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Using Bregman functions, we introduce the new concept of Bregman generalized f -projection operator Proj𝑓,𝑔𝐶 : 𝐸
∗

→ 𝐶, where
E is a reflexive Banach space with dual space 𝐸

∗
; 𝑓 : 𝐸 → R ∪ {+∞} is a proper, convex, lower semicontinuous and bounded from

below function; 𝑔 : 𝐸 → R is a strictly convex and Gâteaux differentiable function; andC is a nonempty, closed, and convex subset
of E. The existence of a solution for a class of variational inequalities in Banach spaces is presented.

1. Introduction

Many nonlinear problems in functional analysis can be
reduced to the search of fixed points of nonlinear operators.
See, for example, [1–14] and the references therein. Let 𝐸 be a
(real) Banach space with norm ‖⋅‖ and dual space𝐸∗. For any
𝑥 in 𝐸, we denote the value of 𝑥∗ in 𝐸

∗ at 𝑥 by ⟨𝑥, 𝑥
∗
⟩. When

{𝑥𝑛}𝑛∈N is a sequence in 𝐸, we denote the strong convergence
of {𝑥𝑛}𝑛∈N to 𝑥 ∈ 𝐸 by 𝑥𝑛 → 𝑥 and the weak convergence by
𝑥𝑛 ⇀ 𝑥. Let 𝐶 be a nonempty subset of 𝐸 and 𝑇 : 𝐶 → 𝐸 be
a mapping. We denote by 𝐹(𝑇) = {𝑥 ∈ 𝐶 : 𝑇𝑥 = 𝑥} the set
of fixed points of 𝑇. Let 𝐶 be a nonempty, closed, and convex
subset of a smooth Banach space 𝐸; let 𝑇 be a mapping from
𝐶 into itself. A point 𝑝 ∈ 𝐶 is said to be an asymptotic fixed
point [15] of 𝑇 if there exists a sequence {𝑥𝑛}𝑛∈N in 𝐶 which
converges weakly to𝑝 and lim𝑛→∞‖𝑥𝑛−𝑇𝑥𝑛‖ = 0.We denote
the set of all asymptotic fixed points of 𝑇 by ̂

𝐹(𝑇). A point
𝑝 ∈ 𝐶 is called a strong asymptotic fixed point of 𝑇 if there
exists a sequence {𝑥𝑛}𝑛∈N in 𝐶 which converges strongly to 𝑝

and lim𝑛→∞‖𝑥𝑛 − 𝑇𝑥𝑛‖ = 0. We denote the set of all strong
asymptotic fixed points of 𝑇 by ̃

𝐹(𝑇).
We recall the definition of Bregman distances. Let 𝑔 :

𝐸 → R be a strictly convex and Gâteaux differentiable
function on a Banach space 𝐸. The Bregman distance [16]

(see also [17, 18]) corresponding to 𝑔 is the function 𝐷𝑔 :

𝐸 × 𝐸 → R defined by

𝐷𝑔 (𝑥, 𝑦) = 𝑔 (𝑥) − 𝑔 (𝑦) − ⟨𝑥 − 𝑦, ∇𝑔 (𝑦)⟩ , ∀𝑥, 𝑦 ∈ 𝐸.

(1)

It follows from the strict convexity of 𝑔 that 𝐷𝑔(𝑥, 𝑦) ≥ 0 for
all 𝑥, 𝑦 in 𝐸. However, 𝐷𝑔 might not be symmetric and 𝐷𝑔

might not satisfy the triangular inequality.
When 𝐸 is a smooth Banach space, setting 𝑔(𝑥) = ‖𝑥‖

2

for all 𝑥 in 𝐸, we have that ∇𝑔(𝑥) = 2𝐽𝑥 for all 𝑥 in 𝐸. Here
𝐽 is the normalized duality mapping from 𝐸 into 𝐸

∗. Hence,
𝐷𝑔(⋅, ⋅) reduces to the usual map 𝜙(⋅, ⋅) as

𝐷𝑔 (𝑥, 𝑦) = 𝜙 (𝑥, 𝑦) := ‖𝑥‖
2
− 2 ⟨𝑥, 𝐽𝑦⟩ +

󵄩
󵄩
󵄩
󵄩
𝑦
󵄩
󵄩
󵄩
󵄩

2
, ∀𝑥, 𝑦 ∈ 𝐸.

(2)

If 𝐸 is a Hilbert space, then 𝐷𝑔(𝑥, 𝑦) = ‖𝑥 − 𝑦‖
2.

Let 𝑔 : 𝐸 → R be strictly convex and Gâteaux
differentiable and 𝐶 ⊆ 𝐸 be nonempty. A mapping 𝑇 : 𝐶 →

𝐸 is said to be

(i) Bregman nonexpansive if

𝐷𝑔 (𝑇𝑥, 𝑇𝑦) ≤ 𝐷𝑔 (𝑥, 𝑦) , ∀𝑥, 𝑦 ∈ 𝐶. (3)
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(ii) Bregman quasi-nonexpansive if 𝐹(𝑇) ̸= 0 and

𝐷𝑔 (𝑝, 𝑇𝑥) ≤ 𝐷𝑔 (𝑝, 𝑥) , ∀𝑥 ∈ 𝐶, ∀𝑝 ∈ 𝐹 (𝑇) . (4)

(iii) Bregman relatively nonexpansive if the following con-
ditions are satisfied:

(1) 𝐹(𝑇) is nonempty;
(2) 𝐷𝑔(𝑝, 𝑇V) ≤ 𝐷𝑔(𝑝, V), ∀𝑝 ∈ 𝐹(𝑇), V ∈ 𝐶;
(3) ̂

𝐹(𝑇) = 𝐹(𝑇);

(iv) Bregman weak relatively nonexpansive if the following
conditions are satisfied:

(1) 𝐹(𝑇) is nonempty;
(2) 𝐷𝑔(𝑝, 𝑇V) ≤ 𝐷𝑔(𝑝, V), ∀𝑝 ∈ 𝐹(𝑇), V ∈ 𝐶;
(3) ̃

𝐹(𝑇) = 𝐹(𝑇).

It is clear that any Bregman relatively nonexpansive
mapping is a Bregman quasi-nonexpansivemapping. It is also
obvious that every Bregman relatively nonexpansivemapping
is a Bregman weak relatively nonexpansive mapping, but the
converse is not true in general; see, for example, [19]. Indeed,
for any mapping 𝑇 : 𝐶 → 𝐶 we have 𝐹(𝑇) ⊂

̃
𝐹(𝑇) ⊂

̂
𝐹(𝑇).

If 𝑇 is Bregman relatively nonexpansive, then 𝐹(𝑇) =
̃
𝐹(𝑇) =

̂
𝐹(𝑇).

Let 𝐸 be a reflexive Banach space, let 𝑓 : 𝐸 → R ∪ {+∞}

be a proper, convex, lower semicontinuous function, let 𝑔 :

𝐸 → R be strictly convex and Gâteaux differentiable, and let
𝐶 ⊆ 𝐸 be nonempty. We define a functional 𝐻 : 𝐸 × 𝐸

∗
→

R ∪ {+∞} by

𝐻(𝑥, 𝑥
∗
) = 𝑔 (𝑥) − ⟨𝑥, 𝑥

∗
⟩ + 𝑔
∗
(𝑥
∗
) + 𝑓 (𝑥) ,

𝑥 ∈ 𝐸, 𝑥
∗
∈ 𝐸
∗
.

(5)

It could easily be seen that𝐻 satisfies the following properties:

(1) 𝐻(𝑥, 𝑥
∗
) is convex and continuous with respect to 𝑥

∗

when 𝑥 is fixed;
(2) 𝐻(𝑥, 𝑥

∗
) is convex and lower semicontinuous with

respect to 𝑥 when 𝑥
∗ is fixed.

Definition 1. Let 𝐸 be a Banach space with dual space 𝐸
∗,

let 𝑓 : 𝐸 → R ∪ {+∞} be a proper, convex, lower
semicontinuous function, let 𝑔 : 𝐸 → R be strictly convex
and Gâteaux differentiable, and let 𝐶 be a nonempty, closed
subset of 𝐸. We say that Proj𝑓,𝑔𝐶 : 𝐸

∗
→ 2
𝐶 is a Bregman

generalized 𝑓-projection operator if

Proj𝑓,𝑔𝐶 = {𝑧 ∈ 𝐶 : 𝐻 (𝑧, 𝑥
∗
) = inf
𝑦∈𝐶

𝐻(𝑦, 𝑥
∗
)} , ∀𝑥

∗
∈ 𝐸
∗
.

(6)

In this paper, using Bregman functions, we introduce the
new concept of Bregman generalized 𝑓-projection operator
Proj𝑓,𝑔𝐶 : 𝐸

∗
→ 𝐶, where 𝐸 is a reflexive Banach space with

dual space 𝐸
∗, 𝑓 : 𝐸 → R ∪ {+∞} is a proper, convex, lower

semicontinuous, and bounded from below function, 𝑔 : 𝐸 →

R is a strictly convex andGâteaux differentiable function, and
𝐶 is a nonempty, closed, and convex subset of𝐸.The existence
of a solution for a class of variational inequalities in Banach
spaces is presented. Our results improve and generalize some
known results in the current literature; see, for example, [20,
21].

2. Properties of Bregman Functions and
Bregman Distances

Let 𝐸 be a (real) Banach space, and let 𝑔 : 𝐸 → R. For any 𝑥

in 𝐸, the gradient ∇𝑔(𝑥) is defined to be the linear functional
in 𝐸
∗ such that

⟨𝑦, ∇𝑔 (𝑥)⟩ = lim
𝑡→0

𝑔 (𝑥 + 𝑡𝑦) − 𝑔 (𝑥)

𝑡

, ∀𝑦 ∈ 𝐸. (7)

The function 𝑔 is said to be Gâteaux differentiable at 𝑥 if
∇𝑔(𝑥) is well defined, and 𝑔 is Gâteaux differentiable if it is
Gâteaux differentiable everywhere on 𝐸. We call 𝑔 Fréchet
differentiable at 𝑥 (see, for example, [22, page 13] or [23, page
508]) if, for all 𝜖 > 0, there exists 𝛿 > 0 such that

󵄨
󵄨
󵄨
󵄨
𝑔 (𝑦) − 𝑔 (𝑥) − ⟨𝑦 − 𝑥, ∇𝑔 (𝑥)⟩

󵄨
󵄨
󵄨
󵄨

≤ 𝜖
󵄩
󵄩
󵄩
󵄩
𝑦 − 𝑥

󵄩
󵄩
󵄩
󵄩

whenever 󵄩
󵄩
󵄩
󵄩
𝑦 − 𝑥

󵄩
󵄩
󵄩
󵄩
≤ 𝛿.

(8)

The function𝑔 is said to be Fréchet differentiable if it is Fréchet
differentiable everywhere.

For any 𝑟 > 0, let 𝐵𝑟 := {𝑧 ∈ 𝐸 : ‖𝑧‖ ≤ 𝑟}. A function
𝑔 : 𝐸 → R is said to be

(i) strongly coercive if

lim
‖𝑥
𝑛
‖→+∞

𝑔 (𝑥𝑛)

󵄩
󵄩
󵄩
󵄩
𝑥𝑛

󵄩
󵄩
󵄩
󵄩

= +∞; (9)

(ii) locally bounded if 𝑔(𝐵𝑟) is bounded for all 𝑟 > 0;

(iii) locally uniformly smooth on 𝐸 ([24, pages 207, 221]) if
the function 𝜎𝑟 : [0, +∞) → [0, +∞], defined by

𝜎𝑟 (𝑡) = sup
𝑥∈𝐵
𝑟
, 𝑦∈𝑆
𝐸
, 𝛼∈(0,1)

( (𝛼𝑔 (𝑥 + (1 − 𝛼) 𝑡𝑦)

+ (1 − 𝛼) 𝑔 (𝑥 − 𝛼𝑡𝑦) − 𝑔 (𝑥))

× (𝛼 (1 − 𝛼))
−1
) ,

(10)

satisfies

lim
𝑡↓0

𝜎𝑟 (𝑡)

𝑡

= 0, ∀𝑟 > 0; (11)

(iv) locally uniformly convex on 𝐸 (or uniformly convex
on bounded subsets of 𝐸 ([24, pages 203, 221])) if the
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gauge 𝜌𝑟 : [0, +∞) → [0, +∞] of uniform convexity
of 𝑔, defined by

𝜌𝑟 (𝑡) = inf
𝑥,𝑦∈𝐵

𝑟
, ‖𝑥−𝑦‖=𝑡, 𝛼∈(0,1)

( (𝛼𝑔 (𝑥) + (1 − 𝛼) 𝑔 (𝑦)

− 𝑔 (𝛼𝑥 + (1 − 𝛼) 𝑦))

× (𝛼 (1 − 𝛼))
−1
) ,

(12)

satisfies

𝜌𝑟 (𝑡) > 0, ∀𝑟, 𝑡 > 0. (13)

For a locally uniformly convex map 𝑔 : 𝐸 → R, we have

𝑔 (𝛼𝑥 + (1 − 𝛼) 𝑦) ≤ 𝛼𝑔 (𝑥) + (1 − 𝛼) 𝑔 (𝑦)

− 𝛼 (1 − 𝛼) 𝜌𝑟 (
󵄩
󵄩
󵄩
󵄩
𝑥 − 𝑦

󵄩
󵄩
󵄩
󵄩
) ,

(14)

for all 𝑥, 𝑦 in 𝐵𝑟 and for all 𝛼 in (0, 1).
Let 𝐸 be a Banach space and 𝑔 : 𝐸 → R a strictly convex

and Gâteaux differentiable function. By (1), the Bregman
distance satisfies [16]

𝐷𝑔 (𝑥, 𝑧) = 𝐷𝑔 (𝑥, 𝑦) + 𝐷𝑔 (𝑦, 𝑧)

+ ⟨𝑥 − 𝑦, ∇𝑔 (𝑦) − ∇𝑔 (𝑧)⟩ , ∀ 𝑥, 𝑦, 𝑧 ∈ 𝐸.

(15)

In particular,

𝐷𝑔 (𝑥, 𝑦) = − 𝐷𝑔 (𝑦, 𝑥) + ⟨𝑦 − 𝑥, ∇𝑔 (𝑦) − ∇𝑔 (𝑥)⟩ ,

∀𝑥, 𝑦 ∈ 𝐸.

(16)

We call a function 𝑔 : 𝐸 → (−∞, +∞] lower
semicontinuous if {𝑥 ∈ 𝐸 : 𝑔(𝑥) ≤ 𝑟} is closed for all 𝑟 in
R. For a lower semicontinuous convex function 𝑔 : 𝐸 → R,
the subdifferential 𝜕𝑔 of 𝑔 is defined by

𝜕𝑔 (𝑥) = {𝑥
∗
∈ 𝐸
∗
: 𝑔 (𝑥) + ⟨𝑦 − 𝑥, 𝑥

∗
⟩ ≤ 𝑔 (𝑦) , ∀𝑦 ∈ 𝐸}

(17)

for all 𝑥 in 𝐸. It is well known that 𝜕𝑔 ⊂ 𝐸 × 𝐸
∗ is maximal

monotone [25, 26]. For any lower semicontinuous convex
function 𝑔 : 𝐸 → (−∞, +∞], the conjugate function 𝑔

∗ of 𝑔
is defined by

𝑔
∗
(𝑥
∗
) = sup
𝑥∈𝐸

{⟨𝑥, 𝑥
∗
⟩ − 𝑔 (𝑥)} , ∀𝑥

∗
∈ 𝐸
∗
. (18)

It is well known that

𝑔 (𝑥) + 𝑔
∗
(𝑥
∗
) ≥ ⟨𝑥, 𝑥

∗
⟩ , ∀ (𝑥, 𝑥

∗
) ∈ 𝐸 × 𝐸

∗
, (19)

(𝑥, 𝑥
∗
) ∈ 𝜕𝑔 is equivalent to 𝑔 (𝑥) + 𝑔

∗
(𝑥
∗
) = ⟨𝑥, 𝑥

∗
⟩ .

(20)

We also know that if 𝑔 : 𝐸 → (−∞, +∞] is a proper
lower semicontinuous convex function, then 𝑔

∗
: 𝐸
∗

→

(−∞, +∞] is a proper weak∗ lower semicontinuous convex
function. Here, saying 𝑔 is proper we mean that dom 𝑔 :=

{𝑥 ∈ 𝐸 : 𝑔(𝑥) < +∞} ̸= 0.
The following definition is slightly different from that in

Butnariu and Iusem [22].

Definition 2 (see [23]). Let 𝐸 be a Banach space. A function
𝑔 : 𝐸 → R is said to be a Bregman function if the following
conditions are satisfied:

(1) 𝑔 is continuous, strictly convex, and Gâteaux differ-
entiable;

(2) the set {𝑦 ∈ 𝐸 : 𝐷𝑔(𝑥, 𝑦) ≤ 𝑟} is bounded for all 𝑥 in
𝐸 and 𝑟 > 0.

The following lemma follows from Butnariu and Iusem
[22] and Zălinescu [24].

Lemma 3. Let 𝐸 be a reflexive Banach space and 𝑔 : 𝐸 → R

a strongly coercive Bregman function. Then

(1) ∇𝑔 : 𝐸 → 𝐸
∗ is one-to-one, onto, and norm-to-weak∗

continuous;
(2) ⟨𝑥 − 𝑦, ∇𝑔(𝑥) − ∇𝑔(𝑦)⟩ = 0 if and only if 𝑥 = 𝑦;
(3) {𝑥 ∈ 𝐸 : 𝐷𝑔(𝑥, 𝑦) ≤ 𝑟} is bounded for all 𝑦 in 𝐸 and

𝑟 > 0;
(4) 𝑑𝑜𝑚𝑔

∗
= 𝐸
∗
, 𝑔
∗ is Gâteaux differentiable and ∇𝑔

∗
=

(∇𝑔)
−1.

The following two results follow from [24, Proposition
3.6.4].

Proposition 4. Let 𝐸 be a reflexive Banach space and let 𝑔 :

𝐸 → R be a convex function which is locally bounded. The
following assertions are equivalent:

(1) 𝑔 is strongly coercive and locally uniformly convex on
𝐸;

(2) 𝑑𝑜𝑚𝑔
∗

= 𝐸
∗
, 𝑔
∗ is locally bounded and locally

uniformly smooth on 𝐸;
(3) 𝑑𝑜𝑚𝑔

∗
= 𝐸
∗
, 𝑔
∗ is Fréchet differentiable and ∇𝑔

∗

is uniformly norm-to-norm continuous on bounded
subsets of 𝐸∗.

Proposition 5. Let𝐸 be a reflexive Banach space and 𝑔 : 𝐸 →

R a continuous convex function which is strongly coercive. The
following assertions are equivalent:

(1) 𝑔 is locally bounded and locally uniformly smooth on
𝐸;

(2) 𝑔
∗ is Fréchet differentiable and∇𝑔

∗ is uniformly norm-
to-norm continuous on bounded subsets of 𝐸;

(3) 𝑑𝑜𝑚𝑔
∗

= 𝐸
∗
, 𝑔
∗ is strongly coercive and locally

uniformly convex on 𝐸.

Let 𝐸 be a Banach space and let 𝐶 be a nonempty convex
subset of 𝐸. Let 𝑔 : 𝐸 → R be a strictly convex and Gâteaux
differentiable function.Then, we know from [27] that for 𝑥 in
𝐸 and 𝑥0 in 𝐶, we have

𝐷𝑔 (𝑥0, 𝑥) = min
𝑦∈𝐶

𝐷𝑔 (𝑦, 𝑥)

iff ⟨𝑦 − 𝑥0, ∇𝑔 (𝑥) − ∇𝑔 (𝑥0)⟩ ≤ 0, ∀𝑦 ∈ 𝐶.

(21)
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Further, if 𝐶 is a nonempty, closed, and convex subset of a
reflexive Banach space 𝐸 and 𝑔 : 𝐸 → R is a strongly
coercive Bregman function, then, for each 𝑥 in 𝐸, there exists
a unique 𝑥0 in 𝐶 such that

𝐷𝑔 (𝑥0, 𝑥) = min
𝑦∈𝐶

𝐷𝑔 (𝑦, 𝑥) . (22)

The Bregman projection proj𝑔𝐶 from 𝐸 onto 𝐶 defined by
proj𝑔𝐶(𝑥) = 𝑥0 has the following property:

𝐷𝑔 (𝑦, proj
𝑔

𝐶𝑥) + 𝐷𝑔 (proj
𝑔

𝐶𝑥, 𝑥) ≤ 𝐷𝑔 (𝑦, 𝑥) ,

∀𝑦 ∈ 𝐶, ∀𝑥 ∈ 𝐸.

(23)

See [22] for details.

Lemma 6 (see [9]). Let 𝐸 be a Banach space and 𝑔 : 𝐸 →

R a Gâteaux differentiable function which is locally uniformly
convex on 𝐸. Let {𝑥𝑛}𝑛∈N and {𝑦𝑛}𝑛∈N be bounded sequences in
𝐸. Then the following assertions are equivalent:

(1) lim𝑛→∞𝐷𝑔(𝑥𝑛, 𝑦𝑛) = 0;
(2) lim𝑛→∞‖𝑥𝑛 − 𝑦𝑛‖ = 0.

Lemma 7 (see [23, 28]). Let 𝐸 be a reflexive Banach space, let
𝑔 : 𝐸 → R be a strongly coercive Bregman function, and let𝑉
be the function defined by

𝑉 (𝑥, 𝑥
∗
) = 𝑔 (𝑥) − ⟨𝑥, 𝑥

∗
⟩ + 𝑔
∗
(𝑥
∗
) , ∀𝑥 ∈ 𝐸, ∀𝑥

∗
∈ 𝐸
∗
.

(24)

The following assertions hold:

(1) 𝐷𝑔(𝑥, ∇𝑔
∗
(𝑥
∗
)) = 𝑉(𝑥, 𝑥

∗
) for all 𝑥 in𝐸 and 𝑥

∗ in𝐸
∗;

(2) 𝑉(𝑥, 𝑥
∗
) + ⟨∇𝑔

∗
(𝑥
∗
) − 𝑥, 𝑦

∗
⟩ ≤ 𝑉(𝑥, 𝑥

∗
+ 𝑦
∗
) for all

𝑥 in 𝐸 and 𝑥
∗
, 𝑦
∗ in 𝐸

∗.

It also follows from the definition that 𝑉 is convex in the
second variable 𝑥

∗, and

𝑉 (𝑥, ∇𝑔 (𝑦)) = 𝐷𝑔 (𝑥, 𝑦) . (25)

Lemma 8 (see [29, Proposition 23.1]). Let 𝐸 be a real Banach
space and let 𝑓 : 𝐸 → R ∪ {+∞} be a lower semicontinuous
convex function. Then there exist 𝑥∗ ∈ 𝐸

∗ and 𝑎 ∈ R such that

𝑓 (𝑥) ≥ 𝑥
∗
(𝑥) + 𝑎, ∀𝑥 ∈ 𝐸. (26)

3. Properties of Bregman 𝑓-Projection
Operator Proj𝑓,𝑔𝐶

Theorem 9. Let 𝐶 be a nonempty, closed, and convex subset
of a reflexive Banach space 𝐸. Let 𝑓 : 𝐸 → R ∪ {+∞}

be a proper, convex, lower semicontinuous function and let
𝑔 : 𝐸 → R be strictly convex, continuous, strongly coercive,
Gâteaux differentiable, locally bounded, and locally uniformly
convex on 𝐸. Then 𝑃𝑟𝑜𝑗

𝑓,𝑔

𝐶 (𝑥
∗
) ̸= 0 for all 𝑥∗ ∈ 𝐸

∗.

Proof. Let 𝑥∗ ∈ 𝐸
∗ and 𝜆 = inf𝑦∈𝐶𝐻(𝑦, 𝑥

∗
).Then there exists

a sequence {𝑥𝑛}𝑛∈N ⊂ 𝐶 such that 𝜆 = lim𝑛→∞𝐻(𝑥𝑛, 𝑥
∗
). We

consider the following two possible cases.

Case 1. If 𝐶 is bounded, then there exists a subsequence
{𝑥𝑛
𝑗

}𝑗∈N of {𝑥𝑛}𝑛∈N and 𝑥 ∈ 𝐶 such that 𝑥𝑛
𝑗

⇀ 𝑥 as 𝑗 →

∞. Since 𝐻(𝑧, 𝑥
∗
) is convex and lower semicontinuous with

respect to 𝑧, we deduce that 𝐻(𝑧, 𝑥
∗
) is convex and weakly

lower semicontinuous with respect to 𝑧. This implies that

𝐻(𝑥, 𝑥
∗
) ≤ lim inf
𝑛→∞

𝐻(𝑥𝑛, 𝑥
∗
) = lim
𝑛→∞

𝐻(𝑥𝑛, 𝑥
∗
)

= inf
𝑦∈𝐶

𝐻(𝑥𝑛, 𝑥
∗
)

(27)

and hence 𝑥 ∈ Proj𝑓,𝑔𝐶 (𝑥
∗
). This shows that Proj𝑓,𝑔𝐶 ̸= 0.

Case 2. Assume that 𝐶 is unbounded. Since 𝑓 : 𝐶 → R ∪

{+∞} is proper, convex, and lower semicontinuous, we know
that the function 𝑓𝐶 : 𝐸 → R ∪ {+∞}, defined by

𝑓𝐶 (𝑥) = {

𝑓 (𝑥) , if 𝑥 ∈ 𝐶,

+∞, if 𝑥 ∉ 𝐶,

(28)

is proper, convex, and lower semicontinuous. In view of
Lemma 8, there exist 𝑥∗ ∈ 𝐸

∗ and 𝑎 ∈ R such that

𝑓𝐶 (𝑥) ≥ ⟨𝑥, 𝑥
∗
⟩ + 𝑎, ∀𝑥 ∈ 𝐸. (29)

This implies that for any 𝑥
∗
∈ 𝐸
∗ and 𝑥 ∈ 𝐶

𝐻 (𝑥, 𝑥
∗
) = 𝑔 (𝑥) − ⟨𝑥, 𝑥

∗
⟩ + 𝑔
∗
(𝑥
∗
) + 𝑓 (𝑥)

≥ 𝑔 (𝑥) + 𝑔
∗
(𝑥
∗
) + 𝑎.

(30)

Next, we show that {𝑥𝑛}𝑛∈N is bounded. If not, then there
exists a subsequence {𝑥𝑛

𝑗

}𝑗∈N of {𝑥𝑛}𝑛∈N such that ‖𝑥𝑛
𝑘

‖ →

+∞ as 𝑘 → ∞. Since 𝑔 is strongly coercive, we conclude
that

lim
‖𝑥
𝑛
𝑘

‖→+∞

𝐻(𝑥𝑛
𝑘

, 𝑥
∗
)

󵄩
󵄩
󵄩
󵄩
󵄩
𝑥𝑛
𝑘

󵄩
󵄩
󵄩
󵄩
󵄩

≥ lim
‖𝑥
𝑛
𝑘

‖→+∞

𝑔 (𝑥𝑛
𝑘

)

󵄩
󵄩
󵄩
󵄩
󵄩
𝑥𝑛
𝑘

󵄩
󵄩
󵄩
󵄩
󵄩

= +∞. (31)

This implies that

lim
‖𝑥
𝑛
𝑘

‖→+∞
𝐻(𝑥𝑛

𝑘

, 𝑥
∗
) = +∞. (32)

Since 𝑓 is proper in 𝐶, we obtain that 𝜆 = inf𝑦∈𝐶𝐻(𝑦, 𝑥
∗
) =

lim𝑛→∞𝐻(𝑥𝑛, 𝑥
∗
) < +∞which contradicts (31). By a similar

argument, as in Case 1, we can prove that Proj𝑓,𝑔𝐶 (𝑥
∗
) ̸= 0

which completes the proof.

Theorem 10. Let 𝐶 be a nonempty, closed, and convex subset
of a reflexive Banach space 𝐸. Let 𝑔 : 𝐸 → R be strictly
convex, continuous, strongly coercive, Gâteaux differentiable,
locally bounded, and locally uniformly convex on 𝐸. Then the
following assertions hold:

(i) for any given 𝑥
∗

∈ 𝐸
∗, 𝑃𝑟𝑜𝑗

𝑓,𝑔

𝐶 (𝑥
∗
) is a nonempty,

closed, and convex subset of 𝐶;
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(ii) 𝑃𝑟𝑜𝑗
𝑓,𝑔

𝐶 is monotone; that is, for any 𝑥
∗
, 𝑦
∗

∈ 𝐸
∗, 𝑥 ∈

𝑃𝑟𝑜𝑗
𝑓,𝑔

𝐶 (𝑥
∗
) and 𝑦 ∈ 𝑃𝑟𝑜𝑗

𝑓,𝑔

𝐶 (𝑦
∗
),

⟨𝑥 − 𝑦, 𝑥
∗
− 𝑦
∗
⟩ ≥ 0; (33)

(iii) For any given 𝑥
∗
∈ 𝐸
∗, 𝑥 ∈ 𝑃𝑟𝑜𝑗

𝑓,𝑔

𝐶 (𝑥
∗
) if and only if

⟨𝑥 − 𝑦, 𝑥
∗
− ∇𝑔 (𝑥)⟩ + 𝑓 (𝑦) − 𝑓 (𝑥) ≥ 0; (34)

Proof. (i) Let 𝑥
∗

∈ 𝐸
∗ be fixed. In view of Theorem 9, we

conclude that Proj𝑓,𝑔𝐶 (𝑥
∗
) ̸= 0. According to (20) we have

𝑔(𝑥) + 𝑔
∗
(𝑥
∗
) − ⟨𝑥, 𝑥

∗
⟩ ≥ 0, ∀(𝑥, 𝑥

∗
) ∈ 𝐸 × 𝐸

∗. Let us
prove that Proj𝑓,𝑔𝐶 (𝑥

∗
) is closed. Let {𝑥𝑛}𝑛∈N ⊂ Proj𝑓,𝑔𝐶 (𝑥

∗
)

and 𝑥𝑛 → 𝑥 as 𝑛 → ∞. In view of (6), we deduce that

𝐺 (𝑥, 𝑥
∗
) ≤ lim inf
𝑛→∞

𝐻(𝑥𝑛, 𝑥
∗
)

= lim inf
𝑛→∞

𝐻(𝑥𝑛, 𝑥
∗
) = inf
𝑦∈𝐶

𝐻(𝑦, 𝑥
∗
) .

(35)

This implies that 𝑥 ∈ Proj𝑓,𝑔𝐶 (𝑥
∗
) and hence Proj𝑓,𝑔𝐶 (𝑥

∗
) is

closed. Next, we show that Proj𝑓,𝑔𝐶 (𝑥
∗
) is convex. Let 𝑥1, 𝑥2 ∈

Proj𝑓,𝑔𝐶 (𝑥
∗
) and 0 ≤ 𝑡 ≤ 1. By the property (2) of the

functional𝐻, we obtain

𝐻(𝑡𝑥1 + (1 − 𝑡) 𝑥2, 𝑥
∗
)

≤ 𝑡𝐻 (𝑥1, 𝑥
∗
) + (1 − 𝑡)𝐻 (𝑥2, 𝑥

∗
)

= 𝑡 inf
𝑦∈𝐶

𝐻(𝑦, 𝑥
∗
) + (1 − 𝑡) inf

𝑦∈𝐶
𝐻(𝑦, 𝑥

∗
)

= inf
𝑦∈𝐶

𝐻(𝑦, 𝑥
∗
) .

(36)

Thus, we have 𝑡𝑥1 + (1 − 𝑡)𝑥2 ∈ Proj𝑓,𝑔𝐶 (𝑥
∗
) and hence

Proj𝑓,𝑔𝐶 (𝑥
∗
) is convex.

(ii) Let 𝑥
∗
1 , 𝑥
∗
2 ∈ 𝐸

∗, 𝑥1 ∈ Proj𝑓,𝑔𝐶 (𝑥
∗
1 ), and 𝑥2 ∈

Proj𝑓,𝑔𝐶 (𝑥
∗
2 ). Then we have

𝑔 (𝑥1) − ⟨𝑥1, 𝑥
∗
1 ⟩ + 𝑔

∗
(𝑥
∗
1 ) + 𝑓 (𝑥1)

≤ 𝑔 (𝑥2) − ⟨𝑥2, 𝑥
∗
2 ⟩ + 𝑔

∗
(𝑥
∗
2 ) + 𝑓 (𝑥2) ,

𝑔 (𝑥2) − ⟨𝑥2, 𝑥
∗
2 ⟩ + 𝑔

∗
(𝑥
∗
2 ) + 𝑓 (𝑥2)

≤ 𝑔 (𝑥1) − ⟨𝑥1, 𝑥
∗
1 ⟩ + 𝑔

∗
(𝑥
∗
1 ) + 𝑓 (𝑥1) .

(37)

In view of (37), we conclude that Proj𝑓,𝑔𝐶 (𝑥
∗
) is monotone.

(iii) It is a simplematter to see that𝑥 ∈ Proj𝑓,𝑔𝐶 (𝑥
∗
) implies

that

⟨𝑥
∗
− ∇𝑔 (𝑥) , 𝑥 − 𝑦⟩ + 𝑓 (𝑦) − 𝑓 (𝑥) ≥ 0, ∀𝑦 ∈ 𝐶. (38)

To this end, let 𝑦 ∈ 𝐶 and 𝑡 ∈ (0, 1] be arbitrarily chosen. By
the definition of Proj𝑓,𝑔𝐶 (𝑥

∗
) we see that

𝐻(𝑥, 𝑥
∗
) ≤ 𝐻 (𝑥 + 𝑡 (𝑦 − 𝑥) , 𝑥

∗
) . (39)

Therefore,

𝑔 (𝑥) + 𝑔
∗
(𝑥
∗
) − ⟨𝑥, 𝑥

∗
⟩ + 𝑓 (𝑥)

≤ 𝑔 (𝑥 + 𝑡 (𝑦 − 𝑥)) + 𝑔
∗
(𝑥
∗
)

− ⟨𝑥 + 𝑡 (𝑦 − 𝑥) , 𝑥
∗
⟩ + 𝑓 (𝑥 + 𝑡 (𝑦 − 𝑥))

≤ 𝑔 (𝑥 + 𝑡 (𝑦 − 𝑥)) + 𝑔
∗
(𝑥
∗
)

− ⟨𝑥 + 𝑡 (𝑦 − 𝑥) , 𝑥
∗
⟩ + 𝑡𝑓 (𝑦) + (1 − 𝑡) 𝑓 (𝑥)

(40)

and hence

⟨𝑡 (𝑦 − 𝑥) , 𝑥
∗
⟩ ≤ 𝑔 (𝑥 + 𝑡 (𝑦 − 𝑥)) + 𝑡 (𝑓 (𝑦) − 𝑓 (𝑥)) .

(41)

On the other hand, by the definition of Bregman distance, we
obtain that

𝑔 (𝑥) + 𝑔 (𝑥 + 𝑡 (𝑦 − 𝑥)) ≥ ⟨𝑡 (𝑥 − 𝑦) , ∇𝑔 (𝑥 + 𝑡 (𝑦 − 𝑥))⟩ .

(42)

This, together with (41), implies that

⟨𝑥 − 𝑦, ∇𝑔 (𝑥 + 𝑡 (𝑦 − 𝑥))⟩ ≥ 𝑓 (𝑥) − 𝑓 (𝑦) + ⟨𝑥 − 𝑦, 𝑥
∗
⟩ .

(43)

Since ∇𝑔 is demi-continuous, letting 𝑡 → 0 in (43), we
conclude that

⟨𝑥 − 𝑦, ∇𝑔 (𝑥) − 𝑥
∗
⟩ + 𝑓 (𝑦) − 𝑓 (𝑥) ≥ 0. (44)

Conversely, assume that

⟨𝑥 − 𝑦, ∇𝑔 (𝑥) − 𝑥
∗
⟩ + 𝑓 (𝑦) − 𝑓 (𝑥) ≥ 0, ∀𝑦 ∈ 𝐾. (45)

This implies that

𝑔 (𝑦) − 𝑔 (𝑥) ≥ ⟨𝑥 − 𝑦, ∇𝑔 (𝑥)⟩

≥ ⟨𝑥 − 𝑦, 𝑥
∗
⟩ + 𝑓 (𝑦) − 𝑓 (𝑥) ≥ 0

∀𝑦 ∈ 𝐾.

(46)

4. Applications to Variational Inequalities

In this section, we investigate the existence of solution to the
following variational inequality problem: find the point𝑥 ∈ 𝐶

such that

⟨𝑦 − 𝑥, 𝐴𝑥⟩ + 𝑓 (𝑦) − 𝑓 (𝑥) ≥ 0, ∀𝑦 ∈ 𝐶, (47)

where 𝐶 is a nonempty, closed, and convex subset of the
Banach space 𝐸, and 𝐴 : 𝐶 → 𝐸

∗ and 𝑓 : 𝐶 → R ∪ {+∞}

are two mappings.

Definition 11 (KKMmapping [30]). Let𝐶 be a nonempty sub-
set of a linear space 𝑋. A set-valued mapping 𝐺 : 𝐶 → 2

𝑋 is
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called a KKMmapping if, for any finite subset {𝑦1, 𝑦2, . . . , 𝑦𝑛}
of 𝐶, we have

co {𝑦1, 𝑦2, . . . , 𝑦𝑛} ⊂

𝑛

⋃

𝑖=1

𝐺 (𝑦𝑖) , (48)

where co{𝑦1, 𝑦2, . . . , 𝑦𝑛} denotes the convex hull of
{𝑦1, 𝑦2, . . . , 𝑦𝑛}.

Lemma 12 (Fan KKM Theorem [30]). Let 𝐶 be a nonempty
convex subset of a Hausdorff topological vector 𝑋 and let 𝐺 :

𝐶 → 2
𝑋 be a KKMmapping with closed values. If there exists

a point 𝑦0 ∈ 𝐶 such that 𝐺(𝑦0) is a compact subset of 𝐶, then
⋂𝑦∈𝐶𝐺(𝑦) ̸= 0.

Theorem 13. Let 𝐶 be a nonempty, closed, and convex subset
of a reflexive Banach space 𝐸 with dual space 𝐸∗. Let 𝑔 : 𝐸 →

R be strictly convex, continuous, strongly coercive, Gâteaux
differentiable, locally bounded and locally uniformly convex on
𝐸. Let 𝐴 : 𝐶 → 𝐸

∗ be a continuous mapping and 𝑓 : 𝐸 →

R∪ {+∞} be a proper, convex, lower semicontinuous function.
If there exists an element 𝑦0 ∈ 𝐶 such that

{𝑥 ∈ 𝐶 : ⟨𝑦0 − 𝑥, ∇𝑔 (𝑥) − 𝐴𝑥⟩

+𝑔 (𝑥) + 𝑓 (𝑥) ≤ 𝑔 (𝑦0) + 𝑓 (𝑦0)}

(49)

is a compact subset of 𝐶, then the variational inequality (47)
has a solution.

Proof. In view of Theorem 10, we need to prove that the
following inclusion has a solution:

𝑥 ∈ Proj𝑓,𝑔𝐶 (∇𝑔 (𝑥) − 𝐴𝑥) . (50)

We define a set-valued mapping 𝑉 : 𝐶 → 2
𝐶 by

𝑉 (𝑦)

= {𝑥 ∈ 𝐶 : 𝐻 (𝑥, ∇𝑔 (𝑥) − 𝐴𝑥) ≤ 𝐻 (𝑦, ∇𝑔 (𝑥) − 𝐴𝑥)} .

(51)

It is obvious that, for any 𝑦 ∈ 𝐶, 𝑉(𝑦) ̸= 0. Let us prove that
𝑉(𝑦) is closed for any 𝑦 ∈ 𝐶. Let {𝑥𝑛}𝑛∈N ⊂ 𝑉(𝑦) and 𝑥𝑛 → 𝑥

as 𝑛 → ∞. Then,

𝐻(𝑥𝑛, ∇𝑔 (𝑥𝑛) − 𝐴𝑥𝑛) ≤ 𝐻 (𝑦, ∇𝑔 (𝑥𝑛) − 𝐴𝑥𝑛) . (52)

This implies that

− ⟨𝑥𝑛, ∇𝑔 (𝑥𝑛) − 𝐴𝑥𝑛⟩ + 𝑔 (𝑥𝑛) + 𝑓 (𝑥𝑛)

≤ − ⟨𝑦, ∇𝑔 (𝑥𝑛) − 𝐴𝑥𝑛⟩ + 𝑔 (𝑦) + 𝑓 (𝑦) .

(53)

Since ∇𝑔 and 𝐴 are continuous and 𝑓 is lower semicontinu-
ous, we conclude that

− ⟨𝑥, ∇𝑔 (𝑥) − 𝐴𝑥⟩ + 𝑔 (𝑥) + 𝑓 (𝑥)

≤ − ⟨𝑦, ∇𝑔 (𝑥) − 𝐴𝑥⟩ + 𝑔 (𝑦) + 𝑓 (𝑦) .

(54)

Therefore,

𝐻(𝑥, ∇𝑔 (𝑥) − 𝐴𝑥) ≤ 𝐻 (𝑦, ∇𝑔 (𝑥) − 𝐴𝑥) , (55)

which implies that 𝑥 ∈ 𝑉(𝑦). Now, we prove that𝑉 : 𝐶 → 2
𝐶

is a KKM mapping. Indeed, suppose 𝑦1, 𝑦2, . . . , 𝑦𝑛 ∈ 𝐶 and
0 < 𝑎1, 𝑎2, . . . , 𝑎𝑛 ≤ 1 with ∑

𝑛
𝑖=1 𝑎𝑖 = 1. Let 𝑧 = ∑

𝑛
𝑖=1 𝑎𝑖𝑦𝑖. In

view of the property (2) of𝐻, we obtain

𝐻(𝑧, ∇𝑔 (𝑧) − 𝐴𝑧)

= 𝐻(

𝑛

∑

𝑖=1

𝑎𝑖𝑦𝑖, ∇𝑔 (𝑧) − 𝐴𝑧) ≤

𝑛

∑

𝑖=1

𝑎𝑖𝐻(𝑦𝑖, ∇𝑔 (𝑧) − 𝐴𝑧)

(56)

and hence

𝐻(𝑧, ∇𝑔 (𝑧) − 𝐴𝑧) ≤ max
1≤𝑖≤𝑛

𝐻(𝑦𝑖, ∇𝑔 (𝑧) − 𝐴𝑧) . (57)

Hence there exists at least one number 𝑗 = 1, 2, . . . , 𝑛, such
that

𝐻(𝑧, ∇𝑔 (𝑧) − 𝐴𝑧) ≤ 𝐻(𝑦𝑗, ∇𝑔 (𝑧) − 𝐴𝑧) . (58)

that is, 𝑧 ∈ 𝑉(𝑦). Thus, 𝑉 is a KKMmapping.
If 𝑥 ∈ 𝑉(𝑦0), then𝐻(𝑧, ∇𝑔(𝑧)−𝐴𝑧) ≤ 𝐻(𝑦0, ∇𝑔(𝑧)−𝐴𝑧).

By the definition of𝐻, we obtain

− ⟨𝑥, ∇𝑔 (𝑥) − 𝐴𝑥⟩ + 𝑔 (𝑥) + 𝑓 (𝑥)

≤ − ⟨𝑦0, ∇𝑔 (𝑥) − 𝐴𝑥⟩ + 𝑔 (𝑦0) + 𝑓 (𝑦0)

(59)

which is equivalent to

⟨𝑦0 − 𝑥, ∇𝑔 (𝑥) − 𝐴𝑥⟩ + 𝑔 (𝑥) + 𝑓 (𝑥) ≤ 𝑔 (𝑦0) + 𝑓 (𝑦0) .

(60)

Therefore,

𝑉 (𝑦0) = {𝑥 ∈ 𝐶 : ⟨∇𝑔 (𝑥) − 𝐴𝑥, 𝑦0 − 𝑥⟩

+𝑔 (𝑥) + 𝑓 (𝑥) ≤ 𝑔 (𝑦0) + 𝑓 (𝑦0)} .

(61)

In view of (49), we deduce that 𝑉(𝑦0) is compact. It follows
fromLemma 12 that⋂𝑦∈𝐶𝑉(𝑦) ̸= 0. Hence there exists at least
one 𝑥0 ∈ ⋂𝑦∈𝐶𝑉(𝑦)); that is,

𝐻(𝑥0, ∇𝑔 (𝑥0) − 𝐴𝑥0) ≤ 𝐻 (𝑦, ∇𝑔 (𝑥0) − 𝐴𝑥0) , ∀𝑦 ∈ 𝐶.

(62)

In view of the definition of Bregman 𝑓-projection operator
Proj𝑓,𝑔𝐶 , we conclude that

𝑥0 ∈ Proj𝑓,𝑔𝐶 (∇𝑔 (𝑥0) − 𝐴𝑥0) . (63)

This completes the proof.

Theorem 14. Let 𝐸 be a reflexive Banach space and 𝑔 : 𝐸 →

R a strongly coercive Bregman function which is bounded on
bounded subsets and uniformly convex and uniformly smooth
on bounded subsets of 𝐸. Let 𝑓 : 𝐸 → R ∪ {+∞} be a proper,
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convex, lower semicontinuous function. Let 𝐶 be a nonempty,
closed, and convex subset of𝐸 and let𝑇 : 𝐶 → 𝐶 be a Bregman
weak relatively nonexpansive mapping. Let {𝛼𝑛}𝑛∈N∪{0} be a
sequence in (0, 1) such that lim inf𝑛→∞𝛼𝑛(1 − 𝛼𝑛) > 0. Let
{𝑥𝑛}𝑛∈N∪{0} be a sequence generated by

𝑥0 = 𝑥 ∈ 𝐶 𝑐ℎ𝑜𝑠𝑒𝑛 𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑖𝑙𝑦,

𝐶0 = 𝐶,

𝑦𝑛 = ∇𝑔
∗
[𝛼𝑛∇𝑔 (𝑥𝑛) + (1 − 𝛼𝑛) ∇𝑔 (𝑇𝑥𝑛)] ,

𝐶𝑛+1 = {𝑧 ∈ 𝐶𝑛 : 𝐻 (𝑧, ∇𝑔 (𝑦𝑛)) ≤ 𝐻 (𝑧, ∇𝑔 (𝑥𝑛))} ,

𝑥𝑛+1 = 𝑃𝑟𝑜𝑗
𝑔

𝐶
𝑛+1

𝑥, 𝑛 ∈ N ∪ {0} ,

(64)

where ∇𝑔 is the gradient of 𝑔. Then {𝑥𝑛}𝑛∈N, {𝑇𝑥𝑛}𝑛∈N, and
{𝑦𝑛}𝑛∈N converge strongly to 𝑃𝑟𝑜𝑗

𝑔
𝐹 𝑥0.

Proof. We divide the proof into several steps.

Step 1. We prove that 𝐶𝑛 is closed and convex for each 𝑛 ∈

N ∪ {0}.
It is clear that 𝐶0 = 𝐶 is closed and convex. Let 𝐶𝑚 be

closed and convex for some𝑚 ∈ N. For 𝑧 ∈ 𝐶𝑚, we see that

𝐻(𝑧, ∇𝑔 (𝑦𝑚)) ≤ 𝐻 (𝑧, ∇𝑔 (𝑥𝑚)) (65)

is equivalent to

⟨𝑧, ∇𝑔 (𝑥𝑚) − ∇𝑔 (𝑦𝑚)⟩

≤ 𝑔 (𝑦𝑚) − 𝑔 (𝑥𝑚)

+ ⟨𝑥𝑚, ∇𝑔 (𝑥𝑚)⟩ − ⟨𝑦𝑚, ∇𝑔 (𝑦𝑚)⟩ .

(66)

It could easily be seen that 𝐶𝑚+1 is closed and convex.
Therefore, 𝐶𝑛 is closed and convex for each 𝑛 ∈ N ∪ {0}.

Step 2. We claim that 𝐹 ⊂ 𝐶𝑛 for all 𝑛 ∈ N ∪ {0}.
It is obvious that 𝐹 ⊂ 𝐶0 = 𝐶. Assume now that 𝐹 ⊂ 𝐶𝑚

for some 𝑚 ∈ N. Employing Lemma 7, for any 𝑤 ∈ 𝐹 ⊂ 𝐶𝑚,
we obtain

𝐻(𝑤, ∇𝑔 (𝑦𝑚))

= 𝐻 (𝑤, ∇𝑔 (𝑦𝑚))

= 𝑔 (𝑤) − ⟨𝑤, ∇𝑔 (𝑦𝑚)⟩ + 𝑔
∗
(∇𝑔 (𝑦𝑚)) + 𝑓 (𝑤)

= 𝑉 (𝑤, 𝛼𝑚∇𝑔 (𝑥𝑚) + (1 − 𝛼𝑚) ∇𝑔 (𝑇𝑥𝑚)) + 𝑓 (𝑤)

= 𝑔 (𝑤) − ⟨𝑤, 𝛼𝑚∇𝑔 (𝑥𝑚) + (1 − 𝛼𝑚∇𝑔 (𝑇𝑥𝑚))⟩

+ 𝑔
∗
(𝛼𝑚∇𝑔 (𝑥𝑚) + (1 − 𝛼𝑚) ∇𝑔 (𝑇𝑥𝑚)) + 𝑓 (𝑤)

≤ 𝛼𝑚𝑔 (𝑤) + (1 − 𝛼𝑚) 𝑔 (𝑤)

+ 𝛼𝑚𝑔
∗
(∇𝑔 (𝑥𝑚)) + (1 − 𝛼𝑚) 𝑔

∗
(∇𝑔 (𝑇𝑥𝑚)) + 𝑓 (𝑤)

= 𝛼𝑚𝑉 (𝑤, ∇𝑔 (𝑥𝑚)) + (1 − 𝛼𝑚) 𝑉 (𝑤, ∇𝑔 (𝑇𝑥𝑚)) + 𝑓 (𝑤)

= 𝛼𝑚𝐷𝑔 (𝑤, 𝑥𝑚) + (1 − 𝛼𝑚)𝐷𝑔 (𝑤, 𝑇𝑥𝑚) + 𝑓 (𝑤)

≤ 𝛼𝑚𝐷𝑔 (𝑤, 𝑥𝑚) + (1 − 𝛼𝑚)𝐷𝑔 (𝑤, 𝑥𝑚) + 𝑓 (𝑤)

= 𝐷𝑔 (𝑤, 𝑥𝑚) + 𝑓 (𝑤)

= 𝑉 (𝑤, ∇𝑔 (𝑥𝑚)) + 𝑓 (𝑤)

= 𝐻 (𝑤, ∇𝑔 (𝑥𝑚)) .

(67)

This proves that 𝑤 ∈ 𝐶𝑚+1 and hence 𝐹 ⊂ 𝐶𝑛 for all 𝑛 ∈

N ∪ {0}.

Step 3. We prove that {𝑥𝑛}𝑛∈N, {𝑦𝑛}𝑛∈N, and {𝑇𝑥𝑛}𝑛∈N are
bounded sequences in 𝐶.

Since 𝑥𝑛 = proj𝑔𝐶
𝑛

𝑥, we get that

𝐻(𝑥𝑛, ∇𝑔 (𝑥)) ≤ 𝐻 (𝑤, ∇𝑔 (𝑥)) (68)

for each 𝑤 ∈ 𝐹(𝑇). This implies that the sequence
{𝐻(𝑤, ∇𝑔(𝑥𝑛))}𝑛∈N is bounded and hence there exists𝑀1 > 0

such that

𝐻(𝑥𝑛, ∇𝑔 (𝑥)) ≤ 𝑀1, ∀𝑛 ∈ N. (69)

We claim that the sequence {𝑥𝑛}𝑛∈N is bounded. Assume on
the contrary that ‖ 𝑥𝑛 ‖→ ∞ as 𝑛 → ∞. In view of
Lemma 8, there exist 𝑥∗ ∈ 𝐸

∗ and 𝑎 ∈ R such that

𝑓 (𝑥) ≥ ⟨𝑥𝑛, 𝑥
∗
⟩ + 𝑎, ∀𝑛 ∈ N. (70)

From the definition of Bregman distance, it follows that

𝑀1 ≥ 𝐻 (𝑥𝑛, ∇𝑔 (𝑥))

= 𝑔 (𝑥𝑛) − 𝑔 (𝑥) − ⟨𝑥𝑛 − 𝑥, ∇𝑔 (𝑥)⟩ + 𝑓 (𝑥𝑛)

≥ 𝑔 (𝑥𝑛) − 𝑔 (𝑥) − ⟨𝑥𝑛, ∇𝑔 (𝑥) − 𝑥
∗
⟩ + ⟨𝑥, ∇𝑔 (𝑥)⟩ + 𝑎

≥ 𝑔 (𝑥𝑛) − 𝑔 (𝑥) −
󵄩
󵄩
󵄩
󵄩
𝑥𝑛

󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
∇𝑔 (𝑥) − 𝑥

∗󵄩
󵄩
󵄩
󵄩

+ ⟨𝑥, ∇𝑔 (𝑥)⟩ + 𝑎, ∀𝑛 ∈ N.

(71)

Without loss of generality, we may assume that ‖𝑥𝑛‖ ̸= 0 for
each 𝑛 ∈ N. This implies that

𝑀1
󵄩
󵄩
󵄩
󵄩
𝑥𝑛

󵄩
󵄩
󵄩
󵄩

≥

𝑔 (𝑥𝑛)

󵄩
󵄩
󵄩
󵄩
𝑥𝑛

󵄩
󵄩
󵄩
󵄩

−

𝑔 (𝑥)

󵄩
󵄩
󵄩
󵄩
𝑥𝑛

󵄩
󵄩
󵄩
󵄩

−
󵄩
󵄩
󵄩
󵄩
∇𝑔 (𝑥) − 𝑥

∗󵄩
󵄩
󵄩
󵄩

+

⟨𝑥, ∇𝑔 (𝑥)⟩

󵄩
󵄩
󵄩
󵄩
𝑥𝑛

󵄩
󵄩
󵄩
󵄩

+

𝑎

󵄩
󵄩
󵄩
󵄩
𝑥𝑛

󵄩
󵄩
󵄩
󵄩

, ∀𝑛 ∈ N.

(72)

Since 𝑔 is strongly coercive, by letting 𝑛 → ∞ in (72), we
conclude that 0 ≥ ∞, which is a contradiction. Therefore,
{𝑥𝑛}𝑛∈N is bounded. Since {𝑇𝑛}𝑛∈N is an infinite family of
Bregmanweak relatively nonexpansivemappings from𝐶 into
itself, we have for any 𝑞 ∈ 𝐹 that

𝐷𝑔 (𝑞, 𝑇𝑥𝑛) ≤ 𝐷𝑔 (𝑞, 𝑥𝑛) , ∀𝑛 ∈ N. (73)
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This, together with Definition 2 and the boundedness of
{𝑥𝑛}𝑛∈N, implies that the sequence {𝑇𝑛𝑥𝑛}𝑛∈N is bounded.

Step 4. We show that 𝑥𝑛 → V for some V ∈ 𝐹, where V =

proj𝑔𝐹𝑥.
From Step 3 we know that {𝑥𝑛}𝑛∈N is bounded. By the

construction of 𝐶𝑛, we conclude that 𝐶𝑚 ⊂ 𝐶𝑛 and 𝑥𝑚 =

proj𝑔𝐶
𝑚

𝑥 ∈ 𝐶𝑚 ⊂ 𝐶𝑛 for any positive integer 𝑚 ≥ 𝑛. This,
together with (23), implies that

𝐷𝑔 (𝑥𝑚, 𝑥𝑛)

= 𝐷𝑔 (𝑥𝑚, proj
𝑔

𝐶
𝑛

𝑥) ≤ 𝐷𝑔 (𝑥𝑚, 𝑥)

− 𝐷𝑔 (proj
𝑔

𝐶
𝑛

𝑥, 𝑥) = 𝐷𝑔 (𝑥𝑚, 𝑥) − 𝐷𝑔 (𝑥𝑛, 𝑥) .

(74)

In view of (21), we conclude that

𝐷𝑔 (𝑥𝑛, 𝑥) = 𝐷𝑔 (proj
𝑔

𝐶
𝑛

𝑥, 𝑥) ≤ 𝐷𝑔 (𝑤, 𝑥) − 𝐷𝑔 (𝑤, 𝑥𝑛)

≤ 𝐷𝑔 (𝑤, 𝑥) , ∀𝑤 ∈ 𝐹 ⊂ 𝐶𝑛, 𝑛 ∈ N ∪ {0} .

(75)

It follows from (75) that the sequence {𝐷𝑔(𝑥𝑛, 𝑥)}𝑛∈N is
bounded and hence there exists 𝑀2 > 0 such that

𝐷𝑔 (𝑥𝑛, 𝑥) ≤ 𝑀2, ∀𝑛 ∈ N. (76)

In view of (64), we conclude that

𝐷𝑔 (𝑥𝑛, 𝑥) ≤ 𝐷𝑔 (𝑥𝑛, 𝑥) + 𝐷𝑔 (𝑥𝑚, 𝑥𝑛) ≤ 𝐷𝑔 (𝑥𝑚, 𝑥) ,

∀𝑚 ≥ 𝑛.

(77)

This proves that {𝐷𝑔(𝑥𝑛, 𝑥)}𝑛∈N is an increasing sequence inR
and hence the limit lim𝑛→∞𝐷𝑔(𝑥𝑛, 𝑥) exists. Letting𝑚, 𝑛 →

∞ in (74), we deduce that 𝐷𝑔(𝑥𝑚, 𝑥𝑛) → 0. In view of
Lemma 6, we obtain that ‖𝑥𝑚 − 𝑥𝑛‖ → 0 as 𝑚, 𝑛 → ∞.
This means that {𝑥𝑛}𝑛∈N is a Cauchy sequence. Since 𝐸 is a
Banach space and 𝐶 is closed and convex, we conclude that
there exists V ∈ 𝐶 such that

lim
𝑛→∞

󵄩
󵄩
󵄩
󵄩
𝑥𝑛 − V󵄩󵄩󵄩

󵄩
= 0. (78)

Now, we show that V ∈ 𝐹. In view of Lemma 6 and (78), we
obtain

lim
𝑛→∞

𝐷𝑔 (𝑥𝑛+1, 𝑥𝑛) = 0. (79)

Since 𝑥𝑛+1 ∈ 𝐶𝑛+1, we conclude that

𝐷𝑔 (𝑥𝑛+1, 𝑦𝑛) ≤ 𝐷𝑔 (𝑥𝑛+1, 𝑥𝑛) . (80)

This, together with (79), implies that

lim
𝑛→∞

𝐷𝑔 (𝑥𝑛+1, 𝑦𝑛) = 0. (81)

It follows from Lemma 6, (79), and (81) that

lim
𝑛→∞

󵄩
󵄩
󵄩
󵄩
𝑥𝑛+1 − 𝑥𝑛

󵄩
󵄩
󵄩
󵄩
= 0, lim

𝑛→∞

󵄩
󵄩
󵄩
󵄩
𝑥𝑛+1 − 𝑦𝑛

󵄩
󵄩
󵄩
󵄩
= 0. (82)

In view of (78), we get

lim
𝑛→∞

󵄩
󵄩
󵄩
󵄩
𝑦𝑛 − 𝑢

󵄩
󵄩
󵄩
󵄩
= 0. (83)

From (78) and (83), it follows that

lim
𝑛→∞

󵄩
󵄩
󵄩
󵄩
𝑥𝑛 − 𝑦𝑛

󵄩
󵄩
󵄩
󵄩
= 0. (84)

Since ∇𝑔 is uniformly norm-to-norm continuous on any
bounded subset of 𝐸, we obtain

lim
𝑛→∞

‖ ∇𝑔 (𝑥𝑛) − ∇𝑔 (𝑦𝑛) ‖ = 0. (85)

Applying Lemma 6 we derive that

lim
𝑛→∞

𝐷𝑔 (𝑦𝑛, 𝑥𝑛) = 0. (86)

It follows from the three-point identity (see (14)) that for any
𝑤 ∈ 𝐹

󵄨
󵄨
󵄨
󵄨
󵄨
𝐷𝑔 (𝑤, 𝑥𝑛) − 𝐷𝑔 (𝑤, 𝑦𝑛)

󵄨
󵄨
󵄨
󵄨
󵄨

=

󵄨
󵄨
󵄨
󵄨
󵄨
𝐷𝑔 (𝑤, 𝑦𝑛) + 𝐷𝑔 (𝑦𝑛, 𝑥𝑛)

+ ⟨𝑤 − 𝑦𝑛, ∇𝑔 (𝑦𝑛) − ∇𝑔 (𝑥𝑛)⟩ − 𝐷𝑔 (𝑤, 𝑦𝑛)
󵄨
󵄨
󵄨
󵄨
󵄨

=

󵄨
󵄨
󵄨
󵄨
󵄨
𝐷𝑔 (𝑦𝑛, 𝑥𝑛) − ⟨𝑤 − 𝑦𝑛, ∇𝑔 (𝑦𝑛) − ∇𝑔 (𝑥𝑛)⟩

󵄨
󵄨
󵄨
󵄨
󵄨

≤ 𝐷𝑔 (𝑦𝑛, 𝑥𝑛) +
󵄩
󵄩
󵄩
󵄩
𝑤 − 𝑦𝑛

󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
∇𝑔 (𝑦𝑛) − ∇𝑔 (𝑥𝑛)

󵄩
󵄩
󵄩
󵄩

󳨀→ 0

(87)

as 𝑛 → ∞.
The function 𝑔 is bounded on bounded subsets of 𝐸 and,

thus, ∇𝑔 is also bounded on bounded subsets of 𝐸∗ (see, e.g.,
[22, Proposition 1.1.11], for more details).This implies that the
sequences {∇𝑔(𝑥𝑛)}𝑛∈N, {∇𝑔(𝑦𝑛)}𝑛∈N, and {∇𝑔(𝑇𝑥𝑛) : 𝑛 ∈ N∪

{0}} are bounded in 𝐸
∗.

In view of Proposition 4(3), we know that dom 𝑔
∗

= 𝐸
∗

and𝑔
∗ is strongly coercive and uniformly convex on bounded

subsets of 𝐸∗. Let 𝑠1 = sup{‖∇𝑔(𝑥𝑛)‖, ‖∇𝑔(𝑇𝑥𝑛)‖ : 𝑛 ∈ N ∪

{0}} and 𝜌
∗
𝑠
1

: 𝐸
∗

→ R be the gauge of uniform convexity of
the conjugate function 𝑔

∗. We prove that for any 𝑤 ∈ 𝐹

𝐷𝑔 (𝑤, 𝑦𝑛) ≤ 𝐷𝑔 (𝑤, 𝑥𝑛) − 𝛼𝑛 (1 − 𝛼𝑛) 𝜌
∗
𝑠
1

× (
󵄩
󵄩
󵄩
󵄩
∇𝑔 (𝑥𝑛) − ∇𝑔 (𝑇𝑥𝑛)

󵄩
󵄩
󵄩
󵄩
) .

(88)
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Let us show (88). For any given 𝑤 ∈ 𝐹(𝑇), in view of the
definition of the Bregman distance (see (2)) and Lemma 6, we
obtain

𝐷𝑔 (𝑤, 𝑦𝑛)

= 𝐷𝑔 (𝑤, ∇𝑔
∗
[𝛼𝑛∇𝑔 (𝑥𝑛) + (1 − 𝛼𝑛) ∇𝑔 (𝑇𝑥𝑛)])

= 𝑉 (𝑤, 𝛼𝑛∇𝑔 (𝑥𝑛) + (1 − 𝛼𝑛) ∇𝑔 (𝑇𝑥𝑛))

= 𝑔 (𝑤) − ⟨𝑤, 𝛼𝑛∇𝑔 (𝑥𝑛) + (1 − 𝛼𝑛) ∇𝑔 (𝑇𝑥𝑛)⟩

+ 𝑔
∗
(𝛼𝑛∇𝑔 (𝑥𝑛) + (1 − 𝛼𝑛) ∇𝑔 (𝑇𝑥𝑛))

≤ 𝛼𝑛𝑔 (𝑤) + (1 − 𝛼𝑛) 𝑔 (𝑤) − 𝛼𝑛 ⟨𝑤, ∇𝑔 (𝑥𝑛)⟩

− (1 − 𝛼𝑛) ⟨𝑤, ∇𝑔 (𝑇𝑥𝑛)⟩

+ 𝛼𝑛𝑔
∗
(∇𝑔 (𝑥𝑛)) + (1 − 𝛼𝑛) 𝑔

∗
(∇𝑔 (𝑇𝑥𝑛))

− 𝛼𝑛 (1 − 𝛼𝑛) 𝜌
∗
𝑠
1

(
󵄩
󵄩
󵄩
󵄩
∇𝑔 (𝑥𝑛) − ∇𝑔 (𝑇𝑥𝑛)

󵄩
󵄩
󵄩
󵄩
)

= 𝛼𝑛𝑉 (𝑤, ∇𝑔 (𝑥𝑛)) + (1 − 𝛼𝑛) 𝑉 (𝑤, ∇𝑔 (𝑇𝑥𝑛))

− 𝛼𝑛 (1 − 𝛼𝑛) 𝜌
∗
𝑠
1

(
󵄩
󵄩
󵄩
󵄩
∇𝑔 (𝑥𝑛) − ∇𝑔 (𝑇𝑛𝑥𝑛)

󵄩
󵄩
󵄩
󵄩
)

= 𝛼𝑛𝐷𝑔 (𝑤, 𝑥𝑛) + (1 − 𝛼𝑛)𝐷𝑔 (𝑤, 𝑇𝑥𝑛)

− 𝛼𝑛 (1 − 𝛼𝑛) 𝜌
∗
𝑠
1

(
󵄩
󵄩
󵄩
󵄩
∇𝑔 (𝑥𝑛) − ∇𝑔 (𝑇𝑥𝑛)

󵄩
󵄩
󵄩
󵄩
)

≤ 𝛼𝑛𝐷𝑔 (𝑤, 𝑥𝑛) + (1 − 𝛼𝑛)𝐷𝑔 (𝑤, 𝑥𝑛)

− 𝛼𝑛 (1 − 𝛼𝑛) 𝜌
∗
𝑠
1

(
󵄩
󵄩
󵄩
󵄩
∇𝑔 (𝑥𝑛) − ∇𝑔 (𝑇𝑥𝑛)

󵄩
󵄩
󵄩
󵄩
)

= 𝐷𝑔 (𝑤, 𝑥𝑛) − 𝛼𝑛 (1 − 𝛼𝑛) 𝜌
∗
𝑠
1

(
󵄩
󵄩
󵄩
󵄩
∇𝑔 (𝑥𝑛) − ∇𝑔 (𝑇𝑥𝑛)

󵄩
󵄩
󵄩
󵄩
) .

(89)

In view of (87), we get that

𝐷𝑔 (𝑤, 𝑥𝑛) − 𝐷𝑔 (𝑤, 𝑦𝑛) 󳨀→ 0 as 𝑛 󳨀→ ∞. (90)

In view of (87) and (88), we conclude that

𝛼𝑛 (1 − 𝛼𝑛) 𝜌
∗
𝑠
1

(
󵄩
󵄩
󵄩
󵄩
∇𝑔 (𝑥𝑛) − ∇𝑔 (𝑇𝑥𝑛)

󵄩
󵄩
󵄩
󵄩
)

≤ 𝐷𝑔 (𝑤, 𝑥𝑛) − 𝐷𝑔 (𝑤, 𝑦𝑛) 󳨀→ 0

(91)

as 𝑛 → ∞. From the assumption lim inf𝑛→∞𝛼𝑛(1 −𝛼𝑛) > 0,
we get

lim
𝑛→∞

𝜌
∗
𝑠
1

(
󵄩
󵄩
󵄩
󵄩
∇𝑔 (𝑥𝑛) − ∇𝑔 (𝑇𝑥𝑛)

󵄩
󵄩
󵄩
󵄩
) = 0. (92)

Therefore, from the property of 𝜌∗𝑠
1

we deduce that

lim
𝑛→∞

󵄩
󵄩
󵄩
󵄩
∇𝑔 (𝑥𝑛) − ∇𝑔 (𝑇𝑥𝑛)

󵄩
󵄩
󵄩
󵄩
= 0. (93)

Since ∇𝑔
∗ is uniformly norm-to-norm continuous on

bounded subsets of 𝐸∗, we arrive at

lim
𝑛→∞

󵄩
󵄩
󵄩
󵄩
𝑥𝑛 − 𝑇𝑥𝑛

󵄩
󵄩
󵄩
󵄩
= 0. (94)

This implies that V ∈ 𝐹(𝑇).

Finally, we show that V = proj𝑔𝐹𝑥. From 𝑥𝑛 = proj𝑔𝐶
𝑛

𝑥, we
conclude that

⟨𝑧 − 𝑥𝑛, ∇𝑔 (𝑥𝑛) − ∇𝑔 (𝑥)⟩ ≥ 0, ∀𝑧 ∈ 𝐶𝑛. (95)

Since 𝐹 ⊂ 𝐶𝑛 for each 𝑛 ∈ N, we obtain

⟨𝑧 − 𝑥𝑛, ∇𝑔 (𝑥𝑛) − ∇𝑔 (𝑥)⟩ ≥ 0, ∀𝑧 ∈ 𝐹. (96)

Letting 𝑛 → ∞ in (96), we deduce that

⟨𝑧 − V, ∇𝑔 (𝑢) − ∇𝑔 (𝑥)⟩ ≥ 0, ∀𝑧 ∈ 𝐹. (97)

In view of (21), we have V = proj𝑔𝐹𝑥, which completes the
proof.

Remark 15. Theorem 14 improves Theorem 4.1 of [20] in the
following aspects.

(1) For the structure of Banach spaces, we extend the
duality mapping to more general case, that is, a
convex, continuous, and strongly coercive Bregman
function which is bounded on bounded subsets and
uniformly convex and uniformly smooth on bounded
subsets.

(2) For the mappings, we extend the mapping from
a relatively nonexpansive mapping to a Bregman
weak relatively nonexpansive mapping. We remove
the assumption ̂

𝐹(𝑇) = 𝐹(𝑇) on the mapping 𝑇

and extend the result to a Bregman weak relatively
nonexpansive mapping, where ̂

𝐹(𝑇) is the set of
asymptotic fixed points of the mapping 𝑇.

(3) Theorems 9 and 10 extend and improve correspond-
ing results of [20].
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