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Through researching the instantaneous control strategy and Elman neural network, the paper established equivalent fuel
consumption functions under the charging and discharging conditions of power batteries, deduced the optimal control objective
function of instantaneous equivalent consumption, established the instantaneous optimal control model, and designs the Elman
neural network controller. Based on the ADVISOR 2002 platform, the instantaneous optimal control strategy and the Elman neural
network control strategy were simulated on a parallel HEV.The simulation results were analyzed in the end.The contribution of the
paper is that the trained Elman neural network control strategy can reduce the simulation time by 96% and improve the real-time
performance of energy control, which also ensures the good performance of power and fuel economy.

1. Introduction

Under the dual pressure of environmental pollution and
energy crisis, hybrid vehicles have advantages of both con-
ventional vehicles and electric vehicles, which have charac-
teristics of energy conservation, environmental protection,
diverse shapes, and strong implementation. Hybrid vehicles
have become an effective way to solve the problem of energy
crisis and environmental protection and also have been one
of the most perspective vehicle models.

According to different connective ways of power system,
hybrid electric vehicle (HEV) can be mainly divided into
four styles: series, parallel, series-parallel, and complex. The
dynamic structure diagram is shown in Figure 1.

Engine output energy of series HEV is transformed
two times and the efficiency of the motor and generator is
relatively low, so series HEV loses more energy and leads
to lower efficiency than vehicles of internal combustion
engine. Parallel HEV (PHEV) is equipped with series and
parallel power systems, and their structures and control
systems are more complex and have higher cost. Complex
HEV structures and control systems are most complex and
have highest cost. However, parallel hybrid power system

can adapt to various road conditions and is widely used by
enterprises [1, 2].

As the core of multiple energy control system, the energy
control strategy determines performances of PHEV. Based
on vehicle’s torque, energy control strategies of PHEV are
mainly divided into four types [3, 4]: static logic threshold
energy control strategy, instantaneous optimal energy control
strategy, global optimal energy control strategy, and neural
network energy control strategy. The static logic threshold
control strategy cannot guarantee the optimal fuel economy
of PHEV, does not adapt to dynamic conditions, and cannot
make the whole system to achieve maximum efficiency.
Besides, its threshold parameters are set by engineering expe-
rience [5, 6]. The global optimal control strategy can achieve
global optimal fuel consumption of HEV. Its defects are
complex algorithm, large amount of calculation, and knowing
the whole condition in advance [7, 8]. Neural network energy
control strategy can adapt to diverse conditions with good
robustness and obtain global fuel consumption optimum
by engineering experience [9, 10]. Instantaneous optimal
energy control strategy can realize minimum equivalent fuel
consumption of PHEV in each control cycle which is widely
used to distribute PHEV energy [11].
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Figure 1: Classification of hybrid electric vehicles.

The basic principle of instantaneous optimal control
strategy is based on themodel of the optimal curve of engines;
the object function of the whole power system was optimized
on the specific operating points of parallel HEV. On the
basis of the instantaneous optimal operating points, it makes
power of variable states redistributed and make the loss of
energy minimized in the energy flow process at any time (see
Figure 2). Instantaneous optimal control strategy has good
fuel economy at any time and bad real-time performance. Its
real-time performance is influenced by these factors which
are the accuracy of various components battery ages and
engine and motor characteristics [12–14]. So it is difficult to
improve the real-time performance of instantaneous optimal
control strategy by changing these factors.

The hybrid vehicles possess good power performance and
fuel economy and obtain rapid allocation energy by finding
a new energy control strategy. Elman neural network is a
feedback neural network and has a very strong computing
ability and stability [15].The instantaneous rules of the instan-
taneous optimal control strategy are used to train Elman
neural network, establish Elman neural network controller,
and improve the real-time performance of energy control
[14–16].

Based on the research of the instantaneous optimal
control strategy, the strategy possesses good fuel economy
and makes energy distributed reasonably. However, its real-
time performance is poor. In order to solve bad real-time
defects of instantaneous control strategy, instantaneous opti-
mal control rules are used to train the Elman neural network
control strategy and improve the real-time performance of
the trained Elman energy control strategy on the premise
that it can guarantee advantages of the instantaneous optimal
control strategy. The results show that the trained Elman
neural network control strategy can replace the instantaneous
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Figure 2: Energy flow diagram of parallel hybrid electric vehicles.

optimal control strategy, optimize power distribution, and
make the simulation time reduced by 60%.

2. Research Energy Control Strategy

2.1. Instantaneous Optimal Control Strategy. Instantaneous
optimal control strategy is defined as follows. In order
to achieve the minimum fuel consumption of HEV, the
optimal output power of the engine and electric motor is
calculated in each control cycle of hybrid power system.
Working conditions of HEV and calculation expressions of
the equivalent fuel consumption are different in every time.
So an optimal objective function should be established [17].
Working condition of hybrid system is divided into two cases
of power battery charging and discharging. Then, objective
functions of the instantaneous equivalent minimum fuel
consumption were established on two working conditions.

Here, the full line represents the circulation and transfor-
mation of fuel chemical energy in the hybrid power system.
The dotted line represents electric current circulation and
transformation in the hybrid power system.
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2.1.1. Calculate the Equivalent Fuel Consumption of Battery
Discharging. When the power battery takes part in driving
hybrid cars, its SOC value will reduce and deviate from the
target of SOC value. In order to compensate for the used
electricity and restore SOC value of power batteries, the
engine drives the motor to charge power batteries in the
future time [18]. The charging time is divided into 𝑛 control
cycles, and the motor power of each cycle is 𝑃mc chg 𝑖 (𝑖 =
1, 2, 3 . . . , 𝑛) [5].

The relationship between the motor power (𝑃mc) with
driving vehicle and the motor power (𝑃mc chg 𝑖) with power
batteries charging is

𝑃mc = 𝜂mc
2
𝜂dischg𝜂chg

𝑛

∑

𝑖=1

𝑃mc chg 𝑖, (1)

where 𝜂mc is the average efficiency of motor; 𝜂chg is the
average efficiency of power battery charging; 𝜂dischg is the
average efficiency of power battery discharging.

When the motor drives the vehicle, the energy consump-
tion of power batteries can be converted into the engine fuel
consumption. The equivalent fuel consumption rate of the
motor is

𝑏mc eq =
∑
𝑛

𝑖=1
(𝑃fc𝑌 𝑖𝑏𝑌 𝑖 − 𝑃fc𝑁 𝑖𝑏𝑁 𝑖)

𝜂mc
2
𝜂dischg𝜂chg∑

𝑛

𝑖=1
𝑃mc chg 𝑖

, (2)

where 𝑃fc𝑁 𝑖, when the engine does not charge power bat-
teries, is the engine power of the 𝑖 control period; 𝑏

𝑁 𝑖
,

when the engine does not charge power batteries, is the
fuel consumption rate of the engine; 𝑃fc𝑌 𝑖, when the engine
charges power batteries, is the engine power of the 𝑖 control
period; 𝑏

𝑌 𝑖
, when the engine charges power batteries, is the

fuel consumption rate of the engine.
Let 𝑏chg be the average fuel consumption rate when the

engine charges power batteries:

𝑏chg =
𝑛

∑

𝑖=1

𝑃fc𝑌 𝑖𝑏𝑌 𝑖 − 𝑃fc𝑁 𝑖𝑏𝑁 𝑖
𝑃mc chg 𝑖

. (3)

Merge (3) and (2):

𝑏mc eq =
𝑏chg

𝜂mc
2
𝜂dischg𝜂chg

. (4)

When the motor drives the vehicle after a period of Δ𝑡,
equivalent instantaneous fuel consumption of the motor is

𝑚mc eq =
𝑏chg𝑃mc

𝜂mc
2
𝜂dischg𝜂chg

. (5)

2.1.2. Calculate the Fuel Consumption of Batteries Charging.
When the power battery is charged by the engine, its SOC
value will rise and even exceed the target of the SOC value. In
order to maintain SOC values, power battery energy will be
consumed in future [18]. Discharging time is divided into 𝑛
control cycles, and the motor power of the each control cycle
is 𝑃mc2 𝑖 (𝑖 = 1, 2, 3 . . . , 𝑛) [17].

In a certain period of discharging time, the relationship
betweenmotor power (𝑃mc2 𝑖) with driving vehicle andmotor
power (𝑃mc chg 2) with charging power batteries is

𝑛

∑

𝑖=1

𝑃mc2 𝑖 = 𝑃mc chg2𝜂mc2
2
𝜂chg2𝜂dischg2, (6)

where 𝑃mc chg2 is the motor power when the power battery
is charged; 𝜂mc2 is the average efficiency of motor; 𝜂chg2 is the
average efficiency of the power battery charging; 𝜂dischg2 is the
average efficiency of the power battery discharging.

When the motor drives the vehicle, the relationship
between the motor power battery energy consumption and
the fuel consumption rate is

𝑏mc eq2 =
𝑃fc𝑌2𝑏𝑌2 − 𝑃fc𝑁2𝑏𝑁2

𝑃mc chg2𝜂mc2
2
𝜂chg2𝜂dischg2

, (7)

where𝑃fc𝑌2, when the engine charges the power battery, is the
power of the engine; 𝑏

𝑌2
, when the engine charges the power

battery, is the fuel consumption rate of the engine;𝑃fc𝑁2, when
the engine does not charge the power battery, is the power of
the engine; 𝑏

𝑁2
, when the engine does not charge the power

battery, is the fuel consumption rate of the engine.
Let 𝑏chg2 be the fuel consumption rate when the engine

charges the power battery:

𝑏chg2 =
𝑃fc𝑌2𝑏𝑌2 − 𝑃fc𝑁2𝑏𝑁2

𝑃mc chg2
. (8)

Simplify the (8) formula:

𝑏mc eq2 =
𝑏chg2

𝜂mc2
2
𝜂dischg2𝜂chg2

. (9)

When the motor charges power batteries after a period
of Δ𝑡, the objective function of equivalent instantaneous fuel
consumption of the motor is

𝑚mc eq2 =
𝑏chg2𝑃mc chg2

𝜂mc2
2
𝜂dischg2𝜂chg2

. (10)

2.1.3. Deduce the Objective Function of the Instantaneous
Optimal Control Strategy. Set two new variables:

𝑓eq dischg =
𝑏chg

𝜂mc
2
𝜂dischg𝜂chg

, 𝑓eq chg =
𝑏chg2

𝜂mc2
2
𝜂dischg2𝜂chg2

,

(11)

where 𝑏chg2 is the fuel consumption rate when the engine
charges power batteries at the present moment; 𝑏chg is the
average fuel consumption rate when the engine charges
power batteries in the future time.

The instantaneous control objective function of the lowest
fuel consumption is

𝑀 = ∑Min {𝑚fc [𝑇fc (𝑡) , 𝜔 (𝑡)] Δ𝑡

+𝑚mc eq [𝑇mc (𝑡) , 𝜔mc (𝑡)] Δ𝑡} ,
(12)
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where 𝜔fc(𝑡) is engine speed; 𝜔mc(𝑡) is motor speed; 𝑇fc is
output torque of the engine;𝑇mc is output torque of themotor.
Consider

𝑚mc eq [𝑃mc (𝑡)]

=

{

{

{

𝑓eq dischg𝑃mc 𝑇mc > 0 (power batteries discharge)

𝑓eq chg𝑃mc chg2 𝑇mc < 0 (power batteries charge) .
(13)

𝑃mc and 𝑃mc chg2 are both motor power, so they can be
unified as 𝑃mc. By calculating, the improved instantaneous
control objective function of theminimum fuel consumption
is

𝑀 = ∑Min {𝑚fc [𝑃fc (𝑡)] Δ𝑡

+ [𝜆𝑓eq dischg + (1 − 𝜆) 𝑓eq chg] 𝑃mcΔ𝑡} ,

(14)

where 𝜆 = (1 + sign(𝑇mc))/2.

2.1.4. Improve the Objective Function of the Instantaneous
Optimal Control Strategy. SOC value change of batteries and
braking energy recovery both have a certain effect on energy
control. The optimal function of the working point needs to
be improved.

(1) Revise the SOC Value Function of Power Batteries. When
power batteries work, their SOC value is maintained at
the high efficient range by the reset function, in order
to reduce the loss energy in the process of charging and
discharging power batteries and make hybrid system keep
better performances. The working principle of SOC reset
function is as follows. When the SOC value is more than
the target region, the hybrid power system will give priority
to consuming power battery energy. It does not stop until
SOC value decreases to the target region under the effect
of the reset function. When the battery SOC value is lower
than the target region, the hybrid system will give priority to
consuming fuel energy to drive the vehicle and recover the
value of SOC. It does not stop until SOC value returns to the
target region under the effect of the reset function.

Set 𝐾SOC be the variable in the reset function, and the
value table between𝐾SOC and SOC value is shown in Table 1.

Based on the Matlab platform and Table 1 data, the fitting
curve between 𝐾SOC and SOC value is constructed by using
fitting curve toolbox, as shown in Figure 3.

Polynomial function of the fitting curve is

𝐾soc = −8866𝑥
7
+ 33460𝑥

6
− 52310𝑥

5
+ 43730𝑥

4

− 21010𝑥
3
+ 5766𝑥

2
− 833.5𝑥 + 49.77,

(15)

where 𝑥: is SOC value.

Table 1: The value table between 𝐾soc and SOC.

SOC 0.11 0.14 0.2 0.25 0.3 0.35
𝐾soc 7 2 1.05 1.05 1.03 1.04
SOC 0.4 0.45 0.5 0.55 0.59 0.64
𝐾soc 1.02 1.02 1 0.99 0.98 0.96
SOC 0.7 0.74 0.81 0.85 0.9
𝐾soc 0.96 0.94 0. 94 0.8 0.2
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Figure 3: SOC and 𝐾SOC relationship curve.

Considering the influence of power battery SOC, the
formula of instantaneous equivalent fuel consumption of
HEV can be expressed as 𝐾soc𝑚mc eq.

(2) Revise the Objective Function of Braking Recovery Energy.
The adopted method which revises the equivalent fuel con-
sumption function of power battery energy is as follows: the
average braking power is calculated at a period of time before
the currentmoment.The power is used as the standard of fuel
consumption correction of the braking recovery power in the
next moment [19–22].

The statistical time range is divided into 𝑛 (𝑛 > 0) cycles.
In each cycle, let braking power be a fixed value. Therefore,
the average braking power of the whole time can be expressed
as

𝑃braking =
∑
𝑛

𝑖=1
𝑃braking 𝑖

𝑛

. (16)

When power batteries discharge, the objective function of
instantaneous equivalent fuel consumption is

𝑚mc eq =
𝑏chg (𝑃mc + 𝑃braking)

𝜂mc
2
𝜂dischg𝜂chg

. (17)

In summary, taking the influence of power battery SOC
and brake energy recovery into consideration, the final
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objective function of instantaneous optimal control strategy
is

𝑀 = ∑Min {𝑚fc [𝑃fc (𝑡)] Δ𝑡

+𝐾soc𝑚mc eq [𝑃mc (𝑡) + 𝑃braking (𝑡)] Δ𝑡} .
(18)

2.2. Elman Neural Network Control Strategy

2.2.1. The Structure of Elman Neural Network. Elman neural
network is put forward by Jeffrey L. Elman in 1990 and is a
typical local recessionary grid, as shown in Figure 4 [23].

𝑃 is the input of the neural network and its size is 𝑅 × 1;
𝑏
1 is the neuronal threshold vector of the feedback layer and
its size is 𝑆1 × 1; 𝐼𝑊1 is the connective weight vector of the
neurons and the input vector in the input layer and its size is
𝑆
1
× 𝑅; 𝑛1 is the middle operational result of the neurons in

the feedback layer, namely, weighted sum of the connective
weight vector and the threshold vector, and its size is 𝑆1 × 1;
𝑎
1 is the output vector of the feedback layer’s neuron in the
𝐾 iteration and its size is 𝑆1 × 1; 𝐷 is feedback node. It is the
same way that 𝑏2, 𝐿𝑊2, 𝑛2, and 𝑎2 are related to parameters
of the output layer.

The inputs of structure diagram of Elman neural network
is the required torque, speed, and SOC value of power battery

and its output is motor torque. The structure diagram of
Elman neural network is shown in Figure 5 [24].

The structure diagram of Elman neural network contains
input layer, hidden layer, undertaken layer, and output layer.
Let the input vector of the input layer be three-dimensional
vector 𝑢; the output vector of the output layer is one-
dimensional vector 𝑦; the output vector of the hidden layer is
𝑛-dimensional vector 𝑥; the output vector of the undertaken
layer is 𝑛-dimensional vector 𝑟; 𝑤1, 𝑤2, and𝑤3 are respective
connective weights of the hidden layer to the output layer, the
input layer to the hidden layer, and the undertaken layer to
the hidden layer; 𝑔(⋅) is the driving function of the output
neurons;𝑓(⋅) is the driving function of hidden layer;ℎ(⋅) is the
driving function of undertaken layer; net(⋅) is the net input
driving function of a certain layer;𝐴 shows the input layer; 𝐵
shows the undertaken layer;𝐾 shows the iterative sequence.

Define two functions:

V
𝑖 (
𝑘) =

{

{

{

𝑢
𝑛 (
𝑘) , if 𝑖 ∈ 𝐴,

𝑟
𝑛 (
𝑘) , if 𝑖 ∈ 𝐵,

𝑤
𝑖
(𝑘) =

{

{

{

𝑤
2
, if 𝑖 ∈ 𝐴,

𝑤
3
, if 𝑖 ∈ 𝐵.

(19)
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The input and output functions of the 𝑁 neuron of the
hidden layer are

net
𝑛 (
𝑘 + 1) = ∑

𝑖∈𝐴∪𝐵

𝑤
𝑖
(𝑘) V𝑖 (𝑘) ,

𝑥
𝑛 (
𝑛 + 1) = 𝑓 (net𝑛 (𝑘 + 1)) .

(20)

The input and output functions of the 𝑁 neuron of the
hidden layer are

net
𝑛 (
𝑘) = ∑

𝑖∈𝐴∪𝐵

𝑤
𝑖
(𝑘 − 1) V𝑖 (𝑘 − 1) ,

𝑟 (𝑘) = ℎ (net𝑛 (𝑘)) .
(21)

The input and output functions of the output layer’s
neuron are

net
𝑛 (
𝑘 + 1) = ∑

𝑖∈𝐴∪𝐵

𝑤
𝑖
(𝑘 + 1) 𝑥𝑛 (

𝑘 + 1) ,

𝑦 (𝑘 + 1) = 𝑔 (net (𝑘 + 1)) .
(22)

2.2.2. Select the Parameters of Elman Neural Network. The
neuron number is determined by following formula [25]:

𝑘 = √𝑚 + 𝑛 + 𝛽, (23)

where 𝑚 is the number of the input vector; 𝑛 is the neuron
number of the output vector; 𝛽 is a constant, (1∼10).

The excitation function of Elman neural network of the
feedback layer selects the Tansig function [26]:

tansig (𝑥) = 2

1 + 𝑒
−2𝑥

− 1. (24)

2.2.3. Learning and Training Mechanism of Elman Neural
Network. Elman neural network is trained by Levenberg-
Marquardt algorithm.The error index function of Levenberg-
Marquardt arithmetic is

𝐸 (𝑤) =

1

2

𝑝

∑

𝑖=1

󵄩
󵄩
󵄩
󵄩
󵄩
𝑦
𝑖
− 𝑦
󸀠

𝑖

󵄩
󵄩
󵄩
󵄩
󵄩

2

=

1

2

𝑝

∑

𝑖=1

𝑒
2

𝑖
(𝑤) , (25)

where 𝑝 is the sample number; 𝑒𝑖 is the systemic error; 𝑦󸀠
𝑖
is

the actual output of the network.
The formula of the adjusting weight is

𝑤
𝑘+1

= 𝑤
𝑘
+ Δ𝑤. (26)

The computing formula of the increment weight is

Δ𝑤 = [𝐽
𝑇
(𝑤) 𝐽 (𝑤) + 𝑢𝐼]

−1

𝐽
𝑇
(𝑤) 𝑒 (𝑤) , (27)

where 𝑢 is learning rate; 𝐼 is the unit matrix; 𝐽(𝑤) is the
Jacobian matrix. Consider

𝐽 (𝑤) =

[

[

[

[

[

[

[

[

[

[

[

[

𝜕𝑒
1 (
𝑤)

𝜕𝑤
1

𝜕𝑒
1 (
𝑤)

𝜕𝑤
2

⋅ ⋅ ⋅

𝜕𝑒
1 (
𝑤)

𝜕𝑤
𝑛

𝜕𝑒
2 (
𝑤)

𝜕𝑤
1

𝜕𝑒
2 (
𝑤)

𝜕𝑤
1

⋅ ⋅ ⋅

𝜕𝑒
2 (
𝑤)

𝜕𝑤
𝑛

...
... d

...
𝜕𝑒
𝑛 (
𝑤)

𝜕𝑤
1

𝜕𝑒
𝑛 (
𝑤)

𝜕𝑤
2

⋅ ⋅ ⋅

𝜕𝑒
𝑛 (
𝑤)

𝜕𝑤
𝑛

]

]

]

]

]

]

]

]

]

]

]

]

. (28)

Neural network weight is adjusted by the Levenberg-
Marquardt algorithm, and the adjusting process is shown in
Figure 6.

3. Modeling of Energy Control Strategy

3.1. Modeling of Instantaneous Optimal Control Strategy. On
the platform of Matlab/simulink, the instantaneous control
model is established and mainly includes two parts: the
calculation model of average braking energy of recovered
power and the calculative model of optimal working point
[25, 26].

First, the calculation model of average braking energy of
the recovery power is established as shown in Figure 7. Inputs
of themodel are the required torque and rotational speed and
its output is the calculated average recovery power of braking
energy in the transmission system.

Second, the calculation model of the revised SOC value
of power battery is established, as shown in Figure 8. The
model can maintain the SOC value of power batteries at a
high efficient range.

Third, the calculation model of the optimal operating
point is established, as shown in Figure 9. Inputs of the
model are the required torque, rotational speed, modified
𝑆target-motor value of power batteries, and the average braking
recovery power and the output torque of the motor is the
optimal allocation power between the engine and motor in
the transmission system.

Finally, the whole simulation diagram of the instanta-
neous control strategy is established, as shown in Figure 10.

3.2. The Elman Neural Network Model. Elman neural net-
work is gradually learning to do something by imitating
human brain. Its essence is to improve the learned knowledge
and the neurons weight [27–30]. The flow diagram of the
trained Elman neural network is shown in Figure 11.

4. Simulation Results and Analysis

The basic vehicle parameters are shown in Table 2.
Traffic parameters of simulation experiments are de-

scribed in Table 3.
The original control model is replaced by the instanta-

neous optimal control model in ADVISOR 2002. Then the
trained Elman neural network controller is imported to the
software [31, 32].

Simulation results are shown in Figure 13. HWFET mdf
and NEDC mdf show simulation results of the instantaneous
optimal control strategy of the PHEV model (Figure 12);
HWFET net and NEDC net show simulation results of the
Elman neural network controller of the PHEV model.

Compared with the instantaneous optimal control strat-
egy, the Elman neural network strategy can slow down the
decline of SOCvalue andmaintain SOCvalue at high efficient
range on theNEDCworking condition in Figure 13(a).Mean-
while, the Elman neural network strategy has approximate
SOC value change compared with the instantaneous optimal
control strategy on the HWFET working in Figure 13(b).
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Figure 6: Process map of the adjusting network weight.

Table 2: Parallel hybrid electric vehicle parameters.

Vehicle
Curb weight 1605 kg
Face area 2.65m2

Wheel base 2.775m
Height of the center of mass 0.5m
Front axle load distribution ratio 0.51
Coefficient drag 0.32

Engine
Peak power 118 kW
Displacement 2.5 L

Power battery pack
Voltage 244.8/650V
Style NI-MH
Volume 6.5 Ah
Mold number 34

Motor
Peak power 105 kW
Style PMSM

As shown in Figure 13(a), Elman neural network strat-
egy can make the engine produce more torque than the
instantaneous optimal control strategy at the beginning of
600 s on the NEDC working condition. It can make the
vehicle start, accelerate, and climb better. After the vehicle
starts, the two control strategies play the same role on the

Table 3: Traffic parameters of simulation experiments.

Parameter NEDC HWFET
Idle time (s) 298 6
Top speed (km/h) 10.93 16.51
Cycle time (s) 1184 765
Average speed (km/h) 33.21 77.58
Maximum acceleration (m/s2) 1.06 1.43
Maximum deceleration (m/s2) −1.39 −1.48
Park time (time) 13 1
Traveling distance (km) 120 96.4

vehicle energy control. As seen in Figure 13(b), Elman neural
network strategy can make the engine produce slightly more
torque than instantaneous optimal control strategy on the
HWFET working condition, while these two strategies have
similar effect on the engine torque control.

As seen in Figure 15, Elman neural network strategy
can make motor produce slightly more torque than the
instantaneous optimal control strategy at some moments on
the NEDC and HWFET working condition, while the two
strategies have the similar effect on the motor torque control.

As shown in Table 4, compared with the instantaneous
optimal neural strategy, fuel consumption of Elman neural
network strategy only increases about 0.5 (L/100 km) on
the NEDC and HWFEF working condition, which implies
that Elman neural network controller can also have the
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Figure 7: Flow diagram of average recovery power of braking
energy.
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Figure 8: Flow diagram of the revised SOC value of power batteries.

Table 4: Fuel consumption of 100 km (L/100 km).

Strategy Road
NEDC HWFEF

Instantaneous optimal control 9.4 6.5
Elman neural network 9.8 7

advantage of low fuel consumption.The slight increase in fuel
consumption can be accepted since it has a little effect on
the fuel economy of the whole vehicle. As seen in Table 5,
Elman neural network strategy makes the simulation time
decreased greatly compared with the instantaneous optimal
neural strategy and improves the response time of the vehicle
greatly.

SOCtarget-modified

Required rotational torque
and speed in the drive system

Check the engine and
motor map

Gain the engine
and motor power

Average recovery
power of braking energy

Optimal point of
calculation function

Optimal power
allocation

Figure 9: Flow diagram of the optimal operating point.

Vehicle information

Required rotational
torque and speed

Required rotational
torque and speed

Power batteries
SOCFlow

information
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model of

braking energy

Correct SOC reset

Correct SOC 

model

Calculative model
of the optimal

operating pointCorrect recovery
power of braking

energy
Optimal power

allocation scheme

Automobile power
system

condition

reset

Figure 10: Total simulation diagram of the instantaneous control
strategy.

Table 5: Simulation time (s).

Strategy Road
NEDC HWFEF

Instantaneous optimal control 471.3 315.8
Elman neural network 15.6 10.2

In conclusion, as seen in Figures 13, 14, and 15, Elmanneu-
ral network strategy can replace the instantaneous optimal
control strategy to maintain SOC value at the high efficient
range and achieve a reasonable distribution of the torque
between the engine and the motor. The significance of the
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Figure 11: The training flow diagram of the trained Elman neural network.
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Figure 12: Simulation model of the parallel hybrid electric vehicle.
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Figure 14: Contrast engine torque.
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Figure 15: Contrast the motor torque.

paper is that the simulation time of energy control is reduced
by 96%.

5. Conclusion

Through the research on the instantaneous optimal strategy
and Elman neural network control strategy, we deduce the
objective functions of instantaneous optimal control and
establish the instantaneous control model and design the
Elman controller. Based on theADVISOR 2002 platform, two
control strategies were simulated on a hybrid electric vehicle.

It is seen from the simulation results that the trained
Elman neural network strategy shows similar control abil-
ity on the vehicle energy distribution compared with the
instantaneous optimal control strategy, which ensures good
performances of power and fuel economyofHEV, reduces the
control reaction time greatly, and overcomes the disadvantage
of poor real-time performance of the instantaneous optimal

control strategy.The research significance of the paper is that
the simulation time of energy control is reduced by 96%.

Future works are listed as below.

(1) Simulation and experiment should be improved by
addingmore design parameters, such as vehicle emis-
sion.

(2) It is necessary to do lots of experiments to enrich
simulation results.

(3) Actual road condition is more complex than the
simulation road condition, so control strategies need
to be tested in the actual road conditions.
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