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The purpose of this survey paper is to present an up-to-date account of the recent advances made in the study of Lf-theory of
the homotopy operator applied to differential forms. Specifically, we will discuss various local and global norm estimates for the
homotopy operator T and its compositions with other operators, such as Green’s operator and potential operator.

1. Introduction

The homotopy operator has been playing an important role
in the study of L?-theory of differential forms. We all know
that any differential form u can be decomposed as u =
d(Tu) + T(du), where d is the differential operator and T
is the homotopy operator. Hence, the homotopy operator
provides an effective tool to study various properties of
different norms and the related operators. As extensions of
functions, differential forms have become invaluable tools for
many fields of sciences and engineering, including theoretical
physics, general relativity, potential theory, and electromag-
netism. They can be used to describe various systems of
PDEs and to express different geometrical structures on
manifolds. In recent years, much progress has been made
in the investigation of differential forms and the related
operators; see [1-7]. The purpose of this survey paper is to
present an up-to-date account of the recent advances made
in the study of L?-theory of the homotopy operator and
its compositions applied to differential forms. We will first
discuss the L-norm and L?-norm inequalities in Sections
2 and 3, respectively. Then, we present Lipschitz and BMO
norm inequalities in Sections 4 and 5. We also give some
global L?-inequalities in Section 6. Finally, we discuss the
compositions of homotopy operator with the projection
operator, potential operator, and Green’s operator in Sections

7, 8, and 9. We will keep using the traditional symbols
and notations in this survey paper. Specifically, we always
assume that Q is a bounded domain in R", n > 2, B and
0B are the balls with the same center and diam(ocB) =
o diam(B) throughout this paper. We use |E| to denote the n-
dimensional Lebesgue measure of a set € R”. For a function
u, the average of u over B is defined by up = (1/|B|) IB udm.
All integrals involved in this paper are the Lebesgue integrals.
We call w a weight if w € L%OC( R™ and w > 0 ae.
Differential forms are extensions of differentiable functions
in R". For instance, the function u(x,, x,,...,x,,) is called
a 0-form. A differential 1-form u(x) in R” can be written
as u(x) = Z?:I u;(x, %5, .., x,)dx;, where the coefficient
functions u;(x,, x5,...,%,), i = 1,2,...,n, are differentiable.
Similarly, a differential k-form u(x) can be expressed as

u(x) = Zu, (x)dx; = Z Ui g0, () dx; Ndxg N Ndx;
T
@

where I = (i},i5,...,0), 1 <4 < i, < -+ < i < n Let
Al = Al( R™) be the set of all I-forms in R”, let D' (Q, A') be the
space of all differential I-forms in Q, and let L?(Q, A) be the
I-forms u(x) = Y u;(x)dx; in Q satisfying IQ lu;(x)|Pdx <
oo for all ordered I-tuples I, I = 1,2,...,n. We denote the
exterior derivative by d and the Hodge star operator by . The
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Hodge codifferential operator d* is given by d* = (=1)"*' «
dx,1=1,2,...,n.

Let D c R" be a bounded, convex domain. The
following operator K, with the case y = 0 was first
introduced by Cartan in [8]. Then, it was extended to

the following general version in [9]. For each y € D,
there corresponds a linear operator K, : C*®(D, Ay -

C®(D, A1) defined by (K, w)(x: &y, &) = [, # wltx+
y — tysx — v,&,...,8_,)dt and the decomposition w =
d(K,w) + K, (dw). A homotopy operator T : C*(D, A -
C®(D, A'™) is defined by averaging K , over all points y in D

Tw = JD ¢ (y) K wdy, (2)

where ¢ € C;°(D) is normalized by _[D o(y)dy = L
For simplicity purpose, we write & = (&;,...,&._;). Then,

1
Tw(x; &) = _[0 ¢! JD e(w(tx + y — ty;x — y,&)dydt. By
substituting z = tx + y —ty and t = s/(1 + s), we have

T (%) = jD (0l (zx—2),8) dz, 3)

where the vector function { Dx R - R"is
given by {(z,h) = hfooo $711 + s)"'p(z — sh)ds. The
integral (3) defines a bounded operator T : L°(D, Al) -
Wb (D, A", 1=1,2,...,n and the decomposition

u=d(Tu)+T (du) (4)

holds for any differential form u. The I-form wj, € D' (D, A)
is defined by

w]ff w(y)dy=|DI’1J w(y)dy, 1=0,
D D
wp =d(Tw),

(5)
1=1,2,...,n,

forallw € LP(D,A"), 1 < p < co. Also, for any differential
form u, we have

IV (T)llpp < CIDI ullp,ps

6
ITull,p < C|D|diam (D) [|ull, p. ©
From [10, Page 16], we know that any open subset Q in R" is
the union of a sequence of cubes Q,, whose sides are parallel
to the axes, whose interiors are mutually disjoint, and whose
diameters are approximately proportional to their distances
from F. Specifically, (i) Q = U2, Q, (ii) Qg n Qg =¢if j#k,
and (iii) there exist two constants ¢;, ¢, > 0 (we cantakec, = 1
and ¢, = 4), so that ¢; diam(Q,) < distance Q; from F <
¢, diam(Q,). Thus, the definition of the homotopy operator
T can be generalized to any domain Q in R™: for any x €
Q, x € Q for some k. Let T, be the homotopy operator
defined on Q. (each cube is bounded and convex). Thus, we
can define the homotopy operator T, on any domain Q by
To = 2321 To, X0
The nonlinear partial differential equation

d* A (x,du) = B(x,du) (7)
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is called nonhomogeneous A-harmonic equation, where A :
OxA(R") — A(R")and B: QxA/(R") — ATH(R™) satisfy
the conditions:

A <aldl™, A Lz,
B (x,&)| < blg|"™

(8)

for almost every x € Q and all§ € A(R™). Here a,b > 0
are constants and 1 < p < oo is a fixed exponent associated
with (7). A solution to (7) is an element of the Sobolev space
WI’P(Q, A1) such that

loc

J A(x,du)-de + B(x,du)-¢ =0 9)
Q

for all ¢ € VVI:)’CP(Q, A1) with compact support. If u is a
function (0-form) in R”, (7) reduces to

div A (x, Vu) = B(x,Vu). (10)
If the operator B = 0, (7) becomes
d*A(x,du) =0 (11)

which is called the (homogeneous) A-harmonic equation. Let
A: QxA(R") — A(R") be defined by A(x, &) = &[&[P~>
with p > 1. Then, A satisfies the required conditions and
(11) becomes the p-harmonic equation d*(duldulP™?) = 0
for differential forms. See [1, 11-18] for recent results on the
A-harmonic equations and related topics.

Lemma 1 (see [12]). Let u be a solution of the nonhomoge-
neous A-harmonic (7) in a domain Q and 0 < s,t < 0o. Then,
there exists a constant C, independent of u, such that

ol < CIBI" Jul (12)
for all balls B with 0B c Q for some o > 1.

A continuously increasing function ¢ : [0, 00) — [0, c0)
with ¢(0) = 0 is called an Orlicz function. The Orlicz space
L?(Q) consists of all measurable functions f on Q such that
_[Q o(Ifl/A)dx < oo for some A = A(f) > 0. L(Q) is
equipped with the nonlinear Luxemburg functional

1o = inf{)& .0 L(p(@)dx < 1}. 1)

A convex Orlicz function ¢ is often called a Young function.
If ¢ is a Young function, then || - ||(p defines a norm in L?(Q),
which is called the Luxemburg norm or Orlicz norm.

Definition 2 (see [19]). We say a Young function ¢ lies in the
class G(p,¢,C), 1 < p < q < 00,C = 1,if (i) 1/C <
o(t'7)/g(t) < C and (ii) 1/C < @(t")/h(t) < Cforall t > 0,
where g is a convex increasing function and h is a concave
increasing function on [0, 00).
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From [19], each of ¢, g, and h in the above definition is
doubling in the sense that its values at t and 2t are uniformly
comparable for all > 0, and the consequent fact that

Ctl<h () <Cytl,  CitP <g ' (p@) <Cytf,
(14)

where C, and C, are constants. Also, for all 1 < p; <
p < p,and a € R, the function ¢(t) = t*log}t belongs
to G(py, p,>C) for some constant C = C(p,«, p;, p,)- Here
log, (¢) is defined by log, (t) = 1fort < e,and log, () = log(t)
for t > e. Particularly, if « = 0, we see that ¢(t) = tF lies in

G(p1 P C) 1< py <p <y

Lemma 3 (see [1]). Let u € D'(M,A") be a solution to the
nonhomogeneous A-harmonic (7) on M and ¢ > 1 be a
constant. Then there exists a constant C, independent of u, such
that

ldull, 5 < C diam (B) ™" [lu = cll, , (15)

for all balls or cubes B with 0B C M and all closed forms c.
Here1l < p < oo.

Lemma 4 (see [1]). Suppose that u is a solution to the
nonhomogeneous A-harmonic (7) on M, ¢ > 1 and q > 0.

There exists a constant C, depending only on o, n, p, a, b, and
g, such that

ldull, o < CIQI PP dull, o (16)

for all Q with cQ c M.
The following Holder inequality will be used in this paper.

Lemma5. Let0 <« < 00,0< <00, ands ™ =a' + 7.
If f and g are measurable functions on R", then

Ifale <1 fllaz- “g”ﬁE (17)

forany E c R".

2. L?’-Norm Inequalities

The following L°-norm Poincaré-type inequality for T was
proved in [13].
Theorem 6. Letu € L}, (A, I =1,2,...,m 1 <5 < 00,
be any differential form in a bounded, convex domain Q) and
let T : CP(Q,A) — C®(Q, A" be the homotopy operator
defined in (2). Then, there exists a constant C, independent of
u, such that

IT () = (T @)l 5 < C|Bl diam (B) ull,z  (18)

for all balls B with B c Q).

3
Proof. Using (4), (5), and (6), we have
IT (@) = (T )| 5 = 1Td (T @)l
< C, |Bldiam (B) ||d (Tu)|s p
= C, |B| diam (B) ””B”s,B
< C, |B| diam (B) |Jull; 5.
We have completed the proof of Theorem 6. O

The basic L*-norm inequality (18) can be extended into
different weighted cases. Let us recall some weight classes as
follows. We first introduce the Muckenhoupt weights.

Definition 7. We say the weight w(x) satisfies the A, (M)
condition, r > 1, and write w € A, (M), if w(x) > 0 a.e,
and

1 L[ r\Yen A\
sup(—J wdx) —J <—> dx <oo (20)
B \|B| JB Bl Js\w

for any ball B ¢ M.

Definition 8. A weight w is called a doubling weight and write
w € D(Q) if there exists a constant C such that

u(2B) < Cu (B) (21)

for all balls B with 2B ¢ (. Here the measure y is defined
by du = w(x)dx. If this condition holds only for all balls
B with 4B ¢ (, then w is weak doubling and we write
w € WD(Q).

Definition 9. Leto > 1.Itis said that w satisfies a weak reverse
Holder inequality and write w € WRH(Q) when there exist
constants § > 1 and C > 0 such that

18
<% J wﬁdx> < Cé J wdx (22)
B oB

for all balls B with 0B ¢ Q. We say that w satisfies a reverse
Holder inequality when (22) holds with ¢ = 1, and write
w € RH(Q). In fact the space WRH(Q) is independent of
o> 1.

If w satisfies the A ,-condition for all balls B with 2B C E,
we write w € AI;’“(E). Also we write A (E) = U,,; A, (E) and
APS(E) = U,,, A (B).

It is well known that w € A_(Q) if and only if w €
RH(Q). This is also true for Algg (©) and WRH(Q)). Moreover,
AP(Q) c WD(Q).

Definition 10. Let w be a locally integrable nonnegative
function in E ¢ R” and assume that 0 < w < oo ae..
We say that w belongs to the A (A, E) class, 1 < r < oo,
and 0 < A < oo or that w is an A, (A, E)-weight, and write



w € A, (LE)orw € A,(A) when it will not cause any
confusion, if

o) (L)

for all balls Bc R".

It is clear that A, (1) is the usual A -class; see [1] for more
properties of A, -weights. We prove some properties of the
A, (1)-weights. The following theorem says that A,(A) is an
increasing class with respect to r.

The following result shows that A,(1)-weights have the
property similar to the strong doubling property of A,-
weights: if w € A, (1), A > 1, and the measure y is defined
by du = w(x)dx, then

B _ . pE)
A1 = TnAw A’
B (B)

(24)
where B is a ball in R” and E is a measurable subset of B.

If we put A = 1 (24), then we have

IEIr < Cer(E)
|BI " u(B)

(25)

which is called the strong doubling property of A, -weights.
It is well known that an A ,-weight w satisfies the following
reverse Holder inequality.

The definitions of the following several weight classes can
be found in [1] and these weight classes have been widely used
recently in the study of the integral properties of differential
forms.

Definition 11. We say that the weight w(x) > 0 satisfies the
A’}(E)—condition, r>1land A > 0, and write w € A)r‘(E), if

1 1 L(1er) AMr-1)
— - 26
sup < B J wdx> ( B JBw dx> <oco (26)

for any ball B ¢ E. Here E is a subset of R".
Definition 12. A pair of weights (w;, w,) satisfies the A, (E)-

condition in a set E ¢ R", and write (w;, w,) € A, ,(E), for
someA>1land1 <7< ocowith1/r+1/r =1,if

’ /A
( 1 N 1/Ar 1 1 Ar'r
sup J Ldx — J — dx < 00.
BcE\ |B| |B| Jp \ w,

(27)
Definition 13. A pair of weights (w,, w,) satisfies the A)r‘(E)-
condition in a set E ¢ R", and write (w,,w,) € Af(E) for
somer > land A > 0, if

1 1 ] \MeD N
sup( J wdx) —J <—> dx < 00
|BI Bl Jp \w,

(28)
for any ball B ¢ E.
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Definition 14. A pair of weights (w;,w,) satisfies the
A,(A, E)-condition in a set E ¢ R”, and write (w,,w,) €
A,(A,E) for somer > 1and A > 0, if

1 N 1 1\ N
sup ( 5] J dx) (E L <u72) dx) < oo (29)

for any ball B € E.

Using the basic Poincaré-type estimate for the homotopy

operator T established in Theorem 6, we have the following
A, (Q)-weighted inequality.
Theorem 15. Let u € Lj (Q, AT =1,2,...m1 <s <
00, be a solution of the nonhomogeneous A-harmonic (7) in a
bounded domain Q and let T : C®(Q, A1) — C®(Q, A
be the homotopy operator defined in (2). Assume that p > 1
and w(x) € A, (Q) for some 1 < r < 0. Then, there exists a
constant C, independent of u, such that

IT () = (T @)l g e < C 1Bl diam (B) [ully pp e (30)

or all balls B with pB c Q and any real number o with 0 <
Il ball hp d any real b h
a<l.

The above L°-norm inequality can also be written in the

integral form as
1/s 1/s
) SC(J |u|sw“dx) )
pB

(31)

(jB IT (u) — (T ()| wdlx

Also, using the procedure developed to extend the local
inequalities into the John domains, we have the following
global Poincaré-type inequality.

Theorem 16. Let u € D'(Q,A) be a solution of the
nonhomogeneous A-harmonic (7) and T : C®@Q,A) -
C®(Q,A™), 1= 1,2,...,n, be the homotopy operator defined
in (2). Assume that w € A,(Q) for some 1 < r < co and s
is a fixed exponent associated with the A-harmonic (7). Then,
there exists a constant C, independent of u, such that

(Jyfreo

for any bounded §-John domain Q ¢ R”. Here Q, C Qisa
fixed cube.

T(u)Q|wdx) <C(JQ |u|$wdx>1/s (32)

By the same method used to prove the imbedding
inequalities, we can prove the following local and global
imbedding inequalities, Theorems 17 and 18, respectively.
Theorem 17. Let u € L} (Q, AT =1,2,...m1 <5 <
00, be a smooth differential form in a bounded domain Q) and
let T : CP(Q,A) = C®(Q,A"Y) be the homotopy operator
defined in (2). Assume that p > 1 and w(x) € A,(Q) for some
1 < r < 00. Then, there exists a constant C, independent of u,
such that

I () = (T @)l 13y e < C 1Bl diam (B) llullg pp e (33)
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for all balls B with pB ¢ Q and any real number o with 0 <
a< L

Theorem 18. Let u € D'(Q,A') be a solution of the
nonhomogeneous A-harmonic (7) and let T : C®(Q,A) —
C®(Q, A, 1= 1,2,...,n, be the homotopy operator defined
in (2). Assume that w € A,(Q) for some 1 < r < co and s
is a fixed exponent associated with the A-harmonic (7). Then,
there exists a constant C, independent of u, such that

|7 @) = (T w))q | <Clulyow — (34)

Whs(Q),w

for any bounded 8-John domain QO ¢ R". Here Q, C Qisa
fixed cube.

So far, we have presented the A,(Q)-weighted Poincaré-
type estimates for the homotopy operator T. Now, we state
other estimates with different weights, such as A,(A, Q)-

weights and A’l (Q)-weights.

Theorem 19. Let u € L (QA), I = 1,2,...,n 1 < s <

00, be a differential form satisfying the nonhomogeneous A-
harmonic (7) in a bounded domain QO < R" and let T :
C®(Q,A) = C®(Q, ™) be the homotopy operator defined
in (2). Assume that w € A,(A, Q) for somer > 1 and A > 0.
Then, there exists a constant C, independent of u, such that

IT (w) - (T (”))B"s,B,wM < C|Bldiam (B) [lull; ppue>  (35)

”T (u) - (T (u))B“Wl"(B),w“’\ <C |B| diam (B) "u”s,pB,w"‘
(36)

for all balls B with pB ¢ Q and any real number o with 0 <
« < 1. Here p > 1 is some constant.

Note that inequality (35) can be written as

<,[B |T @)= (T (u))Berdx)l/s (37)

< C|B| diam (B) (jpB |u|sw“dx)1/s.

Theorem 20. Letu € L}, (Q,A)), 1= 1,2,...,n, 1 < s < 00,
be a differential form satisfying (7) in a bounded domain Q C
R” and let T : C®(Q,A) — C®(Q, A be the homotopy
operator defined in (2). Assume that p > 1 and w € A)r”(Q)
for some r > 1 and A > 0. Then, there exists a constant C,

independent of u, such that

IT () = (T )], gue < C Bl diam (B) [lull, p o (38)

T () = (T @)l e < C 1Bl diam (B) full e (39)

for all balls B with pB ¢ Q and any real number o with 0 <
a <L

The above inequalities have integral representations; for
example, inequality (38) can be written as

s 1/s
(J IT () — (T ()] w“dx)
B
(40)
1/s
SClBldiam(B)(J |u|sw°“dx> )
pB

The above estimates can be extended into the following two-
weight case.

Theorem 21. Let u € LSIOC(Q,/\I),Z =1,2,...,n,1 <s <
00, be a solution of the nonhomogeneous A-harmonic (7) in
a bounded domain Q ¢ R" and let T : CP(Q,A) —
C®(Q, A1) be the homotopy operator defined in (2). Suppose
that p > 1 and (w;,w,) € A,(A,Q) for some A > 0 and
1 < r < 00. Then, there exists a constant C, independent of
u, such that

<JB |T () = (T (u))B|Swtledx>1/5

1/s
< C|B| diam (B) (J |u|sw§‘dx> (41)
pB

IT () - (T (u))B||W1,S(B),w?A < C|B| diam (B) ||u|

s,pB,wg‘

for all balls B with pB ¢ Q and any real number o with 0 <
a <L

In Theorem 21, we have assumed that (w,,w,) €
A, (A, Q). If the weights w; and w, satisfy some other
condition, say (w;,w,) € A,;(Q), we have the following
version of Poincaré-type inequality.

Theorem 22. Letu € L} (Q, /\l), 1=1,2,...,n,1<s< 00,

be a differential form satisfying (7) in a bounded domain Q C
R" and let T : CP(Q,Al) — C®(Q, A" be the homotopy
operator defined in (2). Suppose that p > 1 and (w,,w,) €
A, (Q) for some A 2 1 and 1 < r < oo. Then, there exists a
constant C, independent of u, such that

S 1/s
(J 1T (u) — (T ()| w‘;‘dx)
B
" (%)
< C|B| diam (B) (J |u|5w;‘dx> ,
pB
IT ) - (T (u))B||W1,5(B),w? < C|B| diam (B) [lully pp s (42)

for all balls B with pB ¢ Q and any real number o with 0 <
a <A

Note that inequality (*) can be written as

I @0) = (T @)l p e < C 1Bl diam (B) [ullg pps- ()’

Similarly, if (w,, w,) € A’l(Q), we have the following version
of two-weight Poincaré inequality for differential forms.



Theorem 23. Letu € LiOC(Q,/\l), 1=1,2,....,n,1<s < 00,
be a differential form satisfying (7) in a bounded domain Q) C
R" and let T : C°(Q,A) — C®(Q,AN™) be the homotopy
operator defined in (2). Suppose that (w;,w,) € AYQ) for
somer > land A > 0.If0 < o < 1 and 0 > 1, then there
exists a constant C, independent of u, such that

<.[B |T (u) - (T (u))B|Sw¢1xdx>1/s

1/s
sC|B|diam(B)(J |u|sw;“dx> , W
oB

s,UB,u);‘)‘

IT (w) - (T (u))B"Wl,s(B)’w‘lx < C|B| diam (B) [|u]|
for all balls B with 0B C Q.

If we choose A = 1/« in Theorem 23, we have the

following version of the Poincaré inequality with (w,, w,) €
1

A Q).
Corollary 24. Letu € LSIOC(Q,/\Z), 1=1,2,...,n,1<s <00,
be a differential form satisfying (7) in a bounded domain Q C
R” and let T : C®(Q, A — C®(Q, A be the homotopy
operator defined in (2). Suppose that (w;, w,) € Alr/"‘(Q) for
somer > 1.If0 < « < 1 and o > 1, then there exists a constant
C, independent of u, such that

(L T () - (T (u))B|5w¢1xdx>1/s
(44)

1/s
< C|B| diam (B) <J |u|sw2dx>
oB

for all balls B with 0B C Q.

Choosing & = 1/s in Theorem 23, we obtain the following
two-weighted Poincaré inequality.

Corollary 25. Letu € L} (Q, A, T1=1,2,...,nm1<s< 00,
be a differential form satisfying (7) in a bounded domain Q) C
R" and let T : C¥(Q,A) — C®(Q,A"Y) be the homotopy
operator defined in (2). Suppose that (w,,w,) € Ai(Q) for
somer > 1, A > 0 and o > 1, then there exists a constant
C, independent of u, such that

<L IT () = (T ()] w! ,sdx)l/s
(45)

1/s
< C|B| diam (B) (J |u|5w§/5dx)

oB

for all balls B with 0B C Q.

Letting A = 1 in Corollary 25, we find the following
symmetric two-weighted inequality.
Corollary 26. Letu € L] (Q, A, T=1,2,...,n1 <5< 00,
be a differential form satisfying (7) in a bounded domain Q C
R" and let T : C®(Q,A) — C®(Q,AN™) be the homotopy
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operator defined in (2). Suppose that (w,,w,) € A,(Q) for
some r > 1 and o > 1, then there exists a constant C,
independent of u, such that

<L T (u) - (T (u))B|Sw}/de>l/s
(46)

1/s
< C|B| diam (B) (j jufw)ldx)
oB

for all balls B with 0B C Q.

Finally, when A = s in Theorem 23, we have the following
two-weighted inequality.

10C(Q,/\l), 1=1,2,....,n,1 <s< 00,
be a differential form satisfying (7) in a bounded domain Q
R" and let T : C°(Q,A) — C®(Q,A™) be the homotopy
operator defined in (2). Suppose that (w,,w,) € A(Q) for
somer > 1.If0 < a < 1and o > 1, then there exists a
constant C, independent of u, such that

Corollary 27. Letu € L]

<L IT () - (T (u))B|5w‘1xdx)l/s

< C|B|diam (B) ([ |u|swg‘5dx)l/ ’
IT (1) = (T () gl )

< C|B| diam (B) |Ju||

(47)

s,0B,ws*

for all balls B with 0B C Q.

3. L?-Norm Inequalities

The following local Poincaré-type inequality with the L?-
norm was proved in [13], which can be used to establish the
global inequality.

Theorem 28. Let ¢ be a Young function in the class G(p, g, C),
1< p<g<oo,C=1,Q beabounded and convex domain,
and let T : CO(M,N) — CO(M,A™), 1= 1,2,...,n, be
the homotopy operator defined in (2). Assume that ¢(|lu|) €
L},.(Q,m) and u is a solution of the nonhomogeneous A-
harmonic (7) in Q. Then, there exists a constant C, independent
of u, such that

[ o(re-@wshdmszc| pqupdm s
for all balls B with 6B C Q.
Proof. From (18), we have
IT @) = (T @)g]l 5 < CLBI™ Nl (49)

for all balls B with B ¢ Q. From Lemma 1, for any positive
numbers p and g, it follows that

1/q 1/p
(J |u|qdm) sc2|B|<P*q>/Pq<I |u|Pdm) . (50)
B oB
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where ¢ is a constant o > 1. Using Jensen’s inequality for i ™",
(14), (49), (50), and (i) in Definition 2, and noticing the fact
that ¢ and h are doubling and ¢ is an increasing function, we
obtain

J, 21T @ - @ dm
(1 (] o T @ =T 15l m))

<h([ 15 (o (T - (x @) dm)
<h <c3 JB IT (u) — (T (u))B|qdm>

IN
@
N
S
~
a
w
o]

D\]
—~
<
~
|
—~
)\]
S
=

=]
=
QU
3
~——
N———

(51)
1+1/n+(p-a)/ paq o\
C,|B| < l dm>
0.

1/p
C4‘P (C§|B|‘D(1+1/n)+(P_q)/q J ’ |u|Pdm) )
o

IA

(

<Cup <C5|B|1+1/"(JB |u|qdm>l/q>
(
(

| PO -l J
oB

< |u|pdm>
= Cyg < I ) c?| B|p<1+1/n>+<p—q>/q|u|pdm>
o.

<G| 9(c |BPUHm A P iy
0.

<C, I K. (CyIBIM W02 1)) iy,
o

Since p > 1,then 1+(1/n)+((p—q)/pq) > 0. Hence, we have
|B|HHUm(p=d/pd) < |y 1+ AU/m+(p=a)/pa) < C;. Note that ¢ is
doubling, we obtain

@ (C6|B|1+(1/ﬂ)+((P*q)/P‘1) |L£|) < ng) (lul). (52)

Combining (51) and (52) yields

JB @ (|T () = (T (w)g]) dm < Cy, J : ¢ (ul)dm.  (53)

We have completed the proof of Theorem 28. O

Since each of ¢, g, and h in Definition 2 is doubling, from
the proof of Theorem 28 or directly from (48), we have

J‘B(P<|T(u)—;T(u))B|)dmSCJ’ﬁ({)(%)dM (54)

for all balls B with ¢B < Q and any constant A > 0.
From (13) and (54), the following Poincaré inequality with the
Luxemburg norm

IT ) = (T )sl ) < Clitllyon, (55)

holds under the conditions described in Theorem 28.

Theorem 29. Let ¢ be a Young function in the class G(p, q, C),
1< p<g<oo,C=1,4q(n-p) < np, Qbeabounded domain,
and T : CO(M,N) — C®(M,A™), 1 =1,2,...,n, be the
homotopy operator defined in (2). Assume thatu € D'(Q, A is
any differential I-form, (|ul) € L}OC(Q, m). Then, there exists
a constant C, independent of u, such that

L(p (|T () = (T (w)g|)dm < C JB¢(|u|) dm (56)

for all balls B with B C Q.

Proof. From (53), we have
[, 207 @ - @ @)yl dm

<Cp ((L IT (u) - (T (u))B|qdm>1/q> .

If 1 < p < n, by assumption, we have g < np/(n — p). Using
the Poincaré-type inequality for differential forms T (1)

(57)

<J |T (w) - (T (u))B|"P/(n—p)dm>(”_P)/np
B 1/p (58)
< Cz(JB |d(T (U))Ipdm> ’
we find that
(JB |T () - (T (u)>B|edm)1/q < C3<L \d (T (u))|? dm)up
(59)

We all know that for any differential form u, d(T(u)) = ug,
and ||uB||P,B < C4||u||P,B. Hence,

(JB |d (T (u))lpdm>l/p < CS(L |u|Pdm)1/p. (60)

Combining (57), (59), and (60), we obtain

1/p
L @ (|T () = (T (w)g|)dm < Cy9 (C6<.[B |u|Pdm> )
(61)
for 1 < p < n. Note that the L”-norm of |T(«) — (T'(u))g|
increases with p and np/(n — p) — ocoas p — n, it follows

that (59) still holds when p > n. Since ¢ is increasing, from
(57) and (59), we obtain

1/p
J o (IT () - (T W))g]) dm < Cy (cﬁq |u|pdm) )
B B
(62)



Applying (62), (i) in Definition 2, Jensen’s inequality, and
noticing that ¢ and g are doubling, we have

L(p (IT () - (T (w)]) dm

<Cp <C6<L |ulpdm>l/P)

(63)
ccufc( [ ura)
<G JB g (jul”)dm.
Using (i) in Definition 2 again yields
| ourdmsc, | p@uam 9

Combining (63) and (64), we obtain

[, 9T @~ @ @ylyam <y | pupdm. (@)
The proof of Theorem 29 has been completed. O

Similar to (55), from (18) and (56), the following Orlicz
norm inequality

IT @) = (T @)yl 5 < Cllly (66)

holds if all conditions of Theorem 29 are satisfied.

4. Lipschitz and BMO Norm Inequalities

In this section, we will present Lipschitz and BMO norm
inequalities for the homotopy operator. All results presented
in this section and next section can be found in [14]. Let us
recall the definitions of Lipschitz and BMO norms first.

Let w € L (M,A), [ = 0,1,...

locLip, (M, A), 0 < k < 1, if

,n. We write w €

—(n+k)/n

Nolhoctipg,mr = sup Q| lo-wgll, <0 (67

for some o > 1. Further, we write lip, (M, A for those
forms whose coeflicients are in the usual Lipschitz space with
exponent k and write ||o.)||hpk)M for this norm. Similarly, for

well (M, /\l), [=0,1,...,n, we write w € BMO(M,/\Z) if

loc

ol = sup 1QI ™ lw - wll, , < 0 (68)
oQcM

for some 0 > 1. When w is a 0-form, (68) reduces to the
classical definition of BMO(M). The definitions of the above
Lipschitz and BMO norms can be found in [1].

The following Theorem 30 indicates that we can use the
L*-norm of u to estimate the Lipschitz norm of T'(u).
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Theorem 30. Let u € L'(M,A), [ = 1,2,....m 1 < s <
00, be a solution of the A-harmonic (1) in a bounded, convex
domain M and let T : C®°(M,A) — C®(M,A™) be the
homotopy operator defined in (7). Then, there exists a constant
C, independent of u, such that

IT @) lhocrip, v < Cllttllsnrs (69)

where k is a constant with 0 < k < 1.

Proof. From Theorem 6, we have
IT () = (T )|, 5 < C, |Bl diam (B) |ull, o5 (70)

for all balls B with 0B ¢ M, where ¢ > 1 is a constant. Using
the Holder inequality with 1 = 1/s + (s — 1)/s, we find that

|T () = (T @)g], 5

= JB |T (uw) — (T (u))B| dx
< <JB IT (u) - (T (u))B|sdx>1/s

(s=1)/s
(],

=[BT (u) - (T )] 5
=[BT (u) = (T W) 5

< |B|1_l/s (C, |B| diam (B) ||ull, 55)
< GBS M .

Using the definition of the Lipschitz norm, (71),and 2 - 1/s +
1/n-1-k/n=1-1/s+1/n—k/n > 0, we obtain

"T (u) ||]0cLipk,M

sup IBI_(n+k)/n||T () = (T W)g|, 5
oBCM

= sup [BI" T () = (T )],
oBcM

“1-k 2-1/s+1
< sup |BI" G BT ul o
oBCM (72)
1-1/s+1/n—k
= sup G, |B|' I )
oBcM
1-1/s+1/n—k
< sup G| M|y
oBCcM
< C3 sup ”u"s,aB
oBcM
< Csllull pr-
The proof of Theorem 30 has been completed. O

Using the similar method involved in the proof of
Theorem 30, we have the following Lipschitz norm inequal-
ities for Green’s operator G and the projection operator H;
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see [1] for more properties about Green’s operator G and the
projection operator H.

Theorem 31. Let u € LS(Q,/\Z),Z =12,...,n-1,1<s<
00, be a solution of the A-harmonic (7) in a bounded domain
Q, and let G be Green’s operator and let H be the projection
operator. Then, there exists a constant C, independent of u, such
that

”G (u)lllocLipk,Q < C"du”S,Q’

”H (u)”locLipk,Q < C"duns,Q?

(73)

where k is a constant with 0 < k < 1.

We have discussed some estimates for the Lipschitz norm
I NiocLip,.o @bove. Next, we will focus on the estimates for
the BMO norm | - ||, o. For this, let u € locLip, (€, /\l), I =
0,1,...,n,0 < k <1, and let Q be a bounded domain. Then,
from the definitions of the Lipschitz and BMO norms, we
have

lleell 0

sup [BI ™ u — ug], 5
oBcQ

sup [BI"" 1B lu — ug||,
oBcQ

k/n|B|—(n+k)/n

IN

sup [

et = ]|, 5 (74)
oBcQ

IN

|Q|k/n sup |B|f(n+k)/n"u _ MB"LB
oBcQ

n+k)/n

< C, sup |B|" et = ug]l,
oBcQ

< C] ”u"locLipk,Q’

where C, is a positive constant. Hence, we have proved the
following inequality between the Lipschitz norm and the
BMO norm.

Theorem 32. If a differential form u € locLipk(Q,/\l), I =
0,1,...,n,0 < k < 1, in a bounded domain Q, then u €
BMO (Q, A) and

"u"*,Q < C”u"locLipk,Q’ (75)
where C is a constant.

Using Theorems 32 and 30, we obtain the following
inequality between the BMO norm and the L* norm.

Theorem 33. Letu € L’(M,A), 1 = 1,2,...,n,1 < s < 00,
be a solution of the A-harmonic (7) in a bounded, convex
domain M and let T : C®°(M,A) — C®(M,N™) be the
homotopy operator defined in (2). Then, there exists a constant
C, independent of u, such that

ITullpr < Cliealls p- (76)

Proof. Since inequality (75) holds for any differential form,
we may replace u by Tu in inequality (75). Thus, it follows
that

ITull s ar < CoillTulhocrip, ar0 (77)

where k is a constant with 0 < k < 1. On the other hand, from
Theorem 30 we have

”T (u)"locLipk,M < CZ"“”S,M' (78)
Combination of (77) and (78) yields [[Tull, ; < Csllull; -
The proof of Theorem 33 has been completed. O

As in the proof of Theorem 33, using inequality (75) and
Theorem 31, we obtain the following result immediately.

Theorem 34. Let u € LS(Q,/\Z), I=12,....n-1,1<s<
00, be a solution of the A-harmonic (7) in a bounded domain
Q, and let G be Green’s operator and let H be the projection
operator. Then, there exists a constant C, independent of u, such
that

IG @l < Cllduls,
(79)
IH @)ll0 < Clidullso.

5. Weighted Lipschitz and BMO Norm
Inequalities

In this section, we present the weighted Lipschitz and BMO
norms inequalities. For w € L}OC(Q, ALw*),1=0,1,...,nwe
write w € locLipk(Q,/\l,w"‘), 0<k<l1,if

n+k)/n

=(
“wlllocLipk,Q,w"‘ = osQuC%(# (Q)) ”w - wQ”l,Q,w“ <00

(80)
for some o > 1, where Q) is a bounded domain, the measure
p is defined by dy = w(x)“dx, w is a weight, and « is a real
number. For convenience, we will write the following simple
notation locLipk(Q,/\l) for locLipk(Q,/\l, w”). Similarly, for
w e L (@A w) 1 = 01,.
BMO(Q, A, w®) if

., n, we will write w €

ol e = sup (4(Q) ™l = wgll gue < (81)
oQcQ

for some o > 1, where the measure y is defined by dy =
w(x)*dx, w is a weight, and « is a real number. Again, we
will write BMO(Q, A') to replace BMO(Q, A, w*) when it is
clear that the integral is weighted.

Theorem 35. Let u € LS(M,/\Z,M), I = 1,2,...,n, 1 <
s < 00, be a solution of the nonhomogeneous A-harmonic (7)
in a bounded, convex domain M and let T be the homotopy
operator defined in (2), where the measure y is defined by
du = wdx andw € A (M) for somer > 1 withw(x) > &> 0
for any x € M. Then, there exists a constant C, independent of
u, such that

IT () ocripy mwe < Clltllg g (82)

where k and o are constants with0 <k <1land0 < «a < 1.
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Proof. First, we note that u(B) = IB wdx > IB e*dx = C,|B|,
which implies that

u(B) — |B|

for any ball B. Using (30) and the Holder inequality with 1
1/s + (s — 1)/s, we find that

IT () = (T @)l p e

=wa—awmwu

SQJTwwaw»J¢Om<LfMMWOWWS

= (u(B)" T ()~ (T W), g0
= (u(B))
< (u(B))

1-1/
< Cy(B)) 1Bl e

(84)
1-1/s

|T () = (T )| g

Y5 (€, 1B diam (B) lull, )

Next, from the definition of the weighted Lipschitz norm,
(80), and (84), we obtain

"T (M) ||locLipk,M,w"‘

sup (4 (B)) ™ ™IT () = (T )], e
oBcM

~1-k
= sup (¢ (B)) /n"T (u) - (T (u))Blll,B,w"‘
oBcM
~1/s—k

< Cs sup (u(B)) s /n|B|1+1/n”u"s,aB,w"‘

oBCM (85)
< Cg sup IBlfl/sfk/nHH/n||U||s,oB,w“

oBCM

< C6 sup |M|—1/s—k/n+1+1/n”u"
oBcM

s,0B,w”*

—1/s—k/n+1+1/
< Co M| sup ull o e
oBcM

< C7"u”s,M,w"‘

since —1/s —k/n+ 1+ 1/n > 0 and |M| < oo. We have
completed the proof of Theorem 35. O

Next, we present the | - ||, o ,« norm estimate. Let u €
locLipk(Q,/\l), Il =01,....,n,0 < k < 1, in a bounded
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domain Q. From the definitions of the weighted Lipschitz and
the weighted BMO norms, we have

Ml 000

sup (4 (B)) ™ Ju ~ upll, e
oBCQ

sup (uB) " (1 (B) "™ Ju — g, e
oBcQ

IA

—(n+k)/n |

sup (1 ()" (u (B)) |u—ugll, pue  (86)

—(n+k)/n

< (u(@)"" sup (u(B)) [
oBcQ

< C; sup (p (B))_(n+k)/n|l” - “B||1,B,w«
oBcQ

< CillulliocLip, 0w

where C, is a positive constant. Hence, we have obtained the
following theorem.

Theorem 36. Let u € locLip,(€Q, /\Z,M), I = 0,1,...,n
0 < k < 1, be any differential form in a bounded domain
Q, where w € A.(Q) is a weight for some r > 1. Then,

u € BMO (Q, AL, w*) and
”u”*,Q,w"‘ = C””"locLipk,Q,w“’ (87)

where C and « are constants with 0 < a < 1.

Theorem 37. Let u € L°(M, /\l,y), I = L,2,...,n, 1 <
s < 00, be a solution of the nonhomogeneous A-harmonic (7)
in a bounded, convex domain M and let T be the homotopy
operator defined in (2), where the measure y is defined by
du =wdx andw € A, (M) for somer > 1 withw(x) 2 & >0
for any x € M. Then, there exists a constant C, independent of
u, such that

ITull s pge < Cllellg g (88)
where a is a constant with 0 < o < 1.
Proof. Replacing u by Tu in Theorem 36, we have
ITull, pwe < Cy ”TulllocLipk,M,w"" (89)

where k is a constant with 0 < k < 1. Now, from Theorem 35,
we find that

”T (u)lllocLipk,M,w"‘ < CZ "u”s,M,w"" (90)

Substituting (90) into (89), we obtain [|Tul, pr« <
Csllulls prpe- The proof of Theorem 37 has been com-
pleted. O

6. Global L*-Inequalities

In this section, we discuss the global inequalities in the
following L?(im)-averaging domains. See [13] for detailed
proofs.



Abstract and Applied Analysis

Definition 38 (see [20]). Let ¢ be an increasing convex
function on [0,00) with ¢(0) = 0. We call a proper
subdomain Q ¢ R" an L?(m)-averaging domain, if m(Q) <
0o and there exists a constant C such that

J q)(T|u—uBo|)deCsupj ¢ (o |u-ugl)dm (91)
Q BcQ JB

for some ball B, ¢ Q and all u such that ¢(|u|) € L}OC(Q, m),
where 7, 0 are constants with 0 < 7 < 00, 0 < 0 < 00 and the

supremum is over all balls B ¢ Q.

From the above definition, we see that L°-averaging
domains and L°(m)-averaging domains are special L?(m)-
averaging domains when ¢(t) = t° in Definition 38. Also,
uniform domains and John domains are very special L? (m)-
averaging domains; see [20, 21] for more results about
domains.

Theorem 39. Let ¢ be a Young function in the class G(p, q, C),
1 <p<gq<oo,C=1,andlet Q be any bounded L? (m)-
averaging domain and let T : C®(Q,A) = C®(Q,A™),
I=1,2,...,n, be the homotopy operator defined in (2). Assume
that ¢(|u]) € LY(Q,m) and u € D'(Q,AY) is a solution of
the nonhomogeneous A-harmonic (7) in Q. Then, there exists
a constant C, independent of u, such that

| o(ra-awyl)ansc| oupdm ©

where B, C Q) is some fixed ball.

Proof. From Definition 38, (48), and noticing that ¢ is dou-
bling, we have

[ om0~ an

< C,sup JBgo(]T(u) — (T (w)g|) dm

BcQ

< Clzlclg (Cz LB @ (lul) dm) (93)
< Cpsup (c2 JQ ¢ (lul) dm)

<G, JQ¢(|u|)dm.

We have completed the proof of Theorem 39. O

Similar to the local case, the following global inequality
with the Orlicz norm

Ju = us, | ) < Clldtllyer (94)

holds if all conditions in Theorem 39 are satisfied. Also, by

the same way, we can extend Theorem 28 into the following
global result in L?(m)-averaging domains.

1

Theorem 40. Let ¢ be a Young function in the class G(p, g, C),
1 < p < g < 00,C =1, Q be a bounded L?(m)-
averaging domain and q(n — p) < np, and T : C®(Q,A') —
C®(Q,AN™), 1= 1,2,...,n, be the homotopy operator defined
in (2). Assume that u € D'(Q,A") and o(Jul) € LY(Q, m).
Then, there exists a constant C, independent of u, such that

j ¢ (|7 @) = (T W),
Q

)dm SCJ @ (Ju]) dm, (95)
Q
where B, C Q is some fixed ball.
Note that (95) can be written as

|7 @ - @ @), (96)

#(0) < Cllullp(oy-

It has been proved that any John domain is a special L?(m)-
averaging domain. Hence, we have the following results.

Corollary 41. Let ¢ be a Young function in the class G(p, g, C),
1 < p < g < 0o, C = 1, and let Q be a bounded
John domain and let T : CO(Q,A) — C®(QA), 1 =
1,2,...,n, be the homotopy operator defined in (2). Assume
that ¢(|u]) € LYQ,m) and u € D'(Q,AY) is a solution of
the nonhomogeneous A-harmonic (7) in Q. Then, there exists
a constant C, independent of u, such that

[, @ (76 - @) dm<c | pupdm o7
Q Q
where B, C Q is some fixed ball.

Choosing ¢(t) = tlog}t in Theorems 39 and 40,
respectively, we obtain the following Poincaré inequalities
with the Lf(log}L)-norms.

Corollary 42. Let ¢(t) = tPlogit, p> 1, a € R, and let T :
COA) = C®A™Y, 1 =1,2,...,n be the homotopy
operator defined in (2). Assume that p(|ul) € LY (Q,m)andu €

D'(Q,A") is a solution of the nonhomogeneous A-harmonic
(7). Then, there exists a constant C, independent of u, such that

jQ IT () ~ (T (), |"log? (|T () = (T @), |) dm

(98)
< C |, [ulPlog (Jul) dm

for any bounded L?(m)-averaging domain Q and B, C Q is
some fixed ball.

Note that (98) can be written as the following version with
the Luxemburg norm

|7 @) = (T )y,

Lot (@) = Cllullzr goge 1y (99)

provided the conditions in Corollary 42 are satisfied.

Corollary 43. Let ¢(t) = tPlogit, 1< p; < p< pr,a € R, Q
be a bounded L? (m)-averaging domain and p,(n— p,) < np;,
and T : C®(Q,N) — CO(LATY), 1 = 1,2,...,n, be the
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homotopy operator defined in (2). Assume that u € D'(Q, A'),
o(Jul) € LY(Q, m). Then, there exists a constant C, independent
of u, such that

Plog? (|T () - (T W), |) dm

J, I = g,
(100)
< CJ [ulPlog? (|ul) dm,
Q

where B, C Q) is some fixed ball.

7. Composition of Homotopy and
Projection Operators

In this section, we present the norm estimates for the com-
position of the homotopy operator and projection operator.
The results presented in this section can be found in [15, 16].
We assume that M is a domain in an oriented, compact,
C® smooth Riemannian manifold of dimension n > 2.
Let A'’M be the Ith exterior power of the cotangent bundle,
and let COO(/\ZM ) be the space of smooth I-forms on M and
WNM) = {u e L}QC(/\IM ) : u has generalized gradient}.The
harmonic [-fields are defined by # NM) = {u e wIN'M) :
du =d*u = 0,u € L? for some 1 < p < co}. The orthogonal
complement of % in L' is defined by #* = {u € L' <
u,h >= 0 for all h € #}. Then, Green’s operator G is defined
as G : C°(NM) - Z*+ nC®(N'M) by assigning G(u) be
the unique element of Z* N C®(A'M) satisfying Poisson’s
equation AG(u) = u — H(u), where H is the harmonic
projection operator that maps C®(A'M) onto % so that H (1)
is the harmonic part of u. See [1, 22, 23] for more properties
of these operators.

Lemma 44 (see [20]). Let ¢ be a strictly increasing convex
function on [0, 00) with ¢(0) = 0, and let D be a domain in R".
Assume that u is a function in D such that ¢(Ju]) € LY(D, )
and u({x € D : |u—c| > 0}) > O for any constant c, where p
is a Radon measure defined by du(x) = w(x)dx for a weight
w(x). Then, we have

JD¢(g|u—uD)H|>dy§ JD¢(a|u|)dy (101)

for any positive constant a, where up, , = (1/u(D)) jD udy.

Lemma 45 (see [24]). Letu € C°(AN'M) and | = 1,2,...,n,
1 < s < 00. Then, there exists a positive constant C = C(s),
independent of u, such that

ldd” G )|, o, + |47 dG W), + 14G @)llg p1
(102)

+[|d*G @), 5+ 1G @l spr < C (5) lutllg -

Lemma 46 (see [12]). Each Q has a modified Whitney cover
of cubes 7" = {Q;} such that U,Q; = Q, Y cv Xyama < NXa
and some N > 1, and if Q; N Q;#0, then there exists a cube R
(this cube need not be a member of 7') in Q; nQ; such that Q;U
Q; € NR. Moreover, if Q) is §-John, then there is a distinguished
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cube Q, € 7" which can be connected with every cube Q € 7
by a chain of cubes Qy, Qy, ..., Qx = Q from 7" and such that
QcCpQ;i=0,1,2,...,k, for some p = p(n,d).

Lemma 47. Letu € L (Q,A), 1 = 1,2,...,n 1 < s < 00,
H: C®(Q,A) — C®(Q, A) be the projection operator, and
T : C(QA) — C®(Q,A™) be the homotopy operator.
Then, there exists a constant C = C(n, s, Q)), independent of u,
such that

IT (H @)lsp < C (1,5, Q) |B| diam (B) [lull,p  (103)
for all balls B ¢ Q.

Proof. Let T be the homotopy operator and let u be locally
L integrable ! form. Then, there exists a constant C, (1, s, Q0),
independent of u, such that

ITulls g < Cy (1,5, Q) |B| diam (B) [lull; p. (104)
By using Lemma 45, we have
IAG W)l 5 = ||(dd” +d"d) G W),
< dd"G )|, + |d"dGw)],;  (105)

< Gy (9) lull, p-
Thus, by (104) and (105), we have
ITH (W)lsp < C, (1,5, Q) |B diam (B) [|H ()l 5
=C, (n,5,Q) |B| diam (B) [lu — AG (u)|; 5
< Cy (n,s,Q) |B| diam (B) (|lull, 5 + 1AG ()]l 5)
< Cy (n,s,Q) |B| diam (B) (llully 5 + C; () luls 5)

< C3 (7’1, S5 Q) |B| diam (B) ”u"s,B
(106)

which ends the proof of Lemma 47. O
Lemma 48. Let u € LiOC(Q,/\l), Il =1,2,....,n1 <s <
00, be a solution of the nonhomogeneous A-harmonic (7) in
a bounded and convex domain Q, let H be the projection
operator, and let T be the homotopy operator. Then, there exists
a constant C(n, s, a, A, Q0), independent of u, such that

. 1 1/s
(L 1T (H 0 50 BQ)dx>

Vs (107)
1
<C(ms oM Q) |B|Y<J |uf* /\dx)
PB |x — xg)

for all balls B with pB C Q, p > 1, and any real number o and
Awitha > A >0andy =1+ (1/n) — ((« — A)/ns). Here xg is
the center of the ball.

Theorem 49. Let u € L (9, AT = 1,2,...m 1 <
s < 00, be a solution of the nonhomogeneous A-harmonic (7)



Abstract and Applied Analysis

in a bounded domain Q, let H : C*(Q, A)) = C®(Q, A) be
the projection operator, and let T : C*°(Q, ) — C®(Q, A™")
be the homotopy operator. Then, there exists a constant C,
independent of u, such that

|T (H (w)) = (T (H W) < C B diam (B) |lull, 5
(108)

for all balls B with 6B C Q, where o > 1 is a constant.
Theorem 50. Letu € L;, (Q,A), 1= 1,2,...,n, 1 < s < 00,
be a smooth differential form in a bounded domain Q, let H
be the projection operator, and let T be the homotopy operator.
Then, there exists a constant C, independent of u, such that

IT (H @) = (T (H @))sll

(109)
< C|B| diam (B) (lully s + lldull, 5)

for all balls B ¢ Q.

In applications, such as in calculating electric or magnetic

fields, we often face the fact that the integrand contains a
singular factor. So, the above result was extended into the
following singular weighted case.
Theorem 51. Let u € Lioc(Q,/\l), 1=1,2,....n,1 <s < 00,
be a solution of the nonhomogeneous A-harmonic equation in
a bounded domain Q, let H be the projection operator, and let
T be the homotopy operator. Then, there exists a constant C,
independent of u, such that

1/s
(j T (H (w)) - (T (H (u)))BF—1 adx)
B |x—xB|

1 1/s
< C|B|V<j |u|S—Adx>
oB |x —xBl

for all balls B with 0B C Q and any real numbers o and A with
a>A>0 wherey =1+ (1/n) — ((« — A)/ns) and xp is the
center of ball B and o > 1 is a constant.

(110)

Proof. Let ¢ € (0,1) be small enough such that en < a — A
and B ¢ Q be any ball with center x; and radius rz. Choose
t = s/(1 —¢); then, t > s. Write 8 = t/(t — s), and using the
Holder inequality and Theorem 49, we have

1/s
(J (ITH (u) - (TH (u))BI)S%d’C)
B |x - xB|

s 1/s
_ <J <|TH () — (TH () 5| — a/s> dx)
B |x—xB|
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1 e/ (=) (t-s)/st
<|TH (w) - (TH (u))B"t,B<L (m) dx>
- Xp

1/Bs
_ |TH (u) - (TH (u))B"LB(L - x| )

1/s

< C, |B| diam (B) [ull, .5 |x — x5| | e

(11)

where » > 1 is a constant. We may assume that x; = 0.
Otherwise, we can move the center to the origin by a simple
transformation. Then, forany x € B, |[x—xg| > |x|—|xp| = |x].
By using the polar coordinate substitution, we have

(”B)n_aﬁ-

(112)

~aB (L C
- dx<C dp <
Jle xg| "dx L P dp < =

Choose m = nst/(ns+at—At), then 0 < m < s. By the reverse

Holder inequality, we find that

I ull,p < Col Bl | ul (113)

m,oB>

where o > v > 1isa constant. By the Holder inequality again,
we obtain

4l 0

1
= <J. (|u| |x - xB|_/\/s|x - xB|A/s)mdx>
oB
s\ 5\

< <LB (|u| |x — x| ) dx)

/(s—m) (s—m)/ms
% (J <|X _ xB|/\/s>m$ s—m dx>
oB

1/s
< <J |u|5|x — XB|_Adx) C3(O_rB)Ms+n(s—m)/ms
oB

/m

(114)

1/s
s [ e e
o

Note that
diam (B) . |B|1+(1/t)7(1/m) — |B|1+(1/n)+(l/t)f((nsﬂxtf)tt)/nst)
— |B|1+(1/n)—((a—/1)/ns).
(115)

Substituting (112), (113), and (114) in (111) and using (115), we
have

1/s
(J,rrt o= vt ol
B |x — x|
(116)

Y 1/s
< C5|B|V(J [ul*|x — x| dx) .
oB

We have completed the proof of Theorem 51. O
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Remark 52. (1) Replacing « by 2« and A by « in Theorem 51,
we have

1/s
<j |T (H (u)) - (T (H (u)))BIS;mdx)
B |x = x|

117)
1 1/s
< C|B|1+(1/n)—(tx/ns)(-[ |u|s—adx> )
0B |x—xg
(2) If A = 0, inequality (110) reduces to
1 1/s
(J |T (H () - (T (H (u)))3|s—(xdx)
B |x = xg]
(118)
<C|B|1+(1/n)7(ac/ns)<’[ |u|sdx>1/s
B oB

which does not contain a singular factor in the integral on the
right side of the inequality.

The following definition of L*(y)-averaging domains can
be found in [1]. We call a proper subdomain Q ¢ R” an
L*(u)-averaging domain, s > 1, if () < 0o, and there exists
a constant C such that

1 s 1/s
<u Q) JQ o = s, )

1 s\
<Csu < J u-—up,| d >
4Bc% u (B) | B’”| :

for some ball By ¢ Q and all u € L} .(Q;p). Here the
supremum is over all balls B ¢ Q with 4B ¢ Q and u is
a measure defined by du = w(x)dx for a weight w(x) and

ug, = (1/u(B)) [, u(x)dx.

(119)

Theorem 53. Letu € D'(Q, A1) be a solution of the nonhomo-
geneous A-harmonic equation, let H be the projection operator,
and let T be the homotopy operator. Assume that s is a fixed
exponent associated with the nonhomogeneous A-harmonic
equation. Then, there exists a constant C, independent of u,
such that

< 1/s
<IQ |T (H (u)) = (T (H (u)))s, | de>

1/s
Q d(x, aQ)

for any bounded and convex L (u)-averaging domain Q. ¢ R".
Here B, c Q is a fixed ball and « and A are constants with
0<A<a<min{n,s+A+n(s—1)}

(120)

Proof. Let rg be the radius of a ball B ¢ Q). We may assume
the center of B is 0. Then, d(x,0Q)) > rz — |x| for any x € B.
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Therefore, d ! (x,0Q) < 1/(rg — Ix|) for any x € B. Similar to
the proof of Theorem 51, we have

1 1/s
- 4
d(x,0Q)" x)

1/s
< CﬂBW(] |u|5%dx>
B d(x,0Q)

for all balls B with 0B ¢ Q, 0 > 1, and any real numbers
aand A with « > A > 0, wherey = 1+ (1/n) -
((a — A)/ns). Write dy = (1/d(x,0Q)")dx. Then, u(B) =
[pdu = [,(1/d(x,00)M)dx = [, (1/(diam(Q))*)dx = C,|B|,
and hence 1/u(B) < C,/|B|. Since Q is an L*(u)-averaging
domain, using (121) and noticing that y — 1/s = (1 — 1/s) +
(s + A —a)/ns > 0, we have

<JB |TH (u) - (TH ()|’
(121)

1 1/s
——d
d(x,00)" x)

s 1/s
dpt)

1/s
<C35up< (1 j|T(H<u)>—(T<H(u>))B| d;»)

4BcQ)

<ﬁ J, [T - @@y

- (ﬁ J, I - @ @,

1/s
<Cysup (i [ 7 ) = 1 ol

4BcO
1 1/s
< Cssup |B|y_1/s(J |u|s—/1dx)
4BcQ B d(x,00)

1/s
scs|o|”“(j |u|5%dX>
Q  d(x,0Q)
1/s
scs(j juf ——dx ) ,
o d(x, BQ)

(122)

which is equivalent to

s 1
T(H -(T(H —d
(L] (H ()~ T (@) | 35 x)
Us (123)
A )
o  d(x, BQ)

We have completed the proof of Theorem 53. O

We recall the following definition of §-John domains with
6 >0.

Definition 54. A proper subdomain QO ¢ R” is called a §-
John domain, § > 0, if there exists a point x, € Q) which can
be joined with any other point x € Q by a continuous curve
y € Q so that

d(&,00) =8 |x - (124)
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for each & € . Here d(§,0Q) is the Euclidean distance
between & and 0Q).

Theorem 55. Let u € D'(Q,AY) be a solution of the nonho-
mogeneous A-harmonic (7), let H be the projection operator,
and let T' be the homotopy operator. Assume that s is a fixed
exponent associated with the nonhomogeneous A-harmonic
equation. Then, there exists a constant C(n, N, s, «, A, Qq, Q0),
independent of u, such that

. 1 1/s
<LJ71H(u»—(T(H(uD%%|giaiiﬁdx>
(125)

1/s
<C(n N,s,a,1,Qp, Q) <J ul’ g (x) dx)
Q

for any bounded and convex §-John domain Q c R", where

glx) =3, XQ,.(l/|x - inI)‘). Here o and A are constants with
0 <A< a < min{n,s + A+ n(s — 1)}, and the fixed cube
Q, C Q, the cubes Q; C Q, and the constant N > 1 appeared
in Lemma 46.

Proof. We use the notation appearing in Lemma 46. There is

a modified Whitney cover of cubes 7" = {Q,} for Q such that
Q =UQ; and Y. co X @rag, < N for some N > 1. Since
Q = UQ,;, for any x € , it follows that x € Q; for some i.
Applying Lemma 48 to Q;, we have

. 1 1/s
<«[Qi |TH (u)| e 3 . ag)dx)

. 1 1/s
< Cl (n,s,«a, A, Q) |Q1|Y<J o |u| mdx) >
' (126)

where 0 > 1 is a constant. Let y(x) and g, (x) be the Radon
measures defined by du = (1/d%(x,0Q))dx and dy,(x) =
g(x)dx, respectively. Then,

1
#@—L%mmwx -

1
> JQ mdx =M (na Q)|Q|,

where M (n, o, Q) is a positive constant. Then, by the elemen-
tary inequality (a + b)* < 2°(lal® + |b[*), s = 0, we have

s 1 Us
4 (x, aQ)dx>

s 1/s
dy)

(Lhmw»4ﬂme%

- (LQ |T (H ) = (T (H (u)))q,

15

< ( Z <2$ L T (H () - (T (H (w))o| du +2°

Qe7”
s 1/s
i)

1/s
gCﬁQ((}ZJITGHWV%TGUWDdW#>

Qe7 'R

x JQ |(T (H w))q = (T (H (1)))q,

1/s
+<ZLMW@%%NWWMW))

Qe7”
(128)

for a fixed Q, ¢ Q. The first sum in (128) can be estimated by
using Lemma 44 with ¢ = ¢, a = 2, and Lemma 48:

> | I ) - (@ @)ofdn

Qe7 Q

< 2°|T (H (w)|'d
Q;V JQ ¢ :

<Cmsar0) Y |Q|VSJ

Qe PQ

ul du,
(129)

<Cy(m5,0,1,Q) Q" Y

[, (i)
Q7

<C,(n,N,s,a, 1, Q) Q" J [ul*dpy
Q
< Cs(n, N,s,a, 1, Q) J [ulg (x) dx.
Q

To estimate the second sum in (128), we need to use the
property of §-John domain. Fix a cube Q € 7 and let
Qp> Q15 ... Q. = Q be the chain in Lemma 46.

(T (H u)))q = (T (H w)))g|
(130)

k-1
< Y (T (H ))q, - (T (H w))q,,
i=0

The chain {Q;} also has property that, for each i, i =
0,1,...,k—1,with Q; N Q,,, #0; there exists a cube D, such
that D; c Q;NQ;,; and Q; UQ;,; < ND;, N > I:

max {|Qil > |Qi+1l} < max{|Qi| > lQi+1|}

< <C.(N). (131)
|Q; N Qi D] °
For such D, j = 0,1,....,k — 1, let |[D*|] =
min{|Dyl, 1D, ... IDy_, I}; then
max {|Q], Qi [} < max {|Q.[Qu [} <C,(N). (132)

|Qi r]Qi+1| - |D*|
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By (127), (132), and Lemma 48, we have

N

|(T (H ), ~ (T (H W)))q,,

1
" u(@QnQ,)
s d
< @ - e[ w5
1
<Cg (n,a,Q) m
s d
y jQ_mQ Tt @, = T [ e
C, (N)
<Cilmo, Q) ——2~—~
< Cyg (n,a, Q) maX“Qil, |Qi+1|}
% J Fete) |(T (H (u)))Qi -(T(H (u)))Qm Sd‘u

<Cy(m N,s,a,Q)
S [ ) - @ e d
j:ile| Q N

<Cyo (M N,s,0,1,Q)

X"§|Q]-

N
d
j=i |QJ'| LQ}' s

=C,pm,N,s,a,1,Q)

"

i+1
x i|QJ-|y5_1 J [ul’g (x) dx.
j=i PQ;
(133)

SinceQCNijorjzi,i+1,03i§k—1,fr0m(133)

(T (H W)q, — (T (H @)q,, | X0 )

i+1

s—1 s
SCH (n,N,S,(X,A,Q) ZXNQJ (x) |Q]|y JQ |1/l| g(x)dx
j=i P

i+1
<Cp (M N,s,a,1,Q) ZXNQJ- (x) |Q" JQ ul*dpy.
j=i PRj

(134)

We know that |Q|"™"/* < co since Q isbounded and y—(1/s) =
1+(1/n)+(A/ns)—(1/s)—(x/ns) > Owhena < s+A+n(s—1).
Thus, from (a + b)"/* < 25(ja|'/* + |b|'/%), (130), and (134),

(T (H ))q = (T (H ), | xq (x)

1/s
<Ci;3(m,N,s,a,1,Q) Z (J |u|5d[41> “xnp (%)
De7 \7PD

(135)
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for every x € R". Then,

) JQ (T (H ))q = (T (H @))q [ du

Qe7"
<Ci;3(mN,s,a,1,Q) (136)
1/s S
X j > (J Iulsdm> Xnp (%)| dp.
R" [pe7 \/pD
Notice that
Z Xnp (%) < Z Xpnp (%) < Nxq (). (137)

De7" De7"

Using elementary inequality | ¥, t;1° < M"Y M |t we
finally have

> | Jer g - (1t g [
Qe7 °R
<CuNsad0) | (D; (LD Iulsdm) Xo (x)) du

= C14 (n,N,S,(x,A«,Q) Z <JD|uISdﬂ1>
p-

De7"

< CIS (n’ N) S, &, A) Q) J Iulsg (x) dx.
Q

(138)
Substituting (129) and (138) in (128), we have proved
Theorem 55. O

The following L*-imbedding inequality with a singular
factor in the John domain was also proved in [12].

Theorem 56. Let u € D'(Q,A!) be a solution of the nonho-
mogeneous A-harmonic (7), let H be the projection operator,
and let T be the homotopy operator. Assume that s is a fixed
exponent associated with the nonhomogeneous A-harmonic
equation. Then, there exists a constant C(n, s, o, A, Q)), inde-
pendent of u, such that

IV(T (H @)ls0u, < C 05040 ullyq,,  (139)

IT (H @)llwrsyw, < C 05040 lullq,,  (140)

for any bounded and convex §-John domain QO c R". Here
the weights are defined by w,(x) = 1/d*(x,0Q) and w,(x) =
> XQ,-(I /lx — inI’\), respectively. o and A are constants with
0<A<a<A+(n+1)s.

Theorem 57. Let u € D'(Q,AY) be a solution of the nonho-
mogeneous A-harmonic (7), let H be the projection operator,
and let T be the homotopy operator. Assume that s is a fixed
exponent associated with the nonhomogeneous A-harmonic
equation. Then, there exists a constant C(n, N, s, &, A, Q, Q0),
independent of u, such that

| (H @) = (T (H ),

Whe(Q),
a0y (141)

<C(nN,s,a,1,Qq, Q) llull g,
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for any bounded, convex 8-John domain Q0 C R". Here the
weights are defined by w,(x) = 1/d*(x,0Q) and w,(x) =
Y XQ,.(l/|x - inI)‘), « and A are constants with 0 < A < a <
min{n, A+n(s—1)}, and the fixed cube Q, C Q and the constant
N > 1 appeared in Lemma 46.

Proof. Since (T(H(u)))Q is a closed form, V((T(H(u)))B ) =
d((T(H(u)))Q )=0. Thus by using Theorem 55 and (139) we
have

|7 () = (T (H w)))q,

Whs(Q),w,

= diam (Q)™'|T (H () = (T (H (4)))q,

5,0,w,

n ||v (T (H (u)) - (T (H (u)))Qo)

5,Q,w,

= diam (Q)_1||T (H (u)) - (T (H (u)))Qo 5,Q,wy

(142)
+ V(T (H @)ls 0,0,

<C, (n,N,s,a,1,Qp, Q) |lul]

$,Q,w,

+C (n5,0,4,Q) llull; 0,0,

< C3 (7’1, N) S, &, A7 Q()a Q) "u”

5Qw, "

Thus, (141) holds. We have completed the proof of
Theorem 57. O

Remark 58. Since the wusual p-harmonic equation
div(Vu|Vul?™®) = 0 for functions is the special case of
the nonhomogeneous A-harmonic equation for differential
forms, all results proved in Theorems 55, 56, and 57 are still
true for p-harmonic functions.

8. Composition of Homotopy and
Potential Operators

Recently, Bi extended the definition of the potential operator
to the case of differential forms; see [3]. For any differential
I-form u(x), the potential operator P is defined by

Pu(x)=) L K (x, y) u; (y) dydxy,

I

(143)

where the kernel K(x, y) is a nonnegative measurable func-
tion defined for x # y and the summation is over all ordered /-
tuples I. The ! = 0 case reduces to the usual potential operator:

Pf (x) = L K(xy) f(y)dy, (144)
where f(x) is a function defined on E ¢ R". See [3, 25] for
more results about the potential operator. We say a kernel K
on R” x R” satisfies the standard estimates if there exist &,
0 < & < 1, and constant C such that for all distinct points x
and y in R”, and all z with |x - z| < (1/2)|x — y|, the kernel

K satisfies (i) K(x, ¥) < Clx — y|™; (i) |[K(x, y) - K(z, y)| <
Clx - 2°|x — 1™ and (iii) |K(y,x) - K(3,2)| < Clx -
Z|8|x _ y|7n75.
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In this paper, we always assume that P is the potential
operator defined in (143) with the kernel K(x, y) satisfying
condition (i) of the standard estimates. Recently, Bi in [3]
proved the following inequality for the potential operator:

1P )l < Clul (145)
where u € D'(E, /\l),l =0,1,...,n— 1, is a differential form
defined in a bounded and convex domain E and p > lisa
constant.

In this section, we prove the local L imbedding inequal-
ities for T o P applied to solutions of the nonhomogeneous
A-harmonic equation in a bounded domain. For any subset
E ¢ R" we use W"(E, A) to denote the Orlicz-Sobolev
space of I-forms which equals L?(E, Ah ﬂL(f(E, A with norm

= llullyro gy = diam (B) ™ 1ull oy + V84l o -

()

lullwree) =
If we choose ¢(t) = t¥, p > 1 in (**), we obtain the usual L?
norm for W5P(E, A

: -1
= lullwrrgny = diam (E) " llull, g + Vil g

(x%)'

||u||w1,p(E)

In 2013, the following Theorems 59 to 61 were recently proved
in [18].

Theorem 59. Let ¢ be a Young function in the class G(p, g, C),
< p<q< o0 C =1, Q bea bounded domain, T :
CA) = C®A™Y, 1 =1,2,...,n be the homotopy
operator defined in (2), and let P be the potential operator
defined in (143) with the kernel K(x, y) satisfying condition (i)
of the standard estimates. Assume that ¢(|u|) € LiOC(Q) and
u is a solution of the nonhomogeneous A-harmonic (7) in Q.
Then, there exists a constant C, independent of u, such that

IT (P (1)) = (T (P (1)))gl| o5y < C diam (B) |ull o(om) (146)
for all balls B with 0B c Q for some o > 1.

Theorem 60. Let ¢ be a Young function in the class G(p, g, C),
1 < p < g < 00, C 21, Q be a bounded domain,
T be the homotopy operator defined in (2), and let P be the
potential operator defined in (143) with the kernel K(x, y)
satisfying condition (i) of the standard estimates. Assume that
o(Jul) € L%OC(Q) and u is a solution of the nonhomogeneous A-
harmonic (7) in Q. Then, there exists a constant C, independent
of u, such that

|Td (T (P (“)))”m(s) < C|B| diam (B) ||U||L¢(GB) (147)

for all balls B with 0B c Q for some o > 1.

Theorem 61. Let ¢ be a Young function in the class G(p, g, C),
1 < p < g < 00,C =10 be a bounded domain,
T be the homotopy operator defined in (2), and let P be the
potential operator defined in (143) with the kernel K(x, y)
satisfying condition (i) of the standard estimates. Assume that
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o(Jul) € L%OC(Q) and u is a solution of the nonhomogeneous A-
harmonic (7) in Q. Then, there exists a constant C, independent

of u, such that

INTd (T (P i)l < C Bl 1t oo (148)

for all balls B with 0B c Q for some o > 1.

The following local L?-imbedding theorem was also
obtained in [18].

Theorem 62. Let ¢ be a Young function in the class G(p, g, C),
1 < p < g < 00, C =10 be a bounded domain,
T be the homotopy operator defined in (2), and let P be the
potential operator defined in (143) with the kernel K(x, y)
satisfying condition (i) of the standard estimates. Assume that
o(Jul) € Li)c(Q) and u is a solution of the nonhomogeneous A-
harmonic (7) in Q. Then, there exists a constant C, independent

of u, such that
|T (P () = (T (P ())) g0 py < C 1Bl ttlloony  (149)
for all balls B with 6B ¢ Q for some o > 1.
Proof. From (), (147), and (148), we have
|7 (P () ~ (T (P @)y pn
= Td (T (P (i) lwresn
= (diam (B)) | Td (T (P ()|l o5,

+[IVTd (T (P (1))l 1o (B,
(150)
< (diam (B))™" (C, B diam (B) |ull o(q, 5, )

+C, |Bl [ull oo, 5
< Cy |Bl[ull oo, 8y + C; Bl 1l oo, )
< G5 |B| |ullzo (o)

for all balls B with 0B ¢ Q, where 0 = max{o;, 0,}. The
proof of Theorem 62 has been completed. O

The following version of local imbedding will be used to
establish a global imbedding theorem which indicates that the
operator T o P is bounded.

Theorem 63. Let ¢ be a Young function in the class G(p, g, C),
1 < p < g < 00, C = 1,0 be a bounded domain,
T be the homotopy operator defined in (2), and let P be the
potential operator defined in (143) with the kernel K(x,y)
satisfying condition (i) of the standard estimates. Assume that
o(lul) € L%OC(Q) and u is a solution of the nonhomogeneous A-
harmonic (7) in Q. Then, there exists a constant C, independent
of u, such that

ITP (W)llwregany < CIBl ulleoon (151)

for all balls B with 0B  Q for some o > 1.
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Proof. Applying (6) to P(u), then using (145), we find that
ITP ()5 < C, 1Bl diam (B) [P ()l 5

< C, |B| diam (B) [[ull, 5,
(152)
IVTP ()45 < Cs |Bl diam (B) [|P ()ll,

< C, |B| diam (B) [lull, 5

for any differential form u and all balls B with B ¢ ), where
q > 1is a constant. Starting with (152) and using the similar
method developed in the proof of Theorem 61, we obtain

ITP ()]l o5y < Cs |Bl diam (B) [[t4]l o o, 5)>
(153)
IVTP ()l o sy < Cs IBl 1l o0, 3)>

respectively, where o, and o, are constants. From (), (153),
we have

ITP ()l (5,000
= (diam (B)) " [TP ()|l (s + IVTP ()l 1o(s)

= (diam (B)) ™" (Cs |B| diam (B) l|utll o0, 5)) (154)

+ Cq |B| "u”L"’(UzB)
<G, |B| "u”L‘P(oB)’

where 0 = max{o,,0,}. The proof of Theorem 63 has been
completed. O

Note that if we choose ¢(t) = t"logit or ¢(t) = t¥ in
Theorems 59-63, we will obtain some L (log?L)-norm or
LP-norm inequalities, respectively. For example, let ¢(f) =
tPlogft in Theorem 62; we have the following imbedding
inequalities for T o P with the L? (log} L)-norms.

Corollary 64. Let ¢(t) = tlogit, p > 1, and a € R, and Q
be a bounded domain. Assume that ¢(|u|) € L}OC(Q) anduisa
solution of the nonhomogeneous A-harmonic (7). Then, there

exists a constant C, independent of u, such that

IT (P () = (T (P (u)))gll et 5,0y < C 1B 1l r0g1yom)
(155)

for all balls B with 0B C Q, where 0 > 1 is a constant.

Selecting ¢(t) = t in Theorem 62, we obtain the usual
imbedding inequalities T o P with the L”-norms.

|7 (P (w)) = (T (P @))gllyppy < C 1Bl Il pop  (156)

for all balls B with 0B ¢ , where 0 > 1 is a constant.
Now, we present the global imbedding theorem with the L?-
norm as follows.

Theorem 65. Let ¢ be a Young function in the class G(p, g, C),
1<p<qc<oo C=1,Qbeanybounded L?-averaging
domain, T be the homotopy operator defined in (2), and let P be
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the potential operator defined in (143) with the kernel K(x, y)
satisfying condition (i) of the standard estimates. Assume that
o(vl) € LYQ) and v € D'(Q,AY) is a solution of the
nonhomogeneous A-harmonic (7) in Q. Then, there exists a
constant C, independent of v, such that

|7 @)~ @ g, [ roiy < Wiy (157)

where B, C Q) is some fixed ball.

It is well known that any John domain is a special L?-
averaging domain; see [1]. Hence, we have the following
global L?-imbedding theorem for John domains.

Theorem 66. Let ¢ be a Young function in the class G(p, g, C),
1 <p<q<oo,C =10 beany bounded John domain,
T be the homotopy operator defined in (2), and let P be the
potential operator defined in (143) with the kernel K(x,y)
satisfying condition (i) of the standard estimates. Assume that
o(lvl) € LYQ) and v € D'(Q,AY) is a solution of the
nonhomogeneous A-harmonic (7) in Q. Then, there exists a
constant C, independent of v, such that

|7 ) = (T (P ())g, (158)

whe) S Clvllze
where B, C Q) is some fixed ball.

Next, let S be the set of all solutions of the nonhomo-
geneous A-harmonic equation in Q. We have the following
version of imbedding theorem with L? norm for any bounded
domain, which says that the composite operator T o P maps
W (Q, A')NS continuously into L?(QY). See [18] for the proof
of Theorem 67.

Theorem 67. Let ¢ be a Young function in the class G(p, g, C),
1 <p<gq<oo,C=1,T bethe homotopy operator defined
in (2), and let P be the potential operator defined in (143)
with the kernel K(x, y) satisfying condition (i) of the standard
estimates. Assume that ¢(|v|) € LYQ)andv e D'(Q,AHNS
in Q. Then, the composite operator T o P maps W"?(Q,A") NS
continuously into L?(Q). Furthermore, there exists a constant
C, independent of v, such that

ITP ()lwioey < Clvlliogey (159)

holds for any bounded domain .

Selecting ¢(t) = t¥ in Theorems 65, we have the following
version of the imbedding inequality with L”-norms.

Corollary 68. Let ¢(t) = tf, p > 1, T be the homotopy
operator defined in (2), and let P be the potential operator
defined in (143). Assume that @(|v]) € LYQ) and v €
D'(Q, A is a solution of the nonhomogeneous A-harmonic (7)
in Q. Then, there exists a constant C, independent of v, such that

[P ) = (T @ DD, |yyir(y < (160)

holds for any bounded domain Q.
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Remark 69. (i) We know that the L*-averaging domains are
the special L?-averaging domains. Thus, Theorem 65 also
holds for the L*-averaging domain; (ii) Theorem 67 holds for
any bounded domain in R".

9. Composition of Homotopy and
Green’s Operators

In this section, we estimate the Lipschitz norm || - lljyrip, 1 OF
BMO norm || - ||, »; of composition T o G in terms of the L
norm. First, we present the following L° norm inequality for
the composition TG of the homotopy operator T' and Green’s
operator G.

Theorem 70. Let u ¢ LSIOC(M,/\I), I = 1,2,....n, 1 <
s < 00, be a smooth differential form in a bounded, convex
domain M and let T : C(M,A) — C®(M,AN™) be the
homotopy operator defined in (2). Then, there exists a constant
C, independent of u, such that

IT(G ) = (T (G W) 5 < C1B| diam (B) llull, 5 (161)
for all balls B ¢ M.

Using Theorem 70, we obtain the following inequality
with Lipschitz norm.

Theorem 71. Letu € L'(M,A), [ =1,2,...,n 1 < s < 00, be
a smooth differential form in a bounded, convex domain M, let
G be Green’s operator, and let T : C*™°(M, Ay = c®M, AT
be the homotopy operator defined in (2). Then, there exists a
constant C, independent of u, such that

IT (G @) lhoeLip,,ar < Cllells ars

where k is a constant with 0 < k < 1.

(162)

The following Theorem 72 tells us the relationship

between the Lipschitz norm |- [ljocrip, .p and BMO norm
I - Il or of composition T o G.
Theorem 72. Let u € Lj (M, A, 1 < s < o0, be a
solution of the nonhomogeneous A-harmonic (7) in a bounded,
convex domain M. Let G be Green’s operator and let T be the
homotopy operator defined in (2). Then, there exists a constant
C, independent of u, such that

IT (G D) hoctip it < Cllutll e

where k is a constant with 0 < k < 1.

(163)

The following theorem gives an estimate for BMO norm
| - I, ar of composition T o G in terms of L* norm.

Theorem 73. Let u € LS(M,A'), 1 < s < oo, be a
solution of the nonhomogeneous A-harmonic (7) in a bounded,
convex domain M. Let G be Green’s operator and let T be the
homotopy operator defined in (2). Then, there exists a constant
C, independent of u, such that

IT (G @))llspr < Cllellg pa- (164)
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Theorem 74. Letu € LS(M,A,v),1=1,2,...,n, 1 < s < 00,
be a solution of the nonhomogeneous A-harmonic equation in
a bounded, convex domain M. Let G be Green’s operator and let
T be the homotopy operator defined in (2). The measures y and
vare defined by du = widx, dv = widx, and (w,(x), w,(x)) €
A, (M) for some A > Land 1 < r < oo withw,(x) 2 e >0
for any x € M. Then, there exists a constant C, independent of
u, such that

"T (G (u))HlocLipk,M,w‘l" < C”u"s,M,wg" (165)

where k and o are constants with0 <k <1land0 <« < 1.

Finally, we can estimate the weighted | - ||, ;e norm in
terms of the L°® norm.

Theorem 75. Let u € LS(M,/\l,v), 1=1,2,...,n1<s <00,
be a solution of the nonhomogeneous A-harmonic equation in
a bounded, convex domain M. Let G be Green’s operator and let
T be the homotopy operator defined in (2). The measures y and
v are defined by dy = widx, dv = widx, and (w, (x), w,(x)) €
A, (M) for some X = 1and 1 < r < oo withw,(x) 2 &> 0
for any x € M. Then, there exists a constant C, independent of
u, such that

IT (G @l e < Cllallsnwg (166)

where « is a constant with 0 < o < 1.
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