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We consider the problem of seeking a symmetric positive semidefinite matrix in a closed convex set to approximate a given
matrix. This problem may arise in several areas of numerical linear algebra or come from finance industry or statistics and
thus has many applications. For solving this class of matrix optimization problems, many methods have been proposed in the
literature. The proximal alternating direction method is one of those methods which can be easily applied to solve these matrix
optimization problems. Generally, the proximal parameters of the proximal alternating direction method are greater than zero. In
this paper, we conclude that the restriction on the proximal parameters can be relaxed for solving this kind of matrix optimization
problems. Numerical experiments also show that the proximal alternating direction method with the relaxed proximal parameters
is convergent and generally has a better performance than the classical proximal alternating direction method.

1. Introduction

This paper concerns the following problem:

min
𝑋

{1
2‖𝑋 − 𝐶‖2

𝐹
| 𝑋 ∈ 𝑆𝑛

+
∩ 𝑆
𝐵
} , (1)

where 𝐶 ∈ 𝑅𝑛×𝑛 is a given symmetric matrix,

𝑆𝑛
+

= {𝑋 ∈ 𝑅𝑛×𝑛 | 𝑋𝑇 = 𝑋,𝑋 ⪰ 0} ,
𝑆
𝐵

= {𝑋 ∈ 𝑅𝑛×𝑛 | Tr (𝐴
𝑖
𝑋) = 𝑏

𝑖
, 𝑖 = 1, 2, . . . , 𝑝,

Tr (𝐺
𝑗
𝑋) ≤ 𝑑

𝑗
, 𝑗 = 1, 2, . . . , 𝑚} ,

(2)

matrices𝐴
𝑖
∈ 𝑅𝑛×𝑛 and 𝐺

𝑗
∈ 𝑅𝑛×𝑛 are symmetric and scalars,

𝑏
𝑖
and 𝑑

𝑗
are the problem data, 𝑋 ⪰ 0 denotes that 𝑋 is a

positive semidefinite matrix, Tr denotes the trace of a matrix,
and ‖ ⋅ ‖

𝐹
denotes the Frobenius norm; that is,

‖𝑋‖𝐹 = (Tr (𝑋𝑇𝑋))1/2 = (
𝑛

∑
𝑖,𝑗=1

𝑋2
𝑖𝑗
)
1/2

, (3)

and 𝑆𝑛
+

∩ 𝑆
𝐵
is nonempty. Throughout this paper, we assume

that the Slater’s constraint qualification condition holds so
that there is no duality gap if we use Lagrangian techniques
to find the optimal solution to problem (1).

Problem (1) is a type of matrix nearness problem, that is,
the problem of finding a matrix that satisfies some properties
and is nearest to a given one. Problem (1) can be called
the least squares covariance adjustment problem or the least
squares semidefinite programming problem and solved by
manymethods [1–4]. In a least squares covariance adjustment
problem, wemake adjustments to a symmetric matrix so that
it is consistent with prior knowledge or assumptions and a
valid covariancematrix [2, 5, 6].Thematrix nearness problem
hasmany applications especially in several areas of numerical
linear algebra, finance industry, and statistics in [6]. A recent
survey of matrix nearness problems can be found in [7]. It is
clear that the matrix nearness problem considered here is a
convex optimization problem. It thus follows from the strict
feasibility and coercivity of the objective function that the
minimum of (1) is attainable and unique.

Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2014, Article ID 598563, 10 pages
http://dx.doi.org/10.1155/2014/598563

http://dx.doi.org/10.1155/2014/598563


2 Abstract and Applied Analysis

In the literature of interior point algorithms, 𝑆𝑛
+
is called

the semidefinite cone and the related problem (1) belongs to
the class of semidefinite programming (SDP) and second-
order cone programming (SOCP) [8]. In fact, it is possible
to reformulate problem (1) into a mixed SDP and SOCP as in
[3, 9]:

min 𝑡
s.t. ⟨𝐴

𝑖
, 𝑋⟩ = 𝑏

𝑖
, 𝑖 = 1, 2, . . . , 𝑝,

⟨𝐺
𝑗
, 𝑋⟩ ≤ 𝑑

𝑗
, 𝑗 = 1, 2, . . . , 𝑚,

𝑡 ≥ ‖𝑋 − 𝐶‖𝐹,
𝑋 ∈ 𝑆𝑛

+
,

(4)

where ⟨𝑋, 𝑌⟩ = Tr(𝑋𝑇𝑌).
Thus, problem (1) can be efficiently solved by standard

interior-point methods such as SeDuMi [10] and SDPT3 [11]
when the number of variables (i.e., entries in the matrix𝑋) is
modest, say under 1000 (corresponds to 𝑛 around 32) and the
number of equality and inequality constraints is not too large
(say 5,000) [2, 3, 12].

Specially, let

𝑆
𝐵

= {𝑋 ∈ 𝑅𝑛×𝑛 | Diag (𝑋) = 𝑒} , (5)

where Diag(𝑋) is the vector of diagonal elements of 𝑋 and
𝑒 is the vector of 1s. Then problem (1) can be viewed as the
nearest correlation matrix problem. For the nearest corre-
lation matrix problem, a quadratically convergent Newton
algorithm was presented recently by Qi and Sun [13], and
improved by Borsdorf and Higham [1]. For problem (1) with
equality and inequality constraints, one difficulty in finding
an efficient method for solving this problem is the presence
of the inequality constraints. In [3], Gao and Sun overcome
this difficulty by reformulating the problem as a system
of semismooth equations with two level metric projection
operators and then design an inexact smoothing Newton
method to solve the resulting semismooth system. For the
problem (1) with large number of equality and inequality
constraints, the numerical experiments in [14] show that the
alternating direction method (hereafter alternating direction
method is abbreviated as ADM) is more efficient in com-
puting time than the inexact smoothing Newton method
which additionally requires solving a large system of linear
equations at each iteration. The ADM has many applications
in solving optimization problems [15, 16]. Papers written by
Zhang, Han, Li, Yuan, and Bauschke and Borwein show that
the ADM can be applied to solve convex feasibility problems
[17–19].

The proximal ADM is a class of ADM type methods
which can also be easily applied to solve the matrix opti-
mization problems. Generally, the proximal parameters (i.e.,
the parameters 𝑟 and 𝑠 in (14) and (15)) of the proximal
ADM are greater than zero. In this paper, we will show that
the restriction on the proximal parameters can be relaxed
while the proximal ADM is used to solve problem (1).
Numerical experiments also show that the proximal ADM

with the relaxed proximal parameters generally has a better
performance than the classical proximal ADM.

The paper is organized as follows. In Section 2, we give
some preliminaries about the proximal alternating direction
method. In Section 3, we convert the problem (1) to a
structured variational inequality and apply the proximal
ADM to solve it. The basic analysis and convergent results
of the proximal ADM with relaxed proximal parameters are
built in Section 4. Preliminary numerical results are reported
in Section 5. Finally, we give some conclusions in Section 6.

2. Proximal Alternating Direction Method

In order to introduce the proximalADM,we first consider the
following structured variational inequality problem which
includes two separable subvariational inequality problems:
find (𝑥, 𝑦) ∈ Ω such that

(𝑥 − 𝑥)𝑇𝑓 (𝑥) ≥ 0,
(𝑦 − 𝑦)𝑇𝑔 (𝑦) ≥ 0, ∀ (𝑥, 𝑦) ∈ Ω, (6)

where

Ω = {(𝑥, 𝑦) | 𝐴𝑥 + 𝐵𝑦 = 𝑏, 𝑥 ∈ X, 𝑦 ∈ Y} , (7)

𝑓 : 𝑅𝑛1 → 𝑅𝑛1 and 𝑔 : 𝑅𝑛2 → 𝑅𝑛2 are monotone; that is,

(𝑥 − 𝑥)𝑇 (𝑓 (𝑥) − 𝑓 (𝑥)) ≥ 0, ∀𝑥, 𝑥 ∈ 𝑅𝑛1 ,
(𝑦 − 𝑦)𝑇 (𝑔 (𝑦) − 𝑔 (𝑦)) ≥ 0, ∀𝑦, 𝑦 ∈ 𝑅𝑛2 ,

(8)

𝐴 ∈ 𝑅𝑙×𝑛1 , 𝐵 ∈ 𝑅𝑙×𝑛2 , and 𝑏 ∈ 𝑅𝑙; X ⊂ 𝑅𝑛1 and Y ⊂ 𝑅𝑛2
are closed convex sets. Studies of such variational inequality
can be found in Glowinski [20], Glowinski and Le Tallec [21],
Eckstein and Fukushima [22–24], He and Yang [25], He et al.
[26], and Xu [27].

By attaching a Lagrange multiplier vector 𝜆 ∈ 𝑅𝑙 to
the linear constraint 𝐴𝑥 + 𝐵𝑦 = 𝑏, problem (6)-(7) can be
explained as the following form (see [20, 21, 24]): find 𝑤 =
(𝑥, 𝑦, 𝜆) ∈ W such that

(𝑥 − 𝑥)𝑇 [𝑓 (𝑥) − 𝐴𝑇𝜆] ≥ 0
(𝑦 − 𝑦)𝑇 [𝑔 (𝑦) − 𝐵𝑇𝜆] ≥ 0, ∀𝑤 = (𝑥, 𝑦, 𝜆) ∈ W,

𝐴𝑥 + 𝐵𝑦 − 𝑏 = 0,
(9)

where

W = X × Y × 𝑅𝑙. (10)

For solving (9)-(10), Gabay [28] and Gabay and Mercier [29]
proposed the ADM method. In the classical ADM method,
the new iterate 𝑤𝑘+1 = (𝑥𝑘+1, 𝑦𝑘+1, 𝜆𝑘+1) ∈ W is generated
from a given triple 𝑤𝑘 = (𝑥𝑘, 𝑦𝑘, 𝜆𝑘) ∈ W via the following
procedure.

First, 𝑥𝑘+1 is found by solving the following problem:

(𝑥 − 𝑥)𝑇 {𝑓 (𝑥) − 𝐴𝑇 [𝜆𝑘 − 𝛽 (𝐴𝑥 + 𝐵𝑦𝑘 − 𝑏)]} ≥ 0,
∀𝑥 ∈ X,

(11)
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where 𝑥 ∈ X. Then, 𝑦𝑘+1 is obtained by solving

(𝑦 − 𝑦)𝑇 {𝑔 (𝑦) − 𝐵𝑇 [𝜆𝑘 − 𝛽 (𝐴𝑥𝑘+1 + 𝐵𝑦 − 𝑏)]} ≥ 0,
∀𝑦 ∈ Y,

(12)

where 𝑦 ∈ Y. Finally, the multiplier is updated by

𝜆𝑘+1 = 𝜆 − 𝛽 (𝐴𝑥𝑘+1 + 𝐵𝑦𝑘+1 − 𝑏) , (13)

where 𝛽 > 0 is a given penalty parameter for the linearly
constraint 𝐴𝑥 + 𝐵𝑦 − 𝑏 = 0. Most of the existing ADM
methods require that the subvariational inequality problems
(11)-(12) should be solved exactly at each iteration. Note
that the involved subvariational inequality problem (11)-(12)
may not be well-conditioned without strongly monotone
assumptions on 𝑓 and 𝑔. Hence, it is difficult to solve these
subvariational inequality problems exactly in many cases. In
order to improve the condition of solving the subproblem by
the ADM, some proximal ADMs were proposed (see, e.g.,
[26, 27, 30–34]). The classical proximal ADM is one of the
attractive ADMs. From a given triple 𝑤𝑘 = (𝑥𝑘, 𝑦𝑘, 𝜆𝑘) ∈ W,
the classical proximal ADM produces the new iterate 𝑤𝑘+1 =
(𝑥𝑘+1, 𝑦𝑘+1, 𝜆𝑘+1) ∈ W by the following procedure.

First, 𝑥𝑘+1 is obtained by solving the following variational
inequality problem:

(𝑥 − 𝑥)𝑇 {𝑓 (𝑥) − 𝐴𝑇 [𝜆𝑘 − 𝛽 (𝐴𝑥 + 𝐵𝑦𝑘 − 𝑏)]
+ 𝑟 (𝑥 − 𝑥𝑘)} ≥ 0, ∀𝑥 ∈ X,

(14)

where 𝑟 > 0 is the given proximal parameter and 𝑥 ∈ X.
Then, 𝑦𝑘+1 is found by solving

(𝑦 − 𝑦)𝑇 {𝑔 (𝑦) − 𝐵𝑇 [𝜆𝑘 − 𝛽 (𝐴𝑥𝑘+1 + 𝐵𝑦 − 𝑏)]
+ 𝑠 (𝑦 − 𝑦𝑘)} ≥ 0, ∀𝑦 ∈ Y,

(15)

where 𝑠 > 0 is the given proximal parameter and 𝑦 ∈ Y.
Finally, the multiplier is updated by

𝜆𝑘+1 = 𝜆𝑘 − 𝛽 (𝐴𝑥𝑘+1 + 𝐵𝑦𝑘+1 − 𝑏) . (16)

In this paper, we will conclude that problem (1) can be
solved by the proximal ADM and the restriction on the
proximal parameters 𝑟 > 0, 𝑠 > 0 can be relaxed as
𝑟 > −1/2, 𝑠 > −1/2 when the proximal ADM is applied
to solve problem (1). Our numerical experiments later also
show that the numerical performance of the proximal ADM
with smaller value of proximal parameters is generally better
than the proximal ADM with comparatively larger value of
proximal parameters.

3. Converting Problem (1) to a Structured
Variational Inequality

In order to solve the problem (1) with proximal ADM, we
convert problem (1) to the following equivalent one:

min
𝑋,𝑌

1
2‖𝑋 − 𝐶‖2

𝐹
+ 1

2‖𝑌 − 𝐶‖2
𝐹

s.t. 𝑋 − 𝑌 = 0,
𝑋 ∈ 𝑆𝑛

+
, 𝑌 ∈ 𝑆

𝐵
.

(17)

Following the KKT condition of (17), the solution to (17) can
be found by finding 𝑤 = (𝑋, 𝑌, Λ) ∈ W such that

⟨𝑋 − 𝑋, (𝑋 − 𝐶) − Λ⟩ ≥ 0,
⟨𝑌 − 𝑌, (𝑌 − 𝐶) + Λ⟩ ≥ 0, ∀𝑤 = (𝑋, 𝑌, Λ) ∈ W,

𝑋 − 𝑌 = 0,
(18)

where

W = 𝑆𝑛
+

× 𝑆
𝐵

× 𝑅𝑛×𝑛. (19)

It is easy to see that problem (18)-(19) is a special case of
the structured variational inequality (9)-(10) and thus can be
solved by proximal ADM. For given 𝑤𝑘 = (𝑋𝑘, 𝑌𝑘, Λ𝑘) ∈
W, it is fortunate that the 𝑤𝑘+1 = (𝑋𝑘+1, 𝑌𝑘+1, Λ𝑘+1) can be
exactly obtained by the proximal ADM in the following way:

𝑋𝑘+1 = 𝑃
𝑆
𝑛

+

{ 1
1 + 𝛽 + 𝑟 (𝐶 + 𝑟𝑋𝑘 + 𝛽𝑌𝑘 + Λ𝑘)} , (20)

𝑌𝑘+1 = 𝑃
𝑆
𝐵

{ 1
1 + 𝛽 + 𝑠 (𝐶 + 𝛽𝑋𝑘+1 + 𝑠𝑌𝑘 − Λ𝑘)} , (21)

Λ𝑘+1 = Λ𝑘 − 𝛽 (𝑋𝑘+1 − 𝑌𝑘+1) , (22)

where the projection of V on a nonempty closed convex set
𝑆 of 𝑅𝑚×𝑛 under Frobenius norm, denoted by 𝑃

𝑆
(V), is the

unique solution to the following problem; that is,

𝑃
𝑆 (V) = argmin

𝑢
{‖𝑢 − V‖2

𝐹
| 𝑢 ∈ 𝑆} . (23)

It follows that the solution to

min {1
2‖𝑍 − 𝑋‖2

𝐹
| 𝑍 ∈ 𝑆𝑛

+
} (24)

is called the projection of 𝑋 on 𝑆𝑛
+
and denoted by 𝑃

𝑆
𝑛

+

(𝑋).
Using the fact that matrix Frobenius norm is invariant under
unitary transform, it is known (see [35]) that

𝑃
𝑆
𝑛

+

(𝑋) = 𝑄Λ̃𝑄𝑇, (25)

where

𝑄𝑇𝑋𝑄 = diag (𝜆
1
, . . . , 𝜆

𝑛
) (26)

is the symmetric Schur decomposition of𝑋 (𝑄 = (𝑞
1
, . . . , 𝑞

𝑛
)

is an orthogonalmatrix whose column vector 𝑞
𝑖
, 𝑖 = 1, . . . , 𝑛,
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is the eigenvector of 𝑋, and 𝜆
𝑖
, 𝑖 = 1, . . . , 𝑛, is the related

eigenvalue),

Λ̃ = diag (�̃�
1
, . . . , �̃�

𝑛
) , �̃�

𝑖
= max (𝜆

𝑖
, 0) . (27)

In order to obtain the projection 𝑃
𝑆
𝐵

(𝑋), we need to solve the
following quadratic program:

min
𝑍

1
2‖𝑍 − 𝑋‖2

𝐹

s.t. Tr (𝐴
𝑖
𝑍) = 𝑏

𝑖
, 𝑖 = 1, 2, . . . , 𝑝,

Tr (𝐺
𝑗
𝑍) ≤ 𝑑

𝑗
, 𝑗 = 1, 2, . . . , 𝑚.

(28)

The dual problem of (28) can be written as

min
V

1
2V
𝑇𝐻V + 𝑞𝑇V

s.t. V ∈ 𝑅𝑝 × 𝑅𝑚
+
,

(29)

where 𝐻 is positive semidefinite and 𝐻 and 𝑞 have the
following form, respectively:

𝐻 =

((((((((((

(

Tr (𝐴
1
𝐴𝑇
1
) ⋅ ⋅ ⋅ Tr (𝐴

1
𝐴𝑇
𝑝
) Tr (𝐴

1
𝐺𝑇
1
) ⋅ ⋅ ⋅ Tr (𝐴

1
𝐺𝑇
𝑚
)

... ⋅ ⋅ ⋅ ...
... ⋅ ⋅ ⋅ ...

Tr (𝐴
𝑝
𝐴𝑇
1
) ⋅ ⋅ ⋅ Tr (𝐴

𝑝
𝐴𝑇
𝑝
) Tr (𝐴

𝑝
𝐺𝑇
1
) ⋅ ⋅ ⋅ Tr (𝐴

𝑝
𝐺𝑇
𝑚
)

Tr (𝐺
1
𝐴𝑇
1
) ⋅ ⋅ ⋅ Tr (𝐺

1
𝐴𝑇
𝑝
) Tr (𝐺

1
𝐺𝑇
1
) ⋅ ⋅ ⋅ Tr (𝐺

1
𝐺𝑇
𝑚
)

... ⋅ ⋅ ⋅ ...
... ⋅ ⋅ ⋅ ...

Tr (𝐺
𝑚
𝐴𝑇
1
) ⋅ ⋅ ⋅ Tr (𝐺

𝑚
𝐴𝑇
𝑝
) Tr (𝐺

𝑚
𝐺𝑇
1
) ⋅ ⋅ ⋅ Tr (𝐺

𝑚
𝐺𝑇
𝑚
)

))))))))))

)

, 𝑞 =
((((((

(

𝑏
1
− Tr (𝐴

1
𝑋)

...

𝑏
𝑝

− Tr (𝐴
𝑝
𝑋)

𝑑
1
− Tr (𝐺

1
𝑋)

...
𝑑
𝑚

− Tr (𝐺
𝑚
𝑋)

))))))

)

. (30)

Problem (29) is often amedium-scale quadratic program-
ming (QP) problem. A variety of methods for solving the QP
are commonly used, including interior-point methods and
active set algorithm (see [36, 37]).

Particularly, if 𝑆
𝐵
is the following special case:

𝑆
𝐵

= {𝑋 ∈ 𝑅𝑛×𝑛 | 𝑋𝑇 = 𝑋,𝐻
𝐿

≤ 𝑋 ≤ 𝐻
𝑈
} , (31)

where𝐻 ≥ 0 expresses that each element of𝐻 is nonnegative,
𝐻
𝐿
and 𝐻

𝑈
are given 𝑛 × 𝑛 symmetric matrices, and 𝑋 ≤ 𝐻

𝑈

means that 𝐻
𝑈

− 𝑋 ≥ 0; then 𝑃
𝑆
𝐵

(𝑋) is easy to be carried out
and is given by

𝑃
𝑆
𝐵
(𝑋) = min (max (𝑋,𝐻

𝐿
) ,𝐻
𝑈
) , (32)

where max(𝑋, 𝑌) and min(𝑋, 𝑌) compute the element-wise
maximum and minimum of matrix 𝑋 and 𝑌, respectively.

4. Main Results

Let {𝑤𝑘} be the sequence generated by applying the pro-
cedure (14)–(16) to problem (18)-(19); then for any 𝑤 =
(𝑋, 𝑌, Λ) ∈ W, we have that

⟨𝑋 − 𝑋𝑘+1, 𝑋𝑘+1 − 𝐶 − Λ𝑘+1 − 𝛽 (𝑌𝑘 − 𝑌𝑘+1)
+ 𝑟 (𝑋𝑘+1 − 𝑋𝑘)⟩ ≥ 0,

⟨𝑌 − 𝑌𝑘+1, 𝑌𝑘+1 − 𝐶 + Λ𝑘+1 + 𝑠 (𝑌𝑘+1 − 𝑌𝑘)⟩ ≥ 0,
Λ𝑘+1 = Λ𝑘 − 𝛽 (𝑋𝑘+1 − 𝑌𝑘+1) .

(33)

Further, letting

𝐹 (𝑤𝑘+1) = (
𝑋𝑘+1 − 𝐶 − Λ𝑘+1
𝑌𝑘+1 − 𝐶 + Λ𝑘+1

𝑋𝑘+1 − 𝑌𝑘+1
),

𝑑
1
(𝑤𝑘, 𝑤𝑘+1) = (

𝑟𝐼
𝑛

0 0
0 (𝑠 + 𝛽) 𝐼

𝑛
0

0 0 1
𝛽𝐼
𝑛

)(
𝑋𝑘 − 𝑋𝑘+1
𝑌𝑘 − 𝑌𝑘+1
Λ𝑘 − Λ𝑘+1

),

(34)

where 𝐼
𝑛

∈ 𝑅𝑛×𝑛 is the unit matrix, and

𝑑
2
(𝑤𝑘, 𝑤𝑘+1) = 𝐹 (𝑤𝑘+1) − 𝛽(

𝐼
𝑛−𝐼
𝑛0
) (𝑌𝑘 − 𝑌𝑘+1) , (35)

then we can get the following lemmas.

Lemma 1. Let {𝑤𝑘} be the sequence generated by applying the
proximal ADM to problem (18)-(19) and let 𝑤∗ ∈ W∗ be any
solution to problem (18)-(19); then one has

⟨𝑤𝑘+1 − 𝑤∗, 𝑑
2
(𝑤𝑘, 𝑤𝑘+1)⟩

≥ −⟨Λ𝑘 − Λ𝑘+1, 𝑌𝑘 − 𝑌𝑘+1⟩ + 𝑋𝑘+1 − 𝑋∗
2

𝐹

+ 𝑌𝑘+1 − 𝑌∗
2

𝐹
.

(36)
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Proof. From (22) and (35), we have

⟨𝑤𝑘+1 − 𝑤∗, 𝑑
2
(𝑤𝑘, 𝑤𝑘+1)⟩ = − ⟨Λ𝑘 − Λ𝑘+1, 𝑌𝑘 − 𝑌𝑘+1⟩

+ ⟨𝑤𝑘+1 − 𝑤∗, 𝐹 (𝑤𝑘+1)⟩ .
(37)

Since (9) and 𝑤∗ are a solution to problem (18)-(19) and
𝑋𝑘+1 ∈ 𝑆𝑛

+
, 𝑌𝑘+1 ∈ 𝑆

𝐵
, we have

⟨𝑤𝑘+1 − 𝑤∗, 𝐹 (𝑤∗)⟩ ≥ 0. (38)

From (38), it follows that

⟨𝑤𝑘+1 − 𝑤∗, 𝐹 (𝑤𝑘+1) − 𝐹 (𝑤𝑘+1) + 𝐹 (𝑤∗)⟩ ≥ 0. (39)

Thus, we have

⟨𝑤𝑘+1 − 𝑤∗, 𝐹 (𝑤𝑘+1)⟩
≥ ⟨𝑤𝑘+1 − 𝑤∗, 𝐹 (𝑤𝑘+1) − 𝐹 (𝑤∗)⟩
= ⟨𝑋𝑘+1 − 𝑋∗, 𝑋𝑘+1 − 𝑋∗ − (Λ𝑘+1 − Λ∗)⟩

+ ⟨𝑌𝑘+1 − 𝑌∗, 𝑌𝑘+1 − 𝑌∗ + (Λ𝑘+1 − Λ∗)⟩
+ ⟨Λ𝑘+1 − Λ∗, 𝑋𝑘+1 − 𝑋∗ − (𝑌𝑘+1 − 𝑌∗)⟩

= ⟨𝑋𝑘+1 − 𝑋∗, 𝑋𝑘+1 − 𝑋∗⟩ + ⟨𝑌𝑘+1 − 𝑌∗, 𝑌𝑘+1 − 𝑌∗⟩

= 𝑋𝑘+1 − 𝑋∗
2

𝐹
+ 𝑌𝑘+1 − 𝑌∗

2

𝐹
.

(40)

Substituting (40) into (37), we get the assertion of this lemma.

Lemma 2. Let {𝑤𝑘} be the sequence generated by applying the
proximal ADM to problem (18)-(19) and let 𝑤∗ ∈ W∗ be any
solution to problem (18)-(19); then one has

⟨𝑤𝑘 − 𝑤∗, 𝐺
0
(𝑤𝑘 − 𝑤𝑘+1)⟩

≥ ⟨𝑤𝑘 − 𝑤𝑘+1, 𝐺
0
(𝑤𝑘 − 𝑤𝑘+1)⟩ − ⟨Λ𝑘 − Λ𝑘+1, 𝑌𝑘 − 𝑌𝑘+1⟩

+ 𝑋𝑘+1 − 𝑋∗
2

𝐹
+ 𝑌𝑘+1 − 𝑌∗

2

𝐹
,

(41)

where

𝐺
0
= (

𝑟𝐼
𝑛

0 0
0 (𝑠 + 𝛽) 𝐼

𝑛
0

0 0 1
𝛽𝐼
𝑛

). (42)

Proof. It follows from (33) that

⟨𝑤 − 𝑤𝑘+1, 𝑑
2
(𝑤𝑘, 𝑤𝑘+1) − 𝑑

1
(𝑤𝑘, 𝑤𝑘+1)⟩ ≥ 0,

∀𝑤 ∈ W.
(43)

Thus, we have

⟨𝑤𝑘+1 − 𝑤∗, 𝑑
1
(𝑤𝑘, 𝑤𝑘+1)⟩

≥ ⟨𝑤𝑘+1 − 𝑤∗, 𝑑
2
(𝑤𝑘, 𝑤𝑘+1)⟩

≥ −⟨Λ𝑘 − Λ𝑘+1, 𝑌𝑘 − 𝑌𝑘+1⟩ + 𝑋𝑘+1 − 𝑋∗
2

𝐹

+ 𝑌𝑘+1 − 𝑌∗
2

𝐹
.

(44)

From the above inequality, we get

⟨𝑤𝑘 − 𝑤∗, 𝐺
0
(𝑤𝑘 − 𝑤𝑘+1)⟩

≥ ⟨𝑤𝑘 − 𝑤𝑘+1, 𝐺
0
(𝑤𝑘 − 𝑤𝑘+1)⟩

− ⟨Λ𝑘 − Λ𝑘+1, 𝑌𝑘 − 𝑌𝑘+1⟩ + 𝑋𝑘+1 − 𝑋∗
2

𝐹

+ 𝑌𝑘+1 − 𝑌∗
2

𝐹
.

(45)

Hence, (41) holds and the proof is completed.

Theorem 3. Let {𝑤𝑘} be the sequence generated by applying
the proximal ADM to problem (18)-(19) and let 𝑤∗ ∈ W∗ be
any solution to problem (18)-(19); then one has

𝑤𝑘+1 − 𝑤∗
2

𝐺
≤ 𝑤𝑘 − 𝑤∗

2

𝐺

− ⟨𝑤𝑘 − 𝑤𝑘+1,𝑀 (𝑤𝑘 − 𝑤𝑘+1)⟩ ,
(46)

where

𝐺 = (
(𝑟 + 1) 𝐼

𝑛
0 0

0 (1 + 𝑠 + 𝛽) 𝐼
𝑛

0
0 0 1

𝛽𝐼
𝑛

),

𝑀 = (
(1
2 + 𝑟) 𝐼

𝑛
0 0

0 (1
2 + 𝑠 + 𝛽) 𝐼

𝑛
−𝐼
𝑛

0 −𝐼
𝑛

1
𝛽𝐼
𝑛

),

(47)

and ‖𝑤‖2
𝐺

= ⟨𝑤, 𝐺𝑤⟩.
Proof. From (41), we have

𝑤𝑘+1 − 𝑤∗
2

𝐺
0

= 𝑤𝑘 − 𝑤∗ − (𝑤𝑘 − 𝑤𝑘+1)
2

𝐺
0

≤ 𝑤𝑘 − 𝑤∗
2

𝐺
0

− 2𝑤𝑘 − 𝑤𝑘+1
2

𝐺
0
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+ 2 ⟨Λ𝑘 − Λ𝑘+1, 𝑌𝑘 − 𝑌𝑘+1⟩ − 2𝑋𝑘+1 − 𝑋∗
2

𝐹

− 2𝑌𝑘+1 − 𝑌∗
2

𝐹
+ 𝑤𝑘 − 𝑤𝑘+1

2

𝐺
0

= 𝑤𝑘 − 𝑤∗
2

𝐺
0

− 𝑤𝑘 − 𝑤𝑘+1
2

𝐺
0

+ 2 ⟨Λ𝑘 − Λ𝑘+1, 𝑌𝑘 − 𝑌𝑘+1⟩ − 2𝑋𝑘+1 − 𝑋∗
2

𝐹

− 2𝑌𝑘+1 − 𝑌∗
2

𝐹
.

(48)

Rearranging the inequality above, we find that

𝑤𝑘+1 − 𝑤∗
2

𝐺
≤𝑤𝑘 − 𝑤∗

2

𝐺
− ⟨𝑤𝑘 − 𝑤𝑘+1,(

𝑟𝐼
𝑛

0 0
0 (𝑠 + 𝛽) 𝐼

𝑛
−𝐼
𝑛

0 −𝐼
𝑛

1
𝛽𝐼
𝑛

)(𝑤𝑘 − 𝑤𝑘+1)⟩ − (𝑋𝑘+1 − 𝑋∗
2

𝐹
+ 𝑋𝑘 − 𝑋∗

2

𝐹
)

− (𝑌𝑘+1 − 𝑌∗
2

𝐹
+ 𝑌𝑘 − 𝑌∗

2

𝐹
) .

(49)

Using the Cauchy-Schwarz Inequality on the last term of the
right-hand side of (49), we obtain

𝑋𝑘+1 − 𝑋∗
2

𝐹
+ 𝑋𝑘 − 𝑋∗

2

𝐹
≥ 1

2
𝑋𝑘+1 − 𝑋𝑘

2

𝐹
,

𝑌𝑘+1 − 𝑌∗
2

𝐹
+ 𝑌𝑘 − 𝑌∗

2

𝐹
≥ 1

2
𝑌𝑘+1 − 𝑌𝑘

2

𝐹
.

(50)

Substituting (50) into (49), we get

𝑤𝑘+1 − 𝑤∗
2

𝐺
≤ 𝑤𝑘 − 𝑤∗

2

𝐺

− ⟨𝑤𝑘 − 𝑤𝑘+1,𝑀 (𝑤𝑘 − 𝑤𝑘+1)⟩ .
(51)

Thus, the proof is completed.

Based on theTheorem 3, we get the following lemma.

Lemma 4. Let {𝑤𝑘} be the sequence generated by applying
proximal ADM to problem (18)-(19), 𝑤∗ ∈ W∗ any solution
to problem (18)-(19), 𝑟 > −1/2, and 𝑠 > −1/2; then one has the
following.

(1) The sequence {‖𝑤𝑘 − 𝑤∗‖2
𝐺
} is nonincreasing;

(2) The sequence {𝑤𝑘} is bounded;
(3) lim

𝑘→∞
‖𝑤𝑘+1 − 𝑤𝑘‖2

𝐹
= 0;

(4) 𝐺 and𝑀 are both symmetric positive-definitematrices.

Proof. Since



(1
2 + 𝑠 + 𝛽) 𝐼

𝑛
−𝐼
𝑛

−𝐼
𝑛

1
𝛽𝐼
𝑛


= ((1/2) + 𝑠)

𝛽 , (52)

it is easy to check that if 𝑟 > −1/2, 𝑠 > −1/2, then 𝐺 and 𝑀
are symmetric positive-definite matrices.

Let 𝜏 > 0 be the smallest eigenvalue of matrix 𝑀. Then,
from (46), we have

𝑤𝑘+1 − 𝑤∗
2

𝐺
≤ 𝑤𝑘 − 𝑤∗

2

𝐺
− 𝜏𝑤𝑘 − 𝑤𝑘+1

2

𝐹
. (53)

Following (53), we immediately have that ‖𝑤𝑘 − 𝑤∗‖2
𝐺
is non-

increasing and thus the sequence {𝑤𝑘} is bounded. Moreover,
we have

𝑤𝑘+1 − 𝑤∗
2

𝐺
≤ 𝑤0 − 𝑤∗

2

𝐺
− 𝜏
𝑘

∑
𝑗=0

𝑤𝑗 − 𝑤𝑗+1
2

𝐹
. (54)

So, we get

𝑘

∑
𝑗=0

𝑤𝑗 − 𝑤𝑗+1
2

𝐹
< ∞, ∀𝑘 > 0, (55)

then

lim
𝑘→∞

𝑤𝑘 − 𝑤𝑘+1
2

𝐹
= 0. (56)

Thus, the proof is completed.

Following Lemma 4, now we are in the stage of giving the
main convergence results of proximal ADM with 𝑟 > −1/2
and 𝑠 > −1/2 for problem (18)-(19).

Theorem 5. Let {𝑤𝑘} be the sequence generated by applying
proximal ADM to problem (18)-(19), 𝑟 > −1/2, and 𝑠 > −1/2;
then {𝑤𝑘} converges to a solution point of (18)-(19).

Proof. Since the sequence {𝑤𝑘} is bounded (see point (2) of
Lemma 4), it has at least one cluster point. Let𝑤∞ be a cluster
point of {𝑤𝑘} and the subsequence {𝑤𝑘𝑗} converges to 𝑤∞. It
follows from (33) that

lim
𝑗→∞

⟨𝑋 − 𝑋𝑘𝑗+1, 𝑋𝑘𝑗+1 − 𝐶 − Λ𝑘𝑗+1 − 𝛽 (𝑌𝑘𝑗 − 𝑌𝑘𝑗+1)

+ 𝑟 (𝑋𝑘𝑗+1 − 𝑋𝑘𝑗)⟩ ≥ 0,
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Table 1: Numerical results of Example 6.

𝑛 𝑟 = −0.3, 𝑠 = −0.3 𝑟 = 0, 𝑠 = 0 𝑟 = 3, 𝑠 = 3
It. CPU. It. CPU. It. CPU.

100 31 0.292 34 0.331 72 0.764
200 33 1.346 39 1.570 84 3.364
300 38 4.265 41 5.746 90 9.991
400 40 9.872 43 9.919 94 22.03
500 39 15.83 45 18.39 98 39.91

lim
𝑗→∞

⟨𝑌 − 𝑌𝑘𝑗+1, 𝑌𝑘𝑗+1 − 𝐶 + Λ𝑘𝑗+1 + 𝑠 (𝑌𝑘𝑗+1 − 𝑌𝑘𝑗)⟩

≥ 0, ∀𝑤 ∈ W,
lim
𝑗→∞

Λ𝑘𝑗+1 = Λ𝑘𝑗 − 𝛽 (𝑋𝑘𝑗+1 − 𝑌𝑘𝑗+1) .
(57)

Following point (3) of Lemma 4, we have

⟨𝑋 − 𝑋∞, 𝑋∞ − 𝐶 − Λ∞⟩ ≥ 0,
⟨𝑌 − 𝑌∞, 𝑌∞ − 𝐶 + Λ∞⟩ ≥ 0, ∀𝑤 ∈ W,

𝑋∞ − 𝑌∞ = 0.
(58)

This means that 𝑤∞ is a solution point of (18)-(19). Since
{𝑤𝑘𝑗} converges to 𝑤∞, we have that, for any given 𝜀 > 0,
there exists an integer 𝑁 > 0 such that

𝑤𝑘𝑗 − 𝑤∞
2

𝐺
< 𝜀, ∀𝑘

𝑗
≥ 𝑁. (59)

Furthermore, using the inequality (53), we have

𝑤𝑘 − 𝑤∞
2

𝐺
< 𝑤𝑘𝑗 − 𝑤∞

2

𝐺
, ∀𝑘 ≥ 𝑘

𝑗
. (60)

Combining (59) and (60), we get that

𝑤𝑘 − 𝑤∞
2

𝐺
< 𝜀, ∀𝑘 > 𝑁. (61)

This implies that the sequence {𝑤𝑘} converges to 𝑤∞. So the
proof is completed.

5. Numerical Experiments

In this section, we implement the proximal ADM to solve the
problem (1) and show the numerical performances of proxi-
mal ADM with different proximal parameters. Additionally,
we compare the classical ADM (i.e., the proximal ADM with
proximal parameters 𝑟 = 0 and 𝑠 = 0) with the alternating
projections method proposed by Higham [6] numerically
and show that the alternating projections method is not
equivalent to proximal ADMwith zero proximal parameters.
All the codes were written in Matlab 7.1 and run on IBM
notebook PC R400.

Example 6. In the first numerical experiment, we set the 𝐶
1

as an 𝑛 × 𝑛 matrix whose entries are generated randomly in

[−1, 1]. Let 𝐶 = (𝐶
1

+ 𝐶𝑇
1
)/2 and further let the diagonal

elements of 𝐶 be 1 that is, 𝐶
𝑖𝑖

= 1, 𝑖 = 1, 2, . . . , 𝑛. In this test
example, we simply let 𝑆

𝐵
be in the form of (31) and

𝐻
𝐿

= (𝑙
𝑖𝑗
) ∈ 𝑅𝑛×𝑛,

𝑙
𝑖𝑗

= {−0.5, 𝑖 ̸= 𝑗
1, 𝑖 = 𝑗, 𝑖, 𝑗 = 1, 2, . . . , 𝑛,

𝐻
𝑈

= (𝑢
𝑖𝑗
) ∈ 𝑅𝑛×𝑛,

𝑢
𝑖𝑗

= {0.5, 𝑖 ̸= 𝑗
1, 𝑖 = 𝑗, 𝑖, 𝑗 = 1, 2, . . . , 𝑛.

(62)

Moreover, let 𝑋0 = eye(𝑛), 𝑌0 = eye(𝑛), Λ0 = zeroes(𝑛),
𝛽 = 4, and 𝜀 = 10−6, where eye(𝑛) and zeroes(𝑛) are both the
Matlab functions. For different problem size 𝑛 and different
proximal parameters 𝑟 and 𝑠, Table 1 shows the computational
results. There, we report the number of iterations (It.) and
the computing time in seconds (CPU.) it takes to reach
convergence. The stopping criterion of the proximal ADM is

𝑤𝑘+1 − 𝑤𝑘max < 𝜀, (63)

where ‖𝑋‖max = max(max(abs(𝑋))) is the maximum
absolute value of the elements of the matrix 𝑋.

Remark 7. Note that if the proximal parameters are equal to
zero, that is, 𝑟 = 0 and 𝑠 = 0, then the proximal ADM is the
classical ADM.

Example 8. All the data are the same as in Example 6 except
that 𝐶

1
is an 𝑛 × 𝑛 matrix whose entries are generated

randomly in [−1000, 1000],
𝐻
𝐿

= (𝑙
𝑖𝑗
) ∈ 𝑅𝑛×𝑛,

𝑙
𝑖𝑗

= {−500, 𝑖 ̸= 𝑗
1000, 𝑖 = 𝑗, 𝑖, 𝑗 = 1, 2, . . . , 𝑛,

𝐻
𝑈

= (𝑢
𝑖𝑗
) ∈ 𝑅𝑛×𝑛,

𝑢
𝑖𝑗

= {500, 𝑖 ̸= 𝑗
1000, 𝑖 = 𝑗, 𝑖, 𝑗 = 1, 2 . . . , 𝑛.

(64)

The computational results are reported in Table 2.

Example 9. Let 𝑆
𝐵
be in the formof (31) and 𝑙

𝑖𝑗
= 0, 𝑢

𝑖𝑗
= +∞,

𝑖, 𝑗 = 1, 2, . . . , 𝑛. Assume that 𝐶, 𝑋
0
, 𝑌
0
, Λ
0
, 𝛽, 𝜀, and the

stopping criterion are the same as those in Example 6, but
the diagonal elements of matrix 𝐶 are replaced by

𝐶
𝑖𝑖

= 𝛼 + (1 − 𝛼) × rand, 𝑖 = 1, 2, . . . , 𝑛, (65)

where 𝛼 ∈ (0, 1) is a given number, rand is the Matlab
function generating a number randomly in [0, 1]. In the
following numerical experiments, we let𝛼 = 0.2. For different
problem size 𝑛 and different proximal parameters 𝑟 and 𝑠,
Table 3 shows the number of iterations and the computing
time in seconds it takes to reach convergence.
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Table 2: Numerical results of Example 8.

𝑛 𝑟 = −0.3, 𝑠 = −0.3 𝑟 = 0, 𝑠 = 0 𝑟 = 3, 𝑠 = 3
It. CPU. It. CPU. It. CPU.

100 49 0.476 54 0.551 116 1.837
200 51 2.197 57 2.334 128 5.430
300 59 6.614 61 8.108 136 15.25
400 56 12.74 63 14.51 140 31.65
500 58 23.90 66 26.90 147 59.98

Table 3: Numerical results of Example 9.

𝑛 𝑟 = −0.3, 𝑠 = −0.3 𝑟 = 0, 𝑠 = 0 𝑟 = 3, 𝑠 = 3
It. CPU. It. CPU. It. CPU.

100 32 0.282 35 0.288 70 0.566
200 33 1.295 36 1.397 72 4.006
300 34 3.745 37 4.156 73 8.285
400 34 7.885 37 8.571 73 16.73
500 34 14.07 37 15.42 74 29.87

Table 4: Numerical results of Example 10.

5 𝑟 = −0.3, 𝑠 = −0.3 𝑟 = 0, 𝑠 = 0 𝑟 = 3, 𝑠 = 3
It. CPU. It. CPU. It. CPU.

100 32 0.259 35 0.300 70 0.557
200 33 1.306 36 1.424 72 2.880
300 33 3.750 37 4.087 72 7.958
400 34 7.799 37 8.546 74 16.98
500 34 13.96 37 16.10 74 30.77

Table 5: (a) Numerical results of Example 11 with 𝑛
𝑟

= 5. (b)
Numerical results of Example 11 with 𝑛

𝑟
= 10.

(a)

𝑛 𝑟 = −0.3, 𝑠 = −0.3 𝑟 = 0, 𝑠 = 0 𝑟 = 1, 𝑠 = 1
It. CPU. It. CPU. It. CPU.

100 22 0.293 25 0.354 34 0.448
200 25 2.119 28 2.425 40 3.436
300 27 7.141 30 8.024 44 11.64
400 29 17.40 31 18.59 46 27.32
500 30 34.17 33 37.45 48 53.84

(b)

𝑛 𝑟 = −0.3, 𝑠 = −0.3 𝑟 = 0, 𝑠 = 0 𝑟 = 1, 𝑠 = 1
It. CPU. It. CPU. It. CPU.

100 23 0.309 25 0.342 33 0.439
200 24 2.029 27 2.305 38 3.162
300 27 7.150 29 7.801 42 11.29
400 28 16.68 31 18.47 45 26.60
500 29 32.73 32 36.37 47 53.06

Example 10. All the data are the same as in Example 9 except
that 𝛼 = 0. The computational results are reported in Table 4.

Example 11. Let 𝐶
1
be an 𝑛 × 𝑛 matrix whose entries are

generated randomly in [−0.5, 0.5], 𝐶 = (𝐶
1
+ 𝐶𝑇
1
)/2, and let

the diagonal elements of 𝐶 be 1. And let

𝑆
𝐵

= {𝑋 ∈ 𝑅𝑛×𝑛 | 𝑋 = 𝑋𝑇, 𝑋
𝑖𝑗

= 𝑒
𝑖𝑗
, (𝑖, 𝑗) ∈ B

𝑒
,

𝑋
𝑖𝑗

≥ 𝑙
𝑖𝑗
, (𝑖, 𝑗) ∈ B

𝑙
,

𝑋
𝑖𝑗

≤ 𝑢
𝑖𝑗
, (𝑖, 𝑗) ∈ B

𝑢
} ,

(66)

where B
𝑒
, B
𝑙
, B
𝑢
are subsets of {(𝑖, 𝑗) | 1 ≤ 𝑖, 𝑗 ≤ 𝑛}

denoting the indexes of such entries of𝑋 that are constrained
by equality, lower bounds, and upper bounds, respectively. In
this test example, we let the index sets B

𝑒
, B
𝑙
, and B

𝑢
be

the same as in Example 5.4 of [3]; that is, B
𝑒

= {(𝑖, 𝑖) | 𝑖 =
1, 2, . . . , 𝑛} and B

𝑙
,B
𝑢

⊂ {(𝑖, 𝑗) | 1 ≤ 𝑖 < 𝑗 ≤ 𝑛} consist
of the indices of min(𝑛

𝑟
, 𝑛 − 𝑖) randomly generated elements

at the 𝑖th row of 𝑋, 𝑖 = 1, 2, . . . , 𝑛 with 𝑛
𝑟

= 5 and 𝑛
𝑟

= 10,
respectively. We take 𝑒

𝑖𝑖
= 1 for (𝑖, 𝑖) ∈ B

𝑒
, 𝑙
𝑖𝑗

= −0.1 for
(𝑖, 𝑗) ∈ B

𝑙
, and 𝑢

𝑖𝑗
= 0.1 for (𝑖, 𝑗) ∈ B

𝑢
.

Moreover, let 𝑋
0
, 𝑌
0
, Λ
0
, 𝛽, 𝜀, and the stopping criterion

be the same as those in Example 6. For different problem size
𝑛, different proximal parameters 𝑟 and 𝑠, and different values
of 𝑛
𝑟
, Tables 5(a) and 5(b) show the number of iterations and

the computing time in seconds it takes to reach convergence,
respectively.

Numerical experiments show that the proximal ADM
with relaxed parameters is convergent. Moreover, we draw
the conclusion that the proximal ADM with smaller value
of proximal parameters generally converges more quickly
than the proximal ADM with comparatively larger value of
proximal parameters to solve the problem (1).

Example 12. In this test example, we apply the proximal ADM
with 𝑟 = 0, 𝑠 = 0 (i.e., the classical ADM) to solve the nearest
correlation matrix problem, that is, problem (1) with 𝑆

𝐵
in

the form of (5), and compare the classical ADM numerically
with the alternating projectionsmethod (APM) [6].TheAPM
computes the nearest correlation matrix to a symmetric 𝐶 ∈
𝑅𝑛×𝑛 by the following process:

Δ𝑆
0
= 0, 𝑌

0
= 𝐶;

for 𝑘 = 1, 2, . . .
𝑅
𝑘

= 𝑌
𝑘−1

− Δ𝑆
𝑘−1

;
𝑋
𝑘

= 𝑃
𝑆
𝑛

+

(𝑅
𝑘
);

Δ𝑆
𝑘

= 𝑋
𝑘
− 𝑅
𝑘
;

𝑌
𝑘

= 𝑃
𝑆
𝐵

(𝑋
𝑘
);

end.

In this numerical experiment, the stopping criterion of
the APM is

max {𝑋𝑘 − 𝑋
𝑘−1

max, 𝑌𝑘 − 𝑌
𝑘−1

max, 𝑋𝑘 − 𝑌
𝑘

max} < 𝜀.
(67)

Let the matrix 𝐶 and the initial parameters of classical
ADM be the same as those in Example 6. Table 6(a) reports
the numerical performance of proximal ADM and the APM
for computing the nearest correlation matrix to 𝐶.
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Table 6: (a) Numerical results of Example 12. (b) Numerical results
of Example 12.

(a)

𝑛 ADM APM
It. CPU. It. CPU.

100 28 0.381 47 0.743
200 33 2.878 59 5.443
300 36 9.462 70 20.68
400 38 22.50 81 54.38
500 39 43.32 89 114.7

(b)

𝑛 ADM APM
It. CPU. It. CPU.

100 27 0.634 42 0.582
200 30 2.590 59 5.428
300 32 8.524 65 19.36
400 34 20.34 75 50.79
500 35 39.43 86 111.6

Further, let 𝐶
1
be an 𝑛 × 𝑛 matrix whose entries are

generated randomly in [0, 1] and 𝐶 = (𝐶
1

+ 𝐶𝑇
1
)/2. The

other data are the same as above. Table 6(b) reports the
numerical performance of the classical ADM and the APM
for computing the nearest correlation matrix to the matrix
𝐶. Numerical experiments show that the classical ADM
generally exhibits a better numerical performance than the
APM for the test problems above.

6. Conclusions

In this paper, we apply the proximal ADM to a class of
matrix optimization problems and find that the restriction
of proximal parameters can be relaxed. Moreover, numerical
experiments show that the proximal ADM with relaxed
parameters generally has a better numerical performance in
solving the matrix optimization problem than the classical
proximal alternating direction method.
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[30] O. Güler, “New proximal point algorithms for convex mini-
mization,” SIAM Journal on Optimization, vol. 2, no. 4, pp. 649–
664, 1992.

[31] W. W. Hager and H. Zhang, “Asymptotic convergence analysis
of a new class of proximal point methods,” SIAM Journal on
Control and Optimization, vol. 46, no. 5, pp. 1683–1704, 2007.

[32] W. W. Hager and H. Zhang, “Self-adaptive inexact proximal
point methods,” Computational Optimization and Applications,
vol. 39, no. 2, pp. 161–181, 2008.

[33] R. T. Rockafellar, “Monotone operators and the proximal point
algorithm,” SIAM Journal on Control and Optimization, vol. 14,
no. 5, pp. 877–898, 1976.

[34] M. Teboulle, “Convergence of proximal-like algorithms,” SIAM
Journal on Optimization, vol. 7, no. 4, pp. 1069–1083, 1997.

[35] W. K. Glunt, “An alternating projections method for certain
linear problems in a Hilbert space,” IMA Journal of Numerical
Analysis, vol. 15, no. 2, pp. 291–305, 1995.

[36] J. Nocedal and S. J. Wright, Numerical Optimization, Springer,
New York, NY, USA, 1999.

[37] N. Narendra, “A new polynomial time algorithm for linear
programming,” Combinatorica, vol. 4, pp. 373–395, 1987.


