‖𝜃1‖
2

belongs to a minimum weights of RBF
neural network which greatly speeds up the solution speed,
𝑘1, 𝑚1, 𝑎1, 𝛾1, 𝑐1, and Γ1 are the design constant, and 𝜂 is a
small positive constant.

Introduce variables 𝜆̃1 and 𝜎̃ as follows:

𝜆̃1 = 𝜆̂1 − 𝜆1,

𝜎̃ = 𝜎̂ − 𝜎.

(16)

Let 𝛼2 be passed through a first-order filter with a time
constant 𝜏2 as follows:

𝜏2𝛼̇2𝑓 + 𝛼2𝑓 = 𝛼2, 𝛼2𝑓 (0) = 𝛼2 (0) . (17)

Define the filter error as 𝑦2 = 𝛼2𝑓 − 𝛼2. With (17) and 𝑦2,
it yields that

𝛼̇2𝑓 = −
𝑦2

𝜏2

. (18)

Then, the time derivative of 𝑦2 can be obtained as follows:

̇𝑦2 = −
𝑦2

𝜏2

− [
𝜎̂

𝜎̂2 + 𝜂
(−𝑘1

̇𝑆1 −
̇̂
𝜃

𝑇

1
𝜉1 − 𝜃

𝑇

1

𝜕𝜉1

𝜕𝑥1

𝑥̇1

−
1

2

̇𝑆1𝜌
2

1
− 𝑆1𝜌1

𝜕𝜌
1

𝜕𝑥1

𝑥̇1 + ̈𝑦𝑟)]

− [

(𝜂 − 𝜎̂
2
) ̇̂𝜎

(𝜎̂2 + 𝜂)
2
(−𝑘1𝑆1 − 𝜃

𝑇

1
𝜉1 −

1

2
𝑆1𝜌
2

1
+ ̇𝑦𝑟)] .

(19)

It is obtained that

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

̇𝑦2 +
𝑦2

𝜏2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝐵2 (𝑆1, 𝑆2, 𝑦2, 𝜆̂1, 𝜎̂, 𝑦𝑟, ̇𝑦𝑟, ̈𝑦𝑟) . (20)

Using Young’s inequality, one has

𝑦2 ̇𝑦2 ≤ −
𝑦
2

2

𝜏2

+ 𝑦
2

2
+
1

4
𝐵
2

2
, (21)

where 𝐵2(𝑆1, 𝑆2, 𝑦2, 𝜆̂1, 𝜎̂, 𝑦𝑟, ̇𝑦𝑟, ̈𝑦𝑟) is the continuous func-
tion.
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Substituting (13)–(21) into (12), (12) becomes

̇𝑆1 ≤ 𝜎 (𝑆2 + 𝑦2) − 𝜎̃𝛼2 +
𝜎̂
2

𝜎̂2 + 𝜂

× (−𝑘1𝑆1 −
1

2𝑎
2

1

𝜆̂1𝑆1𝜉
𝑇

1
𝜉1 −

1

2
𝑆1𝜌
2

1
+ ̇𝑦𝑟)

+ 𝜃
𝑇

1
𝜉1 + 𝜌1 − ̇𝑦𝑟.

(22)

One has

𝑆1
̇𝑆1 ≤ 𝜎(𝑆

2

1
+
1

4
𝑆
2

2
) −

𝜂

𝜎̂2 + 𝜂

× (−𝑘1𝑆1 −
1

2𝑎
2

1

𝜆̂1𝑆1𝜉
𝑇

1
𝜉1 −

1

2
𝑆1𝜌
2

1
+ ̇𝑦𝑟)𝑆1

+ 𝜎(𝑆
2

1
+
1

4
𝑦
2

2
) − 𝜎̃𝛼2𝑆1 − 𝑘1𝑆

2

1

−
1

2𝑎
2

1

𝜆̃1𝜉
𝑇

1
𝜉1𝑆
2

1
+
1

2
+
𝑎
2

1

2

≤ (2𝐺 − 𝑘1) 𝑆
2

1
+
1

4
𝐺𝑆
2

2
+
1

4
𝐺𝑦
2

2
− 𝜎̃𝛼2𝑆1

−
1

2𝑎
2

1

𝜆̃1𝜉
𝑇

1
𝜉1𝑆
2

1
+
1

2
+
𝑎
2

1

2
.

(23)

Consider the Lyapunov function candidate as follows:

𝑉1 =
1

2
(𝑆
2

1
+ 𝑦
2

2
+

1

𝛾1

𝜆̃
2

1
+

1

Γ1

𝜎̃
2
) . (24)

Then, the time derivative of 𝑉1 is obtained as follows:

𝑉̇1 ≤ (2𝐺 − 𝑘1) 𝑆
2

1
+
1

4
𝐺𝑆
2

2
+
1

2
+
𝑎
2

1

2

+ (−
1

𝜏2

+ 1 +
1

4
𝐺)𝑦
2

2
+
1

4
𝐵
2

2

−
1

2

𝑚
1

𝛾1

𝜆̃
2

1
−
1

2
𝑐1𝜎̃
2
+
1

2

𝑚
1

𝛾1

𝜆
2

1
+
1

2
𝑐1𝜎
2
.

(25)

For the terms −𝑐1𝜎̃𝜎̂ and −(1/𝛾1)𝑚1𝜆̃1𝜆̂1, one has −𝑐1𝜎̃𝜎̂ ≤

−(1/2)𝑐1𝜎̃
2
+ (1/2)𝑐1𝜎

2 and

−
1

𝛾1

𝑚1𝜆̃1𝜆̂1 = −
1

𝛾1

𝑚1𝜆̃1 (𝜆̃1 + 𝜆1)

≤ −
1

2

𝑚1

𝛾1

𝜆̃
2

1
+
1

2

𝑚1

𝛾1

𝜆
2

1
.

(26)

Step 2. The second dynamic surface is given as

𝑆2 = 𝑥2 − 𝛼2𝑓. (27)

Then, differentiating 𝑆2 gives

̇𝑆2 = 𝑓2 + Δ 2 + 𝑢𝑞 − 𝛼̇2𝑓, (28)

where 𝑓2 = −𝑥1𝑥3 − 𝑥2 + 𝛾𝑥1.

To facilitate engineering application, a minimum-
weights-based RBF neural network will be employed to
approximate the nonlinear function 𝑓2 again. Therefore,
there exists a RBF neural network system such that

𝑓2 = 𝜃
𝑇

2
𝜉2 + 𝜀2, (29)

where 𝜀2 is the approximation error and satisfies |𝜀2| ≤ 𝜀𝑀.
Substituting (29) into (28), one has

̇𝑆2 ≤ 𝜃
𝑇

2
𝜉2 + 𝑢𝑞 + 𝜌2 − 𝛼̇2𝑓. (30)

Similarly, the relevant control law and adaptive law are
provided in the following forms:

𝑢𝑞 = −𝑘2𝑆2 −
1

2𝑎
2

2

𝜆̂2𝑆2𝜉
𝑇

2
𝜉2 −

1

2
𝑆2𝜌
2

2
+ 𝛼̇2𝑓, (31)

̇̂
𝜆2 =

1

2𝑎
2

2

𝛾2𝜉
𝑇

2
𝜉2𝑆
2

2
− 𝑚2𝜆̂2, (32)

where 𝑘2, 𝑚2, 𝑎2, and 𝛾2 are the design constant and 𝜆̂2 =

‖𝜃2‖
2

.
With (31) and (32), (30) is written as follows:

̇𝑆2 ≤ −𝑘2𝑆2 + 𝜃
𝑇

2
𝜉2 + 𝜌2 −

1

2𝑎
2

2

𝜆̂2𝑆2𝜉
𝑇

2
𝜉2 −

1

2
𝑆2𝜌
2

2
. (33)

One has

𝑆2
̇𝑆2 ≤ −𝑘2𝑆

2

2
−

1

2𝑎
2

2

𝜆̃2𝑆
2

2
𝜉
𝑇

2
𝜉2 +

𝑎
2

2

2
+
1

2
. (34)

Choose the Lyapunov function candidate as follows:

𝑉2 =
1

2
(𝑆
2

2
+

1

𝛾2

𝜆̃
2

2
) . (35)

Then, the time derivative of 𝑉2 is

𝑉̇2 ≤ −𝑘2𝑆
2

2
+
𝑎
2

2

2
+
1

2
−
1

2

𝑚2

𝛾2

𝜆̃
2

2
+
1

2

𝑚2

𝛾2

𝜆
2

2
. (36)

For the term −(1/𝛾2)𝑚2𝜆̃2𝜆̂2, one has −(1/𝛾2)𝑚2𝜆̃2𝜆̂2 ≤

−(1/2)(𝑚2/𝛾2)𝜆̃
2

2
+ (1/2)(𝑚2/𝛾2)𝜆

2

2
.

Step 3. Choose the last dynamic surface as 𝑆3 = 𝑥3. Then, the
time derivative of 𝑆3 is calculated as follows:

̇𝑆3 = 𝑓3 + 𝑢𝑑 + Δ 3, (37)

where 𝑓3 = −𝑥3 + 𝑥1𝑥2.

In the same way, there is a minimum-weights-based RBF
neural network such that

𝑓3 = 𝜃
𝑇

3
𝜉3 + 𝜀3, (38)

where 𝜀3 is the approximation error and satisfies |𝜀3| ≤ 𝜀𝑀.
Substituting (38) into (37) gives

̇𝑆3 ≤ 𝜃
𝑇

3
𝜉3 + 𝜌3 + 𝑢𝑑. (39)
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Figure 3: Control schematic of the PMSM.

At the present stage, the control input is designed as
follows:

𝑢𝑑 = −𝑘3𝑆3 −
1

2𝑎
2

3

𝜆̂3𝑆3𝜉
𝑇

3
𝜉3 −

1

2
𝑆3𝜌
2

3
, (40)

where 𝑘3 is the positive constant and 𝜆̂3 = ‖𝜃3‖
2

.
According to the mention above, the adaptive law is

chosen as follows:

̇̂
𝜆3 =

1

2𝑎
2

3

𝛾3𝜉
𝑇

3
𝜉3𝑆
2

3
− 𝑚3𝜆̂3, (41)

where𝑚3, 𝑎3, and 𝛾3 are the design constant.
Similarly, (37) is given as follows:

̇𝑆3 ≤ 𝜃
𝑇

3
𝜉3 + 𝜌3 − 𝑘3𝑆3 −

1

2𝑎
2

3

𝜆̂3𝑆3𝜉
𝑇

3
𝜉3 −

1

2
𝑆3𝜌
2

3
. (42)

There exists

𝑆3
̇𝑆3 ≤ −

1

2𝑎
2

3

𝜆̃3𝑆
2

3
𝜉
𝑇

3
𝜉3 − 𝑘3𝑆

2

3
+
𝑎
2

3

2
+
1

2
. (43)

Choose the Lyapunov function candidate as follows:

𝑉3 =
1

2
(𝑠
2

3
+

1

𝛾3

𝜆̃
2

3
) . (44)

Using the equality in (44), it can be verified easily that

𝑉̇3 ≤ −𝑘3𝑆
2

3
+
𝑎
2

3

2
+
1

2
−
1

2

𝑚3

𝛾3

𝜆̃
2

3
+
1

2

𝑚3

𝛾3

𝜆
2

3
. (45)

For the term −(1/𝛾3)𝑚3𝜆̃3𝜆̂3, one has −(1/𝛾3)𝑚3𝜆̃3𝜆̂3 ≤

−(1/2)(𝑚3/𝛾3)𝜆̃
2

3
+ (1/2)(𝑚3/𝛾3)𝜆

2

3
.

Up to now, the design procedure of proposed controller
of the PMSM is completed. The proposed controller sig-
nificantly reduces the computation complexity compared

with traditional backstepping control and dynamics surface
control. Based on previous procedure, the configuration of
the proposed control system is depicted in Figure 3. The
overall configuration consists of the PMSM with load, the
space vector pulse width modulation (SVPWM), the voltage-
source inverter, the power source rectifier, the automatic
current regulator of the motor, the encoder used to detect
speed and position, 𝑞-axis and 𝑑-axis controllers.

4. Stability Analysis

For any given 𝑝 > 0, the closed sets can be defined as follows:

Π1 = {(𝑆1, 𝜆̂1, 𝜎̂, 𝑦2) : 𝑆
2

1
+ 𝑦
2

2
+

1

𝛾1

𝜆̃
2

1
+

1

Γ1

𝜎̃
2
≤ 2𝑝} ,

Π2 = { (𝑆1, 𝑆2, 𝜆̂1, 𝜆̂2, 𝜎̂, 𝑦2) :

2

∑

𝑖=1

𝑆
2

𝑖
+ 𝑦
2

2
+

2

∑

𝑖=1

1

𝛾
𝑖

𝜆̃
2

𝑖
+

1

Γ1

𝜎̃
2
≤ 2𝑝} ,

Π3 = { (𝑆1, . . . , 𝑆3, 𝜆̂1, . . . , 𝜆̂3, 𝜎̂, 𝑦2) :

3

∑

𝑖=1

𝑆
2

𝑖
+ 𝑦
2

2
+

3

∑

𝑖=1

1

𝛾𝑖

𝜆̃
2

𝑖
+

1

Γ1

𝜎̃
2
≤ 2𝑝} .

(46)

Theorem 5. Suppose that the control laws in (31) and (40)
with adaptive laws (14), (15), (32), and (41) are applied to the
PMSM; Assumptions 1–4 stand, and if there exists a positive
constant 𝑝 that the initial condition satisfies 𝑉3 ≤ 𝑝 and the
design constants 𝑘𝑖, 𝑎𝑖, 𝛾𝑖, 𝑚𝑖, Γ1, and 𝑐1 are chosen rationally,
then all the signals of the closed-loop system are semiglobally
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uniformly ultimately bounded, and the output tracking error
converges to a neighborhood of zero.

Proof. Define the Lyapunov function candidate as follows:

𝑉 =
1

2
(

3

∑

𝑖=1

𝑆
2

𝑖
+ 𝑦
2

2
+

3

∑

𝑖=1

1

𝛾𝑖

𝜆̃
2

𝑖
+

1

Γ1

𝜎̃
2
) . (47)

Consequently, one can obtain

𝑉̇ ≤ (2𝐺 − 𝑘1) 𝑆
2

1
− (𝑘2 −

1

4
𝐺) 𝑆
2

2

− 𝑘3𝑆
2

3
+ (−

1

𝜏2

+ 1 +
1

4
𝐺)𝑦
2

2
−
1

2
𝑐1𝜎̃
2

−
1

2

3

∑

𝑖=1

𝑚𝑖

𝛾𝑖

𝜆̃
2

𝑖
+
1

2

3

∑

𝑖=1

𝑚𝑖

𝛾𝑖

𝜆
2

𝑖

+
1

2
𝑐1𝜎
2
+

3

∑

𝑖=1

𝑎
2

𝑖

2
+
3

2
+
1

4
𝐵
2

2

≤ −2𝑎0𝑉 + 𝑏,

(48)

where 𝑏 = (1/2)∑
3

𝑖=1
(𝑚𝑖/𝛾𝑖)𝜆

2

𝑖
+ (1/2)𝑐1𝜎

2
+ ∑
3

𝑖=1
(𝑎
2

𝑖
/2) +

(3/2) + (1/4)𝐵
2

2
.

Furthermore, (48) implies that

0 ≤ 𝑉 (𝑡) ≤
𝑏

𝑎0

+ (𝑉 (0) −
𝑏

𝑎0

) 𝑒
−𝑎
0
𝑡
≤

𝑏

𝑎0

+ 𝑉 (0) . (49)

5. Performance Evaluation

The simulation is running to illustrate the effectiveness of the
scheme presented in this paper under the assumption that
the systemparameters and nonlinear functions are uncertain.
The initial conditions 𝑥1(0) = 𝑥2(0) = 1 and 𝑥3(0) = 1.5

are used in this section.The controller parameters are chosen
as follows: 𝑘1 = 35, 𝑘2 = 𝑘3 = 15, 𝛾1 = 𝛾2 = 𝛾3 = 2,
𝑚1 = 𝑚2 = 𝑚3 = 0.04, 𝑎1 = 𝑎2 = 𝑎3 = 30, 𝜏1 = 0.01,
𝜂 = 0.01, Γ1 = 20, 𝑐1 = 0.02, 𝜆̃1(0) = 𝜆̃2(0) = 𝜆̃3(0) = 0, and
𝜎̂(0) = 0.7.

To take into account the disturbance, the corresponding
expressions are given as follows:

Δ 1 = Δ 2 = Δ 3 = 0.04 × 𝑥
2

1
cos3 (3𝑡) ,

𝑇𝐿 = {
2.0Nm, 0 ≤ 𝑡 ≤ 4

3.5Nm, 𝑡 > 4.

(50)

The simulation results are shown in Figures 4(a)–4(f).
Figures 4(a) and 4(b) explicitly illustrate that the state error
of angular speed of the PMSM is gradually converged to zero
within a short time. Meanwhile, these pictures show that the
system successfully escapes from the chaotic behavior within
0.1 s and tracks the given trajectory with a great performance
in spite of uncertainty, nonlinearity, and external disturbance.
In Figures 4(c)–4(f), three kinds of curves basically overlap

without disturbance on the whole time. Obviously, these
pictures show the performance when the system parameters
𝜎 and 𝛾 have a perturbation. Furthermore, the indicators of
the PMSM can still converge quickly when the model suffers
from the disturbance. From the simulation results, it can
clearly be seen that the proposed controller guarantees the
boundedness of all the signals in the closed-loop system and
also achieves the good tracking performance.

6. Conclusion

In this paper, an adaptive dynamic surface control method of
chaos is applied to the permanentmagnet synchronousmotor
based on the minimum weights of RBF neural network.
The proposed controller guarantees the boundedness of all
the signals in the closed-loop system, while the tracking
error eventually converges to a small neighborhood of the
origin. Moreover, the suggested controller contains mini-
mum weights of RBF neural network. This makes the design
scheme easier to be implemented in practical applications.
Simulation results are given to show the effectiveness and
robustness of the proposed controller. Finally, some potential
future research works are pointed out, such as the recursive
filtering for time-varying nonlinear systems and slidingmode
design for time-invariant nonlinear systems.
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