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We present a third-order method for solving the systems of nonlinear equations. This method is a Newton-type scheme with the
vector extrapolation. We establish the local and semilocal convergence of this method. Numerical results show that the composite
method is more robust and efficient than a number of Newton-type methods with the other vector extrapolations.

1. Introduction

Finding the solution of nonlinear equations is important in
scientific and engineering computing areas. In this paper, we
focus on the following nonlinear system of equations:

𝐹 (𝑥) = 0, (1)

where 𝐹 : R𝑛 → R𝑛 is differentiable. Here, 𝐹(𝑥) = (𝑓
1
(𝑥),

𝑓
2
(𝑥), . . . , 𝑓

𝑛
(𝑥))
𝑇 and 𝑥 ∈ R𝑛.

Some efficient methods for solving the system of (1) have
been brought forward [1]. The Newton method for (1) is a
second-order method. Its iterative formula is given by

𝑥
𝑘+1

= 𝑥
𝑘
− 𝐹
󸀠

(𝑥
𝑘
)
−1

𝐹 (𝑥
𝑘
) , (2)

where𝑥
𝑘
is the current approximate solution and𝐹

󸀠

(𝑥
𝑘
) is the

Jacobian matrix of 𝐹(𝑥) at 𝑥
𝑘
. Potra and Pták [2] propose the

modified Newton method (PPM) given by

𝑦
𝑘
= 𝑥
𝑘
− 𝐹
󸀠

(𝑥
𝑘
)
−1

𝐹 (𝑥
𝑘
) ,

𝑥
𝑘+1

= 𝑦
𝑘
− 𝐹
󸀠

(𝑥
𝑘
)
−1

𝐹 (𝑦
𝑘
) .

(3)

In each iteration, PPM needs two evaluations of the vector
function and one evaluation of the Jacobian matrix and the
order is three.

Though the PPM can reduce the computational cost of
Jacobian matrix, in some cases, the sequences produced by
PPM converge slowly and even cannot converge because of
the accumulation of the computational error. This problem
limits its practical application.

In order to solve this problem, we will introduce the vec-
tor extrapolation technique to improve the convergence of
PPM. Many vector extrapolation methods have been devel-
oped, such as the minimal polynomial extrapolation (MPE)
method [3], the reduced rank extrapolation (RRE)method [4,
5], the modified minimal polynomial extrapolation (MMPE)
method [6–8], the topological 𝜀-algorithm (TEA) [6], and
vector 𝜀-algorithms (VEA) [9, 10]; also see [11, 12] and the
references therein. These methods could be applied to the
solvers of linear and nonlinear systems and accelerate their
convergence.

In this paper, we construct a new extrapolation method
and combine it with PPM, thus obtaining a Newton-type
method. We will show by numerical results that the compos-
itemethod can be of practical interest.The local and semilocal
convergence are also established for the method.
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2. The Method

We introduce the following Newton-type method:

𝑦
𝑘
= 𝑥
𝑘
− 𝐹
󸀠

(𝑥
𝑘
)
−1

𝐹 (𝑥
𝑘
) ,

𝑧
𝑘
= 𝑦
𝑘
− 𝐹
󸀠

(𝑥
𝑘
)
−1

𝐹 (𝑦
𝑘
) ,

𝑥
𝑘+1

= 𝑧
𝑘
− 2

(𝑥
𝑘
− 𝑦
𝑘
− 𝜔 (𝑦

𝑘
− 𝑧
𝑘
)) ⋅ (𝑧

𝑘
− 𝑦
𝑘
)

󵄩󵄩󵄩󵄩𝑥𝑘 − 𝑦
𝑘
− 𝜔 (𝑦

𝑘
− 𝑧
𝑘
)
󵄩󵄩󵄩󵄩

2
(𝑧
𝑘
− 𝑦
𝑘
) ,

(4)

where ‖ ⋅ ‖ is Euclidean norm and 0 < 𝜔 ≤ 2.
This iteration scheme consists of a PPM iterate to get 𝑧

𝑘

from 𝑥
𝑘
, followed by a modified iterate to calculate 𝑥

𝑘+1
from

𝑥
𝑘
, 𝑦
𝑘
, and 𝑧

𝑘
.

We now derive the last substep. Let 𝑓(𝑥) = 0 be a scalar
real equation; then King’s method [13] is described as

𝑦
𝑘
= 𝑥
𝑘
−

𝑓 (𝑥
𝑘
)

𝑓󸀠 (𝑥
𝑘
)
,

𝑧
𝑘
= 𝑦
𝑘
−

𝑓 (𝑦
𝑘
)

𝑓󸀠 (𝑥
𝑘
)
,

𝑥
𝑘+1

= 𝑧
𝑘
−

2(𝑧
𝑘
− 𝑦
𝑘
)
2

𝑥
𝑘
− 𝑦
𝑘
− 𝜔 (𝑦

𝑘
− 𝑧
𝑘
)
.

(5)

In order to extend the method (5) to the case of vector
functions, we define the vector inverse as

V−1 =
V𝑇

‖V‖2
, V ∈ R

𝑛

. (6)

The last substep is obtained by applying the above vector
inverse to the scalar King method.

The following theorem will give the order of convergence
of the method with 0 < 𝜔 ≤ 2 given by (4).

Theorem 1. Suppose that the function 𝐹 : 𝐷 ⊂ R𝑛 → R𝑛 is
continuously differentiable and 𝐹

󸀠

(𝑥
∗

) is nonsingular, where𝐷
is an open set and 𝑥

∗

∈ 𝐷 is the solution of 𝐹(𝑥) = 0. Define
𝜆 = ‖𝐹

󸀠

(𝑥
∗

)
−1

‖. Further, assume that there exists a positive
number 𝛾 such that for any 𝑥 ∈ 𝐷,

󵄩󵄩󵄩󵄩󵄩
𝐹
󸀠

(𝑥) − 𝐹
󸀠

(𝑥
∗

)
󵄩󵄩󵄩󵄩󵄩
≤ 𝛾

󵄩󵄩󵄩󵄩𝑥 − 𝑥
∗󵄩󵄩󵄩󵄩 ; (7)

then there exists a set 𝑆 such that for any 𝑥
0
∈ 𝑆, the sequence

{𝑥
𝑘
} generated by (4) with 0 < 𝜔 ≤ 2 converges to 𝑥

∗ and the
order of convergence is three.

Proof. We can write (4) as 𝑥
𝑘+1

= 𝐺(𝑥
𝑘
) where

𝑦 = 𝑥 − 𝐹
󸀠

(𝑥)
−1

𝐹 (𝑥) , 𝑧 = 𝑦 − 𝐹
󸀠

(𝑥)
−1

𝐹 (𝑦) ,

𝐺 (𝑥) = 𝑧 − 2
(𝑥 − 𝑦 − 𝜔 (𝑦 − 𝑧)) ⋅ (𝑧 − 𝑦)

󵄩󵄩󵄩󵄩𝑥 − 𝑦 − 𝜔 (𝑦 − 𝑧)
󵄩󵄩󵄩󵄩

2
(𝑧 − 𝑦) .

(8)

Without loss of generality, we use the Euclidean norms as ‖ ⋅ ‖
in the following. Let 𝛿 = 1/20𝜆𝛾 and 𝑆 = {𝑥 | ‖𝑥 − 𝑥

∗

‖ ≤

𝛿} ∩ 𝐷. Let 𝑥 ∈ 𝑆 and 𝑥 ̸= 𝑥
∗.

It is obtained from (7) that

󵄩󵄩󵄩󵄩󵄩
𝐹
󸀠

(𝑥) − 𝐹
󸀠

(𝑥
∗

)
󵄩󵄩󵄩󵄩󵄩
≤ 𝛾𝛿 ≤

1

20𝜆
. (9)

By Banach lemma, we obtain that 𝐹󸀠(𝑥) is nonsingular and
‖𝐹
󸀠

(𝑥)
−1

‖ ≤ (20/19)𝜆. So 𝑦 and 𝑧 are well defined.
By making use of Taylor expansion and (7), we have

󵄩󵄩󵄩󵄩󵄩
𝐹 (𝑥
∗

) − 𝐹 (𝑥) − 𝐹
󸀠

(𝑥) (𝑥
∗

− 𝑥)
󵄩󵄩󵄩󵄩󵄩

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

1

0

𝐹
󸀠

(𝑥 + 𝑡 (𝑥
∗

− 𝑥)) (𝑥
∗

− 𝑥) 𝑑𝑡 − 𝐹
󸀠

(𝑥) (𝑥
∗

− 𝑥)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

1

0

[𝐹
󸀠

(𝑥 + 𝑡 (𝑥
∗

− 𝑥)) − 𝐹
󸀠

(𝑥)] (𝑥
∗

− 𝑥) 𝑑𝑡

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤ ∫

1

0

󵄩󵄩󵄩󵄩󵄩
𝐹
󸀠

(𝑥 + 𝑡 (𝑥
∗

− 𝑥)) − 𝐹
󸀠

(𝑥)
󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑥
∗

− 𝑥
󵄩󵄩󵄩󵄩 𝑑𝑡

≤ 𝛾
󵄩󵄩󵄩󵄩𝑥 − 𝑥

∗󵄩󵄩󵄩󵄩

2

∫

1

0

𝑡 𝑑𝑡

=
1

2
𝛾
󵄩󵄩󵄩󵄩𝑥 − 𝑥

∗󵄩󵄩󵄩󵄩

2

.

(10)

So for 𝑦 we obtain

󵄩󵄩󵄩󵄩𝑦 − 𝑥
∗󵄩󵄩󵄩󵄩 =

󵄩󵄩󵄩󵄩󵄩
𝐹
󸀠

(𝑥)
−1
󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝐹 (𝑥
∗

) − 𝐹 (𝑥) − 𝐹
󸀠

(𝑥) (𝑥
∗

− 𝑥)
󵄩󵄩󵄩󵄩󵄩

≤
10

19
𝜆𝛾

󵄩󵄩󵄩󵄩𝑥 − 𝑥
∗󵄩󵄩󵄩󵄩

2

.

(11)

Similarly to (10), we get

󵄩󵄩󵄩󵄩󵄩
𝐹 (𝑦) − 𝐹 (𝑥

∗

) − 𝐹
󸀠

(𝑥
∗

) (𝑦 − 𝑥
∗

)
󵄩󵄩󵄩󵄩󵄩
≤

1

2
𝛾
󵄩󵄩󵄩󵄩𝑦 − 𝑥

∗󵄩󵄩󵄩󵄩

2

.

(12)

It is obtained by (7) and (12) that

󵄩󵄩󵄩󵄩𝑧 − 𝑥
∗󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩󵄩
𝐹
󸀠

(𝑥)
−1
󵄩󵄩󵄩󵄩󵄩
[
󵄩󵄩󵄩󵄩󵄩
𝐹
󸀠

(𝑥) − 𝐹
󸀠

(𝑥
∗

)
󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑦 − 𝑥
∗󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩󵄩
𝐹 (𝑥
∗

) − 𝐹 (𝑦) − 𝐹
󸀠

(𝑥
∗

) (𝑥
∗

− 𝑦)
󵄩󵄩󵄩󵄩󵄩
]

≤
200

361
𝜆
2

𝛾
2󵄩󵄩󵄩󵄩𝑥 − 𝑥

∗󵄩󵄩󵄩󵄩

3

+
1000

6859
𝜆
3

𝛾
3󵄩󵄩󵄩󵄩𝑥 − 𝑥

∗󵄩󵄩󵄩󵄩

4

.

(13)
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Therefore it follows that
󵄩󵄩󵄩󵄩𝐺 (𝑥) − 𝑥

∗󵄩󵄩󵄩󵄩

≤ (
󵄩󵄩󵄩󵄩𝑥 − 𝑥

∗󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑧 − 𝑥
∗󵄩󵄩󵄩󵄩 + (3 − 𝜔)

󵄩󵄩󵄩󵄩𝑧 − 𝑥
∗󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑦 − 𝑥
∗󵄩󵄩󵄩󵄩

+ (2 − 𝜔)
󵄩󵄩󵄩󵄩𝑧 − 𝑥

∗󵄩󵄩󵄩󵄩

2

+ 2
󵄩󵄩󵄩󵄩𝑦 − 𝑥

∗󵄩󵄩󵄩󵄩

2

)

× (
󵄩󵄩󵄩󵄩𝑥 − 𝑥

∗󵄩󵄩󵄩󵄩 − (𝜔 + 1)
󵄩󵄩󵄩󵄩𝑦 − 𝑥

∗󵄩󵄩󵄩󵄩 − 𝜔
󵄩󵄩󵄩󵄩𝑧 − 𝑥

∗󵄩󵄩󵄩󵄩)
−1

≤
292700

480111
𝜆
2

𝛾
2󵄩󵄩󵄩󵄩𝑥 − 𝑥

∗󵄩󵄩󵄩󵄩

3

≤
2927

1920444

󵄩󵄩󵄩󵄩𝑥 − 𝑥
∗󵄩󵄩󵄩󵄩 <

󵄩󵄩󵄩󵄩𝑥 − 𝑥
∗󵄩󵄩󵄩󵄩 .

(14)

This proves that 𝐺(𝑥) ∈ 𝑆 and 𝐺 is a contraction mapping.
Thus, for any 𝑥

0
∈ 𝑆, the sequence {𝑥

𝑘
} produced by (4) is

well defined and it converges to 𝑥
∗. Finally, it is shown from

(13) that the order of the method (4) is three.

3. The Semilocal Convergence

In this section, we will establish the semilocal convergence
of method (4). This convergence may be derived by using
recurrence relations, which have been used in establishing
the convergence of Newton’s method and some third-order
methods [14–29]. In what follows, an attempt is made to use
recurrence relations to establish the semilocal convergence
for the method (4). The recurrence relations based on one
constant which depend on 𝐹 are derived. Further, based on
these recurrence relations, the error estimate is obtained for
the present iterative method.

In order to establish the recurrence relations for the
present iterative method, we will use the following scalar
functions which are defined by

𝑔
1
(𝑡) = 1 +

1

2
𝑡 +

𝑡
2

2 − 𝜔𝑡
,

𝑔
2
(𝑡) =

1

1 − 𝑡𝑔
1
(𝑡)

,

𝑔
3
(𝑡) =

1

2
𝑡
2

𝑔
2
(𝑡) [

4 + (2 − 𝜔) 𝑡

2 − 𝜔𝑡
+

1

4
𝑡(

2 + (2 − 𝜔)𝑡

2 − 𝜔𝑡
)

2

] ,

𝑔
4
(𝑡) = 𝑔

2
(𝑡) 𝑔
3
(𝑡) ,

(15)

where 0 < 𝜔 ≤ 2.
Let ℎ(𝑡) = (2 − 𝜔𝑡)(𝑡𝑔

1
(𝑡) − 1) = (1 − (1/2)𝜔)𝑡

3

+ (1 −

𝜔)𝑡
2

+(2+𝑤)𝑡−2. For any positive real number𝜔, it is easy to
obtain ℎ(0)ℎ(2/𝜔) < 0, so ℎ(𝑡) has at least a real zero point 𝑡̂ ∈
(0, 2/𝜔). Furthermore, let 𝑓(𝑡) = 𝑔

4
(𝑡) − 1. It can be included

𝑓(0) < 0 and 𝑓(𝑡̂) → +∞, so 𝑓(𝑡) has at least a real zero
in 𝑡
∗

∈ (0, 𝑡̂). Furthermore, it can be obtained that 𝑓(𝑡) is
an increasing function in (0, 2/𝜔). So 𝑡

∗ is the unique zero of
𝑓(𝑡) in (0, 2/𝜔). For the functions defined by (15), we have the
following results.

Lemma 2. Let 𝑡∗ be the unique real root of 𝑔
4
(𝑡) − 1 = 0 in

(0, 2/𝜔). Then

(a) 𝑔
1
(𝑡) is an increasing function in [0, 𝑡

∗

] and satisfies
1 ≤ 𝑔
1
(𝑡) ≤ 𝑔

1
(𝑡
∗

);
(b) 𝑔
2
(𝑡) is an increasing function in [0, 𝑡

∗

] and satisfies
1 ≤ 𝑔
2
(𝑡) ≤ 𝑔

2
(𝑡
∗

);
(c) 𝑔
3
(𝑡) is an increasing function in [0, 𝑡

∗

] and satisfies
0 ≤ 𝑔
3
(𝑡) ≤ 𝑔

3
(𝑡
∗

) < 1;
(d) 𝑔
4
(𝑡) is an increasing function in [0, 𝑡

∗

] and satisfies
0 ≤ 𝑔
4
(𝑡) ≤ 𝑔

4
(𝑡
∗

) = 1;
(e) 𝑡∗𝑔

1
(𝑡
∗

)/(1 − 𝑔
3
(𝑡
∗

)) = 1.

Proof. The results (a)–(d) can be obtained by simple deriva-
tions. We only prove the validity of (e). Noticing that

𝑔
4
(𝑡) = 𝑔

2
(𝑡) 𝑔
3
(𝑡) ,

𝑔
2
(𝑡) =

1

1 − 𝑡𝑔
1
(𝑡)

,

(16)

we get

1 = 𝑔
4
(𝑡
∗

) =
𝑔
3
(𝑡
∗

)

1 − 𝑡∗𝑔
1
(𝑡
∗
)
, (17)

which can be converted to (e).

Theorem 3. Assume that the function 𝐹 : 𝐷 ⊂ R𝑛 → R𝑛

is continuously differentiable where 𝐷 is an open set and there
exists a positive number 𝛾 such that for any 𝑥, V ∈ 𝐷

󵄩󵄩󵄩󵄩󵄩
𝐹
󸀠

(𝑥) − 𝐹
󸀠

(V)
󵄩󵄩󵄩󵄩󵄩
≤ 𝛾 ‖𝑥 − V‖ . (18)

Let 𝑔
1
(𝑡), 𝑔
2
(𝑡), 𝑔
3
(𝑡), and 𝑔

4
(𝑡) be defined by (15). Further,

define 𝛼
𝑘
, 𝛽
𝑘
, and 𝜌

𝑘
as

𝛼
𝑘
=
󵄩󵄩󵄩󵄩󵄩
𝐹
󸀠

(𝑥
𝑘
)
−1

𝐹 (𝑥
𝑘
)
󵄩󵄩󵄩󵄩󵄩
, 𝛽

𝑘
=
󵄩󵄩󵄩󵄩󵄩
𝐹
󸀠

(𝑥
𝑘
)
−1󵄩󵄩󵄩󵄩󵄩

,

𝜌
𝑘
= 𝛼
𝑘
𝛽
𝑘
𝛾.

(19)

Let 𝑥
0

∈ 𝐷 satisfy 𝐹(𝑥
0
) ̸= 0, 𝐹󸀠(𝑥

0
) be nonsingular, 𝜌

0
∈

(0, 𝑡
∗

) ⊂ (0, 2/𝜔), and 𝑆 = {𝑥 | ‖𝑥 − 𝑥
0
‖ ≤ 𝜃𝛼

0
} ⊂ 𝐷 where

𝜃 = 𝑔
1
(𝑡
∗

)/(1 − 𝑔
3
(𝑡
∗

)) and 𝑡
∗ is the root of 𝑔

4
(𝑡) − 1 = 0 in

(0, 2/𝜔); then we have that

(i) {𝑥
𝑘
} generated by the method (4) is well defined in 𝑆

and satisfies

󵄩󵄩󵄩󵄩𝑥𝑘+1 − 𝑥
𝑘

󵄩󵄩󵄩󵄩 ≤ 𝑔
1
(𝜌
𝑘
) 𝛼
𝑘
; (20)

(ii) 𝛼
𝑘
, 𝛽
𝑘
, and 𝜌

𝑘
are well defined and satisfy

𝛼
𝑘+1

≤ 𝑔
3
(𝜌
𝑘
) 𝛼
𝑘
, (21)

𝛽
𝑘+1

≤ 𝑔
2
(𝜌
𝑘
) 𝛽
𝑘
, (22)

𝜌
𝑘+1

≤ 𝑔
4
(𝜌
𝑘
) 𝜌
𝑘
. (23)
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Proof. Without loss of generality, we use the Euclidean norms
as ‖ ⋅ ‖ in the following. We firstly consider the case 𝑘 = 0.

Since 1 < 𝜃, it is obvious that 𝑦
0
∈ 𝑆 by the definition

𝛼
0
= ‖𝑦
0
− 𝑥
0
‖. By Taylor expansion we have

󵄩󵄩󵄩󵄩𝐹 (𝑦
0
)
󵄩󵄩󵄩󵄩

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝐹 (𝑥
0
) + 𝐹
󸀠

(𝑥
0
) (𝑦
0
− 𝑥
0
) + ∫

𝑦0

𝑥0

[𝐹
󸀠

(𝑥) − 𝐹
󸀠

(𝑥
0
)] 𝑑𝑥

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

1

0

[𝐹
󸀠

(𝑥
0
+ 𝑡 (𝑦
0
− 𝑥
0
)) − 𝐹

󸀠

(𝑥
0
)] (𝑦
0
− 𝑥
0
) 𝑑𝑡

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤ ∫

1

0

󵄩󵄩󵄩󵄩󵄩
𝐹
󸀠

(𝑥
0
+ 𝑡 (𝑦
0
− 𝑥
0
)) − 𝐹

󸀠

(𝑥
0
)
󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑦0 − 𝑥
0

󵄩󵄩󵄩󵄩 𝑑𝑡

≤ 𝛾
󵄩󵄩󵄩󵄩𝑦0 − 𝑥

0

󵄩󵄩󵄩󵄩

2

∫

1

0

𝑡 𝑑𝑡

=
1

2
𝛾𝛼
2

0
.

(24)

Furthermore,

󵄩󵄩󵄩󵄩𝑧0 − 𝑦
0

󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩󵄩
𝐹
󸀠

(𝑥
0
)
−1󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝐹 (𝑦
0
)
󵄩󵄩󵄩󵄩 ≤

1

2
𝛽
0
𝛾𝛼
2

0
=

1

2
𝜌
0
𝛼
0
.

(25)

It then follows that

󵄩󵄩󵄩󵄩𝑧0 − 𝑥
0

󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩𝑧0 − 𝑦

0

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑦0 − 𝑥

0

󵄩󵄩󵄩󵄩 ≤ (1 +
1

2
𝜌
0
)𝛼
0
. (26)

Taking account of the relation

1 +
1

2
𝜌
0
< 𝑔
1
(𝜌
0
) < 𝑔
1
(𝑡
∗

) < 𝜃, (27)

we have 𝑧
0
∈ 𝑆. Since

󵄩󵄩󵄩󵄩𝑥0 − 𝑦
0
− 𝜔 (𝑦

0
− 𝑧
0
)
󵄩󵄩󵄩󵄩 ≥

󵄩󵄩󵄩󵄩𝑦0 − 𝑥
0

󵄩󵄩󵄩󵄩 − 𝜔
󵄩󵄩󵄩󵄩𝑧0 − 𝑦

0

󵄩󵄩󵄩󵄩

≥ (1 −
1

2
𝜔𝜌
0
)𝛼
0
> 0,

(28)

we obtain that 𝑥
1
is well defined and

󵄩󵄩󵄩󵄩𝑥1 − 𝑧
0

󵄩󵄩󵄩󵄩 ≤
2
󵄩󵄩󵄩󵄩𝑧0 − 𝑦

0

󵄩󵄩󵄩󵄩

2

󵄩󵄩󵄩󵄩𝑥0 − 𝑦
0
− 𝜔 (𝑦

0
− 𝑧
0
)
󵄩󵄩󵄩󵄩

≤
𝜌
2

0
𝛼
0

2 − 𝜔𝜌
0

,

(29)

󵄩󵄩󵄩󵄩𝑥1 − 𝑦
0

󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩𝑥1 − 𝑧

0

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑧0 − 𝑦

0

󵄩󵄩󵄩󵄩 ≤
𝜌
0
𝛼
0

2

2 + (2 − 𝜔) 𝜌
0

2 − 𝜔𝜌
0

,

(30)
󵄩󵄩󵄩󵄩𝑥1 − 𝑥

0

󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩𝑥1 − 𝑦

0

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑦0 − 𝑥

0

󵄩󵄩󵄩󵄩

≤ 𝛼
0
[1 +

1

2
𝜌
0
+

𝜌
2

0

2 − 𝜔𝜌
0

]

= 𝑔
1
(𝜌
0
) 𝛼
0
< 𝜃𝛼
0
.

(31)

This shows 𝑥
1
∈ 𝑆 and the validity of (20).

By condition (18) we have

󵄩󵄩󵄩󵄩󵄩
𝐹
󸀠

(𝑥
1
) − 𝐹
󸀠

(𝑥
0
)
󵄩󵄩󵄩󵄩󵄩
≤ 𝛾

󵄩󵄩󵄩󵄩𝑥1 − 𝑥
0

󵄩󵄩󵄩󵄩 ≤ 𝛾𝑔
1
(𝜌
0
) 𝛼
0
. (32)

Because

𝛾𝑔
1
(𝜌
0
) 𝛼
0
𝛽
0
= 𝑔
1
(𝜌
0
) 𝜌
0
< 1, (33)

by Banach lemma we obtain that 𝐹󸀠(𝑥
1
) is nonsingular and

𝛽
1
=
󵄩󵄩󵄩󵄩󵄩
𝐹
󸀠

(𝑥
1
)
−1󵄩󵄩󵄩󵄩󵄩

≤
𝛽
0

1 − 𝑔
1
(𝜌
0
) 𝜌
0

= 𝑔
2
(𝜌
0
) 𝛽
0
. (34)

This is to say that (22) holds.
Now we consider 𝐹(𝑥

1
). By making use of (24), (25), and

(30), we obtain

󵄩󵄩󵄩󵄩𝐹 (𝑥
1
)
󵄩󵄩󵄩󵄩

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝐹 (𝑥
0
) + 𝐹
󸀠

(𝑥
0
) (𝑥
1
− 𝑥
0
)

+ ∫

𝑥1

𝑥0

[𝐹
󸀠

(𝑥) − 𝐹
󸀠

(𝑥
0
)] 𝑑𝑥

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤
2
󵄩󵄩󵄩󵄩𝑧0 − 𝑦

0

󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝑥0 − 𝑦

0
− 𝜔 (𝑦

0
− 𝑧
0
)
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝐹 (𝑦
0
)
󵄩󵄩󵄩󵄩

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

−𝐹 (𝑦
0
) + ∫

𝑥1

𝑥0

[𝐹
󸀠

(𝑥) − 𝐹
󸀠

(𝑥
0
)] 𝑑𝑥

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤
2
󵄩󵄩󵄩󵄩𝑧0 − 𝑦

0

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝐹 (𝑦
0
)
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑦0 − 𝑥
0

󵄩󵄩󵄩󵄩 − 𝜔
󵄩󵄩󵄩󵄩𝑧0 − 𝑦

0

󵄩󵄩󵄩󵄩

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

−∫

𝑦0

𝑥0

[𝐹
󸀠

(𝑥) − 𝐹
󸀠

(𝑥
0
)] 𝑑𝑥

+ ∫

𝑥1

𝑥0

[𝐹
󸀠

(𝑥) − 𝐹
󸀠

(𝑥
0
)] 𝑑𝑥

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

=
𝛾𝜌
0
𝛼
2

0

2 − 𝜔𝜌
0

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝑥1

𝑦0

[𝐹
󸀠

(𝑥) − 𝐹
󸀠

(𝑥
0
)] 𝑑𝑥

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤
𝛾𝜌
0
𝛼
2

0

2 − 𝜔𝜌
0

+ ∫

1

0

󵄩󵄩󵄩󵄩󵄩
𝐹
󸀠

(𝑦
0
+ 𝑡 (𝑥

1
− 𝑦
0
)) − 𝐹

󸀠

(𝑥
0
)
󵄩󵄩󵄩󵄩󵄩

×
󵄩󵄩󵄩󵄩𝑥1 − 𝑦

0

󵄩󵄩󵄩󵄩 𝑑𝑡
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≤
𝛾𝜌
0
𝛼
2

0

2 − 𝜔𝜌
0

+ 𝛾∫

1

0

[
󵄩󵄩󵄩󵄩𝑦0 − 𝑥

0

󵄩󵄩󵄩󵄩 + 𝑡
󵄩󵄩󵄩󵄩𝑥1 − 𝑦

0

󵄩󵄩󵄩󵄩 ]
󵄩󵄩󵄩󵄩𝑥1 − 𝑦

0

󵄩󵄩󵄩󵄩 𝑑𝑡

≤
𝛾𝜌
0
𝛼
2

0

2 − 𝜔𝜌
0

+ 𝛾 [
󵄩󵄩󵄩󵄩𝑦0 − 𝑥

0

󵄩󵄩󵄩󵄩 +
1

2

󵄩󵄩󵄩󵄩𝑥1 − 𝑦
0

󵄩󵄩󵄩󵄩]
󵄩󵄩󵄩󵄩𝑥1 − 𝑦

0

󵄩󵄩󵄩󵄩

≤
𝛾𝜌
0
𝛼
2

0

2 − 𝜔𝜌
0

+
𝛾

2
𝜌
0
𝛼
2

0

2 + (2 − 𝜔) 𝜌
0

2 − 𝜔𝜌
0

[1 +
1

4
𝜌
0

2 + (2 − 𝜔) 𝜌
0

2 − 𝜔𝜌
0

]

=
𝛾

2
𝜌
0
𝛼
2

0
[
4 + (2 − 𝜔) 𝜌

0

2 − 𝜔𝜌
0

+
1

4
𝜌
0
(
2 + (2 − 𝜔)𝜌

0

2 − 𝜔𝜌
0

)

2

] .

(35)

Finally, we prove (21) and (23). Bymaking use of (34) and
(35), we have

𝛼
1
≤
󵄩󵄩󵄩󵄩󵄩
𝐹
󸀠

(𝑥
1
)
−1󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝐹 (𝑥
1
)
󵄩󵄩󵄩󵄩

≤
1

2
𝛼
0
𝜌
2

0
𝑔
2
(𝜌
0
)

× [
4 + (2 − 𝜔) 𝜌

0

2 − 𝜔𝜌
0

+
1

4
𝜌
0
(
2 + (2 − 𝜔) 𝜌

0

2 − 𝜔𝜌
0

)

2

]

= 𝑔
3
(𝜌
0
) 𝛼
0
.

(36)

It then holds that

𝜌
1
= 𝛼
1
𝛽
1
𝛾

≤ 𝜌
0
𝑔
2
(𝜌
0
) 𝑔
3
(𝜌
0
)

= 𝑔
4
(𝜌
0
) 𝜌
0

< 𝑔
4
(𝑡
∗

) 𝜌
0
= 𝜌
0
< 𝑡
∗

.

(37)

Now we consider the cases 𝑘 ≥ 1. By induction we can
obtain the following facts.

(P1) By Lemma 2, we obtain that

𝜌
𝑘
≤ 𝑔
4
(𝜌
𝑘−1

) 𝜌
𝑘−1

< 𝑔
4
(𝑡
∗

) 𝜌
𝑘−1

= 𝜌
𝑘−1

< 𝑡
∗

, (38)

which leads to

𝑔
3
(𝜌
𝑘
) < 𝑔
3
(𝜌
𝑘−1

) < ⋅ ⋅ ⋅ < 𝑔
3
(𝜌
0
) < 𝑔
3
(𝑡
∗

) < 1,

𝑔
1
(𝜌
𝑘
) < 𝑔
1
(𝑡
∗

) .

(39)

It follows that

𝛼
𝑘
≤ 𝑔
3
(𝜌
𝑘−1

) 𝛼
𝑘−1

≤ 𝑔
3
(𝜌
𝑘−1

) ⋅ ⋅ ⋅ 𝑔
3
(𝜌
0
) 𝛼
0
< 𝑔
3
(𝑡
∗

)
𝑘

𝛼
0
.

(40)

This further yields
󵄩󵄩󵄩󵄩𝑥𝑘 − 𝑥

𝑘−1

󵄩󵄩󵄩󵄩 ≤ 𝑔
1
(𝜌
𝑘−1

) 𝛼
𝑘−1

< 𝑔
1
(𝑡
∗

) 𝑔
3
(𝑡
∗

)
𝑘−1

𝛼
0
. (41)

Thus it is obtained that

󵄩󵄩󵄩󵄩𝑥𝑘 − 𝑥
0

󵄩󵄩󵄩󵄩 ≤

𝑘

∑

𝑖=1

󵄩󵄩󵄩󵄩𝑥𝑖 − 𝑥
𝑖−1

󵄩󵄩󵄩󵄩

<

𝑘

∑

𝑖=1

𝑔
1
(𝑡
∗

) 𝑔
3
(𝑡
∗

)
𝑖−1

𝛼
0
.

(42)

Next we show that 𝑦
𝑘
, 𝑧
𝑘
are well defined in 𝑆. By Lemma 2

and (42), we have
󵄩󵄩󵄩󵄩𝑦𝑘 − 𝑥

0

󵄩󵄩󵄩󵄩 ≤ 𝛼
𝑘
+
󵄩󵄩󵄩󵄩𝑥𝑘 − 𝑥

0

󵄩󵄩󵄩󵄩

≤ 𝑔
3
(𝑡
∗

)
𝑘

𝛼
0
+

𝑘

∑

𝑖=1

𝑔
1
(𝑡
∗

) 𝑔
3
(𝑡
∗

)
𝑖−1

𝛼
0

<

𝑘

∑

𝑖=0

𝑔
1
(𝑡
∗

) 𝑔
3
(𝑡
∗

)
𝑖

𝛼
0

<
𝑔
1
(𝑡
∗

)

1 − 𝑔
3
(𝑡
∗
)
𝛼
0
.

(43)

This means that 𝑦
𝑘

∈ 𝑆. Furthermore, by analogous
procedures to (24), (25), and (26), we obtain that

󵄩󵄩󵄩󵄩𝑧𝑘 − 𝑦
𝑘

󵄩󵄩󵄩󵄩 ≤
1

2
𝜌
𝑘
𝛼
𝑘
,

󵄩󵄩󵄩󵄩𝑧𝑘 − 𝑥
𝑘

󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩𝑧𝑘 − 𝑦

𝑘

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑦𝑘 − 𝑥

𝑘

󵄩󵄩󵄩󵄩 ≤ (1 +
1

2
𝜌
𝑘
)𝛼
𝑘
.

(44)

Since

1 +
1

2
𝜌
𝑘
< 𝑔
1
(𝜌
𝑘
) < 𝑔
1
(𝑡
∗

) , (45)

we get
󵄩󵄩󵄩󵄩𝑧𝑘 − 𝑥

𝑘

󵄩󵄩󵄩󵄩 < 𝑔
1
(𝜌
𝑘
) 𝛼
𝑘
< 𝑔
1
(𝑡
∗

) 𝑔
3
(𝑡
∗

)
𝑘

𝛼
0
. (46)

Hence it follows that
󵄩󵄩󵄩󵄩𝑧𝑘 − 𝑥

0

󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩𝑧𝑘 − 𝑥

𝑘

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑥𝑘 − 𝑥

0

󵄩󵄩󵄩󵄩

≤

𝑘

∑

𝑖=0

𝑔
1
(𝑡
∗

) 𝑔
3
(𝑡
∗

)
𝑖

𝛼
0

<
𝑔
1
(𝑡
∗

)

1 − 𝑔
3
(𝑡
∗
)
𝛼
0
.

(47)

This shows that 𝑧
𝑘
∈ 𝑆. Similarly to the case 𝑘 = 0, we obtain

that 𝑥
𝑘+1

is well defined and have

󵄩󵄩󵄩󵄩𝑥𝑘+1 − 𝑧
𝑘

󵄩󵄩󵄩󵄩 ≤
𝜌
2

𝑘
𝛼
𝑘

2 − 𝜔𝜌
𝑘

,

󵄩󵄩󵄩󵄩𝑥𝑘+1 − 𝑦
𝑘

󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩𝑥𝑘+1 − 𝑧

𝑘

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑧𝑘 − 𝑦

𝑘

󵄩󵄩󵄩󵄩 ≤
𝜌
𝑘
𝛼
𝑘

2

2 + (2 − 𝜔) 𝜌
𝑘

2 − 𝜔𝜌
𝑘

,

󵄩󵄩󵄩󵄩𝑥𝑘+1 − 𝑥
𝑘

󵄩󵄩󵄩󵄩 ≤ 𝑔
1
(𝜌
𝑘
) 𝛼
𝑘
.

(48)
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By (42) we obtain

󵄩󵄩󵄩󵄩𝑥𝑘+1 − 𝑥
0

󵄩󵄩󵄩󵄩 <
𝑔
1
(𝑡
∗

)

1 − 𝑔
3
(𝑡
∗
)
𝛼
0
, (49)

which shows 𝑥
𝑘+1

∈ 𝑆.

(P2) We can prove analogously to (35) that
󵄩󵄩󵄩󵄩𝐹 (𝑥
𝑘+1

)
󵄩󵄩󵄩󵄩

≤
𝛾

2
𝜌
𝑘
𝛼
2

𝑘
[
4 + (2 − 𝜔) 𝜌

𝑘

2 − 𝜔𝜌
𝑘

+
1

4
𝜌
𝑘
(
2 + (2 − 𝜔)𝜌

𝑘

2 − 𝜔𝜌
𝑘

)

2

] .

(50)

(P3) Because
󵄩󵄩󵄩󵄩󵄩
𝐹
󸀠

(𝑥
𝑘+1

) − 𝐹
󸀠

(𝑥
𝑘
)
󵄩󵄩󵄩󵄩󵄩
≤ 𝛾𝑔
1
(𝜌
𝑘
) 𝛼
𝑘
,

𝑔
1
(𝜌
𝑘
) 𝜌
𝑘
< 𝑔
1
(𝜌
0
) 𝜌
0
< 1,

(51)

we obtain that 𝐹󸀠(𝑥
𝑘+1

) is nonsingular and

𝛽
𝑘+1

=
󵄩󵄩󵄩󵄩󵄩
𝐹
󸀠

(𝑥
𝑘+1

)
−1󵄩󵄩󵄩󵄩󵄩

≤ 𝑔
2
(𝜌
𝑘
) 𝛽
𝑘
. (52)

(P4) From (50) and (52), we have

𝛼
𝑘+1

≤ 𝑔
3
(𝜌
𝑘
) 𝛼
𝑘
. (53)

It then follows that

𝜌
𝑘+1

= 𝛼
𝑘+1

𝛽
𝑘+1

𝛾

≤ 𝑔
4
(𝜌
𝑘
) 𝜌
𝑘

< 𝑔
4
(𝑡
∗

) 𝜌
𝑘
= 𝜌
𝑘
.

(54)

Thus far, we have proved all conclusions of this theorem.

The theorem given below will establish the convergence
of the sequence {𝑥

𝑘
} and give the error estimate for it.

Theorem 4. Let the conditions of Theorem 3 be satisfied.
Denote 𝑝 = 𝑔

1
(𝑡
∗

) and 𝑞 = 𝑔
3
(𝑡
∗

). Then the sequence {𝑥
𝑘
}

generated by (4) converges to a unique solution 𝑥
∗

∈ 𝑆 of 𝐹(𝑥),
and it holds that

󵄩󵄩󵄩󵄩𝑥
∗

− 𝑥
𝑘

󵄩󵄩󵄩󵄩 <
𝑝𝑞
𝑘

1 − 𝑞
𝛼
0
. (55)

Proof. Since 0 < 𝑞 < 1, it follows from (41) that

󵄩󵄩󵄩󵄩𝑥𝑘+𝑚 − 𝑥
𝑘

󵄩󵄩󵄩󵄩 ≤

𝑚−1

∑

𝑖=0

󵄩󵄩󵄩󵄩𝑥𝑘+𝑖+1 − 𝑥
𝑘+𝑖

󵄩󵄩󵄩󵄩

<

𝑚−1

∑

𝑖=0

𝑝𝑞
𝑘+𝑖

𝛼
0

<
𝑝𝑞
𝑘

1 − 𝑞
𝛼
0
.

(56)

This means that {𝑥
𝑘
} is a Cauchy sequence and thus there

exists a 𝑥
∗ such that lim

𝑘→∞
𝑥
𝑘
= 𝑥
∗. By letting 𝑚 → ∞

in (56), we obtain (55). From (56) and (42), we can get
󵄩󵄩󵄩󵄩𝑥
∗

− 𝑥
0

󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩𝑥
∗

− 𝑥
𝑘

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑥𝑘 − 𝑥

0

󵄩󵄩󵄩󵄩

<

∞

∑

𝑖=0

𝑝𝑞
𝑖

𝛼
0
=

𝑝

1 − 𝑞
𝛼
0
.

(57)

This shows 𝑥∗ ∈ 𝑆.
From (50) and (40), we obtain that

󵄩󵄩󵄩󵄩𝐹 (𝑥
𝑘
)
󵄩󵄩󵄩󵄩 <

𝛾

2
𝜌
0
𝛼
2

0
𝑞
2(𝑘−1)

× [
4 + (2 − 𝜔) 𝜌

0

2 − 𝜔𝜌
0

+
1

4
𝜌
0
(
2 + (2 − 𝜔)𝜌

0

2 − 𝜔𝜌
0

)

2

] .

(58)

By letting 𝑘 → ∞ in (58), we obtain 𝐹(𝑥
∗

) = 0; namely, 𝑥∗
is a solution of 𝐹(𝑥).

Now, we prove the uniqueness of 𝑥
∗ in 𝑆. Let 𝑥

∗∗ be
another zero of 𝐹(𝑥) in 𝑆. By mean value theorem, we have

0 = 𝐹 (𝑥
∗∗

) − 𝐹 (𝑥
∗

) = 𝐹
󸀠

(𝜉) (𝑥
∗∗

− 𝑥
∗

) , (59)

where 𝜉 is between 𝑥
∗ and 𝑥

∗∗. Since

𝛽
0

󵄩󵄩󵄩󵄩󵄩
𝐹
󸀠

(𝜉) − 𝐹
󸀠

(𝑥
0
)
󵄩󵄩󵄩󵄩󵄩
≤ 𝛽
0
𝛾
󵄩󵄩󵄩󵄩𝜉 − 𝑥

0

󵄩󵄩󵄩󵄩

≤ 𝜌
0

𝑔
1
(𝑡
∗

)

1 − 𝑔
3
(𝑡
∗
)

<
𝑡
∗

𝑔
1
(𝑡
∗

)

1 − 𝑔
3
(𝑡
∗
)
= 1,

(60)

it follows by Banach lemma that 𝐹󸀠(𝜉) is invertible and hence
𝑥
∗∗

= 𝑥
∗. This ends the proof.

4. Numerical Tests

In this section, we present some numerical results for the
method given by (4) (NTM) and compare it with PPM on
their numerical behavior.We also test the compositemethods
combining PPM with some known vector extrapolation
methodsmentioned in Section 1, which are indicated asVEA-
PPM, MPE-PPM, and RRE-PPM, respectively. We use ‖𝐹

𝑘
‖
2

to denote the value of ‖𝐹(𝑥)‖
2
at the 𝑘th approximate solution

𝑥
𝑘
.
We consider the nonlinear elliptic differential equation:

−∇ ⋅ 𝐾 (Θ (𝜓)) ∇𝜓 = 0. (61)

This equation often arises from the flow model in porous
media and in this case, 𝜓 is the pressure, Θ the fluid
saturation, and𝐾 the conductivity. The boundary conditions
can be given by

−𝐾 (Θ (𝜓)) ∇𝜓 = 𝑉
𝐵
, on Γ

𝑁
,

𝜓 = 𝜓
𝐵
, on Γ

𝐷
.

(62)
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Table 1: Results of the case𝑚 = 100.

𝑥
0

PPM VEA-PPM MPE-PPM RRE-PPM NTM
0.5𝑆 D D 8 8 5
1𝑆 D 6 7 7 5
1.5𝑆 22 6 6 6 5
2𝑆 D 5 6 6 4
3𝑆 D 5 6 6 4

Table 2: Results of the case𝑚 = 1000.

𝑥
0

PPM VEA-PPM MPE-PPM RRE-PPM NTM
0.1𝑆 D D 10 10 7
0.5𝑆 D D 9 9 6
1𝑆 D 30 8 8 6
1.5𝑆 D 8 7 7 5
2𝑆 D 7 7 7 5
3𝑆 D 6 7 7 5

In this test, we consider the one-dimensional case. The
uniform cell-centered finite difference (CCFD) approxima-
tionmethod is used to discretize the boundary value problem.
For the detailed CCFD formulations, we refer to [30] or the
references therein. The values 𝐾(Θ(𝜓)) on the faces of each
cell are taken as the harmonicmean of cell-central ones. Here,
we take𝐾(Θ(𝜓)) = 𝑘𝜓where 𝑘 is a positive real constant.The
input boundary condition is given by𝑉

𝐵
= 1, while the output

boundary condition is 𝜓
𝐵
= 1.

The discrete scheme leads to a nonlinear equation system
with 𝑚 variables. We test two cases with the sizes 𝑚 = 100

and 1000, respectively. We take 𝜔 = 2 in our method. All
methods start from the initial approximate solutions and stop
when they satisfy the given criteria. For the case 𝑚 = 100,
the stopping criterion is ‖𝐹‖

2
< 1𝑒 − 12, while it is taken as

‖𝐹‖
2
< 1𝑒 − 11 for 𝑚 = 1000. In these tables, we show the

iteration number cost by various methods.
The computational results are displayed in Tables 1 and 2.

In the tables, denote 𝑆 = (1, 1, . . . , 1)
𝑇 and “D” indicates that

the method is divergent or cannot converge in 50 steps. We
use NTM to represent the proposed method.

From the numerical results, we can know that the perfor-
mance of NTM is more efficient and robust than PPM.

5. Conclusions

We establish the convergence of a third-order method for
systems of nonlinear equations; an existence-uniqueness
theorem and the error estimate for this method are also
obtained. Numerical results show that this method is more
robust and efficient than a number of Newton-type methods
with the other vector extrapolation algorithms.
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