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A numerical solution of fuzzy quadratic Riccati differential equation is estimated using a proposed new approach for neural
networks (NN). This proposed new approach provides different degrees of polynomial subspaces for each of the transfer function.
This multitude of transfer functions creates unique “agents” in the structure of the NN. Hence it is named as multiagent
neuroapproach (multiagent NN). Previous works have shown that results using Runge-Kutta 4th order (RK4) are reliable. The
results can be achieved by solving the Ist order nonlinear differential equation (ODE) that is found commonly in Riccati differential
equation. Multiagent NN shows promising results with the advantage of continuous estimation and improved accuracy that can
be produced over Mabood et al. (2013), RK-4, and the existing neuromethod (NM). Numerical examples are discussed to illustrate

the proposed method.

1. Introduction

In optimal control theory, solving the Riccati differential
equation for state space representation of a dynamical system
is a central issue. Chen et al. [1] have shown that the stochastic
LQR problem is well posed if there are solutions to the Riccati
equation and then optimal feedback control can be obtained.
In this paper, a new multiagent NN approach is proposed
to solve nonlinear Riccati differential equation that is related
to the LQR. Multiagent NN approach improved the results
generated by Mabood et al. [2], RK-4, group method of data
handling (GMDH), and neuromethod (NM).

Fundamental theories of Riccati equation can be applied
to stochastic processes and diffusion problems [3], robust
stabilization, network synthesis, and financial mathematics
[4, 5]. Apart from the more traditional methods like RK-4
and forward Euler method, there are other nontraditional
approaches for solving the aforementioned problems such as
the unconditionally stable scheme by Dubois and Saidi [6].
El-Tawil et al. [7] also have presented the usage of Adomian

decomposition method (ADM) to solve the nonlinear Riccati
differential equation in an analytical form. In this method, the
ODE can be decomposed to a set of Adomian polynomials.
Tan and Abbasbandy [8] employed the analytic technique
called homotopy analysis method (HAM) to solve a quadratic
Riccati equation. This technique has been derived from
perturbation theory. A modified variational iteration method
was used to solve quadratic Riccati equation by Geng [9].
HAM method is the generalization of other methods. But it
has some limitations to solve the differential equations.
Multiagent NN has its origins from group method of data
handling (GMDH) neural networks. GMDH polynomial
neural network was created by the Ukrainian scientist Alek-
sey Ivakhnenko. GMDH design and weights (parameters of
polynomials) adjustment resembles the Kolmogorov-Gabor
polynomial by using low order polynomials for every pair
of the input values [10]. There are shortcomings of GMBH,
firstly the inability to control contribution of subspaces to
the final solution and secondly the choice of degree of
polynomial sometimes that does not fit with the complexity
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of the problem in hand. To overcome the limitations and
shortcoming of the existing methods, the new multiagent
NN approach is proposed to solve nonlinear fuzzy Riccati
differential equation.

The general concept of solving ODE using neural net-
works is to fit the derivative model of the neural network (as
given in (1)) for the given ODE:

min ﬂ - NN' (w), 1)

we(—00,+00) AX

where w represents the weights in the neural network.

One of the advantages of neural network is its nonpara-
metric nature. Another advantage is its ability to estimate
unseen or untrained points. Previous studies of the first order
differential equation (FODE) and second order differential
equation (SODE) solution via neural networks [10-12] have
been promising. It has also been shown in [10] that neural
network methods are more stable and accurate than Euler
method, first order implicit method, and second order
implicit method. There is no report on NN method [13-16]
to solve nonlinear ODE.

Traditionally, the input is given in one form to the NN.
In this paper, we propose a multiagent approach (multiagent
NN) in which different forms of inputs are used and each
transfer function is an agent. Each agent has different degrees
of polynomial. Our paper will investigate and show the fact
that the fuzzy Riccati differential equation can be solved for
fuzzy control system using multiagent NN. In Section 2, the
statement of the problem in hand and the corresponding Ric-
cati differential equation are derived. In Section 3, a proposed
new approach of multiagent transfer function neuromethod
is defined. In Sections 4 and 5, the reader can find the results
of fuzzy Riccati differential equation using multiagent NN
and conclusion.

2. Statement of the Problem

Any first order ordinary differential equation that is quadratic
in the unknown function is called the Riccati equation. It is
usually written as

K (1) =qo (1) +q, O K () + ;0K (1) (2)

Given the linear time-invariant fuzzy system that can be
expressed in the form

R:If x;is Ty (uj0j), i=1,2...,1 j=12,..,m,
3)

then

x({t)=Ax@t)+Bu(t), x(0)=x, (4)
where R indicates the ith rule of the fuzzy model, pji and
oj; are the mean and standard deviation of the Gaussian
membership function, x(t) € R” is a generalized state space
vector, u(t) € R™ is a control variable, A; € R™" and
B; € R™™ are known as coefficient matrices associated with
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x(t) and u(t), respectively, x, is given initial state vector, and
m < n.

If all state variables are measurable, then a linear state
feedback control law is given as

u(t)=-R'BIA(t). (5)
Equation (5) can be obtained to the system from (4) and
At) =K; (£) x (1), (6)

where K;(t) € R is a symmetric matrix such that K;(t ;) =
S.

To minimize both the state and control signals of the
feedback control system, a quadratic performance index is
minimized:

L r
J=5xt(t)Sx(t)
. ?)
+5 I [x" () Qx (1) + u” (1) Ru(t)] dt,
[
where T represents the transpose operator, S € R™” and
Q € R™ are symmetric and positive definite (semidefinite),
and R € R™ is a symmetric and positive definite weighting
matrix for u(t).
Based on standard procedure, ] can be minimized by
minimizing the Hamiltonian equation

H (0,40, A 0) = 557 (0)Qx (0) + 2" () Ru ()
(8)
+ AT (1) [A; (%) + B; (1)] .

The necessary condition for optimality (0H/ou)(x,u, A, t) =
0 implies that Ru(t) + BiT/\(t) =0and

OH .

— = A,

ox 9)
— A () = —Qx (1) - A[A (1),

oH

—_ =X t 5

a ~*0 (10)

— %(t) = Ax(t) - Bu(t),

and, from (5), we have

% (t) = Ax (t) - BR'BIA(¢). (11)
Equations (9) and (11) can be written in a matrix form as
follows:
x(t) A; -BR'BI][x(t)
e L W@
A(t) -Q AT A(t)

where x(0) = x,.
From (6), we have

At) = Kix (t) + K% (1) . (13)
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Substituting (9) and (11) into (13) will generate the
following equation:

K0 +K (A, + ATK. (t)
[ 1 i i it

T (14)
+Q-K; (t) BR'B{K, ()] x () = 0.

Since (14) holds for all nonzero x(t), the term premulti-
plying x(¢) must be zero. Therefore, we obtain the following
fuzzy Riccati differential equation for the fuzzy linear system

(4):
[K,()+ K, (1) A; + ALK, (t) + Q- K; () BR'B/K; (1)]

=0.
(15)

Assume m = n = 1; then (15) becomes
K, () + 24K, (t) + Q- B'RK, (t) = 0. (16)

Fuzzy systems are control systems where the feedback
loop is based on fuzzy logic. Fuzzy-feedback system mech-
anism is based on imprecise logic or “fuzzy logic” The
following are the rules applied to the fuzzy system:

Fuzzy systems are control systems where the feedback
loop is based on fuzzy logic. Fuzzy-feedback system mech-
anism is based on imprecise logic or “fuzzy logic” The
following are the rules applied to the fuzzy system:

Fuzzy Rule 1:
K=y, Q=1, A, =0, BR=1:
% =y () +1, y(0)=0, W
Fuzzy Rule 2:
K=y, Q=1, A,=1, BR=LI
Y-y yo=o (18)

This paper investigates the performance of solving the afore-
mentioned equations generated from Fuzzy Rules 1 and 2.

3. Neural Networks

By mapping the output of the neural network to the expected
value and using the characteristics of NM (19), the numerical
integration can be acquired [11]:

do (z;

% =0(z;)(1-0(z)). 19)
Multiagent NN differs from NM. In the present NM, only
one form of input is used in the transfer functions whereas
multiagent NN has given different form of inputs in the
transfer functions.

Neural methods, being NM or multiagent NN, use neural
networks to estimate solution for ODE. Traditionally neural
network has shown performance capability as a function
estimator [10] and regressor [10].

In the neuroapproach, to solve ODE [12], o(z;) = 1/(1 +
e %) which is the transfer function in the neural network
process. Part of NM process is to find the derivative of
neural networks using (19). In our proposed multiagent NN,
different agents of o have been used in the transfer functions.

3.1. Multiagent NN Algorithm

Step 1. Feed the input vector ¢ .

Step 2. Initialize the weight matrix w;; and bias ;.

Step 3. Compute z; = Z;;l w,-jtf , where p is the power of the
input.

Step 4. Compute 0;(z;) = z;.
Step 5. Initialize weight vector v; hidden to output layer.
Step 6. Calculate N;; = Y| v,0(2;).
Step 7. Compute purelin function of Nj;.
Step 8. Minimize the following fitness function:
(4 ar\Y
E, = —= =0y, , 20

' i;]’zz:l(dxz (y dx) 20
and r is the epoch. The proposed multiagent NN method
converges when the error tends to zero as given in (21). The
convergence of method usually takes around 10-15 mins on
an i7 Processor, 4-Gigabyte RAM system. The method does

not need to be recomputed for the untrained points within
the bounds of the model or problem defined. Consider

where y = A; + {;N;; is the trial function for first order

rlipgoEr — 0. (21)
The kth order derivative of neural networks is shown in

k H
Z—IZ = Z viwkak. (22)
x

ijoi
i=1

Example of derived fitness function of second order in
Matlab (to solve y" = 2) is as follows:

Error = 2.*(WeightltZ.*Weight2t3'*(SigOutl,')) +
((Input(:,cnt). = ((Weight2t3' .* Weightlt2.x Weight1t2)
*SigOutl ")) - 2.

The above fitness function can easily be derived using
chain rule:

Error = (Out2_ + ((Input(:,cnt). = (Weight1t2
(Weight2t3. *SigOutL'))))) — TargetFunction.

The fitness function in (20) is simply defined by the
derivatives of neural networks in the given differential equa-
tion.
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TABLE 1: Solution of fuzzy Riccati differential equation by various methods for Fuzzy Rule 1.
X RK-4 Mabood et al. [2] NM GMDH Multiagent NN Analytical
0 0 0 0 0 0 0
0.1 0.1 0.099668 0.095826 0.024865 0.099668 0.099668
0.2 0.199 0.197376 0.199513 0.055562 0.197375 0.197375
0.3 0.29504 0.291315 0.298841 0.093447 0.291313 0.291313
0.4 0.386335 0.379949 0.391187 0.139876 0.379949 0.379949
0.5 0.47141 0.462092 0.472797 0.19621 0.462121 0.462117
0.6 0.549187 0.53691 0.544233 0.26381 0.537077 0.53705
0.7 0.619026 0.603815 0.606699 0.344037 0.604513 0.604368
0.8 0.680707 0.662245 0.661873 0.438244 0.664640 0.664037
0.9 0.734371 0.711287 0.710854 0.547766 0.718390 0.716298
1 0.780441 0.749123 0.75499 0.673906 0.767899 0.761594
SAE 0.101748 0.019995 0.059152 1.936046 0.009178
TABLE 2: Solution of fuzzy Riccati differential equation by various methods for Fuzzy Rule 2.
x RK-4 Mabood et al. [2] NM GMDH Multiagent NN Analytical
0 0 0 0 0 0 0
0.1 0.1 0.110328 0.109895 0.062432 0.110295 0.110295
0.2 0.219 0.242273 0.237926 0.139493 0.241976 0.241977
0.3 0.358004 0.396175 0.416948 0.234568 0.395089 0.395105
0.4 0.516788 0.570231 0.652779 0.351046 0.56766 0.567812
0.5 0.693439 0.759555 0.930998 0.492328 0.755134 0.756014
0.6 0.884041 0.955094 1.200455 0.661821 0.949964 0.953566
0.7 1.082696 1.142444 1.396588 0.862943 1.141423 1.152949
0.8 1.282012 1.300569 1.519028 1.099099 1.315723 1.346364
0.9 1.474059 1.400444 1.616554 1.373660 1.456545 1.526911
1 1.651586 1.403645 1.694985 1.689896 1.546032 1.689498
SAE 0.478868 0.477505 1.008306 1.774001 0.25181
4. Results and Discussion a1(z))
X A
The following are the generated results from the FODE 7 Vl
of Fuzzy Rule 1 and Fuzzy Rule 2. The methods used to Wi u
solve both of the FODEs are Runge-Kutta 4th order (RK-
4), Mabood et al. [2], neuromethod (NM), GMDH, and the y i 7C
proposed new method (multiagent NN). ity ts ety
Revisiting Fuzzy Rule , K = y,Q = 1, A; = 0,and B/R = Uy
1: Wy
Y w1,y -=o. (23) Y
dx
Revisiting Fuzzy Rule 2, K = y, Q = 1, A; = 1, and Un
BI-ZR =1 Input layer Hidden layer Output layer
dy 5 FIGURE 1: A neural network with arbitrary number of hidden nodes.
S TO-y o+, yO=0 (24)

4.1. Multiagent NN Solution. In multiagent NN, one input
layer, one hidden layer containing seven neurons, and one
output layer are taken for training the NN (Figure 1). In the
hidden layer, linear functions are assigned to the neurons.
Initially the weights from input layer to hidden layer and from

hidden layer to output layer are taken randomly. Then the
weights are updated using gradient decent method while NN
is under training the inputs. The NN solutions are compared
with the solutions obtained by the existing methods. All the
solutions are presented in Tables 1 and 2. All the solutions
curves are displayed in Figures 2 and 3.
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FIGURE 2: Solution curves by various methods for Fuzzy Rule 1.
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FIGURE 3: Solution curves by various methods for Fuzzy Rule 2.

For Fuzzy Rule 1, in Tablel, nontraditional meth-
ods (except GMDH) in all cases outperformed traditional
method (RK-4).

In the case of Fuzzy Rule 2, only 2 methods, Mabood et
al. [2] (only 0.3% improvement against RK-4) and multiagent
NN, outperformed RK-4.

For Rule 1, multiagent NN improvement against RK-4 is
91%, Mabood et al. [2] is 54%, neuromethod (NM) is 90%,
and GMDH is 99.5%.

For Rule 2, multiagent NN improvement against RK-4 is
47%, Mabood et al. [2] is 47%, neuromethod (NM) is 75%,
and GMDH is 85.8%.

5. Conclusions

Multiagent neural network method has shown improved
performance against RK-4, Mabood et al. [2], and neu-
romethod (NM). Added advantage of using neuromethod is
its ability of continuous estimation. Because of this ability
of continuous estimation, points, which are not explicitly
trained, can be estimated without going through another
phase of computational processing.
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