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The purpose of this survey paper is to present an up-to-date account of the recent advances made in the study of 𝐿𝑝-theory of
the homotopy operator applied to differential forms. Specifically, we will discuss various local and global norm estimates for the
homotopy operator T and its compositions with other operators, such as Green’s operator and potential operator.

1. Introduction

The homotopy operator has been playing an important role
in the study of 𝐿𝑝-theory of differential forms. We all know
that any differential form 𝑢 can be decomposed as 𝑢 =

𝑑(𝑇𝑢) + 𝑇(𝑑𝑢), where 𝑑 is the differential operator and 𝑇
is the homotopy operator. Hence, the homotopy operator
provides an effective tool to study various properties of
different norms and the related operators. As extensions of
functions, differential forms have become invaluable tools for
many fields of sciences and engineering, including theoretical
physics, general relativity, potential theory, and electromag-
netism. They can be used to describe various systems of
PDEs and to express different geometrical structures on
manifolds. In recent years, much progress has been made
in the investigation of differential forms and the related
operators; see [1–7]. The purpose of this survey paper is to
present an up-to-date account of the recent advances made
in the study of 𝐿𝑝-theory of the homotopy operator and
its compositions applied to differential forms. We will first
discuss the 𝐿𝑝-norm and 𝐿𝜑-norm inequalities in Sections
2 and 3, respectively. Then, we present Lipschitz and BMO
norm inequalities in Sections 4 and 5. We also give some
global 𝐿𝜑-inequalities in Section 6. Finally, we discuss the
compositions of homotopy operator with the projection
operator, potential operator, and Green’s operator in Sections

7, 8, and 9. We will keep using the traditional symbols
and notations in this survey paper. Specifically, we always
assume that Ω is a bounded domain in R𝑛, 𝑛 ≥ 2, 𝐵 and
𝜎𝐵 are the balls with the same center and diam(𝜎𝐵) =

𝜎 diam(𝐵) throughout this paper. We use |𝐸| to denote the 𝑛-
dimensional Lebesgue measure of a set ⊆ R𝑛. For a function
𝑢, the average of 𝑢 over 𝐵 is defined by 𝑢𝐵 = (1/|𝐵|) ∫𝐵 𝑢𝑑𝑚.
All integrals involved in this paper are the Lebesgue integrals.
We call 𝑤 a weight if 𝑤 ∈ 𝐿

1

loc( R
𝑛
) and 𝑤 > 0 a.e..

Differential forms are extensions of differentiable functions
in R𝑛. For instance, the function 𝑢(𝑥1, 𝑥2, . . . , 𝑥𝑛) is called
a 0-form. A differential 1-form 𝑢(𝑥) in R𝑛 can be written
as 𝑢(𝑥) = ∑

𝑛

𝑖=1
𝑢𝑖(𝑥1, 𝑥2, . . . , 𝑥𝑛)𝑑𝑥𝑖, where the coefficient

functions 𝑢𝑖(𝑥1, 𝑥2, . . . , 𝑥𝑛), 𝑖 = 1, 2, . . . , 𝑛, are differentiable.
Similarly, a differential 𝑘-form 𝑢(𝑥) can be expressed as

𝑢 (𝑥) = ∑

𝐼

𝑢𝐼 (𝑥) 𝑑𝑥𝐼 = ∑𝑢𝑖
1
𝑖
2
...𝑖
𝑘
(𝑥) 𝑑𝑥𝑖

1

∧ 𝑑𝑥𝑖
2

∧ ⋅ ⋅ ⋅ ∧ 𝑑𝑥𝑖
𝑘

,

(1)

where 𝐼 = (𝑖1, 𝑖2, . . . , 𝑖𝑘), 1 ≤ 𝑖1 < 𝑖2 < ⋅ ⋅ ⋅ < 𝑖𝑘 ≤ 𝑛. Let
∧
𝑙
= ∧

𝑙
( R𝑛) be the set of all 𝑙-forms inR𝑛, let𝐷󸀠(Ω, ∧𝑙) be the

space of all differential 𝑙-forms in Ω, and let 𝐿𝑝(Ω, ∧𝑙) be the
𝑙-forms 𝑢(𝑥) = ∑𝐼 𝑢𝐼(𝑥)𝑑𝑥𝐼 in Ω satisfying ∫

Ω
|𝑢𝐼(𝑥)|

𝑝
𝑑𝑥 <

∞ for all ordered 𝑙-tuples 𝐼, 𝑙 = 1, 2, . . . , 𝑛. We denote the
exterior derivative by 𝑑 and theHodge star operator by ⋆.The
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Hodge codifferential operator 𝑑⋆ is given by 𝑑⋆ = (−1)𝑛𝑙+1 ⋆
𝑑⋆, 𝑙 = 1, 2, . . . , 𝑛.

Let 𝐷 ⊂ R𝑛 be a bounded, convex domain. The
following operator 𝐾𝑦 with the case 𝑦 = 0 was first
introduced by Cartan in [8]. Then, it was extended to
the following general version in [9]. For each 𝑦 ∈ 𝐷,
there corresponds a linear operator 𝐾𝑦 : 𝐶

∞
(𝐷, Λ

𝑙
) →

𝐶
∞
(𝐷, Λ

𝑙−1
) defined by (𝐾𝑦𝜔)(𝑥; 𝜉1, . . . , 𝜉𝑙−1) = ∫

1

0
𝑡
𝑙−1
𝜔(𝑡𝑥+

𝑦 − 𝑡𝑦; 𝑥 − 𝑦, 𝜉1, . . . , 𝜉𝑙−1)𝑑𝑡 and the decomposition 𝜔 =

𝑑(𝐾𝑦𝜔) + 𝐾𝑦(𝑑𝜔). A homotopy operator 𝑇 : 𝐶∞(𝐷, Λ𝑙) →
𝐶
∞
(𝐷, Λ

𝑙−1
) is defined by averaging𝐾𝑦 over all points 𝑦 in𝐷

𝑇𝜔 = ∫
𝐷

𝜑 (𝑦)𝐾𝑦𝜔𝑑𝑦, (2)

where 𝜑 ∈ 𝐶
∞

0
(𝐷) is normalized by ∫

𝐷
𝜑(𝑦)𝑑𝑦 = 1.

For simplicity purpose, we write 𝜉 = (𝜉1, . . . , 𝜉𝑙−1). Then,
𝑇𝜔(𝑥; 𝜉) = ∫

1

0
𝑡
𝑙−1
∫
𝐷
𝜑(𝑦)𝜔(𝑡𝑥 + 𝑦 − 𝑡𝑦; 𝑥 − 𝑦, 𝜉)𝑑𝑦 𝑑𝑡. By

substituting 𝑧 = 𝑡𝑥 + 𝑦 − 𝑡𝑦 and 𝑡 = 𝑠/(1 + 𝑠), we have

𝑇𝜔 (𝑥; 𝜉) = ∫
𝐷

𝜔 (𝑧, 𝜁 (𝑧, 𝑥 − 𝑧) , 𝜉) 𝑑𝑧, (3)

where the vector function 𝜁 : 𝐷 × R𝑛 → R𝑛 is
given by 𝜁(𝑧, ℎ) = ℎ ∫

∞

0
𝑠
𝑙−1
(1 + 𝑠)

𝑛−1
𝜑(𝑧 − 𝑠ℎ)𝑑𝑠. The

integral (3) defines a bounded operator 𝑇 : 𝐿
𝑠
(𝐷, Λ

𝑙
) →

𝑊
1,𝑠
(𝐷, Λ

𝑙−1
), 𝑙 = 1, 2, . . . , 𝑛, and the decomposition

𝑢 = 𝑑 (𝑇𝑢) + 𝑇 (𝑑𝑢) (4)

holds for any differential form 𝑢. The 𝑙-form 𝜔𝐷 ∈ 𝐷
󸀠
(𝐷, Λ

𝑙
)

is defined by

𝜔𝐷 = −∫
𝐷

𝜔 (𝑦) 𝑑𝑦 = |𝐷|
−1
∫
𝐷

𝜔 (𝑦) 𝑑𝑦, 𝑙 = 0,

𝜔𝐷 = 𝑑 (𝑇𝜔) , 𝑙 = 1, 2, . . . , 𝑛,

(5)

for all 𝜔 ∈ 𝐿𝑝(𝐷, Λ𝑙), 1 ≤ 𝑝 < ∞. Also, for any differential
form 𝑢, we have

‖∇ (𝑇𝑢)‖𝑝,𝐷 ≤ 𝐶 |𝐷| ‖𝑢‖𝑝,𝐷,

‖𝑇𝑢‖𝑝,𝐷 ≤ 𝐶 |𝐷| diam (𝐷) ‖𝑢‖𝑝,𝐷.
(6)

From [10, Page 16], we know that any open subset Ω in R𝑛 is
the union of a sequence of cubes 𝑄𝑘, whose sides are parallel
to the axes, whose interiors are mutually disjoint, and whose
diameters are approximately proportional to their distances
from 𝐹. Specifically, (i) Ω = ∪∞

𝑘=1
𝑄𝑘, (ii) 𝑄

0

𝑗
∩ 𝑄

0

𝑘
= 𝜙 if 𝑗 ̸= 𝑘,

and (iii) there exist two constants 𝑐1, 𝑐2 > 0 (we can take 𝑐1 = 1
and 𝑐2 = 4), so that 𝑐1 diam(𝑄𝑘) ≤ distance 𝑄𝑘 from 𝐹 ≤

𝑐2 diam(𝑄𝑘). Thus, the definition of the homotopy operator
𝑇 can be generalized to any domain Ω in R𝑛: for any 𝑥 ∈
Ω, 𝑥 ∈ 𝑄𝑘 for some 𝑘. Let 𝑇𝑄

𝑘

be the homotopy operator
defined on 𝑄𝑘 (each cube is bounded and convex). Thus, we
can define the homotopy operator 𝑇Ω on any domain Ω by
𝑇Ω = ∑

∞

𝑘=1
𝑇𝑄
𝑘

𝜒𝑄
𝑘
(𝑥).

The nonlinear partial differential equation

𝑑
⋆
𝐴 (𝑥, 𝑑𝑢) = 𝐵 (𝑥, 𝑑𝑢) (7)

is called nonhomogeneous 𝐴-harmonic equation, where 𝐴 :
Ω×∧

𝑙
(R𝑛) → ∧

𝑙
(R𝑛) and𝐵 : Ω×∧𝑙(R𝑛) → ∧

𝑙−1
(R𝑛) satisfy

the conditions:

󵄨󵄨󵄨󵄨𝐴 (𝑥, 𝜉)
󵄨󵄨󵄨󵄨 ≤ 𝑎

󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨
𝑝−1
, 𝐴 (𝑥, 𝜉) ⋅ 𝜉 ≥

󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨
𝑝
,

󵄨󵄨󵄨󵄨𝐵 (𝑥, 𝜉)
󵄨󵄨󵄨󵄨 ≤ 𝑏

󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨
𝑝−1

(8)

for almost every 𝑥 ∈ Ω and all 𝜉 ∈ ∧𝑙( R𝑛). Here 𝑎, 𝑏 > 0
are constants and 1 < 𝑝 < ∞ is a fixed exponent associated
with (7). A solution to (7) is an element of the Sobolev space
𝑊
1,𝑝

loc (Ω, ∧
𝑙−1
) such that

∫
Ω

𝐴 (𝑥, 𝑑𝑢) ⋅ 𝑑𝜑 + 𝐵 (𝑥, 𝑑𝑢) ⋅ 𝜑 = 0 (9)

for all 𝜑 ∈ 𝑊
1,𝑝

loc (Ω, ∧
𝑙−1
) with compact support. If 𝑢 is a

function (0-form) in R𝑛, (7) reduces to

div𝐴 (𝑥, ∇u) = 𝐵 (𝑥, ∇𝑢) . (10)

If the operator 𝐵 = 0, (7) becomes

𝑑
⋆
𝐴 (𝑥, 𝑑𝑢) = 0 (11)

which is called the (homogeneous)𝐴-harmonic equation. Let
𝐴 : Ω × ∧

𝑙
(R𝑛) → ∧

𝑙
(R𝑛) be defined by 𝐴(𝑥, 𝜉) = 𝜉|𝜉|𝑝−2

with 𝑝 > 1. Then, 𝐴 satisfies the required conditions and
(11) becomes the 𝑝-harmonic equation 𝑑⋆(𝑑𝑢|𝑑𝑢|𝑝−2) = 0

for differential forms. See [1, 11–18] for recent results on the
𝐴-harmonic equations and related topics.

Lemma 1 (see [12]). Let 𝑢 be a solution of the nonhomoge-
neous 𝐴-harmonic (7) in a domainΩ and 0 < 𝑠, 𝑡 < ∞. Then,
there exists a constant 𝐶, independent of 𝑢, such that

‖𝑢‖𝑠,𝐵 ≤ 𝐶|𝐵|
(𝑡−𝑠)/𝑠𝑡

‖𝑢‖𝑡,𝜎𝐵 (12)

for all balls 𝐵 with 𝜎𝐵 ⊂ Ω for some 𝜎 > 1.

A continuously increasing function 𝜑 : [0,∞) → [0,∞)

with 𝜑(0) = 0 is called an Orlicz function. The Orlicz space
𝐿
𝜑
(Ω) consists of all measurable functions 𝑓 on Ω such that

∫
Ω
𝜑(|𝑓|/𝜆)𝑑𝑥 < ∞ for some 𝜆 = 𝜆(𝑓) > 0. 𝐿𝜑(Ω) is

equipped with the nonlinear Luxemburg functional

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝜑(Ω) = inf {𝜆 > 0 : ∫

Ω

𝜑(

󵄨󵄨󵄨󵄨𝑓
󵄨󵄨󵄨󵄨

𝜆
) 𝑑𝑥 ≤ 1} . (13)

A convex Orlicz function 𝜑 is often called a Young function.
If 𝜑 is a Young function, then ‖ ⋅ ‖𝜑 defines a norm in 𝐿𝜑(Ω),
which is called the Luxemburg norm or Orlicz norm.

Definition 2 (see [19]). We say a Young function 𝜑 lies in the
class 𝐺(𝑝, 𝑞, 𝐶), 1 ≤ 𝑝 < 𝑞 < ∞, 𝐶 ≥ 1, if (i) 1/𝐶 ≤

𝜑(𝑡
1/𝑝
)/𝑔(𝑡) ≤ 𝐶 and (ii) 1/𝐶 ≤ 𝜑(𝑡1/𝑞)/ℎ(𝑡) ≤ 𝐶 for all 𝑡 > 0,

where 𝑔 is a convex increasing function and ℎ is a concave
increasing function on [0,∞).
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From [19], each of 𝜑, 𝑔, and ℎ in the above definition is
doubling in the sense that its values at 𝑡 and 2𝑡 are uniformly
comparable for all 𝑡 > 0, and the consequent fact that

𝐶1𝑡
𝑞
≤ ℎ
−1
(𝜑 (𝑡)) ≤ 𝐶2𝑡

𝑞
, 𝐶1𝑡

𝑝
≤ 𝑔
−1
(𝜑 (𝑡)) ≤ 𝐶2𝑡

𝑝
,

(14)

where 𝐶1 and 𝐶2 are constants. Also, for all 1 ≤ 𝑝1 <

𝑝 < 𝑝2 and 𝛼 ∈ R, the function 𝜑(𝑡) = 𝑡
𝑝log𝛼

+
𝑡 belongs

to 𝐺(𝑝1, 𝑝2, 𝐶) for some constant 𝐶 = 𝐶(𝑝, 𝛼, 𝑝1, 𝑝2). Here
log
+
(𝑡) is defined by log

+
(𝑡) = 1 for 𝑡 ≤ 𝑒, and log

+
(𝑡) = log(𝑡)

for 𝑡 > 𝑒. Particularly, if 𝛼 = 0, we see that 𝜑(𝑡) = 𝑡𝑝 lies in
𝐺(𝑝1, 𝑝2, 𝐶), 1 ≤ 𝑝1 < 𝑝 < 𝑝2.

Lemma 3 (see [1]). Let 𝑢 ∈ 𝐷󸀠(𝑀,Λ𝑙) be a solution to the
nonhomogeneous 𝐴-harmonic (7) on 𝑀 and 𝜎 > 1 be a
constant.Then there exists a constant𝐶, independent of 𝑢, such
that

‖𝑑𝑢‖𝑝,𝐵 ≤ 𝐶 diam (𝐵)−1‖𝑢 − 𝑐‖𝑝,𝜎𝐵 (15)

for all balls or cubes 𝐵 with 𝜎𝐵 ⊂ 𝑀 and all closed forms 𝑐.
Here 1 < 𝑝 < ∞.

Lemma 4 (see [1]). Suppose that 𝑢 is a solution to the
nonhomogeneous 𝐴-harmonic (7) on 𝑀, 𝜎 > 1 and 𝑞 > 0.
There exists a constant 𝐶, depending only on 𝜎, 𝑛, 𝑝, 𝑎, 𝑏, and
𝑞, such that

‖𝑑𝑢‖𝑝,𝑄 ≤ 𝐶|𝑄|
(𝑞−𝑝)/𝑝𝑞

‖𝑑𝑢‖𝑞,𝜎𝑄 (16)

for all 𝑄 with 𝜎𝑄 ⊂ 𝑀.

The followingHölder inequality will be used in this paper.

Lemma 5. Let 0 < 𝛼 < ∞, 0 < 𝛽 < ∞, and 𝑠−1 = 𝛼−1 + 𝛽−1.
If 𝑓 and 𝑔 are measurable functions on R𝑛, then

󵄩󵄩󵄩󵄩𝑓𝑔
󵄩󵄩󵄩󵄩𝑠,𝐸 ≤

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝛼,𝐸 ⋅

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩𝛽,𝐸 (17)

for any 𝐸 ⊂ R𝑛.

2. 𝐿𝑝-Norm Inequalities

The following 𝐿𝑠-norm Poincaré-type inequality for 𝑇 was
proved in [13].

Theorem 6. Let 𝑢 ∈ 𝐿𝑠loc(Ω, ∧
𝑙
), 𝑙 = 1, 2, . . . , 𝑛, 1 < 𝑠 < ∞,

be any differential form in a bounded, convex domain Ω and
let 𝑇 : 𝐶∞(Ω, ∧𝑙) → 𝐶

∞
(Ω, ∧

𝑙−1
) be the homotopy operator

defined in (2). Then, there exists a constant 𝐶, independent of
𝑢, such that

󵄩󵄩󵄩󵄩𝑇 (𝑢) − (𝑇 (𝑢))𝐵
󵄩󵄩󵄩󵄩𝑠,𝐵 ≤ 𝐶 |𝐵| diam (𝐵) ‖𝑢‖𝑠,𝐵 (18)

for all balls 𝐵 with 𝐵 ⊂ Ω.

Proof. Using (4), (5), and (6), we have

󵄩󵄩󵄩󵄩𝑇 (𝑢) − (𝑇 (𝑢))𝐵
󵄩󵄩󵄩󵄩𝑠,𝐵 = ‖𝑇𝑑 (𝑇 (𝑢))‖𝑠,𝐵

≤ 𝐶1 |𝐵| diam (𝐵) ‖𝑑 (𝑇𝑢)‖𝑠,𝐵

= 𝐶1 |𝐵| diam (𝐵)
󵄩󵄩󵄩󵄩𝑢𝐵
󵄩󵄩󵄩󵄩𝑠,𝐵

≤ 𝐶2 |𝐵| diam (𝐵) ‖𝑢‖𝑠,𝐵.

(19)

We have completed the proof of Theorem 6.

The basic 𝐿𝑠-norm inequality (18) can be extended into
different weighted cases. Let us recall some weight classes as
follows. We first introduce the Muckenhoupt weights.

Definition 7. We say the weight 𝑤(𝑥) satisfies the 𝐴𝑟(𝑀)
condition, 𝑟 > 1, and write 𝑤 ∈ 𝐴𝑟(𝑀), if 𝑤(𝑥) > 0 a.e.,
and

sup
𝐵

(
1

|𝐵|
∫
𝐵

𝑤𝑑𝑥)(
1

|𝐵|
∫
𝐵

(
1

𝑤
)

1/(𝑟−1)

𝑑𝑥)

(𝑟−1)

< ∞ (20)

for any ball 𝐵 ⊂ 𝑀.

Definition 8. Aweight𝑤 is called a doublingweight andwrite
𝑤 ∈ 𝐷(Ω) if there exists a constant 𝐶 such that

𝜇 (2𝐵) ≤ 𝐶𝜇 (𝐵) (21)

for all balls 𝐵 with 2𝐵 ⊂ Ω. Here the measure 𝜇 is defined
by 𝑑𝜇 = 𝑤(𝑥)𝑑𝑥. If this condition holds only for all balls
𝐵 with 4𝐵 ⊂ Ω, then 𝑤 is weak doubling and we write
𝑤 ∈ 𝑊𝐷(Ω).

Definition 9. Let𝜎 > 1. It is said that𝑤 satisfies aweak reverse
Hölder inequality and write 𝑤 ∈ 𝑊𝑅𝐻(Ω) when there exist
constants 𝛽 > 1 and 𝐶 > 0 such that

(
1

|𝐵|
∫
𝐵

𝑤
𝛽
𝑑𝑥)

1/𝛽

≤ 𝐶
1

|𝐵|
∫
𝜎𝐵

𝑤𝑑𝑥 (22)

for all balls 𝐵 with 𝜎𝐵 ⊂ Ω. We say that 𝑤 satisfies a reverse
Hölder inequality when (22) holds with 𝜎 = 1, and write
𝑤 ∈ 𝑅𝐻(Ω). In fact the space 𝑊𝑅𝐻(Ω) is independent of
𝜎 > 1.

If 𝑤 satisfies the 𝐴𝑟-condition for all balls 𝐵 with 2𝐵 ⊂ 𝐸,
we write𝑤 ∈ 𝐴loc

𝑟
(𝐸). Also we write𝐴∞(𝐸) = ∪𝑟>1𝐴𝑟(𝐸) and

𝐴
loc
∞
(𝐸) = ∪𝑟>1𝐴

loc
𝑟
(𝐸).

It is well known that 𝑤 ∈ 𝐴∞(Ω) if and only if 𝑤 ∈

𝑅𝐻(Ω).This is also true for𝐴loc
∞
(Ω) and𝑊𝑅𝐻(Ω). Moreover,

𝐴
loc
∞
(Ω) ⊂ 𝑊𝐷(Ω).

Definition 10. Let 𝑤 be a locally integrable nonnegative
function in 𝐸 ⊂ R𝑛 and assume that 0 < 𝑤 < ∞ a.e..
We say that 𝑤 belongs to the 𝐴𝑟(𝜆, 𝐸) class, 1 < 𝑟 < ∞,
and 0 < 𝜆 < ∞ or that 𝑤 is an 𝐴𝑟(𝜆, 𝐸)-weight, and write
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𝑤 ∈ 𝐴𝑟(𝜆, 𝐸) or 𝑤 ∈ 𝐴𝑟(𝜆) when it will not cause any
confusion, if

sup
𝐵

(
1

|𝐵|
∫
𝐵

𝑤
𝜆
𝑑𝑥)(

1

|𝐵|
∫
𝐵

(
1

𝑤
)

1/(𝑟−1)

𝑑𝑥)

𝑟−1

< ∞. (23)

for all balls 𝐵 ⊂ R𝑛.
It is clear that𝐴𝑟(1) is the usual𝐴𝑟-class; see [1] for more

properties of 𝐴𝑟-weights. We prove some properties of the
𝐴𝑟(𝜆)-weights. The following theorem says that 𝐴𝑟(𝜆) is an
increasing class with respect to 𝑟.

The following result shows that 𝐴𝑟(𝜆)-weights have the
property similar to the strong doubling property of 𝐴𝑟-
weights: if 𝑤 ∈ 𝐴𝑟(𝜆), 𝜆 ≥ 1, and the measure 𝜇 is defined
by 𝑑𝜇 = 𝑤(𝑥)𝑑𝑥, then

|𝐸|
𝑟

|𝐵|
𝜆+𝑟−1

≤ 𝐶𝑟,𝜆,𝑤
𝜇 (𝐸)

𝜇(𝐵)
𝜆
, (24)

where 𝐵 is a ball in R𝑛 and 𝐸 is a measurable subset of 𝐵.
If we put 𝜆 = 1 (24), then we have

|𝐸|
𝑟

|𝐵|
𝑟 ≤ 𝐶𝑟,𝑤

𝜇 (𝐸)

𝜇 (𝐵)
(25)

which is called the strong doubling property of 𝐴𝑟-weights.
It is well known that an 𝐴𝑟-weight 𝑤 satisfies the following
reverse Hölder inequality.

The definitions of the following several weight classes can
be found in [1] and these weight classes have beenwidely used
recently in the study of the integral properties of differential
forms.

Definition 11. We say that the weight 𝑤(𝑥) > 0 satisfies the
𝐴
𝜆

𝑟
(𝐸)-condition, 𝑟 > 1 and 𝜆 > 0, and write 𝑤 ∈ 𝐴𝜆

𝑟
(𝐸), if

sup
𝐵

(
1

|𝐵|
∫
𝐵

𝑤𝑑𝑥)(
1

|𝐵|
∫
𝐵

𝑤
1/(1−𝑟)

𝑑𝑥)

𝜆(𝑟−1)

< ∞ (26)

for any ball 𝐵 ⊂ 𝐸. Here 𝐸 is a subset of R𝑛.

Definition 12. A pair of weights (𝑤1, 𝑤2) satisfies the𝐴𝑟,𝜆(𝐸)-
condition in a set 𝐸 ⊂ R𝑛, and write (𝑤1, 𝑤2) ∈ 𝐴𝑟,𝜆(𝐸), for
some 𝜆 ≥ 1 and 1 < 𝑟 < ∞ with 1/𝑟 + 1/𝑟󸀠 = 1, if

sup
𝐵⊂𝐸

(
1

|𝐵|
∫
𝐵

𝑤
𝜆

1
𝑑𝑥)

1/𝜆𝑟

(
1

|𝐵|
∫
𝐵

(
1

𝑤2
)

𝜆𝑟
󸀠
/𝑟

𝑑𝑥)

1/𝜆𝑟
󸀠

< ∞.

(27)

Definition 13. A pair of weights (𝑤1, 𝑤2) satisfies the 𝐴
𝜆

𝑟
(𝐸)-

condition in a set 𝐸 ⊂ R𝑛, and write (𝑤1, 𝑤2) ∈ 𝐴
𝜆

𝑟
(𝐸) for

some 𝑟 > 1 and 𝜆 > 0, if

sup
𝐵

(
1

|𝐵|
∫
𝐵

𝑤1𝑑𝑥)(
1

|𝐵|
∫
𝐵

(
1

𝑤2
)

1/(𝑟−1)

𝑑𝑥)

𝜆(𝑟−1)

< ∞

(28)

for any ball 𝐵 ⊂ 𝐸.

Definition 14. A pair of weights (𝑤1, 𝑤2) satisfies the
𝐴𝑟(𝜆, 𝐸)-condition in a set 𝐸 ⊂ R𝑛, and write (𝑤1, 𝑤2) ∈
𝐴𝑟(𝜆, 𝐸) for some 𝑟 > 1 and 𝜆 > 0, if

sup
𝐵

(
1

|𝐵|
∫
𝐵

𝑤
𝜆

1
𝑑𝑥)(

1

|𝐵|
∫
𝐵

(
1

𝑤2
)

1/(𝑟−1)

𝑑𝑥)

𝑟−1

< ∞ (29)

for any ball 𝐵 ⊂ 𝐸.

Using the basic Poincaré-type estimate for the homotopy
operator 𝑇 established in Theorem 6, we have the following
𝐴𝑟(Ω)-weighted inequality.

Theorem 15. Let 𝑢 ∈ 𝐿𝑠loc(Ω, ∧
𝑙
), 𝑙 = 1, 2, . . . , 𝑛, 1 < 𝑠 <

∞, be a solution of the nonhomogeneous 𝐴-harmonic (7) in a
bounded domain Ω and let 𝑇 : 𝐶∞(Ω, ∧𝑙) → 𝐶

∞
(Ω, ∧

𝑙−1
)

be the homotopy operator defined in (2). Assume that 𝜌 > 1
and 𝑤(𝑥) ∈ 𝐴𝑟(Ω) for some 1 < 𝑟 < ∞. Then, there exists a
constant 𝐶, independent of 𝑢, such that
󵄩󵄩󵄩󵄩𝑇 (𝑢) − (𝑇 (𝑢))𝐵

󵄩󵄩󵄩󵄩𝑠,𝐵,𝑤𝛼 ≤ 𝐶 |𝐵| diam (𝐵) ‖𝑢‖𝑠,𝜌𝐵,𝑤𝛼 (30)

for all balls 𝐵 with 𝜌𝐵 ⊂ Ω and any real number 𝛼 with 0 <
𝛼 ≤ 1.

The above 𝐿𝑠-norm inequality can also be written in the
integral form as

(∫
𝐵

󵄨󵄨󵄨󵄨𝑇 (𝑢) − (𝑇 (𝑢))𝐵
󵄨󵄨󵄨󵄨
𝑠
𝑤
𝛼
𝑑𝑥)

1/𝑠

≤ 𝐶(∫
𝜌𝐵

|𝑢|
𝑠
𝑤
𝛼
𝑑𝑥)

1/𝑠

.

(31)

Also, using the procedure developed to extend the local
inequalities into the John domains, we have the following
global Poincaré-type inequality.

Theorem 16. Let 𝑢 ∈ 𝐷
󸀠
(Ω, ∧

1
) be a solution of the

nonhomogeneous 𝐴-harmonic (7) and 𝑇 : 𝐶
∞
(Ω, ∧

𝑙
) →

𝐶
∞
(Ω, ∧

𝑙−1
), 𝑙 = 1, 2, . . . , 𝑛, be the homotopy operator defined

in (2). Assume that 𝑤 ∈ 𝐴𝑟(Ω) for some 1 < 𝑟 < ∞ and 𝑠
is a fixed exponent associated with the 𝐴-harmonic (7). Then,
there exists a constant 𝐶, independent of u, such that

(∫
Ω

󵄨󵄨󵄨󵄨󵄨
𝑇 (𝑢) − (𝑇 (𝑢))𝑄

0

󵄨󵄨󵄨󵄨󵄨

𝑠

𝑤𝑑𝑥)

1/𝑠

≤ 𝐶(∫
Ω

|𝑢|
𝑠
𝑤𝑑𝑥)

1/𝑠

(32)

for any bounded 𝛿-John domain Ω ⊂ R𝑛. Here 𝑄0 ⊂ Ω is a
fixed cube.

By the same method used to prove the imbedding
inequalities, we can prove the following local and global
imbedding inequalities, Theorems 17 and 18, respectively.

Theorem 17. Let 𝑢 ∈ 𝐿𝑠loc(Ω, ∧
𝑙
), 𝑙 = 1, 2, . . . , 𝑛, 1 < 𝑠 <

∞, be a smooth differential form in a bounded domain Ω and
let 𝑇 : 𝐶∞(Ω, ∧𝑙) → 𝐶

∞
(Ω, ∧

𝑙−1
) be the homotopy operator

defined in (2). Assume that 𝜌 > 1 and 𝑤(𝑥) ∈ 𝐴𝑟(Ω) for some
1 < 𝑟 < ∞. Then, there exists a constant 𝐶, independent of 𝑢,
such that
󵄩󵄩󵄩󵄩𝑇 (𝑢) − (𝑇 (𝑢))𝐵

󵄩󵄩󵄩󵄩𝑊1,𝑠(𝐵),𝑤𝛼 ≤ 𝐶 |𝐵| diam (𝐵) ‖𝑢‖𝑠,𝜌𝐵,𝑤𝛼 (33)
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for all balls 𝐵 with 𝜌𝐵 ⊂ Ω and any real number 𝛼 with 0 <
𝛼 ≤ 1.

Theorem 18. Let 𝑢 ∈ 𝐷
󸀠
(Ω, ∧

1
) be a solution of the

nonhomogeneous 𝐴-harmonic (7) and let 𝑇 : 𝐶∞(Ω, ∧𝑙) →
𝐶
∞
(Ω, ∧

𝑙−1
), 𝑙 = 1, 2, . . . , 𝑛, be the homotopy operator defined

in (2). Assume that 𝑤 ∈ 𝐴𝑟(Ω) for some 1 < 𝑟 < ∞ and 𝑠
is a fixed exponent associated with the 𝐴-harmonic (7). Then,
there exists a constant 𝐶, independent of 𝑢, such that

󵄩󵄩󵄩󵄩󵄩
𝑇 (𝑢) − (𝑇 (𝑢))𝑄

0

󵄩󵄩󵄩󵄩󵄩𝑊1,𝑠(Ω),𝑤
≤ 𝐶‖𝑢‖𝑠,Ω,𝑤 (34)

for any bounded 𝛿-John domain Ω ⊂ R𝑛. Here 𝑄0 ⊂ Ω is a
fixed cube.

So far, we have presented the 𝐴𝑟(Ω)-weighted Poincaré-
type estimates for the homotopy operator 𝑇. Now, we state
other estimates with different weights, such as 𝐴𝑟(𝜆, Ω)-
weights and 𝐴𝜆

𝑟
(Ω)-weights.

Theorem 19. Let 𝑢 ∈ 𝐿𝑠loc(Ω, ∧
𝑙
), 𝑙 = 1, 2, . . . , 𝑛, 1 < 𝑠 <

∞, be a differential form satisfying the nonhomogeneous 𝐴-
harmonic (7) in a bounded domain Ω ⊂ R𝑛 and let 𝑇 :

𝐶
∞
(Ω, ∧

𝑙
) → 𝐶

∞
(Ω, ∧

𝑙−1
) be the homotopy operator defined

in (2). Assume that 𝑤 ∈ 𝐴𝑟(𝜆, Ω) for some 𝑟 > 1 and 𝜆 > 0.
Then, there exists a constant 𝐶, independent of 𝑢, such that

󵄩󵄩󵄩󵄩𝑇 (𝑢) − (𝑇 (𝑢))𝐵
󵄩󵄩󵄩󵄩𝑠,𝐵,𝑤𝛼𝜆 ≤ 𝐶 |𝐵| diam (𝐵) ‖𝑢‖𝑠,𝜌𝐵,𝑤𝛼 , (35)

󵄩󵄩󵄩󵄩𝑇 (𝑢) − (𝑇 (𝑢))𝐵
󵄩󵄩󵄩󵄩𝑊1,𝑠(𝐵),𝑤𝛼𝜆 ≤ 𝐶 |𝐵| diam (𝐵) ‖𝑢‖𝑠,𝜌𝐵,𝑤𝛼

(36)

for all balls 𝐵 with 𝜌𝐵 ⊂ Ω and any real number 𝛼 with 0 <
𝛼 < 1. Here 𝜌 > 1 is some constant.

Note that inequality (35) can be written as

(∫
𝐵

󵄨󵄨󵄨󵄨𝑇 (𝑢) − (𝑇 (𝑢))𝐵
󵄨󵄨󵄨󵄨
𝑠
𝑤
𝛼𝜆
𝑑𝑥)

1/𝑠

≤ 𝐶 |𝐵| diam (𝐵) (∫
𝜌𝐵
|𝑢|
𝑠
𝑤
𝛼
𝑑𝑥)

1/𝑠

.

(37)

Theorem 20. Let 𝑢 ∈ 𝐿𝑠loc(Ω, ∧
𝑙
), 𝑙 = 1, 2, . . . , 𝑛, 1 < 𝑠 < ∞,

be a differential form satisfying (7) in a bounded domain Ω ⊂
R𝑛 and let 𝑇 : 𝐶∞(Ω, ∧𝑙) → 𝐶

∞
(Ω, ∧

𝑙−1
) be the homotopy

operator defined in (2). Assume that 𝜌 > 1 and 𝑤 ∈ 𝐴
𝜆

𝑟
(Ω)

for some 𝑟 > 1 and 𝜆 > 0. Then, there exists a constant 𝐶,
independent of 𝑢, such that

󵄩󵄩󵄩󵄩𝑇 (𝑢) − (𝑇 (𝑢))𝐵
󵄩󵄩󵄩󵄩𝑠,𝐵,𝑤𝛼 ≤ 𝐶 |𝐵| diam (𝐵) ‖𝑢‖𝑠,𝜌𝐵,𝑤𝛼𝜆 (38)

󵄩󵄩󵄩󵄩𝑇 (𝑢) − (𝑇 (𝑢))𝐵
󵄩󵄩󵄩󵄩𝑊1,𝑠(𝐵),𝑤𝛼 ≤ 𝐶 |𝐵| diam (𝐵) ‖𝑢‖𝑠,𝜌𝐵,𝑤𝛼𝜆 (39)

for all balls 𝐵 with 𝜌𝐵 ⊂ Ω and any real number 𝛼 with 0 <
𝛼 < 1.

The above inequalities have integral representations; for
example, inequality (38) can be written as

(∫
𝐵

󵄨󵄨󵄨󵄨𝑇 (𝑢) − (𝑇 (𝑢))𝐵
󵄨󵄨󵄨󵄨
𝑠
𝑤
𝛼
𝑑𝑥)

1/𝑠

≤ 𝐶 |𝐵| diam (𝐵) (∫
𝜌𝐵

|𝑢|
𝑠
𝑤
𝛼𝜆
𝑑𝑥)

1/𝑠

.

(40)

The above estimates can be extended into the following two-
weight case.

Theorem 21. Let 𝑢 ∈ 𝐿𝑠loc(Ω, ∧
𝑙
), 𝑙 = 1, 2, . . . , 𝑛, 1 < 𝑠 <

∞, be a solution of the nonhomogeneous 𝐴-harmonic (7) in
a bounded domain Ω ⊂ R𝑛 and let 𝑇 : 𝐶

∞
(Ω, ∧

𝑙
) →

𝐶
∞
(Ω, ∧

𝑙−1
) be the homotopy operator defined in (2). Suppose

that 𝜌 > 1 and (𝑤1, 𝑤2) ∈ 𝐴𝑟(𝜆, Ω) for some 𝜆 > 0 and
1 < 𝑟 < ∞. Then, there exists a constant 𝐶, independent of
𝑢, such that

(∫
𝐵

󵄨󵄨󵄨󵄨𝑇 (𝑢) − (𝑇 (𝑢))𝐵
󵄨󵄨󵄨󵄨
𝑠
𝑤
𝛼𝜆

1
𝑑𝑥)

1/𝑠

≤ 𝐶 |𝐵| diam (𝐵) (∫
𝜌𝐵

|𝑢|
𝑠
𝑤
𝛼

2
𝑑𝑥)

1/𝑠

󵄩󵄩󵄩󵄩𝑇 (𝑢) − (𝑇 (𝑢))𝐵
󵄩󵄩󵄩󵄩𝑊1,𝑠(𝐵),𝑤𝛼𝜆

1

≤ 𝐶 |𝐵| diam (𝐵) ‖𝑢‖𝑠,𝜌𝐵,𝑤𝛼
2

(41)

for all balls 𝐵 with 𝜌𝐵 ⊂ Ω and any real number 𝛼 with 0 <
𝛼 < 1.

In Theorem 21, we have assumed that (𝑤1, 𝑤2) ∈

𝐴𝑟(𝜆, Ω). If the weights 𝑤1 and 𝑤2 satisfy some other
condition, say (𝑤1, 𝑤2) ∈ 𝐴𝑟,𝜆(Ω), we have the following
version of Poincaré-type inequality.

Theorem 22. Let 𝑢 ∈ 𝐿𝑠loc(Ω, ∧
𝑙
), 𝑙 = 1, 2, . . . , 𝑛, 1 < 𝑠 < ∞,

be a differential form satisfying (7) in a bounded domain Ω ⊂
R𝑛 and let 𝑇 : 𝐶∞(Ω, ∧𝑙) → 𝐶

∞
(Ω, ∧

𝑙−1
) be the homotopy

operator defined in (2). Suppose that 𝜌 > 1 and (𝑤1, 𝑤2) ∈
𝐴𝑟,𝜆(Ω) for some 𝜆 ≥ 1 and 1 < 𝑟 < ∞. Then, there exists a
constant 𝐶, independent of 𝑢, such that

(∫
𝐵

󵄨󵄨󵄨󵄨𝑇 (𝑢) − (𝑇 (𝑢))𝐵
󵄨󵄨󵄨󵄨
𝑠w𝛼
1
𝑑𝑥)

1/𝑠

≤ 𝐶 |𝐵| diam (𝐵) (∫
𝜌𝐵

|𝑢|
𝑠
𝑤
𝛼

2
𝑑𝑥)

1/𝑠

,

(∗)

󵄩󵄩󵄩󵄩𝑇 (𝑢) − (𝑇 (𝑢))𝐵
󵄩󵄩󵄩󵄩𝑊1,𝑠(𝐵),𝑤𝛼

1

≤ 𝐶 |𝐵| diam (𝐵) ‖𝑢‖𝑠,𝜌𝐵,𝑤𝛼
2

(42)

for all balls 𝐵 with 𝜌𝐵 ⊂ Ω and any real number 𝛼 with 0 <
𝛼 < 𝜆.

Note that inequality (∗) can be written as
󵄩󵄩󵄩󵄩𝑇 (𝑢) − (𝑇 (𝑢))𝐵

󵄩󵄩󵄩󵄩𝑠,𝐵,𝑤𝛼
1

≤ 𝐶 |𝐵| diam (𝐵) ‖𝑢‖𝑠,𝜌𝐵,𝑤𝛼
2

. (∗)
󸀠

Similarly, if (𝑤1, 𝑤2) ∈ 𝐴
𝜆

𝑟
(Ω), we have the following version

of two-weight Poincaré inequality for differential forms.



6 Abstract and Applied Analysis

Theorem 23. Let 𝑢 ∈ 𝐿𝑠loc(Ω, ∧
𝑙
), 𝑙 = 1, 2, . . . , 𝑛, 1 < 𝑠 < ∞,

be a differential form satisfying (7) in a bounded domain Ω ⊂
R𝑛 and let 𝑇 : 𝐶∞(Ω, ∧𝑙) → 𝐶

∞
(Ω, ∧

𝑙−1
) be the homotopy

operator defined in (2). Suppose that (𝑤1, 𝑤2) ∈ 𝐴𝜆𝑟(Ω) for
some 𝑟 > 1 and 𝜆 > 0. If 0 < 𝛼 < 1 and 𝜎 > 1, then there
exists a constant 𝐶, independent of 𝑢, such that

(∫
𝐵

󵄨󵄨󵄨󵄨𝑇 (𝑢) − (𝑇 (𝑢))𝐵
󵄨󵄨󵄨󵄨
𝑠
𝑤
𝛼

1
𝑑𝑥)

1/𝑠

≤ 𝐶 |𝐵| diam (𝐵) (∫
𝜎𝐵

|𝑢|
𝑠
𝑤
𝛼𝜆

2
𝑑𝑥)

1/𝑠

,

󵄩󵄩󵄩󵄩𝑇 (𝑢) − (𝑇 (𝑢))𝐵
󵄩󵄩󵄩󵄩𝑊1,𝑠(𝐵),𝑤𝛼

1

≤ 𝐶 |𝐵| diam (B) ‖𝑢‖𝑠,𝜎𝐵,𝑤𝛼𝜆
2

(43)

for all balls 𝐵 with 𝜎𝐵 ⊂ Ω.

If we choose 𝜆 = 1/𝛼 in Theorem 23, we have the
following version of the Poincaré inequality with (𝑤1, 𝑤2) ∈
𝐴
1/𝛼

𝑟
(Ω).

Corollary 24. Let 𝑢 ∈ 𝐿𝑠loc(Ω, ∧
𝑙
), 𝑙 = 1, 2, . . . , 𝑛, 1 < 𝑠 < ∞,

be a differential form satisfying (7) in a bounded domain Ω ⊂
R𝑛 and let 𝑇 : 𝐶∞(Ω, ∧𝑙) → 𝐶

∞
(Ω, ∧

𝑙−1
) be the homotopy

operator defined in (2). Suppose that (𝑤1, 𝑤2) ∈ 𝐴1/𝛼𝑟 (Ω) for
some 𝑟 > 1. If 0 < 𝛼 < 1 and 𝜎 > 1, then there exists a constant
𝐶, independent of 𝑢, such that

(∫
𝐵

󵄨󵄨󵄨󵄨𝑇 (𝑢) − (𝑇 (𝑢))𝐵
󵄨󵄨󵄨󵄨
𝑠
𝑤
𝛼

1
𝑑𝑥)

1/𝑠

≤ 𝐶 |𝐵| diam (𝐵) (∫
𝜎𝐵

|𝑢|
𝑠
𝑤2𝑑𝑥)

1/𝑠

(44)

for all balls 𝐵 with 𝜎𝐵 ⊂ Ω.

Choosing 𝛼 = 1/𝑠 inTheorem 23, we obtain the following
two-weighted Poincaré inequality.

Corollary 25. Let 𝑢 ∈ 𝐿𝑠loc(Ω, ∧
𝑙
), 𝑙 = 1, 2, . . . , 𝑛, 1 < 𝑠 < ∞,

be a differential form satisfying (7) in a bounded domain Ω ⊂
R𝑛 and let 𝑇 : 𝐶∞(Ω, ∧𝑙) → 𝐶

∞
(Ω, ∧

𝑙−1
) be the homotopy

operator defined in (2). Suppose that (𝑤1, 𝑤2) ∈ 𝐴𝜆𝑟(Ω) for
some 𝑟 > 1, 𝜆 > 0 and 𝜎 > 1, then there exists a constant
𝐶, independent of 𝑢, such that

(∫
𝐵

󵄨󵄨󵄨󵄨𝑇 (𝑢) − (𝑇 (𝑢))𝐵
󵄨󵄨󵄨󵄨
𝑠
𝑤
1/𝑠

1
𝑑𝑥)

1/𝑠

≤ 𝐶 |𝐵| diam (𝐵) (∫
𝜎𝐵

|𝑢|
𝑠
𝑤
𝜆/𝑠

2
𝑑𝑥)

1/𝑠

(45)

for all balls 𝐵 with 𝜎𝐵 ⊂ Ω.

Letting 𝜆 = 1 in Corollary 25, we find the following
symmetric two-weighted inequality.

Corollary 26. Let 𝑢 ∈ 𝐿𝑠loc(Ω, ∧
𝑙
), 𝑙 = 1, 2, . . . , 𝑛, 1 < 𝑠 < ∞,

be a differential form satisfying (7) in a bounded domain Ω ⊂
R𝑛 and let 𝑇 : 𝐶∞(Ω, ∧𝑙) → 𝐶

∞
(Ω, ∧

𝑙−1
) be the homotopy

operator defined in (2). Suppose that (𝑤1, 𝑤2) ∈ 𝐴𝑟(Ω) for
some 𝑟 > 1 and 𝜎 > 1, then there exists a constant 𝐶,
independent of 𝑢, such that

(∫
𝐵

󵄨󵄨󵄨󵄨𝑇 (𝑢) − (𝑇 (𝑢))𝐵
󵄨󵄨󵄨󵄨
𝑠
𝑤
1/𝑠

1
𝑑𝑥)

1/𝑠

≤ 𝐶 |𝐵| diam (𝐵) (∫
𝜎𝐵

|𝑢|
𝑠
𝑤
1/𝑠

2
𝑑𝑥)

1/𝑠

(46)

for all balls 𝐵 with 𝜎𝐵 ⊂ Ω.

Finally, when 𝜆 = 𝑠 inTheorem 23, we have the following
two-weighted inequality.

Corollary 27. Let 𝑢 ∈ 𝐿𝑠loc(Ω, ∧
𝑙
), 𝑙 = 1, 2, . . . , 𝑛, 1 < 𝑠 < ∞,

be a differential form satisfying (7) in a bounded domain Ω ⊂
R𝑛 and let 𝑇 : 𝐶∞(Ω, ∧𝑙) → 𝐶

∞
(Ω, ∧

𝑙−1
) be the homotopy

operator defined in (2). Suppose that (𝑤1, 𝑤2) ∈ 𝐴𝑠𝑟(Ω) for
some 𝑟 > 1. If 0 < 𝛼 < 1 and 𝜎 > 1, then there exists a
constant 𝐶, independent of 𝑢, such that

(∫
𝐵

󵄨󵄨󵄨󵄨𝑇 (𝑢) − (𝑇 (𝑢))𝐵
󵄨󵄨󵄨󵄨
𝑠
𝑤
𝛼

1
𝑑𝑥)

1/𝑠

≤ 𝐶 |𝐵| diam (𝐵) (∫
𝜎𝐵
|𝑢|
𝑠
𝑤
𝛼𝑠

2
𝑑𝑥)

1/𝑠

,

󵄩󵄩󵄩󵄩𝑇 (𝑢) − (𝑇 (𝑢))𝐵
󵄩󵄩󵄩󵄩𝑊1,𝑠(𝐵),𝑤𝛼

1

≤ 𝐶 |𝐵| diam (𝐵) ‖𝑢‖𝑠,𝜎𝐵,𝑤𝛼𝑠
2

(47)

for all balls 𝐵 with 𝜎𝐵 ⊂ Ω.

3. 𝐿𝜑-Norm Inequalities

The following local Poincaré-type inequality with the 𝐿𝜑-
norm was proved in [13], which can be used to establish the
global inequality.

Theorem 28. Let 𝜑 be a Young function in the class𝐺(𝑝, 𝑞, 𝐶),
1 ≤ 𝑝 < 𝑞 < ∞, 𝐶 ≥ 1, Ω be a bounded and convex domain,
and let 𝑇 : 𝐶∞(𝑀, ∧𝑙) → 𝐶

∞
(𝑀, ∧

𝑙−1
), 𝑙 = 1, 2, . . . , 𝑛, be

the homotopy operator defined in (2). Assume that 𝜑(|𝑢|) ∈
𝐿
1

loc(Ω,𝑚) and 𝑢 is a solution of the nonhomogeneous 𝐴-
harmonic (7) inΩ.Then, there exists a constant𝐶, independent
of 𝑢, such that

∫
𝐵

𝜑 (
󵄨󵄨󵄨󵄨𝑇 (𝑢) − (𝑇 (𝑢))𝐵

󵄨󵄨󵄨󵄨) 𝑑𝑚 ≤ 𝐶∫
𝜎𝐵

𝜑 (|𝑢|) 𝑑𝑚 (48)

for all balls 𝐵 with 𝜎𝐵 ⊂ Ω.

Proof. From (18), we have
󵄩󵄩󵄩󵄩𝑇 (𝑢) − (𝑇 (𝑢))𝐵

󵄩󵄩󵄩󵄩𝑞,𝐵 ≤ 𝐶1|𝐵|
1+1/𝑛

‖𝑢‖𝑞,𝐵 (49)

for all balls 𝐵 with 𝐵 ⊂ Ω. From Lemma 1, for any positive
numbers 𝑝 and 𝑞, it follows that

(∫
𝐵

|𝑢|
𝑞
𝑑𝑚)

1/𝑞

≤ 𝐶2|𝐵|
(𝑝−𝑞)/𝑝𝑞

(∫
𝜎𝐵

|𝑢|
𝑝
𝑑𝑚)

1/𝑝

, (50)
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where 𝜎 is a constant 𝜎 > 1. Using Jensen’s inequality for ℎ−1,
(14), (49), (50), and (i) in Definition 2, and noticing the fact
that 𝜑 and ℎ are doubling and 𝜑 is an increasing function, we
obtain

∫
𝐵

𝜑 (
󵄨󵄨󵄨󵄨𝑇 (𝑢) − (𝑇 (𝑢))𝐵

󵄨󵄨󵄨󵄨) 𝑑𝑚

= ℎ(ℎ
−1
(∫
𝐵

𝜑 (
󵄨󵄨󵄨󵄨𝑇 (u) − (𝑇 (𝑢))𝐵

󵄨󵄨󵄨󵄨) 𝑑𝑚))

≤ ℎ (∫
𝐵

ℎ
−1
(𝜑 (

󵄨󵄨󵄨󵄨𝑇 (𝑢) − (𝑇 (𝑢))𝐵
󵄨󵄨󵄨󵄨)) 𝑑𝑚)

≤ ℎ (𝐶3 ∫
𝐵

󵄨󵄨󵄨󵄨𝑇 (𝑢) − (𝑇 (𝑢))𝐵
󵄨󵄨󵄨󵄨
𝑞
𝑑𝑚)

≤ 𝐶4𝜑((𝐶3 ∫
𝐵

󵄨󵄨󵄨󵄨𝑇 (𝑢) − (𝑇 (𝑢))𝐵
󵄨󵄨󵄨󵄨
𝑞
𝑑𝑚)

1/𝑞

)

≤ 𝐶4𝜑(𝐶5|𝐵|
1+1/𝑛

(∫
𝐵

|𝑢|
𝑞
𝑑𝑚)

1/𝑞

)

≤ 𝐶4𝜑(𝐶6|𝐵|
1+1/𝑛+(𝑝−𝑞)/𝑝𝑞

(∫
𝜎𝐵

|𝑢|
𝑝
𝑑𝑚)

1/𝑝

)

≤ 𝐶4𝜑((𝐶
𝑝

6
|𝐵|
𝑝(1+1/𝑛)+(𝑝−𝑞)/𝑞

∫
𝜎𝐵

|𝑢|
𝑝
𝑑𝑚)

1/𝑝

)

≤ 𝐶7𝑔(𝐶
𝑝

6
|𝐵|
𝑝(1+1/𝑛)+(𝑝−𝑞)/𝑞

∫
𝜎𝐵

|𝑢|
𝑝
𝑑𝑚)

= 𝐶7𝑔(∫
𝜎𝐵

𝐶
𝑝

6
|𝐵|
𝑝(1+1/𝑛)+(𝑝−𝑞)/𝑞

|𝑢|
𝑝
𝑑𝑚)

≤ 𝐶7 ∫
𝜎𝐵

𝑔 (𝐶
𝑝

6
|𝐵|
𝑝(1+1/𝑛)+(𝑝−𝑞)/𝑞

|𝑢|
𝑝
) 𝑑𝑚

≤ 𝐶8 ∫
𝜎𝐵

𝜑 (𝐶6|𝐵|
1+(1/𝑛)+((𝑝−𝑞)/𝑝𝑞)

|𝑢|) 𝑑𝑚.

(51)

Since 𝑝 ≥ 1, then 1+(1/𝑛)+((𝑝−𝑞)/𝑝𝑞) > 0. Hence, we have
|𝐵|
1+(1/𝑛)+((𝑝−𝑞)/𝑝𝑞)

≤ |Ω|
1+(1/𝑛)+((𝑝−𝑞)/𝑝𝑞)

≤ 𝐶5. Note that 𝜑 is
doubling, we obtain

𝜑 (𝐶6|𝐵|
1+(1/𝑛)+((𝑝−𝑞)/𝑝𝑞)

|𝑢|) ≤ 𝐶9𝜑 (|𝑢|) . (52)

Combining (51) and (52) yields

∫
𝐵

𝜑 (
󵄨󵄨󵄨󵄨𝑇 (𝑢) − (𝑇 (𝑢))𝐵

󵄨󵄨󵄨󵄨) 𝑑𝑚 ≤ 𝐶10 ∫
𝜎𝐵

𝜑 (|𝑢|) 𝑑𝑚. (53)

We have completed the proof of Theorem 28.

Since each of 𝜑, 𝑔, and ℎ in Definition 2 is doubling, from
the proof of Theorem 28 or directly from (48), we have

∫
𝐵

𝜑(

󵄨󵄨󵄨󵄨𝑇 (𝑢) − (𝑇 (𝑢))𝐵
󵄨󵄨󵄨󵄨

𝜆
) 𝑑𝑚 ≤ 𝐶∫

𝜎𝐵

𝜑(
|𝑢|

𝜆
) 𝑑𝑚 (54)

for all balls 𝐵 with 𝜎𝐵 ⊂ Ω and any constant 𝜆 > 0.
From (13) and (54), the following Poincaré inequality with the
Luxemburg norm

󵄩󵄩󵄩󵄩𝑇 (𝑢) − (𝑇 (𝑢))𝐵
󵄩󵄩󵄩󵄩𝜑(𝐵) ≤ 𝐶‖𝑢‖𝜑(𝜎𝐵) (55)

holds under the conditions described inTheorem 28.

Theorem 29. Let 𝜑 be a Young function in the class𝐺(𝑝, 𝑞, 𝐶),
1 ≤ 𝑝 < 𝑞 < ∞,𝐶 ≥ 1, 𝑞(𝑛−𝑝) < 𝑛𝑝,Ω be a bounded domain,
and 𝑇 : 𝐶∞(𝑀, ∧𝑙) → 𝐶

∞
(𝑀, ∧

𝑙−1
), 𝑙 = 1, 2, . . . , 𝑛, be the

homotopy operator defined in (2). Assume that 𝑢 ∈ 𝐷󸀠(Ω, ∧𝑙) is
any differential 𝑙-form, 𝜑(|𝑢|) ∈ 𝐿1loc(Ω,𝑚). Then, there exists
a constant 𝐶, independent of 𝑢, such that

∫
𝐵

𝜑 (
󵄨󵄨󵄨󵄨𝑇 (𝑢) − (𝑇 (𝑢))𝐵

󵄨󵄨󵄨󵄨) 𝑑𝑚 ≤ 𝐶∫
𝐵

𝜑 (|𝑢|) 𝑑𝑚 (56)

for all balls 𝐵 with 𝐵 ⊂ Ω.

Proof. From (53), we have

∫
𝐵

𝜑 (
󵄨󵄨󵄨󵄨𝑇 (𝑢) − (𝑇 (𝑢))𝐵

󵄨󵄨󵄨󵄨) 𝑑𝑚

≤ 𝐶1𝜑((∫
𝐵

󵄨󵄨󵄨󵄨𝑇 (𝑢) − (𝑇 (𝑢))𝐵
󵄨󵄨󵄨󵄨
𝑞
𝑑𝑚)

1/𝑞

) .

(57)

If 1 < 𝑝 < 𝑛, by assumption, we have 𝑞 < 𝑛𝑝/(𝑛 − 𝑝). Using
the Poincaré-type inequality for differential forms 𝑇(𝑢)

(∫
𝐵

󵄨󵄨󵄨󵄨𝑇 (𝑢) − (𝑇 (𝑢))𝐵
󵄨󵄨󵄨󵄨
𝑛𝑝/(𝑛−𝑝)

𝑑𝑚)

(𝑛−𝑝)/𝑛𝑝

≤ 𝐶2(∫
𝐵

|𝑑 (𝑇 (𝑢))|
𝑝
𝑑𝑚)

1/𝑝

,

(58)

we find that

(∫
𝐵

󵄨󵄨󵄨󵄨𝑇 (𝑢) − (𝑇 (𝑢))𝐵
󵄨󵄨󵄨󵄨
𝑞
𝑑𝑚)

1/𝑞

≤ 𝐶3(∫
𝐵

|𝑑 (𝑇 (𝑢))|
𝑝
𝑑𝑚)

1/𝑝

.

(59)

We all know that for any differential form 𝑢, 𝑑(𝑇(𝑢)) = 𝑢𝐵,
and ‖𝑢𝐵‖𝑝,𝐵 ≤ 𝐶4‖𝑢‖𝑝,𝐵. Hence,

(∫
𝐵

|𝑑 (𝑇 (𝑢))|
𝑝
𝑑𝑚)

1/𝑝

≤ 𝐶5(∫
𝐵

|𝑢|
𝑝
𝑑𝑚)

1/𝑝

. (60)

Combining (57), (59), and (60), we obtain

∫
𝐵

𝜑 (
󵄨󵄨󵄨󵄨𝑇 (𝑢) − (𝑇 (𝑢))𝐵

󵄨󵄨󵄨󵄨) 𝑑𝑚 ≤ 𝐶1𝜑(𝐶6(∫
𝐵

|𝑢|
𝑝
𝑑𝑚)

1/𝑝

)

(61)

for 1 < 𝑝 < 𝑛. Note that the 𝐿𝑝-norm of |𝑇(𝑢) − (𝑇(𝑢))𝐵|
increases with 𝑝 and 𝑛𝑝/(𝑛 − 𝑝) → ∞ as 𝑝 → 𝑛, it follows
that (59) still holds when 𝑝 ≥ 𝑛. Since 𝜑 is increasing, from
(57) and (59), we obtain

∫
𝐵

𝜑 (
󵄨󵄨󵄨󵄨𝑇 (𝑢) − (𝑇 (𝑢))𝐵

󵄨󵄨󵄨󵄨) 𝑑𝑚 ≤ 𝐶1𝜑(𝐶6(∫
𝐵

|𝑢|
𝑝
𝑑𝑚)

1/𝑝

) .

(62)
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Applying (62), (i) in Definition 2, Jensen’s inequality, and
noticing that 𝜑 and 𝑔 are doubling, we have

∫
𝐵

𝜑 (
󵄨󵄨󵄨󵄨𝑇 (𝑢) − (𝑇 (𝑢))𝐵

󵄨󵄨󵄨󵄨) 𝑑𝑚

≤ 𝐶1𝜑(𝐶6(∫
𝐵

|𝑢|
𝑝
𝑑𝑚)

1/𝑝

)

≤ 𝐶1𝑔(𝐶7 (∫
𝐵

|𝑢|
𝑝
𝑑𝑚))

≤ 𝐶8 ∫
𝐵

𝑔 (|𝑢|
𝑝
) 𝑑𝑚.

(63)

Using (i) in Definition 2 again yields

∫
𝐵

𝑔 (|𝑢|
𝑝
) 𝑑𝑚 ≤ 𝐶9 ∫

𝐵

𝜑 (|𝑢|) 𝑑𝑚. (64)

Combining (63) and (64), we obtain

∫
𝐵

𝜑 (
󵄨󵄨󵄨󵄨𝑇 (𝑢) − (𝑇 (𝑢))𝐵

󵄨󵄨󵄨󵄨) 𝑑𝑚 ≤ 𝐶10 ∫
𝐵

𝜑 (|𝑢|) 𝑑𝑚. (65)

The proof of Theorem 29 has been completed.

Similar to (55), from (18) and (56), the following Orlicz
norm inequality

󵄩󵄩󵄩󵄩𝑇 (𝑢) − (𝑇 (𝑢))𝐵
󵄩󵄩󵄩󵄩𝜑(𝐵) ≤ 𝐶‖𝑢‖𝜑(𝐵) (66)

holds if all conditions of Theorem 29 are satisfied.

4. Lipschitz and BMO Norm Inequalities

In this section, we will present Lipschitz and BMO norm
inequalities for the homotopy operator. All results presented
in this section and next section can be found in [14]. Let us
recall the definitions of Lipschitz and BMO norms first.

Let 𝜔 ∈ 𝐿
1

loc(𝑀, ∧
𝑙
), 𝑙 = 0, 1, . . . , 𝑛. We write 𝜔 ∈

locLip
𝑘
(𝑀, ∧

𝑙
), 0 ≤ 𝑘 ≤ 1, if

‖𝜔‖locLip
𝑘
,𝑀 = sup

𝜎𝑄⊂𝑀

|𝑄|
−(𝑛+𝑘)/𝑛󵄩󵄩󵄩󵄩𝜔 − 𝜔𝑄

󵄩󵄩󵄩󵄩1,𝑄
< ∞ (67)

for some 𝜎 ≥ 1. Further, we write lip
𝑘
(𝑀, ∧

𝑙
) for those

forms whose coefficients are in the usual Lipschitz space with
exponent 𝑘 and write ‖𝜔‖lip

𝑘
,𝑀 for this norm. Similarly, for

𝜔 ∈ 𝐿
1

loc(𝑀, ∧
𝑙
), 𝑙 = 0, 1, . . . , 𝑛, we write 𝜔 ∈ BMO(𝑀, ∧𝑙) if

‖𝜔‖⋆,𝑀 = sup
𝜎𝑄⊂𝑀

|𝑄|
−1󵄩󵄩󵄩󵄩𝜔 − 𝜔𝑄

󵄩󵄩󵄩󵄩1,𝑄
< ∞ (68)

for some 𝜎 ≥ 1. When 𝜔 is a 0-form, (68) reduces to the
classical definition of BMO(𝑀). The definitions of the above
Lipschitz and BMO norms can be found in [1].

The following Theorem 30 indicates that we can use the
𝐿
𝑠-norm of 𝑢 to estimate the Lipschitz norm of 𝑇(𝑢).

Theorem 30. Let 𝑢 ∈ 𝐿𝑠(𝑀, ∧𝑙), 𝑙 = 1, 2, . . . , 𝑛, 1 < 𝑠 <

∞, be a solution of the 𝐴-harmonic (1) in a bounded, convex
domain 𝑀 and let 𝑇 : 𝐶∞(𝑀, ∧𝑙) → 𝐶

∞
(𝑀, ∧

𝑙−1
) be the

homotopy operator defined in (7). Then, there exists a constant
𝐶, independent of 𝑢, such that

‖𝑇 (𝑢)‖locLip
𝑘
,𝑀 ≤ 𝐶‖𝑢‖𝑠,𝑀, (69)

where 𝑘 is a constant with 0 ≤ 𝑘 ≤ 1.

Proof. FromTheorem 6, we have
󵄩󵄩󵄩󵄩𝑇 (𝑢) − (𝑇 (𝑢))𝐵

󵄩󵄩󵄩󵄩𝑠,𝐵 ≤ 𝐶1 |𝐵| diam (𝐵) ‖𝑢‖𝑠,𝜎𝐵 (70)

for all balls 𝐵 with 𝜎𝐵 ⊂ 𝑀, where 𝜎 > 1 is a constant. Using
the Hölder inequality with 1 = 1/𝑠 + (𝑠 − 1)/𝑠, we find that

󵄩󵄩󵄩󵄩𝑇 (𝑢) − (𝑇 (𝑢))𝐵
󵄩󵄩󵄩󵄩1,𝐵

= ∫
𝐵

󵄨󵄨󵄨󵄨𝑇 (𝑢) − (𝑇 (𝑢))𝐵
󵄨󵄨󵄨󵄨 𝑑𝑥

≤ (∫
𝐵

󵄨󵄨󵄨󵄨𝑇 (𝑢) − (𝑇 (𝑢))𝐵
󵄨󵄨󵄨󵄨
𝑠
𝑑𝑥)

1/𝑠

× (∫
𝐵

1
𝑠/(𝑠−1)

𝑑𝑥)

(𝑠−1)/𝑠

= |𝐵|
(𝑠−1)/𝑠󵄩󵄩󵄩󵄩𝑇 (𝑢) − (𝑇 (𝑢))𝐵

󵄩󵄩󵄩󵄩𝑠,𝐵

= |𝐵|
1−1/𝑠󵄩󵄩󵄩󵄩𝑇 (𝑢) − (𝑇 (𝑢))𝐵

󵄩󵄩󵄩󵄩𝑠,𝐵

≤ |𝐵|
1−1/𝑠

(𝐶1 |𝐵| diam (𝐵) ‖𝑢‖𝑠,𝜎𝐵)

≤ 𝐶2|𝐵|
2−1/𝑠+1/𝑛

‖𝑢‖𝑠,𝜎𝐵.

(71)

Using the definition of the Lipschitz norm, (71), and 2− 1/𝑠 +
1/𝑛 − 1 − 𝑘/𝑛 = 1 − 1/𝑠 + 1/𝑛 − 𝑘/𝑛 > 0, we obtain

‖𝑇 (𝑢)‖locLip
𝑘
,𝑀

= sup
𝜎𝐵⊂𝑀

|𝐵|
−(𝑛+𝑘)/𝑛󵄩󵄩󵄩󵄩𝑇 (𝑢) − (𝑇 (𝑢))𝐵

󵄩󵄩󵄩󵄩1,𝐵

= sup
𝜎𝐵⊂𝑀

|𝐵|
−1−𝑘/𝑛󵄩󵄩󵄩󵄩𝑇 (𝑢) − (𝑇 (𝑢))𝐵

󵄩󵄩󵄩󵄩1,𝐵

≤ sup
𝜎𝐵⊂𝑀

|𝐵|
−1−𝑘/𝑛

𝐶2|𝐵|
2−1/𝑠+1/𝑛

‖𝑢‖𝑠,𝜎𝐵

= sup
𝜎𝐵⊂𝑀

𝐶2|𝐵|
1−1/𝑠+1/𝑛−𝑘/𝑛

‖𝑢‖𝑠,𝜎𝐵

≤ sup
𝜎𝐵⊂𝑀

𝐶2|𝑀|
1−1/𝑠+1/𝑛−𝑘/𝑛

‖𝑢‖𝑠,𝜎𝐵

≤ 𝐶3 sup
𝜎𝐵⊂𝑀

‖𝑢‖𝑠,𝜎𝐵

≤ 𝐶3‖𝑢‖𝑠,𝑀.

(72)

The proof of Theorem 30 has been completed.

Using the similar method involved in the proof of
Theorem 30, we have the following Lipschitz norm inequal-
ities for Green’s operator 𝐺 and the projection operator 𝐻;
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see [1] for more properties about Green’s operator 𝐺 and the
projection operator𝐻.

Theorem 31. Let 𝑢 ∈ 𝐿𝑠(Ω, ∧𝑙), 𝑙 = 1, 2, . . . , 𝑛 − 1, 1 < 𝑠 <
∞, be a solution of the 𝐴-harmonic (7) in a bounded domain
Ω, and let 𝐺 be Green’s operator and let 𝐻 be the projection
operator.Then, there exists a constant𝐶, independent of 𝑢, such
that

‖𝐺 (𝑢)‖locLip
𝑘
,Ω ≤ 𝐶‖𝑑𝑢‖𝑠,Ω,

‖𝐻 (𝑢)‖locLip
𝑘
,Ω ≤ 𝐶‖𝑑𝑢‖𝑠,Ω,

(73)

where 𝑘 is a constant with 0 ≤ 𝑘 ≤ 1.

We have discussed some estimates for the Lipschitz norm
‖ ⋅ ‖locLip

𝑘
,Ω above. Next, we will focus on the estimates for

the BMO norm ‖ ⋅ ‖⋆,Ω. For this, let 𝑢 ∈ locLip
𝑘
(Ω, ∧

𝑙
), 𝑙 =

0, 1, . . . , 𝑛, 0 ≤ 𝑘 ≤ 1, and let Ω be a bounded domain. Then,
from the definitions of the Lipschitz and BMO norms, we
have

‖𝑢‖⋆,Ω

= sup
𝜎𝐵⊂Ω

|𝐵|
−1󵄩󵄩󵄩󵄩𝑢 − 𝑢𝐵

󵄩󵄩󵄩󵄩1,𝐵

= sup
𝜎𝐵⊂Ω

|𝐵|
𝑘/𝑛
|𝐵|
−(𝑛+𝑘)/𝑛󵄩󵄩󵄩󵄩𝑢 − 𝑢𝐵

󵄩󵄩󵄩󵄩1,𝐵

≤ sup
𝜎𝐵⊂Ω

|Ω|
𝑘/𝑛
|𝐵|
−(𝑛+𝑘)/𝑛󵄩󵄩󵄩󵄩𝑢 − 𝑢𝐵

󵄩󵄩󵄩󵄩1,𝐵

≤ |Ω|
𝑘/𝑛 sup
𝜎𝐵⊂Ω

|𝐵|
−(𝑛+𝑘)/𝑛󵄩󵄩󵄩󵄩𝑢 − 𝑢𝐵

󵄩󵄩󵄩󵄩1,𝐵

≤ 𝐶1 sup
𝜎𝐵⊂Ω

|𝐵|
−(𝑛+𝑘)/𝑛󵄩󵄩󵄩󵄩𝑢 − 𝑢𝐵

󵄩󵄩󵄩󵄩1,𝐵

≤ 𝐶1‖𝑢‖locLip
𝑘
,Ω,

(74)

where 𝐶1 is a positive constant. Hence, we have proved the
following inequality between the Lipschitz norm and the
BMO norm.

Theorem 32. If a differential form 𝑢 ∈ locLip
𝑘
(Ω, ∧

𝑙
), 𝑙 =

0, 1, . . . , 𝑛, 0 ≤ 𝑘 ≤ 1, in a bounded domain Ω, then 𝑢 ∈
BMO (Ω, ∧𝑙) and

‖𝑢‖⋆,Ω ≤ 𝐶‖𝑢‖locLip
𝑘
,Ω, (75)

where 𝐶 is a constant.

Using Theorems 32 and 30, we obtain the following
inequality between the BMO norm and the 𝐿𝑠 norm.

Theorem 33. Let 𝑢 ∈ 𝐿𝑠(𝑀, ∧𝑙), 𝑙 = 1, 2, . . . , 𝑛, 1 < 𝑠 < ∞,
be a solution of the 𝐴-harmonic (7) in a bounded, convex
domain 𝑀 and let 𝑇 : 𝐶∞(𝑀, ∧𝑙) → 𝐶

∞
(𝑀, ∧

𝑙−1
) be the

homotopy operator defined in (2). Then, there exists a constant
𝐶, independent of 𝑢, such that

‖𝑇𝑢‖⋆,𝑀 ≤ 𝐶‖𝑢‖𝑠,𝑀. (76)

Proof. Since inequality (75) holds for any differential form,
we may replace 𝑢 by 𝑇𝑢 in inequality (75). Thus, it follows
that

‖𝑇𝑢‖⋆,𝑀 ≤ 𝐶1‖𝑇𝑢‖locLip
𝑘
,𝑀, (77)

where 𝑘 is a constant with 0 ≤ 𝑘 ≤ 1. On the other hand, from
Theorem 30 we have

‖𝑇 (𝑢)‖locLip
𝑘
,𝑀 ≤ 𝐶2‖𝑢‖𝑠,𝑀. (78)

Combination of (77) and (78) yields ‖𝑇𝑢‖⋆,𝑀 ≤ 𝐶3‖𝑢‖𝑠,𝑀.
The proof of Theorem 33 has been completed.

As in the proof of Theorem 33, using inequality (75) and
Theorem 31, we obtain the following result immediately.

Theorem 34. Let 𝑢 ∈ 𝐿𝑠(Ω, ∧𝑙), 𝑙 = 1, 2, . . . , 𝑛 − 1, 1 < 𝑠 <
∞, be a solution of the 𝐴-harmonic (7) in a bounded domain
Ω, and let G be Green’s operator and let 𝐻 be the projection
operator.Then, there exists a constant𝐶, independent of 𝑢, such
that

‖𝐺 (𝑢)‖⋆,Ω ≤ 𝐶‖𝑑𝑢‖𝑠,Ω,

‖𝐻 (𝑢)‖⋆,Ω ≤ 𝐶‖𝑑𝑢‖𝑠,Ω.
(79)

5. Weighted Lipschitz and BMO Norm
Inequalities

In this section, we present the weighted Lipschitz and BMO
norms inequalities. For 𝜔 ∈ 𝐿1loc(Ω, ∧

𝑙
, 𝑤
𝛼
), 𝑙 = 0, 1, . . . , 𝑛, we

write 𝜔 ∈ locLip
𝑘
(Ω, ∧

𝑙
, 𝑤
𝛼
), 0 ≤ 𝑘 ≤ 1, if

‖𝜔‖locLip
𝑘
,Ω,𝑤𝛼 = sup

𝜎𝑄⊂Ω

(𝜇 (𝑄))
−(𝑛+𝑘)/𝑛󵄩󵄩󵄩󵄩𝜔 − 𝜔𝑄

󵄩󵄩󵄩󵄩1,𝑄,𝑤𝛼
< ∞

(80)

for some 𝜎 > 1, where Ω is a bounded domain, the measure
𝜇 is defined by 𝑑𝜇 = 𝑤(𝑥)𝛼𝑑𝑥, 𝑤 is a weight, and 𝛼 is a real
number. For convenience, we will write the following simple
notation locLip

𝑘
(Ω, ∧

𝑙
) for locLip

𝑘
(Ω, ∧

𝑙
, 𝑤
𝛼
). Similarly, for

𝜔 ∈ 𝐿
1

loc(Ω, ∧
𝑙
, 𝑤
𝛼
), 𝑙 = 0, 1, . . . , 𝑛, we will write 𝜔 ∈

BMO(Ω, ∧𝑙, 𝑤𝛼) if

‖𝜔‖⋆,Ω,𝑤𝛼 = sup
𝜎𝑄⊂Ω

(𝜇 (𝑄))
−1󵄩󵄩󵄩󵄩𝜔 − 𝜔𝑄

󵄩󵄩󵄩󵄩1,𝑄,𝑤𝛼
< ∞ (81)

for some 𝜎 > 1, where the measure 𝜇 is defined by 𝑑𝜇 =
𝑤(𝑥)

𝛼
𝑑𝑥, 𝑤 is a weight, and 𝛼 is a real number. Again, we

will write BMO(Ω, ∧𝑙) to replace BMO(Ω, ∧𝑙, 𝑤𝛼) when it is
clear that the integral is weighted.

Theorem 35. Let 𝑢 ∈ 𝐿
𝑠
(𝑀, ∧

𝑙
, 𝜇), 𝑙 = 1, 2, . . . , 𝑛, 1 <

𝑠 < ∞, be a solution of the nonhomogeneous 𝐴-harmonic (7)
in a bounded, convex domain 𝑀 and let 𝑇 be the homotopy
operator defined in (2), where the measure 𝜇 is defined by
𝑑𝜇 = 𝑤

𝛼
𝑑𝑥 and𝑤 ∈ 𝐴𝑟(𝑀) for some 𝑟 > 1 with𝑤(𝑥) ≥ 𝜀 > 0

for any 𝑥 ∈ 𝑀. Then, there exists a constant 𝐶, independent of
𝑢, such that

‖𝑇 (𝑢)‖locLip
𝑘
,𝑀,𝑤𝛼 ≤ 𝐶‖𝑢‖𝑠,𝑀,𝑤𝛼 , (82)

where 𝑘 and 𝛼 are constants with 0 ≤ 𝑘 ≤ 1 and 0 < 𝛼 ≤ 1.
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Proof. First, we note that 𝜇(𝐵) = ∫
𝐵
𝑤
𝛼
𝑑𝑥 ≥ ∫

𝐵
𝜀
𝛼
𝑑𝑥 = 𝐶1|𝐵|,

which implies that

1

𝜇 (𝐵)
≤
𝐶2

|𝐵|
(83)

for any ball 𝐵. Using (30) and the Hölder inequality with 1 =
1/𝑠 + (𝑠 − 1)/𝑠, we find that

󵄩󵄩󵄩󵄩𝑇 (𝑢) − (𝑇 (𝑢))𝐵
󵄩󵄩󵄩󵄩1,𝐵,𝑤𝛼

= ∫
𝐵

󵄨󵄨󵄨󵄨𝑇 (𝑢) − (𝑇 (𝑢))𝐵
󵄨󵄨󵄨󵄨 𝑑𝜇

≤ (∫
𝐵

󵄨󵄨󵄨󵄨𝑇 (𝑢) − (𝑇 (𝑢))𝐵
󵄨󵄨󵄨󵄨
𝑠
𝑑𝜇)

1/𝑠

(∫
𝐵

1
𝑠/(𝑠−1)

𝑑𝜇)

(𝑠−1)/𝑠

= (𝜇 (𝐵))
(𝑠−1)/𝑠󵄩󵄩󵄩󵄩T (𝑢) − (𝑇 (𝑢))𝐵

󵄩󵄩󵄩󵄩𝑠,𝐵,𝑤𝛼

= (𝜇 (𝐵))
1−1/𝑠󵄩󵄩󵄩󵄩𝑇 (𝑢) − (𝑇 (𝑢))𝐵

󵄩󵄩󵄩󵄩𝑠,𝐵,𝑤𝛼

≤ (𝜇 (𝐵))
1−1/𝑠

(𝐶3 |𝐵| diam (𝐵) ‖𝑢‖𝑠,𝜎𝐵,𝑤𝛼)

≤ 𝐶4(𝜇 (𝐵))
1−1/𝑠

|𝐵|
1+1/𝑛

‖𝑢‖𝑠,𝜎𝐵,𝑤𝛼 .

(84)

Next, from the definition of the weighted Lipschitz norm,
(80), and (84), we obtain

‖𝑇 (𝑢)‖locLip
𝑘
,𝑀,𝑤𝛼

= sup
𝜎𝐵⊂𝑀

(𝜇 (𝐵))
−(𝑛+𝑘)/𝑛󵄩󵄩󵄩󵄩𝑇 (𝑢) − (𝑇 (𝑢))𝐵

󵄩󵄩󵄩󵄩1,𝐵,𝑤𝛼

= sup
𝜎𝐵⊂𝑀

(𝜇 (𝐵))
−1−𝑘/𝑛󵄩󵄩󵄩󵄩𝑇 (𝑢) − (𝑇 (𝑢))𝐵

󵄩󵄩󵄩󵄩1,𝐵,𝑤𝛼

≤ 𝐶5 sup
𝜎𝐵⊂𝑀

(𝜇 (𝐵))
−1/𝑠−𝑘/𝑛

|𝐵|
1+1/𝑛

‖𝑢‖𝑠,𝜎𝐵,𝑤𝛼

≤ 𝐶6 sup
𝜎𝐵⊂𝑀

|𝐵|
−1/𝑠−𝑘/𝑛+1+1/𝑛

‖𝑢‖𝑠,𝜎𝐵,𝑤𝛼

≤ 𝐶6 sup
𝜎𝐵⊂𝑀

|𝑀|
−1/𝑠−𝑘/𝑛+1+1/𝑛

‖𝑢‖𝑠,𝜎𝐵,𝑤𝛼

≤ 𝐶6|𝑀|
−1/𝑠−𝑘/𝑛+1+1/𝑛 sup

𝜎𝐵⊂𝑀

‖𝑢‖𝑠,𝜎𝐵,𝑤𝛼

≤ 𝐶7‖𝑢‖𝑠,𝑀,𝑤𝛼

(85)

since −1/𝑠 − 𝑘/𝑛 + 1 + 1/𝑛 > 0 and |𝑀| < ∞. We have
completed the proof of Theorem 35.

Next, we present the ‖ ⋅ ‖⋆,Ω,𝑤𝛼 norm estimate. Let 𝑢 ∈
locLip

𝑘
(Ω, ∧

𝑙
), 𝑙 = 0, 1, . . . , 𝑛, 0 ≤ 𝑘 ≤ 1, in a bounded

domainΩ. From the definitions of theweighted Lipschitz and
the weighted BMO norms, we have

‖𝑢‖⋆,Ω,𝑤𝛼

= sup
𝜎𝐵⊂Ω

(𝜇 (𝐵))
−1󵄩󵄩󵄩󵄩𝑢 − 𝑢𝐵

󵄩󵄩󵄩󵄩1,𝐵,𝑤𝛼

= sup
𝜎𝐵⊂Ω

(𝜇 (𝐵))
𝑘/𝑛
(𝜇 (𝐵))

−(𝑛+𝑘)/𝑛󵄩󵄩󵄩󵄩𝑢 − 𝑢𝐵
󵄩󵄩󵄩󵄩1,𝐵,𝑤𝛼

≤ sup
𝜎𝐵⊂Ω

(𝜇 (Ω))
𝑘/𝑛
(𝜇 (𝐵))

−(𝑛+𝑘)/𝑛󵄩󵄩󵄩󵄩𝑢 − 𝑢𝐵
󵄩󵄩󵄩󵄩1,𝐵,𝑤𝛼

≤ (𝜇 (Ω))
𝑘/𝑛 sup
𝜎𝐵⊂Ω

(𝜇 (𝐵))
−(𝑛+𝑘)/𝑛󵄩󵄩󵄩󵄩𝑢 − 𝑢𝐵

󵄩󵄩󵄩󵄩1,𝐵,𝑤𝛼

≤ 𝐶1 sup
𝜎𝐵⊂Ω

(𝜇 (𝐵))
−(𝑛+𝑘)/𝑛󵄩󵄩󵄩󵄩𝑢 − 𝑢𝐵

󵄩󵄩󵄩󵄩1,𝐵,𝑤𝛼

≤ 𝐶1‖𝑢‖locLip
𝑘
,Ω,𝑤𝛼 ,

(86)

where 𝐶1 is a positive constant. Hence, we have obtained the
following theorem.

Theorem 36. Let 𝑢 ∈ locLip
𝑘
(Ω, ∧

𝑙
, 𝜇), 𝑙 = 0, 1, . . . , 𝑛,

0 ≤ 𝑘 ≤ 1, be any differential form in a bounded domain
Ω, where 𝑤 ∈ 𝐴𝑟(Ω) is a weight for some 𝑟 > 1. Then,
𝑢 ∈ BMO (Ω, ∧𝑙, 𝑤𝛼) and

‖𝑢‖⋆,Ω,𝑤𝛼 ≤ 𝐶‖𝑢‖locLip
𝑘
,Ω,𝑤𝛼 , (87)

where 𝐶 and 𝛼 are constants with 0 < 𝛼 ≤ 1.

Theorem 37. Let 𝑢 ∈ 𝐿
𝑠
(𝑀, ∧

𝑙
, 𝜇), 𝑙 = 1, 2, . . . , 𝑛, 1 <

𝑠 < ∞, be a solution of the nonhomogeneous 𝐴-harmonic (7)
in a bounded, convex domain 𝑀 and let 𝑇 be the homotopy
operator defined in (2), where the measure 𝜇 is defined by
𝑑𝜇 = 𝑤

𝛼
𝑑𝑥 and𝑤 ∈ 𝐴𝑟(𝑀) for some 𝑟 > 1 with𝑤(𝑥) ≥ 𝜀 > 0

for any 𝑥 ∈ 𝑀. Then, there exists a constant 𝐶, independent of
𝑢, such that

‖𝑇𝑢‖⋆,𝑀,𝑤𝛼 ≤ 𝐶‖𝑢‖𝑠,𝑀,𝑤𝛼 , (88)

where 𝛼 is a constant with 0 < 𝛼 ≤ 1.

Proof. Replacing 𝑢 by 𝑇𝑢 in Theorem 36, we have

‖𝑇𝑢‖⋆,𝑀,𝑤𝛼 ≤ 𝐶1‖𝑇𝑢‖locLip
𝑘
,𝑀,𝑤𝛼 , (89)

where 𝑘 is a constant with 0 ≤ 𝑘 ≤ 1. Now, fromTheorem 35,
we find that

‖𝑇 (𝑢)‖locLip
𝑘
,𝑀,𝑤𝛼 ≤ 𝐶2‖𝑢‖𝑠,𝑀,𝑤𝛼 . (90)

Substituting (90) into (89), we obtain ‖𝑇𝑢‖⋆,𝑀,𝑤𝛼 ≤

𝐶3‖𝑢‖𝑠,𝑀,𝑤𝛼 . The proof of Theorem 37 has been com-
pleted.

6. Global 𝐿𝜑-Inequalities

In this section, we discuss the global inequalities in the
following 𝐿𝜑(𝑚)-averaging domains. See [13] for detailed
proofs.
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Definition 38 (see [20]). Let 𝜑 be an increasing convex
function on [0,∞) with 𝜑(0) = 0. We call a proper
subdomain Ω ⊂ R𝑛 an 𝐿𝜑(𝑚)-averaging domain, if 𝑚(Ω) <
∞ and there exists a constant 𝐶 such that

∫
Ω

𝜑 (𝜏
󵄨󵄨󵄨󵄨󵄨
𝑢 − 𝑢𝐵

0

󵄨󵄨󵄨󵄨󵄨
) 𝑑𝑚 ≤ 𝐶sup

𝐵⊂Ω

∫
𝐵

𝜑 (𝜎
󵄨󵄨󵄨󵄨𝑢 − 𝑢𝐵

󵄨󵄨󵄨󵄨) 𝑑𝑚 (91)

for some ball 𝐵0 ⊂ Ω and all 𝑢 such that 𝜑(|𝑢|) ∈ 𝐿1loc(Ω,𝑚),
where 𝜏, 𝜎 are constants with 0 < 𝜏 < ∞, 0 < 𝜎 < ∞ and the
supremum is over all balls 𝐵 ⊂ Ω.

From the above definition, we see that 𝐿𝑠-averaging
domains and 𝐿𝑠(𝑚)-averaging domains are special 𝐿𝜑(𝑚)-
averaging domains when 𝜑(𝑡) = 𝑡

𝑠 in Definition 38. Also,
uniform domains and John domains are very special 𝐿𝜑(𝑚)-
averaging domains; see [20, 21] for more results about
domains.

Theorem 39. Let 𝜑 be a Young function in the class𝐺(𝑝, 𝑞, 𝐶),
1 ≤ 𝑝 < 𝑞 < ∞, 𝐶 ≥ 1, and let Ω be any bounded 𝐿𝜑(𝑚)-
averaging domain and let 𝑇 : 𝐶

∞
(Ω, ∧

𝑙
) → 𝐶

∞
(Ω, ∧

𝑙−1
),

𝑙 = 1, 2, . . . , 𝑛, be the homotopy operator defined in (2). Assume
that 𝜑(|𝑢|) ∈ 𝐿1(Ω,𝑚) and 𝑢 ∈ 𝐷󸀠(Ω, ∧1) is a solution of
the nonhomogeneous 𝐴-harmonic (7) in Ω. Then, there exists
a constant 𝐶, independent of 𝑢, such that

∫
Ω

𝜑 (
󵄨󵄨󵄨󵄨󵄨
𝑇 (𝑢) − (𝑇 (𝑢))𝐵

0

󵄨󵄨󵄨󵄨󵄨
) 𝑑𝑚 ≤ 𝐶∫

Ω

𝜑 (|𝑢|) 𝑑𝑚, (92)

where 𝐵0 ⊂ Ω is some fixed ball.

Proof. From Definition 38, (48), and noticing that 𝜑 is dou-
bling, we have

∫
Ω

𝜑 (
󵄨󵄨󵄨󵄨󵄨
𝑇 (𝑢) − (𝑇 (𝑢))𝐵

0

󵄨󵄨󵄨󵄨󵄨
) 𝑑𝑚

≤ 𝐶1sup
𝐵⊂Ω

∫
𝐵

𝜑 (
󵄨󵄨󵄨󵄨𝑇 (𝑢) − (𝑇 (𝑢))𝐵

󵄨󵄨󵄨󵄨) 𝑑𝑚

≤ 𝐶1sup
𝐵⊂Ω

(𝐶2 ∫
𝜎𝐵

𝜑 (|𝑢|) 𝑑𝑚)

≤ 𝐶1sup
𝐵⊂Ω

(𝐶2 ∫
Ω

𝜑 (|𝑢|) 𝑑𝑚)

≤ 𝐶3 ∫
Ω

𝜑 (|𝑢|) 𝑑𝑚.

(93)

We have completed the proof of Theorem 39.

Similar to the local case, the following global inequality
with the Orlicz norm

󵄩󵄩󵄩󵄩󵄩
𝑢 − 𝑢𝐵

0

󵄩󵄩󵄩󵄩󵄩𝜑(Ω)
≤ 𝐶‖𝑑𝑢‖𝜑(Ω) (94)

holds if all conditions in Theorem 39 are satisfied. Also, by
the same way, we can extend Theorem 28 into the following
global result in 𝐿𝜑(𝑚)-averaging domains.

Theorem40. Let 𝜑 be a Young function in the class𝐺(𝑝, 𝑞, 𝐶),
1 ≤ 𝑝 < 𝑞 < ∞, 𝐶 ≥ 1, Ω be a bounded 𝐿𝜑(𝑚)-
averaging domain and 𝑞(𝑛 − 𝑝) < 𝑛𝑝, and 𝑇 : 𝐶∞(Ω, ∧𝑙) →
𝐶
∞
(Ω, ∧

𝑙−1
), 𝑙 = 1, 2, . . . , 𝑛, be the homotopy operator defined

in (2). Assume that 𝑢 ∈ 𝐷󸀠(Ω, ∧1) and 𝜑(|𝑢|) ∈ 𝐿1(Ω,𝑚).
Then, there exists a constant 𝐶, independent of 𝑢, such that

∫
Ω

𝜑 (
󵄨󵄨󵄨󵄨󵄨
𝑇 (𝑢) − (𝑇 (𝑢))𝐵

0

󵄨󵄨󵄨󵄨󵄨
) 𝑑𝑚 ≤ 𝐶∫

Ω

𝜑 (|𝑢|) 𝑑𝑚, (95)

where 𝐵0 ⊂ Ω is some fixed ball.

Note that (95) can be written as
󵄩󵄩󵄩󵄩󵄩
𝑇 (𝑢) − (𝑇 (𝑢))𝐵

0

󵄩󵄩󵄩󵄩󵄩𝜑(Ω)
≤ 𝐶‖𝑢‖𝜑(Ω). (96)

It has been proved that any John domain is a special 𝐿𝜑(𝑚)-
averaging domain. Hence, we have the following results.

Corollary 41. Let𝜑 be a Young function in the class𝐺(𝑝, 𝑞, 𝐶),
1 ≤ 𝑝 < 𝑞 < ∞, 𝐶 ≥ 1, and let Ω be a bounded
John domain and let 𝑇 : 𝐶

∞
(Ω, ∧

𝑙
) → 𝐶

∞
(Ω, ∧

𝑙−1
), 𝑙 =

1, 2, . . . , 𝑛, be the homotopy operator defined in (2). Assume
that 𝜑(|𝑢|) ∈ 𝐿1(Ω,𝑚) and 𝑢 ∈ 𝐷󸀠(Ω, ∧1) is a solution of
the nonhomogeneous 𝐴-harmonic (7) in Ω. Then, there exists
a constant 𝐶, independent of 𝑢, such that

∫
Ω

𝜑 (
󵄨󵄨󵄨󵄨󵄨
𝑇 (𝑢) − (𝑇 (𝑢))𝐵

0

󵄨󵄨󵄨󵄨󵄨
) 𝑑𝑚 ≤ 𝐶∫

Ω

𝜑 (|𝑢|) d𝑚, (97)

where 𝐵0 ⊂ Ω is some fixed ball.

Choosing 𝜑(𝑡) = 𝑡
𝑝log𝛼

+
𝑡 in Theorems 39 and 40,

respectively, we obtain the following Poincaré inequalities
with the 𝐿𝑝(log𝛼

+
𝐿)-norms.

Corollary 42. Let 𝜑(𝑡) = 𝑡𝑝log𝛼
+
𝑡, 𝑝 ≥ 1, 𝛼 ∈ R, and let 𝑇 :

𝐶
∞
(Ω, ∧

𝑙
) → 𝐶

∞
(Ω, ∧

𝑙−1
), 𝑙 = 1, 2, . . . , 𝑛, be the homotopy

operator defined in (2). Assume that𝜑(|𝑢|) ∈ 𝐿1(Ω,𝑚) and 𝑢 ∈
𝐷
󸀠
(Ω, ∧

1
) is a solution of the nonhomogeneous 𝐴-harmonic

(7). Then, there exists a constant𝐶, independent of 𝑢, such that

∫
Ω

󵄨󵄨󵄨󵄨󵄨
𝑇 (𝑢) − (𝑇 (𝑢))𝐵

0

󵄨󵄨󵄨󵄨󵄨

𝑝

log𝛼
+
(
󵄨󵄨󵄨󵄨󵄨
𝑇 (𝑢) − (𝑇 (𝑢))𝐵

0

󵄨󵄨󵄨󵄨󵄨
) 𝑑𝑚

≤ 𝐶∫
Ω
|𝑢|
𝑝log𝛼

+
(|𝑢|) 𝑑𝑚

(98)

for any bounded 𝐿𝜑(𝑚)-averaging domain Ω and 𝐵0 ⊂ Ω is
some fixed ball.

Note that (98) can bewritten as the following versionwith
the Luxemburg norm

󵄩󵄩󵄩󵄩󵄩
𝑇 (𝑢) − (𝑇 (𝑢))𝐵

0

󵄩󵄩󵄩󵄩󵄩𝐿𝑝(log𝛼
+
𝐿)(Ω)

≤ 𝐶‖𝑢‖𝐿𝑝(log𝛼
+
𝐿)(Ω) (99)

provided the conditions in Corollary 42 are satisfied.

Corollary 43. Let 𝜑(𝑡) = 𝑡𝑝log𝛼
+
𝑡, 1 ≤ 𝑝1 < 𝑝 < 𝑝2, 𝛼 ∈ R, Ω

be a bounded 𝐿𝜑(𝑚)-averaging domain and 𝑝2(𝑛 − 𝑝1) < 𝑛𝑝1,
and 𝑇 : 𝐶∞(Ω, ∧𝑙) → 𝐶

∞
(Ω, ∧

𝑙−1
), 𝑙 = 1, 2, . . . , 𝑛, be the
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homotopy operator defined in (2). Assume that 𝑢 ∈ 𝐷󸀠(Ω, ∧1),
𝜑(|𝑢|) ∈ 𝐿

1
(Ω,𝑚).Then, there exists a constant𝐶, independent

of 𝑢, such that

∫
Ω

󵄨󵄨󵄨󵄨󵄨
𝑇 (𝑢) − (𝑇 (𝑢))𝐵

0

󵄨󵄨󵄨󵄨󵄨

𝑝

log𝛼
+
(
󵄨󵄨󵄨󵄨󵄨
𝑇 (𝑢) − (𝑇 (𝑢))𝐵

0

󵄨󵄨󵄨󵄨󵄨
) 𝑑𝑚

≤ 𝐶∫
Ω

|𝑢|
𝑝log𝛼

+
(|𝑢|) 𝑑𝑚,

(100)

where 𝐵0 ⊂ Ω is some fixed ball.

7. Composition of Homotopy and
Projection Operators

In this section, we present the norm estimates for the com-
position of the homotopy operator and projection operator.
The results presented in this section can be found in [15, 16].
We assume that 𝑀 is a domain in an oriented, compact,
𝐶
∞ smooth Riemannian manifold of dimension 𝑛 ≥ 2.

Let ∧𝑙𝑀 be the 𝑙th exterior power of the cotangent bundle,
and let 𝐶∞(∧𝑙𝑀) be the space of smooth 𝑙-forms on𝑀 and
W(∧

𝑙
𝑀) = {𝑢 ∈ 𝐿

1

loc(∧
𝑙
𝑀) : 𝑢 has generalized gradient}.The

harmonic 𝑙-fields are defined by H(∧𝑙𝑀) = {𝑢 ∈ W(∧
𝑙
𝑀) :

𝑑𝑢 = 𝑑
⋆
𝑢 = 0, 𝑢 ∈ 𝐿

𝑝 for some 1 < 𝑝 < ∞}. The orthogonal
complement of H in 𝐿1 is defined by H⊥ = {𝑢 ∈ 𝐿

1
:<

𝑢, ℎ >= 0 for all ℎ ∈ H}. Then, Green’s operator 𝐺 is defined
as 𝐺 : 𝐶∞(∧𝑙𝑀) → H⊥ ∩ 𝐶∞(∧𝑙𝑀) by assigning 𝐺(𝑢) be
the unique element of H⊥ ∩ 𝐶∞(∧𝑙𝑀) satisfying Poisson’s
equation Δ𝐺(𝑢) = 𝑢 − 𝐻(𝑢), where 𝐻 is the harmonic
projection operator thatmaps𝐶∞(∧𝑙𝑀) ontoH so that𝐻(𝑢)
is the harmonic part of 𝑢. See [1, 22, 23] for more properties
of these operators.

Lemma 44 (see [20]). Let 𝜙 be a strictly increasing convex
function on [0,∞)with 𝜙(0) = 0, and let𝐷 be a domain inR𝑛.
Assume that 𝑢 is a function in 𝐷 such that 𝜙(|𝑢|) ∈ 𝐿1(𝐷, 𝜇)
and 𝜇({𝑥 ∈ 𝐷 : |𝑢 − 𝑐| > 0}) > 0 for any constant 𝑐, where 𝜇
is a Radon measure defined by 𝑑𝜇(𝑥) = 𝑤(𝑥)𝑑𝑥 for a weight
𝑤(𝑥). Then, we have

∫
𝐷

𝜙(
𝑎

2

󵄨󵄨󵄨󵄨󵄨
𝑢 − 𝑢𝐷,𝜇

󵄨󵄨󵄨󵄨󵄨
) 𝑑𝜇 ≤ ∫

𝐷

𝜙 (𝑎 |𝑢|) 𝑑𝜇 (101)

for any positive constant 𝑎, where 𝑢𝐷,𝜇 = (1/𝜇(𝐷)) ∫𝐷 𝑢𝑑𝜇.

Lemma 45 (see [24]). Let 𝑢 ∈ 𝐶∞(∧𝑙𝑀) and 𝑙 = 1, 2, . . . , 𝑛,
1 < 𝑠 < ∞. Then, there exists a positive constant 𝐶 = 𝐶(𝑠),
independent of 𝑢, such that
󵄩󵄩󵄩󵄩𝑑𝑑

∗
𝐺 (𝑢)

󵄩󵄩󵄩󵄩𝑠,𝑀 +
󵄩󵄩󵄩󵄩𝑑
∗
𝑑𝐺 (𝑢)

󵄩󵄩󵄩󵄩𝑠,𝑀 + ‖𝑑𝐺 (𝑢)‖𝑠,𝑀

+
󵄩󵄩󵄩󵄩𝑑
∗
𝐺 (𝑢)

󵄩󵄩󵄩󵄩𝑠,𝑀 + ‖𝐺 (𝑢)‖𝑠,𝑀 ≤ 𝐶 (𝑠) ‖𝑢‖𝑠,𝑀.

(102)

Lemma 46 (see [12]). Each Ω has a modified Whitney cover
of cubesV = {𝑄𝑖} such that ∪𝑖𝑄𝑖 = Ω, ∑𝑄

𝑖
∈V 𝜒√(5/4)𝑄 ≤ 𝑁𝜒Ω

and some𝑁 > 1, and if 𝑄𝑖 ∩ 𝑄𝑗 ̸= 0, then there exists a cube 𝑅
(this cube need not be amember ofV) in𝑄𝑖∩𝑄𝑗 such that𝑄𝑖∪
𝑄𝑗 ⊂ 𝑁𝑅. Moreover, ifΩ is 𝛿-John, then there is a distinguished

cube 𝑄0 ∈ V which can be connected with every cube 𝑄 ∈ V
by a chain of cubes 𝑄0, 𝑄1, . . . , 𝑄𝑘 = 𝑄 fromV and such that
𝑄 ⊂ 𝜌𝑄𝑖, 𝑖 = 0, 1, 2, . . . , 𝑘, for some 𝜌 = 𝜌(𝑛, 𝛿).

Lemma 47. Let 𝑢 ∈ 𝐿𝑠loc(Ω, ∧
𝑙
), 𝑙 = 1, 2, . . . , 𝑛, 1 < 𝑠 < ∞,

𝐻 : 𝐶
∞
(Ω, ∧

𝑙
) → 𝐶

∞
(Ω, ∧

𝑙
) be the projection operator, and

𝑇 : 𝐶
∞
(Ω, ∧

𝑙
) → 𝐶

∞
(Ω, ∧

𝑙−1
) be the homotopy operator.

Then, there exists a constant 𝐶 = 𝐶(𝑛, 𝑠, Ω), independent of 𝑢,
such that

‖𝑇 (𝐻 (𝑢))‖𝑠,𝐵 ≤ 𝐶 (𝑛, 𝑠, Ω) |𝐵| diam (𝐵) ‖𝑢‖𝑠,𝐵 (103)

for all balls 𝐵 ⊂ Ω.

Proof. Let 𝑇 be the homotopy operator and let 𝑢 be locally
𝐿
𝑠 integrable 𝑙 form. Then, there exists a constant 𝐶1(𝑛, 𝑠, Ω),

independent of 𝑢, such that

‖𝑇𝑢‖𝑠,𝐵 ≤ 𝐶1 (𝑛, 𝑠, Ω) |𝐵| diam (𝐵) ‖𝑢‖𝑠,𝐵. (104)

By using Lemma 45, we have

‖Δ𝐺 (𝑢)‖𝑠,𝐵 =
󵄩󵄩󵄩󵄩(𝑑𝑑

∗
+ 𝑑
∗
𝑑)𝐺 (𝑢)

󵄩󵄩󵄩󵄩𝑠,𝐵

≤
󵄩󵄩󵄩󵄩𝑑𝑑

∗
𝐺 (𝑢)

󵄩󵄩󵄩󵄩𝑠,𝐵 +
󵄩󵄩󵄩󵄩𝑑
∗
𝑑𝐺 (𝑢)

󵄩󵄩󵄩󵄩𝑠,𝐵

≤ 𝐶2 (𝑠) ‖𝑢‖𝑠,𝐵.

(105)

Thus, by (104) and (105), we have

‖𝑇𝐻 (𝑢)‖𝑠,𝐵 ≤ 𝐶1 (𝑛, 𝑠, Ω) |𝐵| diam (𝐵) ‖𝐻 (𝑢)‖𝑠,𝐵

= 𝐶1 (𝑛, 𝑠, Ω) |𝐵| diam (𝐵) ‖𝑢 − Δ𝐺 (𝑢)‖𝑠,𝐵

≤ 𝐶1 (𝑛, 𝑠, Ω) |𝐵| diam (𝐵) (‖𝑢‖𝑠,𝐵 + ‖Δ𝐺 (𝑢)‖𝑠,𝐵)

≤ 𝐶1 (𝑛, 𝑠, Ω) |𝐵| diam (𝐵) (‖𝑢‖𝑠,𝐵 + 𝐶2 (𝑠) ‖𝑢‖𝑠,𝐵)

≤ 𝐶3 (𝑛, 𝑠, Ω) |𝐵| diam (𝐵) ‖𝑢‖𝑠,𝐵
(106)

which ends the proof of Lemma 47.

Lemma 48. Let 𝑢 ∈ 𝐿𝑠loc(Ω, ∧
𝑙
), 𝑙 = 1, 2, . . . , 𝑛, 1 < 𝑠 <

∞, be a solution of the nonhomogeneous 𝐴-harmonic (7) in
a bounded and convex domain Ω, let 𝐻 be the projection
operator, and let𝑇 be the homotopy operator.Then, there exists
a constant 𝐶(𝑛, 𝑠, 𝛼, 𝜆, Ω), independent of 𝑢, such that

(∫
𝐵

|𝑇 (𝐻 (𝑢))|
𝑠 1

𝑑𝛼 (𝑥, 𝜕Ω)
𝑑𝑥)

1/𝑠

≤ 𝐶 (𝑛, 𝑠, 𝛼, 𝜆, Ω) |𝐵|
𝛾
(∫
𝜌𝐵

|𝑢|
𝑠 1

󵄨󵄨󵄨󵄨𝑥 − 𝑥𝐵
󵄨󵄨󵄨󵄨
𝜆
𝑑𝑥)

1/𝑠
(107)

for all balls 𝐵 with 𝜌𝐵 ⊂ Ω, 𝜌 > 1, and any real number 𝛼 and
𝜆 with 𝛼 > 𝜆 ≥ 0 and 𝛾 = 1 + (1/𝑛) − ((𝛼 − 𝜆)/𝑛𝑠). Here 𝑥𝐵 is
the center of the ball.

Theorem 49. Let 𝑢 ∈ 𝐿
𝑠

loc(Ω, ∧
𝑙
), 𝑙 = 1, 2, . . . , 𝑛, 1 <

𝑠 < ∞, be a solution of the nonhomogeneous 𝐴-harmonic (7)
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in a bounded domain Ω, let𝐻 : 𝐶
∞
(Ω, ∧

𝑙
) → 𝐶

∞
(Ω, ∧

𝑙
) be

the projection operator, and let𝑇 : 𝐶∞(Ω, ∧𝑙) → 𝐶
∞
(Ω, ∧

𝑙−1
)

be the homotopy operator. Then, there exists a constant 𝐶,
independent of 𝑢, such that

󵄩󵄩󵄩󵄩𝑇 (𝐻 (𝑢)) − (𝑇 (𝐻 (𝑢)))𝐵
󵄩󵄩󵄩󵄩𝑠,𝐵 ≤ 𝐶 |𝐵| diam (𝐵) ‖𝑢‖𝑠,𝜎𝐵

(108)

for all balls 𝐵 with 𝜎𝐵 ⊂ Ω, where 𝜎 > 1 is a constant.

Theorem 50. Let 𝑢 ∈ 𝐿𝑠loc(Ω, ∧
𝑙
), 𝑙 = 1, 2, . . . , 𝑛, 1 < 𝑠 < ∞,

be a smooth differential form in a bounded domain Ω, let 𝐻
be the projection operator, and let 𝑇 be the homotopy operator.
Then, there exists a constant 𝐶, independent of 𝑢, such that

󵄩󵄩󵄩󵄩𝑇 (𝐻 (𝑢)) − (𝑇 (H (𝑢)))𝐵
󵄩󵄩󵄩󵄩𝑠,𝐵

≤ 𝐶 |𝐵| diam (𝐵) (‖𝑢‖𝑠,𝐵 + ‖𝑑𝑢‖𝑠,𝐵)
(109)

for all balls 𝐵 ⊂ Ω.

In applications, such as in calculating electric ormagnetic
fields, we often face the fact that the integrand contains a
singular factor. So, the above result was extended into the
following singular weighted case.

Theorem 51. Let 𝑢 ∈ 𝐿𝑠loc(Ω, ∧
𝑙
), 𝑙 = 1, 2, . . . , 𝑛, 1 < 𝑠 < ∞,

be a solution of the nonhomogeneous 𝐴-harmonic equation in
a bounded domain Ω, let H be the projection operator, and let
𝑇 be the homotopy operator. Then, there exists a constant 𝐶,
independent of 𝑢, such that

(∫
𝐵

󵄨󵄨󵄨󵄨𝑇 (𝐻 (𝑢)) − (𝑇 (𝐻 (𝑢)))𝐵
󵄨󵄨󵄨󵄨
𝑠 1
󵄨󵄨󵄨󵄨𝑥 − 𝑥𝐵

󵄨󵄨󵄨󵄨
𝛼 𝑑𝑥)

1/𝑠

≤ 𝐶|𝐵|
𝛾
(∫
𝜎𝐵

|𝑢|
𝑠 1

󵄨󵄨󵄨󵄨𝑥 − 𝑥𝐵
󵄨󵄨󵄨󵄨
𝜆
𝑑𝑥)

1/𝑠
(110)

for all balls 𝐵 with 𝜎𝐵 ⊂ Ω and any real numbers 𝛼 and 𝜆 with
𝛼 > 𝜆 ≥ 0, where 𝛾 = 1 + (1/𝑛) − ((𝛼 − 𝜆)/𝑛𝑠) and 𝑥𝐵 is the
center of ball 𝐵 and 𝜎 > 1 is a constant.

Proof. Let 𝜀 ∈ (0, 1) be small enough such that 𝜀𝑛 < 𝛼 − 𝜆
and 𝐵 ⊂ Ω be any ball with center 𝑥𝐵 and radius 𝑟𝐵. Choose
𝑡 = 𝑠/(1 − 𝜀); then, 𝑡 > 𝑠. Write 𝛽 = 𝑡/(𝑡 − 𝑠), and using the
Hölder inequality andTheorem 49, we have

(∫
𝐵

(
󵄨󵄨󵄨󵄨𝑇𝐻 (𝑢) − (𝑇𝐻 (𝑢))𝐵

󵄨󵄨󵄨󵄨)
𝑠 1
󵄨󵄨󵄨󵄨𝑥 − 𝑥𝐵

󵄨󵄨󵄨󵄨
𝛼 𝑑𝑥)

1/𝑠

= (∫
𝐵

(
󵄨󵄨󵄨󵄨𝑇𝐻 (𝑢) − (𝑇𝐻 (𝑢))𝐵

󵄨󵄨󵄨󵄨

1

󵄨󵄨󵄨󵄨𝑥 − 𝑥𝐵
󵄨󵄨󵄨󵄨
𝛼/𝑠
)

𝑠

𝑑𝑥)

1/𝑠

≤
󵄩󵄩󵄩󵄩𝑇𝐻 (𝑢) − (𝑇𝐻 (𝑢))𝐵

󵄩󵄩󵄩󵄩𝑡,𝐵(∫
𝐵

(
1

󵄨󵄨󵄨󵄨𝑥 − 𝑥𝐵
󵄨󵄨󵄨󵄨

)

𝑡𝛼/(𝑡−𝑠)

𝑑𝑥)

(𝑡−𝑠)/𝑠𝑡

=
󵄩󵄩󵄩󵄩𝑇𝐻 (𝑢) − (𝑇𝐻 (𝑢))𝐵

󵄩󵄩󵄩󵄩𝑡,𝐵(∫
𝐵

󵄨󵄨󵄨󵄨𝑥 − 𝑥𝐵
󵄨󵄨󵄨󵄨
−𝛼𝛽
𝑑𝑥)

1/𝛽𝑠

≤ 𝐶1 |𝐵| diam (𝐵) ‖𝑢‖𝑡,]𝐵
󵄩󵄩󵄩󵄩󵄩
󵄨󵄨󵄨󵄨𝑥 − 𝑥𝐵

󵄨󵄨󵄨󵄨
−𝛼󵄩󵄩󵄩󵄩󵄩

1/𝑠

𝛽,𝐵
,

(111)

where ] > 1 is a constant. We may assume that 𝑥𝐵 = 0.
Otherwise, we can move the center to the origin by a simple
transformation.Then, for any𝑥 ∈ 𝐵, |𝑥−𝑥𝐵| ≥ |𝑥|−|𝑥𝐵| = |𝑥|.
By using the polar coordinate substitution, we have

∫
𝐵

󵄨󵄨󵄨󵄨𝑥 − 𝑥𝐵
󵄨󵄨󵄨󵄨
−𝛼𝛽
𝑑𝑥 ≤ 𝐶∫

𝑟
𝐵

0

𝜌
−𝛼𝛽
𝜌
𝑛−1
𝑑𝜌 ≤

𝐶

𝑛 − 𝛼𝛽
(𝑟𝐵)

𝑛−𝛼𝛽
.

(112)

Choose𝑚 = 𝑛𝑠𝑡/(𝑛𝑠+𝛼𝑡−𝜆𝑡), then 0 < 𝑚 < 𝑠. By the reverse
Hölder inequality, we find that

‖ 𝑢‖𝑡,]𝐵 ≤ 𝐶2|𝐵|
(𝑚−𝑡)/𝑚𝑡

‖ 𝑢‖𝑚,𝜎𝐵, (113)

where 𝜎 > ] > 1 is a constant. By the Hölder inequality again,
we obtain

‖𝑢‖𝑚,𝜎𝐵

= (∫
𝜎𝐵

(|𝑢|
󵄨󵄨󵄨󵄨𝑥 − 𝑥𝐵

󵄨󵄨󵄨󵄨
−𝜆/𝑠󵄨󵄨󵄨󵄨𝑥 − 𝑥𝐵

󵄨󵄨󵄨󵄨
𝜆/𝑠
)
𝑚

𝑑𝑥)

1/𝑚

≤ (∫
𝜎𝐵

(|𝑢|
󵄨󵄨󵄨󵄨𝑥 − 𝑥𝐵

󵄨󵄨󵄨󵄨
−𝜆/𝑠
)
𝑠

𝑑𝑥)

1/𝑠

× (∫
𝜎𝐵

(
󵄨󵄨󵄨󵄨𝑥 − 𝑥𝐵

󵄨󵄨󵄨󵄨
𝜆/𝑠
)
𝑚𝑠/(𝑠−𝑚)

𝑑𝑥)

(𝑠−𝑚)/𝑚𝑠

≤ (∫
𝜎𝐵

|𝑢|
𝑠󵄨󵄨󵄨󵄨𝑥 − 𝑥𝐵

󵄨󵄨󵄨󵄨
−𝜆
𝑑𝑥)

1/𝑠

𝐶3(𝜎𝑟𝐵)
𝜆/𝑠+𝑛(𝑠−𝑚)/𝑚𝑠

≤ 𝐶4(∫
𝜎𝐵

|𝑢|
𝑠󵄨󵄨󵄨󵄨𝑥 − 𝑥𝐵

󵄨󵄨󵄨󵄨
−𝜆
𝑑𝑥)

1/𝑠

(𝑟𝐵)
𝜆/𝑠+𝑛(𝑠−𝑚)/𝑚𝑠

.

(114)

Note that

diam (𝐵) ⋅ |𝐵|1+(1/𝑡)−(1/𝑚) = |𝐵|1+(1/𝑛)+(1/𝑡)−((𝑛𝑠+𝛼𝑡−𝜆𝑡)/𝑛𝑠𝑡)

= |𝐵|
1+(1/𝑛)−((𝛼−𝜆)/𝑛𝑠)

.

(115)

Substituting (112), (113), and (114) in (111) and using (115), we
have

(∫
𝐵

(
󵄨󵄨󵄨󵄨𝑇𝐻 (𝑢) − (𝑇𝐻 (𝑢))𝐵

󵄨󵄨󵄨󵄨)
𝑠 1
󵄨󵄨󵄨󵄨𝑥 − 𝑥𝐵

󵄨󵄨󵄨󵄨
𝛼 𝑑𝑥)

1/𝑠

≤ 𝐶5|𝐵|
𝛾
(∫
𝜎𝐵

|𝑢|
𝑠󵄨󵄨󵄨󵄨𝑥 − 𝑥𝐵

󵄨󵄨󵄨󵄨
−𝜆
𝑑𝑥)

1/𝑠

.

(116)

We have completed the proof of Theorem 51.
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Remark 52. (1) Replacing 𝛼 by 2𝛼 and 𝜆 by 𝛼 in Theorem 51,
we have

(∫
𝐵

󵄨󵄨󵄨󵄨𝑇 (𝐻 (𝑢)) − (𝑇 (𝐻 (𝑢)))𝐵
󵄨󵄨󵄨󵄨
𝑠 1

󵄨󵄨󵄨󵄨𝑥 − 𝑥𝐵
󵄨󵄨󵄨󵄨
2𝛼
𝑑𝑥)

1/𝑠

≤ 𝐶|𝐵|
1+(1/𝑛)−(𝛼/𝑛𝑠)

(∫
𝜎𝐵

|𝑢|
𝑠 1
󵄨󵄨󵄨󵄨𝑥 − 𝑥𝐵

󵄨󵄨󵄨󵄨
𝛼 𝑑𝑥)

1/𝑠

.

(117)

(2) If 𝜆 = 0, inequality (110) reduces to

(∫
𝐵

󵄨󵄨󵄨󵄨𝑇 (𝐻 (𝑢)) − (𝑇 (𝐻 (𝑢)))𝐵
󵄨󵄨󵄨󵄨
𝑠 1
󵄨󵄨󵄨󵄨𝑥 − 𝑥𝐵

󵄨󵄨󵄨󵄨
𝛼 𝑑𝑥)

1/𝑠

≤ 𝐶|𝐵|
1+(1/𝑛)−(𝛼/𝑛𝑠)

(∫
𝜎𝐵

|𝑢|
𝑠
𝑑𝑥)

1/𝑠

,

(118)

which does not contain a singular factor in the integral on the
right side of the inequality.

The following definition of 𝐿𝑠(𝜇)-averaging domains can
be found in [1]. We call a proper subdomain Ω ⊂ R𝑛 an
𝐿
𝑠
(𝜇)-averaging domain, 𝑠 ≥ 1, if 𝜇(Ω) < ∞, and there exists

a constant 𝐶 such that

(
1

𝜇 (Ω)
∫
Ω

󵄨󵄨󵄨󵄨󵄨
𝑢 − 𝑢𝐵

0
,𝜇

󵄨󵄨󵄨󵄨󵄨

𝑠

𝑑𝜇)

1/𝑠

≤ 𝐶 sup
4𝐵⊂Ω

(
1

𝜇 (𝐵)
∫
𝐵

󵄨󵄨󵄨󵄨󵄨
𝑢 − 𝑢𝐵,𝜇

󵄨󵄨󵄨󵄨󵄨

𝑠

𝑑𝜇)

1/𝑠
(119)

for some ball 𝐵0 ⊂ Ω and all 𝑢 ∈ 𝐿
𝑠

loc(Ω; 𝜇). Here the
supremum is over all balls 𝐵 ⊂ Ω with 4𝐵 ⊂ Ω and 𝜇 is
a measure defined by 𝑑𝜇 = 𝑤(𝑥)𝑑𝑥 for a weight 𝑤(𝑥) and
𝑢𝐵,𝜇 = (1/𝜇(𝐵)) ∫𝐵

𝑢(𝑥)𝑑𝑥.

Theorem 53. Let 𝑢 ∈ 𝐷󸀠(Ω, ∧1) be a solution of the nonhomo-
geneous𝐴-harmonic equation, let𝐻 be the projection operator,
and let 𝑇 be the homotopy operator. Assume that 𝑠 is a fixed
exponent associated with the nonhomogeneous 𝐴-harmonic
equation. Then, there exists a constant 𝐶, independent of 𝑢,
such that

(∫
Ω

󵄨󵄨󵄨󵄨󵄨
𝑇 (𝐻 (𝑢)) − (𝑇 (𝐻 (𝑢)))𝐵

0

󵄨󵄨󵄨󵄨󵄨

𝑠 1

𝑑(𝑥, 𝜕Ω)
𝛼 𝑑𝑥)

1/𝑠

≤ 𝐶(∫
Ω

|𝑢|
𝑠 1

𝑑(𝑥, 𝜕Ω)
𝜆
𝑑𝑥)

1/𝑠
(120)

for any bounded and convex 𝐿𝑠(𝜇)-averaging domainΩ ⊂ R𝑛.
Here 𝐵0 ⊂ Ω is a fixed ball and 𝛼 and 𝜆 are constants with
0 ≤ 𝜆 < 𝛼 < min{𝑛, 𝑠 + 𝜆 + 𝑛(𝑠 − 1)}.

Proof. Let 𝑟𝐵 be the radius of a ball 𝐵 ⊂ Ω. We may assume
the center of 𝐵 is 0. Then, 𝑑(𝑥, 𝜕Ω) ≥ 𝑟𝐵 − |𝑥| for any 𝑥 ∈ 𝐵.

Therefore, 𝑑−1(𝑥, 𝜕Ω) ≤ 1/(𝑟𝐵 − |𝑥|) for any 𝑥 ∈ 𝐵. Similar to
the proof of Theorem 51, we have

(∫
𝐵

󵄨󵄨󵄨󵄨𝑇𝐻 (𝑢) − (𝑇𝐻 (𝑢))𝐵
󵄨󵄨󵄨󵄨
𝑠 1

𝑑(𝑥, 𝜕Ω)
𝛼 𝑑𝑥)

1/𝑠

≤ 𝐶1|𝐵|
𝛾
(∫
𝜎𝐵

|𝑢|
𝑠 1

𝑑(𝑥, 𝜕Ω)
𝜆
𝑑𝑥)

1/𝑠
(121)

for all balls 𝐵 with 𝜎𝐵 ⊂ Ω, 𝜎 > 1, and any real numbers
𝛼 and 𝜆 with 𝛼 > 𝜆 ≥ 0, where 𝛾 = 1 + (1/𝑛) −

((𝛼 − 𝜆)/𝑛𝑠). Write 𝑑𝜇 = (1/𝑑(𝑥, 𝜕Ω)
𝛼
)𝑑𝑥. Then, 𝜇(𝐵) =

∫
𝐵
𝑑𝜇 = ∫

𝐵
(1/𝑑(𝑥, 𝜕Ω)

𝛼
)𝑑𝑥 ≥ ∫

𝐵
(1/(diam(Ω))𝛼)𝑑𝑥 = 𝐶1|𝐵|,

and hence 1/𝜇(𝐵) ≤ 𝐶2/|𝐵|. Since Ω is an 𝐿𝑠(𝜇)-averaging
domain, using (121) and noticing that 𝛾 − 1/𝑠 = (1 − 1/𝑠) +
(𝑠 + 𝜆 − 𝛼)/𝑛𝑠 > 0, we have

(
1

𝜇 (Ω)
∫
Ω

󵄨󵄨󵄨󵄨󵄨
𝑇 (𝐻 (𝑢)) − (𝑇 (𝐻 (𝑢)))𝐵

0

󵄨󵄨󵄨󵄨󵄨

𝑠 1

𝑑(𝑥, 𝜕Ω)
𝛼 𝑑𝑥)

1/𝑠

= (
1

𝜇 (Ω)
∫
Ω

󵄨󵄨󵄨󵄨󵄨
𝑇 (𝐻 (𝑢)) − (𝑇 (𝐻 (𝑢)))𝐵

0

󵄨󵄨󵄨󵄨󵄨

𝑠

𝑑𝜇)

1/𝑠

≤ 𝐶3 sup
4𝐵⊂Ω

(
1

𝜇 (𝐵)
∫
𝐵

󵄨󵄨󵄨󵄨𝑇 (𝐻 (𝑢)) − (𝑇 (𝐻 (𝑢)))𝐵
󵄨󵄨󵄨󵄨
𝑠
𝑑𝜇)

1/𝑠

≤ 𝐶4 sup
4𝐵⊂Ω

(
1

|𝐵|
∫
𝐵

󵄨󵄨󵄨󵄨𝑇 (𝐻 (𝑢)) − (𝑇 (𝐻 (𝑢)))𝐵
󵄨󵄨󵄨󵄨
𝑠
𝑑𝜇)

1/𝑠

≤ 𝐶5 sup
4𝐵⊂Ω

|𝐵|
𝛾−1/𝑠

(∫
𝜎𝐵

|𝑢|
𝑠 1

𝑑(𝑥, 𝜕Ω)
𝜆
𝑑𝑥)

1/𝑠

≤ 𝐶5|Ω|
𝛾−1/𝑠

(∫
Ω

|𝑢|
𝑠 1

𝑑(𝑥, 𝜕Ω)
𝜆
𝑑𝑥)

1/𝑠

≤ 𝐶6(∫
Ω

|𝑢|
𝑠 1

𝑑(𝑥, 𝜕Ω)
𝜆
𝑑𝑥)

1/𝑠

,

(122)

which is equivalent to

(∫
Ω

󵄨󵄨󵄨󵄨󵄨
𝑇 (𝐻 (𝑢)) − (𝑇 (𝐻 (𝑢)))𝐵

0

󵄨󵄨󵄨󵄨󵄨

𝑠 1

𝑑(𝑥, 𝜕Ω)
𝛼 𝑑𝑥)

1/𝑠

≤ 𝐶(∫
Ω

|𝑢|
𝑠 1

𝑑(𝑥, 𝜕Ω)
𝜆
𝑑𝑥)

1/𝑠

.

(123)

We have completed the proof of Theorem 53.

We recall the following definition of 𝛿-John domains with
𝛿 > 0.

Definition 54. A proper subdomain Ω ⊂ R𝑛 is called a 𝛿-
John domain, 𝛿 > 0, if there exists a point 𝑥0 ∈ Ω which can
be joined with any other point 𝑥 ∈ Ω by a continuous curve
𝛾 ⊂ Ω so that

𝑑 (𝜉, 𝜕Ω) ≥ 𝛿
󵄨󵄨󵄨󵄨𝑥 − 𝜉

󵄨󵄨󵄨󵄨 (124)
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for each 𝜉 ∈ 𝛾. Here 𝑑(𝜉, 𝜕Ω) is the Euclidean distance
between 𝜉 and 𝜕Ω.

Theorem 55. Let 𝑢 ∈ 𝐷󸀠(Ω, ∧1) be a solution of the nonho-
mogeneous 𝐴-harmonic (7), let 𝐻 be the projection operator,
and let 𝑇 be the homotopy operator. Assume that 𝑠 is a fixed
exponent associated with the nonhomogeneous 𝐴-harmonic
equation. Then, there exists a constant 𝐶(𝑛,𝑁, 𝑠, 𝛼, 𝜆, 𝑄0, Ω),
independent of 𝑢, such that

(∫
Ω

󵄨󵄨󵄨󵄨󵄨
𝑇 (𝐻 (𝑢)) − (𝑇 (𝐻 (𝑢)))𝑄

0

󵄨󵄨󵄨󵄨󵄨

𝑠 1

𝑑𝛼 (𝑥, 𝜕Ω)
𝑑𝑥)

1/𝑠

≤ 𝐶 (𝑛,𝑁, 𝑠, 𝛼, 𝜆, 𝑄0, Ω) (∫
Ω

|𝑢|
𝑠
𝑔 (𝑥) 𝑑𝑥)

1/𝑠

(125)

for any bounded and convex 𝛿-John domain Ω ⊂ R𝑛, where
𝑔(𝑥) = ∑𝑖 𝜒𝑄𝑖

(1/|𝑥 − 𝑥𝑄
𝑖

|
𝜆
). Here 𝛼 and 𝜆 are constants with

0 ≤ 𝜆 < 𝛼 < min{𝑛, 𝑠 + 𝜆 + 𝑛(𝑠 − 1)}, and the fixed cube
𝑄0 ⊂ Ω, the cubes 𝑄𝑖 ⊂ Ω, and the constant 𝑁 > 1 appeared
in Lemma 46.

Proof. We use the notation appearing in Lemma 46.There is
a modified Whitney cover of cubesV = {𝑄𝑖} forΩ such that
Ω = ∪𝑄𝑖, and ∑𝑄

𝑖
∈V 𝜒√(5/4)𝑄

𝑖

≤ 𝑁𝜒Ω for some𝑁 > 1. Since
Ω = ∪𝑄𝑖, for any 𝑥 ∈ Ω, it follows that 𝑥 ∈ 𝑄𝑖 for some 𝑖.
Applying Lemma 48 to 𝑄𝑖, we have

(∫
𝑄
𝑖

|𝑇𝐻 (𝑢)|
𝑠 1

𝑑𝛼 (𝑥, 𝜕Ω)
𝑑𝑥)

1/𝑠

≤ 𝐶1 (𝑛, 𝑠, 𝛼, 𝜆, Ω)
󵄨󵄨󵄨󵄨𝑄𝑖
󵄨󵄨󵄨󵄨
𝛾
(∫
𝜎𝑄
𝑖

|𝑢|
𝑠 1

𝑑𝜆 (𝑥, 𝜕Ω)
𝑑𝑥)

1/𝑠

,

(126)

where 𝜎 > 1 is a constant. Let 𝜇(𝑥) and 𝜇1(𝑥) be the Radon
measures defined by 𝑑𝜇 = (1/𝑑𝛼(𝑥, 𝜕Ω))𝑑𝑥 and 𝑑𝜇1(𝑥) =
𝑔(𝑥)𝑑𝑥, respectively. Then,

𝜇 (𝑄) = ∫
𝑄

1

𝑑𝛼
(𝑥, 𝜕Ω) 𝑑𝑥

≥ ∫
𝑄

1

(diam (Ω))𝛼
𝑑𝑥 = 𝑀(𝑛, 𝛼, Ω) |𝑄| ,

(127)

where𝑀(𝑛, 𝛼,Ω) is a positive constant.Then, by the elemen-
tary inequality (𝑎 + 𝑏)𝑠 ≤ 2𝑠(|𝑎|𝑠 + |𝑏|𝑠), 𝑠 ≥ 0, we have

(∫
Ω

󵄨󵄨󵄨󵄨󵄨
𝑇 (𝐻 (𝑢)) − (𝑇 (𝐻 (𝑢)))𝑄

0

󵄨󵄨󵄨󵄨󵄨

𝑠 1

𝑑𝛼 (𝑥, 𝜕Ω)
𝑑𝑥)

1/𝑠

= (∫
∪𝑄

󵄨󵄨󵄨󵄨󵄨
𝑇 (𝐻 (𝑢)) − (𝑇 (𝐻 (𝑢)))𝑄

0

󵄨󵄨󵄨󵄨󵄨

𝑠

𝑑𝜇)

1/𝑠

≤ ( ∑

𝑄∈V

(2
𝑠
∫
𝑄

󵄨󵄨󵄨󵄨𝑇 (𝐻 (𝑢)) − (𝑇 (𝐻 (𝑢)))𝑄
󵄨󵄨󵄨󵄨
𝑠
𝑑𝜇 + 2

𝑠

× ∫
𝑄

󵄨󵄨󵄨󵄨󵄨
(𝑇 (𝐻 (𝑢)))𝑄 − (𝑇 (𝐻 (𝑢)))𝑄

0

󵄨󵄨󵄨󵄨󵄨

𝑠

𝑑𝜇))

1/𝑠

≤ 𝐶1 (𝑠)(( ∑

𝑄∈V

∫
𝑄

󵄨󵄨󵄨󵄨𝑇 (𝐻 (𝑢)) − (𝑇 (𝐻 (𝑢)))𝑄
󵄨󵄨󵄨󵄨
𝑠
𝑑𝜇)

1/𝑠

+( ∑

𝑄∈V

∫
𝑄

󵄨󵄨󵄨󵄨󵄨
(𝑇 (𝐻 (𝑢)))𝑄 − (𝑇 (𝐻 (𝑢)))𝑄

0

󵄨󵄨󵄨󵄨󵄨

𝑠

𝑑𝜇)

1/𝑠

)

(128)

for a fixed 𝑄0 ⊂ Ω. The first sum in (128) can be estimated by
using Lemma 44 with 𝜑 = 𝑡𝑠, 𝑎 = 2, and Lemma 48:

∑

𝑄∈V

∫
𝑄

󵄨󵄨󵄨󵄨𝑇 (𝐻 (𝑢)) − (𝑇 (𝐻 (𝑢)))𝑄
󵄨󵄨󵄨󵄨
𝑠
𝑑𝜇

≤ ∑

𝑄∈V

∫
𝑄

2
𝑠
|𝑇 (𝐻 (𝑢))|

𝑠
𝑑𝜇

≤ 𝐶2 (𝑛, 𝑠, 𝛼, 𝜆, Ω) ∑

𝑄∈V

|𝑄|
𝛾𝑠
∫
𝜌𝑄

|𝑢|
𝑠
𝑑𝜇1

≤ 𝐶3 (𝑛, 𝑠, 𝛼, 𝜆, Ω) |Ω|
𝛾𝑠
∑

𝑄∈V

∫
Ω

(|𝑢|
𝑠
𝑑𝜇1) 𝜒𝜌𝑄

≤ 𝐶4 (𝑛,𝑁, 𝑠, 𝛼, 𝜆, Ω) |Ω|
𝛾𝑠
∫
Ω

|𝑢|
𝑠
𝑑𝜇1

≤ 𝐶5 (𝑛,𝑁, 𝑠, 𝛼, 𝜆, Ω)∫
Ω

|𝑢|
𝑠
𝑔 (𝑥) 𝑑𝑥.

(129)

To estimate the second sum in (128), we need to use the
property of 𝛿-John domain. Fix a cube 𝑄 ∈ V and let
𝑄0, 𝑄1, . . . , 𝑄𝑘 = 𝑄 be the chain in Lemma 46.

󵄨󵄨󵄨󵄨󵄨
(𝑇 (𝐻 (𝑢)))𝑄 − (𝑇 (𝐻 (𝑢)))𝑄

0

󵄨󵄨󵄨󵄨󵄨

≤

𝑘−1

∑

𝑖=0

󵄨󵄨󵄨󵄨󵄨
(𝑇 (𝐻 (𝑢)))𝑄

𝑖

− (𝑇 (𝐻 (𝑢)))𝑄
𝑖+1

󵄨󵄨󵄨󵄨󵄨
.

(130)

The chain {𝑄𝑖} also has property that, for each 𝑖, 𝑖 =

0, 1, . . . , 𝑘 − 1, with 𝑄𝑖 ∩ 𝑄𝑖+1 ̸= 0; there exists a cube 𝐷𝑖 such
that𝐷𝑖 ⊂ 𝑄𝑖 ∩ 𝑄𝑖+1 and 𝑄𝑖 ∪ 𝑄𝑖+1 ⊂ 𝑁𝐷𝑖,𝑁 > 1:

max {󵄨󵄨󵄨󵄨𝑄𝑖
󵄨󵄨󵄨󵄨 ,
󵄨󵄨󵄨󵄨𝑄𝑖+1

󵄨󵄨󵄨󵄨}
󵄨󵄨󵄨󵄨𝑄𝑖 ∩ 𝑄𝑖+1

󵄨󵄨󵄨󵄨

≤
max {󵄨󵄨󵄨󵄨𝑄𝑖

󵄨󵄨󵄨󵄨 ,
󵄨󵄨󵄨󵄨𝑄𝑖+1

󵄨󵄨󵄨󵄨}
󵄨󵄨󵄨󵄨𝐷𝑖
󵄨󵄨󵄨󵄨

≤ 𝐶6 (𝑁) . (131)

For such 𝐷𝑗, 𝑗 = 0, 1, . . . , 𝑘 − 1, let |𝐷⋆| =

min{|𝐷0|, |𝐷1|, . . . , |𝐷𝑘−1|}; then

max {󵄨󵄨󵄨󵄨𝑄𝑖
󵄨󵄨󵄨󵄨 ,
󵄨󵄨󵄨󵄨𝑄𝑖+1

󵄨󵄨󵄨󵄨}
󵄨󵄨󵄨󵄨𝑄𝑖 ∩ 𝑄𝑖+1

󵄨󵄨󵄨󵄨

≤
max {󵄨󵄨󵄨󵄨𝑄𝑖

󵄨󵄨󵄨󵄨 ,
󵄨󵄨󵄨󵄨𝑄𝑖+1

󵄨󵄨󵄨󵄨}

|𝐷⋆|
≤ 𝐶7 (𝑁) . (132)
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By (127), (132), and Lemma 48, we have
󵄨󵄨󵄨󵄨󵄨
(𝑇 (𝐻 (𝑢)))𝑄

𝑖

− (𝑇 (𝐻 (𝑢)))𝑄
𝑖+1

󵄨󵄨󵄨󵄨󵄨

𝑠

=
1

𝜇 (𝑄𝑖 ∩ 𝑄𝑖+1)

× ∫
𝑄
𝑖
∩𝑄
𝑖+1

󵄨󵄨󵄨󵄨󵄨
(𝑇 (𝐻 (𝑢)))𝑄

𝑖

− (𝑇 (𝐻 (𝑢)))𝑄
𝑖+1

󵄨󵄨󵄨󵄨󵄨

𝑠 𝑑𝑥

𝑑𝛼 (𝑥, 𝜕Ω)

≤ 𝐶8 (𝑛, 𝛼, Ω)
1

󵄨󵄨󵄨󵄨𝑄𝑖 ∩ 𝑄𝑖+1
󵄨󵄨󵄨󵄨

× ∫
𝑄
𝑖
∩𝑄
𝑖+1

󵄨󵄨󵄨󵄨󵄨
(𝑇 (𝐻 (𝑢)))𝑄

𝑖

− (𝑇 (𝐻 (𝑢)))𝑄
𝑖+1

󵄨󵄨󵄨󵄨󵄨

𝑠 𝑑𝑥

𝑑𝛼 (𝑥, 𝜕Ω)

≤ 𝐶8 (𝑛, 𝛼, Ω)
𝐶7 (𝑁)

max {󵄨󵄨󵄨󵄨𝑄𝑖
󵄨󵄨󵄨󵄨 ,
󵄨󵄨󵄨󵄨𝑄𝑖+1

󵄨󵄨󵄨󵄨}

× ∫
𝑄
𝑖
∩𝑄
𝑖+1

󵄨󵄨󵄨󵄨󵄨
(𝑇 (𝐻 (𝑢)))𝑄

𝑖

− (𝑇 (𝐻 (𝑢)))𝑄
𝑖+1

󵄨󵄨󵄨󵄨󵄨

𝑠

𝑑𝜇

≤ 𝐶9 (𝑛,𝑁, 𝑠, 𝛼, Ω)

×

𝑖+1

∑

𝑗=𝑖

1
󵄨󵄨󵄨󵄨󵄨
𝑄𝑗
󵄨󵄨󵄨󵄨󵄨

∫
𝑄
𝑗

󵄨󵄨󵄨󵄨󵄨󵄨
𝑇 (𝐻 (𝑢)) − (𝑇 (𝐻 (𝑢)))𝑄

𝑗

󵄨󵄨󵄨󵄨󵄨󵄨

𝑠

𝑑𝜇

≤ 𝐶10 (𝑛,𝑁, 𝑠, 𝛼, 𝜆, Ω)

×

𝑖+1

∑

𝑗=𝑖

󵄨󵄨󵄨󵄨󵄨
𝑄𝑗
󵄨󵄨󵄨󵄨󵄨

𝛾𝑠

󵄨󵄨󵄨󵄨󵄨
𝑄𝑗
󵄨󵄨󵄨󵄨󵄨

∫
𝜌𝑄
𝑗

|𝑢|
𝑠
𝑑𝜇1

= 𝐶10 (𝑛,𝑁, 𝑠, 𝛼, 𝜆, Ω)

×

𝑖+1

∑

𝑗=𝑖

󵄨󵄨󵄨󵄨󵄨
𝑄𝑗
󵄨󵄨󵄨󵄨󵄨

𝛾𝑠−1

∫
𝜌𝑄
𝑗

|𝑢|
𝑠
𝑔 (𝑥) 𝑑𝑥.

(133)

Since 𝑄 ⊂ 𝑁𝑄𝑗 for 𝑗 = 𝑖, 𝑖 + 1, 0 ≤ 𝑖 ≤ 𝑘 − 1, from (133)

󵄨󵄨󵄨󵄨󵄨
(𝑇 (𝐻 (𝑢)))𝑄

𝑖

− (𝑇 (𝐻 (𝑢)))𝑄
𝑖+1

󵄨󵄨󵄨󵄨󵄨

𝑠

𝜒𝑄 (𝑥)

≤ 𝐶11 (𝑛,𝑁, 𝑠, 𝛼, 𝜆, Ω)

𝑖+1

∑

𝑗=𝑖

𝜒𝑁𝑄
𝑗
(𝑥)
󵄨󵄨󵄨󵄨󵄨
𝑄𝑗
󵄨󵄨󵄨󵄨󵄨

𝛾𝑠−1

∫
𝜌𝑄
𝑗

|𝑢|
𝑠
𝑔 (𝑥) 𝑑𝑥

≤ 𝐶12 (𝑛,𝑁, 𝑠, 𝛼, 𝜆, Ω)

𝑖+1

∑

𝑗=𝑖

𝜒𝑁𝑄
𝑗
(𝑥) |Ω|

𝛾𝑠−1
∫
𝜌𝑄
𝑗

|𝑢|
𝑠
𝑑𝜇1.

(134)

Weknow that |Ω|𝛾−1/𝑠 < ∞ sinceΩ is bounded and 𝛾−(1/𝑠) =
1+(1/𝑛)+(𝜆/𝑛𝑠)−(1/𝑠)−(𝛼/𝑛𝑠) > 0when 𝛼 < 𝑠+𝜆+𝑛(𝑠−1).
Thus, from (𝑎 + 𝑏)1/𝑠 ≤ 21/𝑠(|𝑎|1/𝑠 + |𝑏|1/𝑠), (130), and (134),
󵄨󵄨󵄨󵄨󵄨
(𝑇 (𝐻 (𝑢)))𝑄 − (𝑇 (𝐻 (𝑢)))𝑄

0

󵄨󵄨󵄨󵄨󵄨
𝜒𝑄 (𝑥)

≤ 𝐶13 (𝑛,𝑁, 𝑠, 𝛼, 𝜆, Ω) ∑

𝐷∈V

(∫
𝜌𝐷

|𝑢|
𝑠
𝑑𝜇1)

1/𝑠

⋅ 𝜒𝑁𝐷 (𝑥)

(135)

for every 𝑥 ∈ R𝑛. Then,

∑

𝑄∈V

∫
𝑄

󵄨󵄨󵄨󵄨󵄨
(𝑇 (𝐻 (𝑢)))𝑄 − (𝑇 (𝐻 (𝑢)))𝑄

0

󵄨󵄨󵄨󵄨󵄨

𝑠

𝑑𝜇

≤ 𝐶13 (𝑛,𝑁, 𝑠, 𝛼, 𝜆, Ω)

× ∫
R𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∑

𝐷∈V

(∫
𝜌𝐷

|𝑢|
𝑠
𝑑𝜇1)

1/𝑠

𝜒𝑁𝐷 (𝑥)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑠

𝑑𝜇.

(136)

Notice that
∑

𝐷∈V

𝜒𝑁𝐷 (𝑥) ≤ ∑

𝐷∈V

𝜒𝜌𝑁𝐷 (𝑥) ≤ 𝑁𝜒Ω (𝑥) . (137)

Using elementary inequality | ∑𝑀
𝑖=1
𝑡𝑖|
𝑠
≤ 𝑀

𝑠−1
∑
𝑀

𝑖=1
|𝑡𝑖|
𝑠, we

finally have

∑

𝑄∈V

∫
𝑄

󵄨󵄨󵄨󵄨󵄨
(𝑇 (𝐻 (𝑢)))𝑄 − (𝑇 (𝐻 (𝑢)))𝑄

0

󵄨󵄨󵄨󵄨󵄨

𝑠

𝑑𝜇

≤ 𝐶14 (𝑛,𝑁, 𝑠, 𝛼, 𝜆, Ω)∫
R𝑛
( ∑

𝐷∈V

(∫
𝜌𝐷

|𝑢|
𝑠
𝑑𝜇1)𝜒𝐷 (𝑥))𝑑𝜇

= 𝐶14 (𝑛,𝑁, 𝑠, 𝛼, 𝜆, Ω) ∑

𝐷∈V

(∫
𝜌𝐷

|𝑢|
𝑠
𝑑𝜇1)

≤ 𝐶15 (𝑛,𝑁, 𝑠, 𝛼, 𝜆, Ω)∫
Ω

|𝑢|
𝑠
𝑔 (𝑥) 𝑑𝑥.

(138)

Substituting (129) and (138) in (128), we have proved
Theorem 55.

The following 𝐿𝑠-imbedding inequality with a singular
factor in the John domain was also proved in [12].

Theorem 56. Let 𝑢 ∈ 𝐷󸀠(Ω, ∧1) be a solution of the nonho-
mogeneous 𝐴-harmonic (7), let 𝐻 be the projection operator,
and let 𝑇 be the homotopy operator. Assume that 𝑠 is a fixed
exponent associated with the nonhomogeneous 𝐴-harmonic
equation. Then, there exists a constant 𝐶(𝑛, 𝑠, 𝛼, 𝜆, Ω), inde-
pendent of 𝑢, such that

‖∇ (𝑇 (𝐻 (𝑢)))‖𝑠,Ω,𝑤
1

≤ 𝐶 (𝑛, 𝑠, 𝛼, 𝜆, Ω) ‖𝑢‖𝑠,Ω,𝑤
2

, (139)

‖𝑇 (𝐻 (𝑢))‖𝑊1,𝑠(Ω),𝑤
1

≤ 𝐶 (𝑛, 𝑠, 𝛼, 𝜆, Ω) ‖𝑢‖𝑠,Ω,𝑤
2

(140)

for any bounded and convex 𝛿-John domain Ω ⊂ R𝑛. Here
the weights are defined by 𝑤1(𝑥) = 1/𝑑𝛼(𝑥, 𝜕Ω) and 𝑤2(𝑥) =
∑𝑖 𝜒𝑄𝑖

(1/|𝑥 − 𝑥𝑄
𝑖

|
𝜆
), respectively. 𝛼 and 𝜆 are constants with

0 ≤ 𝜆 < 𝛼 < 𝜆 + (𝑛 + 1)𝑠.

Theorem 57. Let 𝑢 ∈ 𝐷󸀠(Ω, ∧1) be a solution of the nonho-
mogeneous 𝐴-harmonic (7), let 𝐻 be the projection operator,
and let 𝑇 be the homotopy operator. Assume that 𝑠 is a fixed
exponent associated with the nonhomogeneous 𝐴-harmonic
equation. Then, there exists a constant 𝐶(𝑛,𝑁, 𝑠, 𝛼, 𝜆, 𝑄0, Ω),
independent of 𝑢, such that

󵄩󵄩󵄩󵄩󵄩
𝑇 (𝐻 (𝑢)) − (𝑇 (𝐻 (𝑢)))𝑄

0

󵄩󵄩󵄩󵄩󵄩𝑊1,𝑠(Ω),𝑤
1

≤ 𝐶 (𝑛,𝑁, 𝑠, 𝛼, 𝜆, 𝑄0, Ω) ‖𝑢‖𝑠,Ω,𝑤
2

(141)
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for any bounded, convex 𝛿-John domain Ω ⊂ R𝑛. Here the
weights are defined by 𝑤1(𝑥) = 1/𝑑

𝛼
(𝑥, 𝜕Ω) and 𝑤2(𝑥) =

∑𝑖 𝜒𝑄𝑖
(1/|𝑥 − 𝑥𝑄

𝑖

|
𝜆
), 𝛼 and 𝜆 are constants with 0 ≤ 𝜆 < 𝛼 <

min{𝑛, 𝜆+𝑛(𝑠−1)}, and the fixed cube𝑄0 ⊂ Ω and the constant
𝑁 > 1 appeared in Lemma 46.

Proof. Since (𝑇(𝐻(𝑢)))𝑄
0

is a closed form, ∇((𝑇(𝐻(𝑢)))𝐵
0

) =

𝑑((𝑇(𝐻(𝑢)))𝑄
0

) = 0.Thus, by usingTheorem 55 and (139), we
have

󵄩󵄩󵄩󵄩󵄩
𝑇 (𝐻 (𝑢)) − (𝑇 (𝐻 (𝑢)))𝑄

0

󵄩󵄩󵄩󵄩󵄩𝑊1,𝑠(Ω),𝑤
1

= diam (Ω)−1󵄩󵄩󵄩󵄩󵄩𝑇 (𝐻 (𝑢)) − (𝑇 (𝐻 (𝑢)))𝑄0
󵄩󵄩󵄩󵄩󵄩𝑠,Ω,𝑤

1

+
󵄩󵄩󵄩󵄩󵄩
∇ (𝑇 (𝐻 (𝑢)) − (𝑇 (𝐻 (𝑢)))𝑄

0

)
󵄩󵄩󵄩󵄩󵄩𝑠,Ω,𝑤

1

= diam (Ω)−1󵄩󵄩󵄩󵄩󵄩𝑇 (𝐻 (𝑢)) − (𝑇 (𝐻 (𝑢)))𝑄0
󵄩󵄩󵄩󵄩󵄩𝑠,Ω,𝑤

1

+ ‖∇ (𝑇 (𝐻 (𝑢)))‖𝑠,Ω,𝑤
1

≤ 𝐶1 (𝑛,𝑁, 𝑠, 𝛼, 𝜆, 𝑄0, Ω) ‖𝑢‖𝑠,Ω,𝑤
2

+ 𝐶2 (𝑛, 𝑠, 𝛼, 𝜆, Ω) ‖𝑢‖𝑠,Ω,𝑤
2

≤ 𝐶3 (𝑛,𝑁, 𝑠, 𝛼, 𝜆, 𝑄0, Ω) ‖𝑢‖𝑠,Ω,𝑤
2

.

(142)

Thus, (141) holds. We have completed the proof of
Theorem 57.

Remark 58. Since the usual 𝑝-harmonic equation
div(∇𝑢|∇𝑢|𝑝−2) = 0 for functions is the special case of
the nonhomogeneous 𝐴-harmonic equation for differential
forms, all results proved in Theorems 55, 56, and 57 are still
true for 𝑝-harmonic functions.

8. Composition of Homotopy and
Potential Operators

Recently, Bi extended the definition of the potential operator
to the case of differential forms; see [3]. For any differential
𝑙-form 𝑢(𝑥), the potential operator 𝑃 is defined by

𝑃𝑢 (𝑥) = ∑

𝐼

∫
𝐸

𝐾(𝑥, 𝑦) 𝑢𝐼 (𝑦) 𝑑𝑦𝑑𝑥𝐼, (143)

where the kernel 𝐾(𝑥, 𝑦) is a nonnegative measurable func-
tion defined for𝑥 ̸= 𝑦 and the summation is over all ordered 𝑙-
tuples 𝐼.The 𝑙 = 0 case reduces to the usual potential operator:

𝑃𝑓 (𝑥) = ∫
𝐸

K (𝑥, 𝑦) 𝑓 (𝑦) 𝑑𝑦, (144)

where 𝑓(𝑥) is a function defined on 𝐸 ⊂ R𝑛. See [3, 25] for
more results about the potential operator. We say a kernel 𝐾
on R𝑛 × R𝑛 satisfies the standard estimates if there exist 𝛿,
0 < 𝛿 ≤ 1, and constant 𝐶 such that for all distinct points 𝑥
and 𝑦 in R𝑛, and all 𝑧 with |𝑥 − 𝑧| < (1/2)|𝑥 − 𝑦|, the kernel
𝐾 satisfies (i) 𝐾(𝑥, 𝑦) ≤ 𝐶|𝑥 − 𝑦|−𝑛; (ii) |𝐾(𝑥, 𝑦) − 𝐾(𝑧, 𝑦)| ≤
𝐶|𝑥 − 𝑧|

𝛿
|𝑥 − 𝑦|

−𝑛−𝛿; and (iii) |𝐾(𝑦, 𝑥) − 𝐾(𝑦, 𝑧)| ≤ 𝐶|𝑥 −
𝑧|
𝛿
|𝑥 − 𝑦|

−𝑛−𝛿.

In this paper, we always assume that 𝑃 is the potential
operator defined in (143) with the kernel 𝐾(𝑥, 𝑦) satisfying
condition (i) of the standard estimates. Recently, Bi in [3]
proved the following inequality for the potential operator:

‖𝑃 (𝑢)‖𝑝,𝐸 ≤ 𝐶‖𝑢‖𝑝,𝐸, (145)

where 𝑢 ∈ 𝐷󸀠(𝐸, ∧𝑙), 𝑙 = 0, 1, . . . , 𝑛 − 1, is a differential form
defined in a bounded and convex domain 𝐸 and 𝑝 > 1 is a
constant.

In this section, we prove the local 𝐿𝜑 imbedding inequal-
ities for 𝑇 ∘ 𝑃 applied to solutions of the nonhomogeneous
𝐴-harmonic equation in a bounded domain. For any subset
𝐸 ⊂ R𝑛, we use 𝑊1,𝜑(𝐸, ∧𝑙) to denote the Orlicz-Sobolev
space of 𝑙-forms which equals 𝐿𝜑(𝐸, ∧𝑙)∩𝐿𝜑

1
(𝐸, ∧

𝑙
)with norm

‖𝑢‖𝑊1,𝜑(𝐸) = ‖𝑢‖𝑊1,𝜑(𝐸,∧𝑙) = diam (𝐸)−1‖𝑢‖𝐿𝜑(𝐸) + ‖∇𝑢‖𝐿𝜑(𝐸).
(∗∗)

If we choose 𝜑(𝑡) = 𝑡𝑝, 𝑝 > 1 in (∗∗), we obtain the usual 𝐿𝑝

norm for𝑊1,𝑝(𝐸, ∧𝑙)

‖𝑢‖𝑊1,𝑝(𝐸) = ‖𝑢‖𝑊1,𝑝(𝐸,∧𝑙) = diam (𝐸)−1‖𝑢‖𝑝,𝐸 + ‖∇𝑢‖𝑝,𝐸.
(∗∗)

󸀠

In 2013, the followingTheorems 59 to 61 were recently proved
in [18].

Theorem 59. Let 𝜑 be a Young function in the class𝐺(𝑝, 𝑞, 𝐶),
1 ≤ 𝑝 < 𝑞 < ∞, 𝐶 ≥ 1, Ω be a bounded domain, 𝑇 :

𝐶
∞
(Ω, ∧

𝑙
) → 𝐶

∞
(Ω, ∧

𝑙−1
), 𝑙 = 1, 2, . . . , 𝑛, be the homotopy

operator defined in (2), and let 𝑃 be the potential operator
defined in (143) with the kernel𝐾(𝑥, 𝑦) satisfying condition (i)
of the standard estimates. Assume that 𝜑(|𝑢|) ∈ 𝐿1loc(Ω) and
𝑢 is a solution of the nonhomogeneous 𝐴-harmonic (7) in Ω.
Then, there exists a constant 𝐶, independent of 𝑢, such that
󵄩󵄩󵄩󵄩𝑇 (𝑃 (𝑢)) − (𝑇 (𝑃 (𝑢)))𝐵

󵄩󵄩󵄩󵄩𝐿𝜑(𝐵) ≤ 𝐶 diam (𝐵) ‖𝑢‖𝐿𝜑(𝜎𝐵) (146)

for all balls 𝐵 with 𝜎𝐵 ⊂ Ω for some 𝜎 > 1.

Theorem60. Let 𝜑 be a Young function in the class𝐺(𝑝, 𝑞, 𝐶),
1 ≤ 𝑝 < 𝑞 < ∞, 𝐶 ≥ 1, Ω be a bounded domain,
𝑇 be the homotopy operator defined in (2), and let 𝑃 be the
potential operator defined in (143) with the kernel 𝐾(𝑥, 𝑦)
satisfying condition (i) of the standard estimates. Assume that
𝜑(|𝑢|) ∈ 𝐿

1

loc(Ω) and 𝑢 is a solution of the nonhomogeneous𝐴-
harmonic (7) inΩ.Then, there exists a constant𝐶, independent
of 𝑢, such that

‖𝑇𝑑 (𝑇 (𝑃 (𝑢)))‖𝐿𝜑(𝐵) ≤ 𝐶 |𝐵| diam (𝐵) ‖𝑢‖𝐿𝜑(𝜎𝐵) (147)

for all balls 𝐵 with 𝜎𝐵 ⊂ Ω for some 𝜎 > 1.

Theorem 61. Let 𝜑 be a Young function in the class𝐺(𝑝, 𝑞, 𝐶),
1 ≤ 𝑝 < 𝑞 < ∞, 𝐶 ≥ 1, Ω be a bounded domain,
𝑇 be the homotopy operator defined in (2), and let 𝑃 be the
potential operator defined in (143) with the kernel 𝐾(𝑥, 𝑦)
satisfying condition (i) of the standard estimates. Assume that
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𝜑(|𝑢|) ∈ 𝐿
1

loc(Ω) and 𝑢 is a solution of the nonhomogeneous𝐴-
harmonic (7) inΩ.Then, there exists a constant𝐶, independent
of 𝑢, such that

‖∇𝑇𝑑 (𝑇 (𝑃 (𝑢)))‖𝐿𝜑(𝐵) ≤ 𝐶 |𝐵| ‖𝑢‖𝐿𝜑(𝜎𝐵) (148)

for all balls 𝐵 with 𝜎𝐵 ⊂ Ω for some 𝜎 > 1.

The following local 𝐿𝜑-imbedding theorem was also
obtained in [18].

Theorem62. Let 𝜑 be a Young function in the class𝐺(𝑝, 𝑞, 𝐶),
1 ≤ 𝑝 < 𝑞 < ∞, 𝐶 ≥ 1, Ω be a bounded domain,
𝑇 be the homotopy operator defined in (2), and let 𝑃 be the
potential operator defined in (143) with the kernel 𝐾(𝑥, 𝑦)
satisfying condition (i) of the standard estimates. Assume that
𝜑(|𝑢|) ∈ 𝐿

1

loc(Ω) and 𝑢 is a solution of the nonhomogeneous𝐴-
harmonic (7) inΩ.Then, there exists a constant𝐶, independent
of 𝑢, such that
󵄩󵄩󵄩󵄩𝑇 (𝑃 (𝑢)) − (𝑇 (𝑃 (𝑢)))𝐵

󵄩󵄩󵄩󵄩𝑊1,𝜑(𝐵,∧𝑙) ≤ 𝐶 |𝐵| ‖𝑢‖𝐿𝜑(𝜎𝐵) (149)

for all balls 𝐵 with 𝜎𝐵 ⊂ Ω for some 𝜎 > 1.

Proof. From (∗∗), (147), and (148), we have

󵄩󵄩󵄩󵄩𝑇 (𝑃 (𝑢)) − (𝑇 (𝑃 (𝑢)))𝐵
󵄩󵄩󵄩󵄩𝑊1,𝜑(𝐵,∧𝑙)

= ‖𝑇𝑑 (𝑇 (𝑃 (𝑢)))‖𝑊1,𝜑(𝐵,∧𝑙)

= (diam (𝐵))−1‖𝑇𝑑 (𝑇 (𝑃 (𝑢)))‖𝐿𝜑(𝐵)

+ ‖∇T𝑑 (𝑇 (𝑃 (𝑢)))‖𝐿𝜑(𝐵)

≤ (diam (𝐵))−1 (𝐶1 |𝐵| diam (𝐵) ‖𝑢‖𝐿𝜑(𝜎
1
𝐵))

+ 𝐶2 |𝐵| ‖𝑢‖𝐿𝜑(𝜎
2
𝐵)

≤ 𝐶1 |𝐵| ‖𝑢‖𝐿𝜑(𝜎
1
𝐵) + 𝐶2 |𝐵| ‖𝑢‖𝐿𝜑(𝜎

2
𝐵)

≤ 𝐶3 |𝐵| ‖𝑢‖𝐿𝜑(𝜎𝐵)

(150)

for all balls 𝐵 with 𝜎𝐵 ⊂ Ω, where 𝜎 = max{𝜎1, 𝜎2}. The
proof of Theorem 62 has been completed.

The following version of local imbedding will be used to
establish a global imbedding theoremwhich indicates that the
operator 𝑇 ∘ 𝑃 is bounded.

Theorem63. Let 𝜑 be a Young function in the class𝐺(𝑝, 𝑞, 𝐶),
1 ≤ 𝑝 < 𝑞 < ∞, 𝐶 ≥ 1, Ω be a bounded domain,
𝑇 be the homotopy operator defined in (2), and let 𝑃 be the
potential operator defined in (143) with the kernel 𝐾(𝑥, 𝑦)
satisfying condition (i) of the standard estimates. Assume that
𝜑(|𝑢|) ∈ 𝐿

1

loc(Ω) and 𝑢 is a solution of the nonhomogeneous𝐴-
harmonic (7) inΩ.Then, there exists a constant𝐶, independent
of 𝑢, such that

‖𝑇𝑃 (𝑢)‖𝑊1,𝜑(𝐵,∧𝑙) ≤ 𝐶 |𝐵| ‖𝑢‖𝐿𝜑(𝜎𝐵) (151)

for all balls 𝐵 with 𝜎𝐵 ⊂ Ω for some 𝜎 > 1.

Proof. Applying (6) to 𝑃(𝑢), then using (145), we find that

‖𝑇𝑃 (𝑢)‖𝑞,𝐵 ≤ 𝐶1 |𝐵| diam (𝐵) ‖𝑃 (𝑢)‖𝑞,𝐵

≤ 𝐶2 |𝐵| diam (𝐵) ‖𝑢‖𝑞,𝐵,

‖∇𝑇𝑃 (𝑢)‖𝑞,𝐵 ≤ 𝐶3 |𝐵| diam (𝐵) ‖𝑃 (𝑢)‖𝑞,𝐵

≤ 𝐶4 |𝐵| diam (𝐵) ‖𝑢‖𝑞,𝐵

(152)

for any differential form 𝑢 and all balls 𝐵 with 𝐵 ⊂ Ω, where
𝑞 > 1 is a constant. Starting with (152) and using the similar
method developed in the proof of Theorem 61, we obtain

‖𝑇𝑃 (𝑢)‖𝐿𝜑(𝐵) ≤ 𝐶5 |𝐵| diam (𝐵) ‖𝑢‖𝐿𝜑(𝜎
1
𝐵),

‖∇𝑇𝑃 (𝑢)‖𝐿𝜑(𝐵) ≤ 𝐶6 |𝐵| ‖𝑢‖𝐿𝜑(𝜎
2
𝐵),

(153)

respectively, where 𝜎1 and 𝜎2 are constants. From (∗∗), (153),
we have

‖𝑇𝑃 (𝑢)‖𝑊1,𝜑(𝐵,∧𝑙)

= (diam (𝐵))−1‖𝑇𝑃 (𝑢)‖𝐿𝜑(𝐵) + ‖∇𝑇𝑃 (𝑢)‖𝐿𝜑(𝐵)

= (diam (𝐵))−1 (𝐶5 |𝐵| diam (𝐵) ‖𝑢‖𝐿𝜑(𝜎
1
𝐵))

+ 𝐶6 |𝐵| ‖𝑢‖𝐿𝜑(𝜎
2
𝐵)

≤ 𝐶7 |𝐵| ‖𝑢‖𝐿𝜑(𝜎𝐵),

(154)

where 𝜎 = max{𝜎1, 𝜎2}. The proof of Theorem 63 has been
completed.

Note that if we choose 𝜑(𝑡) = 𝑡
𝑝log𝛼

+
𝑡 or 𝜑(𝑡) = 𝑡

𝑝 in
Theorems 59–63, we will obtain some 𝐿𝑝(log𝛼

+
𝐿)-norm or

𝐿
𝑝-norm inequalities, respectively. For example, let 𝜑(𝑡) =
𝑡
𝑝log𝛼

+
𝑡 in Theorem 62; we have the following imbedding

inequalities for 𝑇 ∘ 𝑃 with the 𝐿𝑝(log𝛼
+
𝐿)-norms.

Corollary 64. Let 𝜑(𝑡) = 𝑡𝑝log𝛼
+
𝑡, 𝑝 ≥ 1, and 𝛼 ∈ R, and Ω

be a bounded domain. Assume that 𝜑(|𝑢|) ∈ 𝐿1loc(Ω) and 𝑢 is a
solution of the nonhomogeneous 𝐴-harmonic (7). Then, there
exists a constant 𝐶, independent of 𝑢, such that
󵄩󵄩󵄩󵄩𝑇 (𝑃 (𝑢)) − (𝑇 (𝑃 (𝑢)))𝐵

󵄩󵄩󵄩󵄩𝑊1,𝑡
𝑝 log𝛼
+
𝑡
(𝐵,∧𝑙)

≤ 𝐶 |𝐵| ‖𝑢‖𝐿𝑝(log𝛼
+
𝐿)(𝜎𝐵)

(155)

for all balls 𝐵 with 𝜎𝐵 ⊂ Ω, where 𝜎 > 1 is a constant.

Selecting 𝜑(𝑡) = 𝑡𝑝 in Theorem 62, we obtain the usual
imbedding inequalities 𝑇 ∘ 𝑃 with the 𝐿𝑝-norms.
󵄩󵄩󵄩󵄩𝑇 (𝑃 (𝑢)) − (𝑇 (𝑃 (𝑢)))𝐵

󵄩󵄩󵄩󵄩𝑊1,𝑝(𝐵,∧𝑙) ≤ 𝐶 |𝐵| ‖𝑢‖𝑝,𝜎𝐵 (156)

for all balls 𝐵 with 𝜎𝐵 ⊂ Ω, where 𝜎 > 1 is a constant.
Now, we present the global imbedding theorem with the 𝐿𝜑-
norm as follows.

Theorem65. Let 𝜑 be a Young function in the class𝐺(𝑝, 𝑞, 𝐶),
1 ≤ 𝑝 < 𝑞 < ∞, 𝐶 ≥ 1, Ω be any bounded 𝐿𝜑-averaging
domain,𝑇 be the homotopy operator defined in (2), and let𝑃 be
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the potential operator defined in (143) with the kernel 𝐾(𝑥, 𝑦)
satisfying condition (i) of the standard estimates. Assume that
𝜑(|V|) ∈ 𝐿

1
(Ω) and V ∈ 𝐷

󸀠
(Ω, ∧

1
) is a solution of the

nonhomogeneous 𝐴-harmonic (7) in Ω. Then, there exists a
constant 𝐶, independent of V, such that

󵄩󵄩󵄩󵄩󵄩
𝑇 (𝑃 (V)) − (𝑇 (𝑃 (V)))𝐵

0

󵄩󵄩󵄩󵄩󵄩𝑊1,𝜑(Ω)
≤ 𝐶‖V‖𝐿𝜑(Ω) (157)

where 𝐵0 ⊂ Ω is some fixed ball.

It is well known that any John domain is a special 𝐿𝜑-
averaging domain; see [1]. Hence, we have the following
global 𝐿𝜑-imbedding theorem for John domains.

Theorem66. Let 𝜑 be a Young function in the class𝐺(𝑝, 𝑞, 𝐶),
1 ≤ 𝑝 < 𝑞 < ∞, 𝐶 ≥ 1, Ω be any bounded John domain,
𝑇 be the homotopy operator defined in (2), and let 𝑃 be the
potential operator defined in (143) with the kernel 𝐾(𝑥, 𝑦)
satisfying condition (i) of the standard estimates. Assume that
𝜑(|V|) ∈ 𝐿

1
(Ω) and V ∈ 𝐷

󸀠
(Ω, ∧

1
) is a solution of the

nonhomogeneous 𝐴-harmonic (7) in Ω. Then, there exists a
constant 𝐶, independent of V, such that

󵄩󵄩󵄩󵄩󵄩
𝑇 (𝑃 (V)) − (𝑇 (𝑃 (V)))𝐵

0

󵄩󵄩󵄩󵄩󵄩𝑊1,𝜑(Ω)
≤ 𝐶‖V‖𝐿𝜑(Ω) (158)

where 𝐵0 ⊂ Ω is some fixed ball.

Next, let 𝑆 be the set of all solutions of the nonhomo-
geneous 𝐴-harmonic equation in Ω. We have the following
version of imbedding theoremwith𝐿𝜑 norm for any bounded
domain, which says that the composite operator 𝑇 ∘ 𝑃 maps
𝑊
1,𝜑
(Ω, ∧

1
)∩𝑆 continuously into𝐿𝜑(Ω). See [18] for the proof

of Theorem 67.

Theorem67. Let 𝜑 be a Young function in the class𝐺(𝑝, 𝑞, 𝐶),
1 ≤ 𝑝 < 𝑞 < ∞, 𝐶 ≥ 1, 𝑇 be the homotopy operator defined
in (2), and let 𝑃 be the potential operator defined in (143)
with the kernel 𝐾(𝑥, 𝑦) satisfying condition (i) of the standard
estimates. Assume that 𝜑(|V|) ∈ 𝐿1(Ω) and V ∈ 𝐷󸀠(Ω, ∧1) ∩ 𝑆
inΩ. Then, the composite operator 𝑇 ∘𝑃maps𝑊1,𝜑(Ω, ∧1) ∩ 𝑆
continuously into 𝐿𝜑(Ω). Furthermore, there exists a constant
𝐶, independent of V, such that

‖𝑇𝑃 (V)‖𝑊1,𝜑(Ω) ≤ 𝐶‖V‖𝐿𝜑(Ω) (159)

holds for any bounded domain Ω.

Selecting 𝜑(𝑡) = 𝑡𝑝 inTheorems 65, we have the following
version of the imbedding inequality with 𝐿𝑝-norms.

Corollary 68. Let 𝜑(𝑡) = 𝑡
𝑝, 𝑝 ≥ 1, 𝑇 be the homotopy

operator defined in (2), and let 𝑃 be the potential operator
defined in (143). Assume that 𝜑(|V|) ∈ 𝐿

1
(Ω) and V ∈

𝐷
󸀠
(Ω, ∧

1
) is a solution of the nonhomogeneous𝐴-harmonic (7)

inΩ.Then, there exists a constant𝐶, independent of V, such that
󵄩󵄩󵄩󵄩󵄩
𝑇𝑃 (V) − (𝑇 (𝑃 (V)))𝐵

0

󵄩󵄩󵄩󵄩󵄩𝑊1,𝑝(Ω)
≤ 𝐶‖V‖𝑝,Ω (160)

holds for any bounded domain Ω.

Remark 69. (i) We know that the 𝐿𝑠-averaging domains are
the special 𝐿𝜑-averaging domains. Thus, Theorem 65 also
holds for the 𝐿𝑠-averaging domain; (ii) Theorem 67 holds for
any bounded domain inR𝑛.

9. Composition of Homotopy and
Green’s Operators

In this section, we estimate the Lipschitz norm ‖ ⋅ ‖locLip
𝑘
,𝑀 or

BMO norm ‖ ⋅ ‖⋆,𝑀 of composition 𝑇 ∘ 𝐺 in terms of the 𝐿𝑠
norm. First, we present the following 𝐿𝑠 norm inequality for
the composition𝑇∘𝐺 of the homotopy operator𝑇 andGreen’s
operator 𝐺.

Theorem 70. Let 𝑢 ∈ 𝐿
𝑠

loc(𝑀, ∧
𝑙
), 𝑙 = 1, 2, . . . , 𝑛, 1 <

𝑠 < ∞, be a smooth differential form in a bounded, convex
domain 𝑀 and let 𝑇 : 𝐶∞(𝑀, ∧𝑙) → 𝐶

∞
(𝑀, ∧

𝑙−1
) be the

homotopy operator defined in (2). Then, there exists a constant
𝐶, independent of 𝑢, such that
󵄩󵄩󵄩󵄩𝑇 (𝐺 (𝑢)) − (𝑇 (𝐺 (𝑢)))𝐵

󵄩󵄩󵄩󵄩𝑠,𝐵 ≤ 𝐶 |𝐵| diam (𝐵) ‖𝑢‖𝑠,𝐵 (161)

for all balls B ⊂ 𝑀.

Using Theorem 70, we obtain the following inequality
with Lipschitz norm.

Theorem 71. Let 𝑢 ∈ 𝐿𝑠(𝑀, ∧𝑙), 𝑙 = 1, 2, . . . , 𝑛, 1 < 𝑠 < ∞, be
a smooth differential form in a bounded, convex domain𝑀, let
𝐺 be Green’s operator, and let 𝑇 : 𝐶∞(𝑀, ∧𝑙) → 𝐶

∞
(𝑀, ∧

𝑙−1
)

be the homotopy operator defined in (2). Then, there exists a
constant 𝐶, independent of 𝑢, such that

‖𝑇 (𝐺 (𝑢))‖locLip
𝑘
,𝑀 ≤ 𝐶‖𝑢‖𝑠,𝑀, (162)

where 𝑘 is a constant with 0 ≤ 𝑘 ≤ 1.

The following Theorem 72 tells us the relationship
between the Lipschitz norm ‖ ⋅ ‖locLip

𝑘
,𝑀 and BMO norm

‖ ⋅ ‖⋆,𝑀 of composition 𝑇 ∘ 𝐺.

Theorem 72. Let 𝑢 ∈ 𝐿
𝑠

loc(𝑀, ∧
1
), 1 < 𝑠 < ∞, be a

solution of the nonhomogeneous𝐴-harmonic (7) in a bounded,
convex domain𝑀. Let 𝐺 be Green’s operator and let 𝑇 be the
homotopy operator defined in (2). Then, there exists a constant
𝐶, independent of 𝑢, such that

‖𝑇 (𝐺 (𝑢))‖locLip
𝑘
,𝑀 ≤ 𝐶‖𝑢‖⋆,𝑀, (163)

where 𝑘 is a constant with 0 ≤ 𝑘 ≤ 1.

The following theorem gives an estimate for BMO norm
‖ ⋅ ‖⋆,𝑀 of composition 𝑇 ∘ 𝐺 in terms of 𝐿𝑠 norm.

Theorem 73. Let 𝑢 ∈ 𝐿
𝑠
(𝑀, ∧

1
), 1 < 𝑠 < ∞, be a

solution of the nonhomogeneous𝐴-harmonic (7) in a bounded,
convex domain𝑀. Let 𝐺 be Green’s operator and let 𝑇 be the
homotopy operator defined in (2). Then, there exists a constant
𝐶, independent of 𝑢, such that

‖𝑇 (𝐺 (𝑢))‖⋆,𝑀 ≤ 𝐶‖𝑢‖𝑠,𝑀. (164)
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Theorem 74. Let 𝑢 ∈ 𝐿𝑠(𝑀, ∧𝑙, ]), 𝑙 = 1, 2, . . . , 𝑛, 1 < 𝑠 < ∞,
be a solution of the nonhomogeneous 𝐴-harmonic equation in
a bounded, convex domain𝑀. Let𝐺 beGreen’s operator and let
𝑇 be the homotopy operator defined in (2). Themeasures 𝜇 and
] are defined by𝑑𝜇 = 𝑤𝛼

1
𝑑𝑥,𝑑] = 𝑤𝛼

2
𝑑𝑥, and (𝑤1(𝑥), 𝑤2(𝑥)) ∈

𝐴𝑟,𝜆(𝑀) for some 𝜆 ≥ 1 and 1 < 𝑟 < ∞ with 𝑤1(𝑥) ≥ 𝜀 > 0
for any 𝑥 ∈ 𝑀. Then, there exists a constant 𝐶, independent of
𝑢, such that

‖𝑇 (𝐺 (𝑢))‖locLip
𝑘
,𝑀,𝑤𝛼
1

≤ 𝐶‖𝑢‖𝑠,𝑀,𝑤𝛼
2

, (165)

where 𝑘 and 𝛼 are constants with 0 ≤ 𝑘 ≤ 1 and 0 < 𝛼 ≤ 1.

Finally, we can estimate the weighted ‖ ⋅ ‖⋆,𝑀,𝑤𝛼
1

norm in
terms of the 𝐿𝑠 norm.

Theorem 75. Let 𝑢 ∈ 𝐿𝑠(𝑀, ∧𝑙, ]), 𝑙 = 1, 2, . . . , 𝑛, 1 < 𝑠 < ∞,
be a solution of the nonhomogeneous 𝐴-harmonic equation in
a bounded, convex domain𝑀. Let𝐺 beGreen’s operator and let
𝑇 be the homotopy operator defined in (2). Themeasures 𝜇 and
] are defined by𝑑𝜇 = 𝑤𝛼

1
𝑑𝑥,𝑑] = 𝑤𝛼

2
𝑑𝑥, and (𝑤1(𝑥), 𝑤2(𝑥)) ∈

𝐴𝑟,𝜆(𝑀) for some 𝜆 ≥ 1 and 1 < 𝑟 < ∞ with 𝑤1(𝑥) ≥ 𝜀 > 0
for any 𝑥 ∈ 𝑀. Then, there exists a constant 𝐶, independent of
𝑢, such that

‖𝑇 (𝐺 (𝑢))‖⋆,𝑀,𝑤𝛼
1

≤ 𝐶‖𝑢‖𝑠,𝑀,𝑤𝛼
2

, (166)

where 𝛼 is a constant with 0 < 𝛼 ≤ 1.
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