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Based on the methods presented by Song and Yuan (1994), we construct relaxed matrix parallel multisplitting chaotic generalized
USAOR-style methods by introducing more relaxed parameters and analyze the convergence of our methods when coefficient
matrices are H-matrices or irreducible diagonally dominant matrices. The parameters can be adjusted suitably so that the
convergence property of methods can be substantially improved. Furthermore, we further study some applied convergence results
of methods to be convenient for carrying out numerical experiments. Finally, we give some numerical examples, which show that
our convergence results are applied and easily carried out.

1. Introduction

For solving the large sparse linear system

𝐴𝑥 = 𝑏, (1)

where 𝐴 is an 𝑛 × 𝑛 real nonsingular matrix and 𝑥, 𝑏 ∈ 𝑅𝑛, an
iterative method is usually considered.The concept of matrix
multisplitting solution of linear system was introduced by
O’Leary and White [1] and further studied by many other
authors. Frommer andMayer [2] studied extrapolated relaxed
matrixmultisplittingmethods andmatrixmultisplitting SOR
method. Mas et al. [3] analyzed nonstationary extrapolated
relaxed and asynchronous relaxed methods. Gu et al. [4,
5] further studied relaxed nonstationary two-stage matrix
multisplitting methods and the corresponding asynchronous
schemes.

As we know, matrix multisplitting iterative method for
linear systems takes two basic forms. When all of the
processors wait until they are updated with the results of the
current iteration, it is synchronous. That is to say, when they

begin the next iteration of asynchronous, they may act more
or less independently of each other and use possibly delayed
iterative values of the output of the other processors. In view
of the potential time saving inherent in them, asynchronous
iterative methods, or chaotic as they are often called, have
attracted much attention since the early paper of Chazan
and Miranker [6] introduced them in the context of point
iterative schemes. Naturally, a number of convergence results
[7–21] have been obtained. Recently, the convergence of three
relaxed matrix multisplitting chaotic AORmethods has been
investigated in [11, 13, 14].

A collection of triples (𝑀
𝑙
, 𝑁
𝑙
, 𝐸
𝑙
), 𝑙 = 1, 2, . . . , 𝑠, is called

a multisplitting of 𝐴 if 𝐴 = 𝑀
𝑙
− 𝑁
𝑙
is a splitting of 𝐴 for 𝑙 =

1, 2, . . . , 𝑠, and𝐸
𝑙
’s, calledweightingmatrices, are nonnegative

diagonal matrices such that ∑𝑠
𝑙=1
𝐸
𝑙
= 𝐼.

The unsymmetric accelerated overrelaxation (USAOR)
method was proposed in [22], if the diagonal elements of the
matrix 𝐴 are nonzero. Without the loss of generality, let the
matrix 𝐴 be split as

𝐴 = 𝐼 − 𝐿 − 𝑈, (2)

Hindawi Publishing Corporation
Journal of Applied Mathematics
Volume 2014, Article ID 594185, 9 pages
http://dx.doi.org/10.1155/2014/594185

http://dx.doi.org/10.1155/2014/594185


2 Journal of Applied Mathematics

where 𝐼, 𝐿, and 𝑈 are nonsingular diagonal, strictly lower
triangular and upper triangular parts of 𝐴. The iterative
scheme of the USAOR method is defined by

𝑥
(𝑘+(1/2))

= 𝐻 (𝜔
1
, 𝜔
2
) 𝑥
(𝑘)

+ 𝜔
1
(𝐼 − 𝜔

2
𝐿)
−1

𝑏,

𝑥
(𝑘+1)

= 𝐻 (𝜔
3
, 𝜔
4
) 𝑥
(𝑘+(1/2))

+ 𝜔
3
(𝐼 − 𝜔

4
𝑈) 𝑏;

(3)

that is,

𝑥
(𝑘+1)

= 𝐻USAOR𝑥
(𝑘)

+ 𝐺USAOR, 𝑘 = 0, 1, . . . , (4)

where

𝐻USAOR = 𝐻 (𝜔
3
, 𝜔
4
)𝐻 (𝜔

1
, 𝜔
2
) ,

𝐻 (𝜔
1
, 𝜔
2
) = (𝐼 − 𝜔

2
𝐿)
−1

× [(1 − 𝜔
1
) 𝐼 + (𝜔

1
− 𝜔
2
) 𝐿 + 𝜔

1
𝑈] ,

𝐻 (𝜔
3
, 𝜔
4
) = (𝐼 − 𝜔

4
𝑈)
−1

[(1 − 𝜔
3
) 𝐼 + (𝜔

3
− 𝜔
4
) 𝑈 + 𝜔

3
𝐿] ,

𝐺USAOR = (𝐼 − 𝜔4𝑈)
−1

[(𝜔
1
+ 𝜔
3
− 𝜔
1
𝜔
3
) 𝐼 + 𝜔

3
(𝜔
1
− 𝜔
2
) 𝐿

+𝜔
1
(𝜔
3
− 𝜔
4
) 𝑈] (𝐼 − 𝜔

2
𝐿)
−1

𝑏,

(5)

and 𝛼
𝑖
, 𝛽
𝑖
(𝑖 = 1, 2) are real parameters.

In this paper, we will extend the point USAOR iterative
method to matrix multisplitting chaotic generalized USAOR
method and analyze their convergence for 𝐻-matrices and
irreducible diagonally dominant matrices.

Based on matrix multisplitting chaotic generalized AOR
method [23], the matrix multisplitting chaotic generalized
USAOR method is given by

𝑥
(𝑘+1)

= 𝐻GUSAOR𝑥
(𝑘)

+ 𝐺GUSAOR, 𝑘 = 0, 1, 2, . . . , (6)

where

𝐻GUSAOR = 𝐻 (𝛽, 𝜓)𝐻 (𝛼, 𝜙) ,

𝐻 (𝛼, 𝜙) = (𝐼 − 𝛼𝜙𝐿)
−1

[𝐼 − 𝜙 + (1 − 𝛼) 𝜙𝐿 + 𝜙𝑈]

𝐻 (𝛽, 𝜓) = (𝐼 − 𝛽𝜓𝑈)
−1

[𝐼 − 𝜓 + (1 − 𝛽)𝜓𝑈 + 𝜓𝐿] ,

𝐺GUSAOR = (1 − 𝛽𝜓𝑈)
−1

[2𝐼 − 𝜓 + (𝜓 − 𝛼𝜙) 𝐿

+ (1 − 𝛽)𝜓𝑈] (𝐼 − 𝛼𝜙𝐿)
−1

𝑏,

(7)

is an iteration matrix and 𝜙 = diag(𝛽
1
, 𝛽
2
, . . . , 𝛽

𝑛
), 𝜓 =

diag(𝛾
1
, 𝛾
2
, . . . , 𝛾

𝑛
) with 𝛽

𝑖
≥ 0, 𝛾

𝑖
≥ 0 (𝑖 = 1, 2, . . . , 𝑛) and

𝛼, 𝛽 real parameters.

Remark 1. For 𝛽 = 𝛾
𝑖
= 0, 𝑖 = 1, 2, . . . , 𝑛, then GUSAOR

method reduces to GAOR method [11]; For 𝜙 = 𝜔
1
𝐼, 𝛼 =

𝜔
2
/𝜔
1
, 𝜓 = 𝜔

3
𝐼, 𝛽 = 𝜔

4
/𝜔
3
, the GUSAORmethod reduces to

the USAOR method [22].

The remainder of this paper is organized as follows. In
Section 2, we introduce some notations and preliminaries. In
Section 3, we present relaxed matrix parallel multisplitting

chaotic GUSAOR-style methods for solving large nonsingu-
lar system, when the coefficient matrix 𝐴 is an 𝐻-matrix
or irreducible diagonally dominant matrix, and analyze the
convergence of our methods. In Section 4, we further study
some applied convergence results of methods to be conve-
nient for carrying out numerical experiments. In Section 5,
we give some numerical examples, which show that our
convergence results are easily carried out. Finally, we draw
some conclusions.

2. Notation and Preliminaries

We will use the following notation. Let 𝐶 = (𝑐
𝑖𝑗
) ∈ 𝑅

𝑛×𝑛 be
an 𝑛 × 𝑛 matrix. By diag(𝐶) we denote the diagonal matrix
coinciding in its diagonal with 𝐶. For 𝐴 = (𝑎

𝑖𝑗
), 𝐵 = (𝑏

𝑖𝑗
) ∈

𝑅
𝑛×𝑛, we write 𝐴 ≥ 𝐵 if 𝑎

𝑖𝑗
≥ 𝑏
𝑖𝑗
holds for all 𝑖, 𝑗 = 1, 2, . . . , 𝑛.

Calling𝐴 nonnegative if𝐴 ≥ 0, we say that𝐵 ≤ 𝐶 if and only if
−𝐵 ≥ −𝐶.These definitions carry immediately over to vectors
by identifying them with 𝑛 × 1 matrices. By |𝐴| = (|𝑎

𝑖𝑗
|) we

define the absolute value of 𝐴 ∈ 𝑅
𝑛×𝑛. We denote by ⟨𝐴⟩ =

(⟨𝑎
𝑖𝑗
⟩) the comparison matrix of 𝐴 ∈ 𝑅

𝑛×𝑛 where ⟨𝑎
𝑖𝑗
⟩ = |𝑎

𝑖𝑗
|

for 𝑖 = 𝑗 and ⟨𝑎
𝑖𝑗
⟩ = −|𝑎

𝑖𝑗
| for 𝑖 ̸= 𝑗, 𝑖, 𝑗 = 1, 2, . . . , 𝑛. Spectral

radius of a matrix 𝐴 is denoted by 𝜌(𝐴). It is well known that
if 𝐴 ≥ 0 and there exists a vector 𝑥 > 0 such that 𝐴𝑥 < 𝛼𝑥,
then 𝜌(𝐴) < 𝛼.

Definition 2 (see [24]). Let 𝐴 ∈ 𝑅𝑛×𝑛. It is called an
(1) L-matrix if 𝑎

𝑖𝑖
> 0 for 𝑖 = 1, 2, . . . , 𝑛, and 𝑎

𝑖𝑗
≤ 0 for

𝑖 ̸= 𝑗, 𝑖, 𝑗 = 1, 2, . . . , 𝑛;
(2) 𝑀-matrix if it is a nonsingular 𝐿-matrix satisfying

𝐴
−1

≥ 0;
(3) 𝐻-matrix if ⟨𝐴⟩ is an𝑀-matrix.

Lemma 3 (see [13]). If 𝐴 is an𝐻-matrix, then

(1) |𝐴−1| ≤ ⟨𝐴⟩−1;
(2) there exists a diagonal matrix 𝑃whose diagonal entries

are positive such that ⟨𝐴⟩𝑃𝑒 > 0with 𝑒 = (1, 1, . . . , 1)𝑇.

Lemma4 (see [13]). Let𝐴 be an𝑀-matrix and let the splitting
𝐴 = 𝑀 − 𝑁 be an 𝑀-splitting. If 𝑃 is the diagonal matrix
defined in Lemma 3, then ‖𝑃−1𝑀−1𝑁𝑃‖

∞
< 1.

Finally, a sequence of sets 𝑃
𝑖
with 𝑃

𝑖
⊆ {1, . . . , 𝑠} is

admissible if every integer 1, 2, . . . , 𝑠 appears infinitely often
in the 𝑃

𝑖
, while such an admissible sequence is regulated if

there exists a positive integer 𝑇 such that each of the integers
appears at least once in any𝑇 consecutive sets of the sequence.

3. Relaxed Matrix Multisplitting Parallel
Chaotic Methods

Using the given models in [7, 11, 13] and (4), we may describe
the corresponding three algorithms of relaxed matrix mul-
tisplitting chaotic GUSAOR-style methods, which are as
follows.
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Algorithm 5 (given the initial vector). For 𝑘 = 0, 1, . . .,
until convergence. Parallel computing the following iterative
scheme

𝑥
(𝑘+1)

=

𝑠

∑

𝑙=1

𝐸
𝑙
(𝐻GUSAOR)

𝜇𝑙,𝑘

𝑙
(𝑥
(𝑘)

) ,

(𝐻GUSAOR)𝑙 (𝑥
(𝑘)

) = 𝐻(𝛽, 𝜓)
𝑙
𝐻(𝛼, 𝜙)

𝑙
𝑥
(𝑘)

+ (𝐺GUSAOR)𝑙𝑏,

𝐻(𝛼, 𝜙)
𝑙
= (𝐼 − 𝛼𝜙𝐿

𝑙
)
−1

[𝐼 − 𝜙 + (1 − 𝛼) 𝜙𝐿
𝑙
+ 𝜙𝑈
𝑙
] ,

𝐻(𝛽, 𝜓)
𝑙
= (𝐼 − 𝛽𝜓𝑈

𝑙
)
−1

[𝐼 − 𝜓 + (1 − 𝛽)𝜓𝑈
𝑙
+ 𝜓𝐿
𝑙
] ,

(𝐺GUSAOR)𝑙 = (𝐼 − 𝛽𝜓𝑈𝑙)
−1

× [2𝐼 − 𝜓 + (𝜓 − 𝛼𝜙) 𝐿
𝑙
+ (1 − 𝛽)𝜓𝑈

𝑙
]

× (𝐼 − 𝛼𝜙𝐿
𝑙
)
−1

,

(8)

with 𝛼 ≥ 0, 𝛽 ≥ 0, 𝛽
𝑖
> 0, 𝛾

𝑖
> 0, and 𝜇

𝑙,𝑘
≥ 1, where

(𝐻GUSAOR)
𝜇𝑙,𝑘

𝑙
is the 𝜇

𝑙,𝑘
th composition of the affine mapping

satisfying

(𝐻GUSAOR)
𝜇𝑙,𝑘

𝑙
= {

(𝐻GUSAOR)𝑙 ⋅ ⋅ ⋅ (𝐻GUSAOR)𝑙, 𝜇
𝑙,𝑘
≥ 1,

𝐼, 𝜇
𝑙,𝑘
= 0,

𝐵 = 𝐿
𝑙
+ 𝑈
𝑙
, 𝑙 = 1, 2, . . . , 𝑠.

(9)

Remark 6. In Algorithm 5, by using a suitable positive
relaxed parameter 𝜔, then we can get the following relaxed
Algorithm 7.

Algorithm 7 (given the initial vector). For 𝑘 = 0, 1, . . .,
until convergence. Parallel computing the following iterative
scheme

𝑥
(𝑘+1)

= 𝜔

𝑠

∑

𝑙=1

𝐸
𝑙
(𝐻GUSAOR)

𝜇𝑙,𝑘

𝑙
(𝑥
(𝑘)

) + (1 − 𝜔) 𝑥
(𝑘)

, (10)

with 𝜔 > 0, 𝛼 ≥ 0, 𝛽 ≥ 0, 𝛽
𝑖
> 0, 𝛾

𝑖
> 0, and 𝜇

𝑙,𝑘
≥ 1, where

(𝐻GUSAOR)
𝜇𝑙,𝑘

𝑙
(𝑥
(𝑘)

) is defined such as Algorithm 5.

Remark 8. In Algorithm 7, we assume that the index
sequence {𝑃

𝑖
} is admissible and regulated; then we can get

the following Algorithm 9 with the case of relaxed chaotic
GUSAOR method.

Algorithm 9 (given the initial vector). For 𝑘 = 0, 1, . . .,
until convergence. Parallel computing the following iterative
scheme

𝑥
(𝑘+1)

= (𝐼 − 𝜔) ∑

𝑙∈𝑃𝑖

𝐸
𝑙

+ 𝜔∑

𝑙∈𝑃𝑖

𝐸
𝑙
(𝐻GUSAOR)

𝜇𝑙,𝑘

𝑙
(𝑥
(𝑘−𝑟𝑘+1)) ,

(11)

with 𝜔 > 0, 𝛼 ≥ 0, 𝛽 ≥ 0, 𝛽
𝑖
> 0, 𝛾

𝑖
> 0, 𝜇

𝑙,𝑘
≥ 1,

and 𝑃
𝑖
⊆ {1, . . . , 𝑠}, where (𝐻GUSAOR)𝑙(𝑥

(𝑘)

) of Algorithm 5
are replaced by (𝐻GUSAOR)𝑙(𝑥

(𝑘−𝑟𝑘+1)) and 𝑥
(𝑘−𝑟𝑘+1) =

(𝑥
(𝑘−𝑟(1,𝑘))

1
, 𝑥
(𝑘−𝑟(2,𝑘))

2
, . . . , 𝑥

(𝑘−𝑟(𝑛,𝑘))

𝑛
)
𝑇.

Remark 10. Relaxed matrix multisplitting chaotic GUSAOR-
stylemethods introducemore relaxed factors, so ourmethods
are the generalization of [5, 12, 13]. The parameters can be
adjusted suitably so that the convergence property of method
can be substantially improved.

Using Lemmas 3 and 4, we can get the following conver-
gence result according to Algorithm 5.

Theorem 11. Let𝐴 ∈ 𝑅𝑛×𝑛 be an𝐻-matrix and (𝐼−𝐿
𝑙
, 𝑈
𝑙
, 𝐸
𝑙
),

𝑙 = 1, 2, . . . , 𝑠, a multisplitting of 𝐴. Assume that for 𝑙 =
1, 2, . . . , 𝑠, we have the following.

(1) 𝐿
𝑙
are the strictly lower triangular matrices and 𝑈

𝑙
are

the matrices such that the equalities 𝐴 = 𝐼 − 𝐿
𝑙
− 𝑈
𝑙

hold.
(2) ⟨𝐴⟩ = |𝐼|−|𝐿

𝑙
|−|𝑈
𝑙
| = |𝐼|−|𝐵|, where |𝐵| = |𝐿

𝑙
|+|𝑈
𝑙
|.

Then the sequence {𝑥(𝑘)} generated byAlgorithm 5 converges for
any initial 𝑥(0) if and only if (𝛼, 𝛽, 𝛽

𝑖
, 𝛾
𝑖
), 𝑖 = 1, 2, . . . 𝑛 ∈ 𝑊

1
,

𝜌 = (|𝐵|), where

𝑊
1
= { (𝛼, 𝛽, 𝛽

𝑖
, 𝛾
𝑖
) ∈ 𝑅
4

: 0 ≤ 𝛼, 𝛽 ≤ 1,

0 < 𝛽
𝑖
, 𝛾
𝑖
<

2

1 + 𝜌
, 𝑖 = 1, 2, . . . , 𝑛} .

(12)

Proof. Define the iteration matrix in Algorithm 5

(𝐻GUSAOR)𝑘 =
𝑠

∑

𝑙=1

𝐸
𝑙
{𝐻(𝛽, 𝜓)

𝑙
𝐻(𝛼, 𝜙)

𝑙
}
𝜇𝑙,𝑘
, (13)

where

𝐻(𝛼, 𝜙)
𝑙
= (𝐼 − 𝛼𝜙𝐿

𝑙
)
−1

[𝐼 − 𝜙 + (1 − 𝛼) 𝜙𝐿
𝑙
+ 𝜙𝑈
𝑙
] ,

𝐻(𝛽, 𝜓)
𝑙
= (𝐼 − 𝛽𝜓𝑈

𝑙
)
−1

[𝐼 − 𝜓 + (1 − 𝛽)𝜓𝑈
𝑙
+ 𝜓𝐿
𝑙
] .

(14)

Obviously, we have to find a constant 𝜎 with 0 ≤ 𝜎 < 1 and
some norm, which are independent of 𝑘, such that for 𝑘 ≥ 1, ‖
𝐻GUSAOR(𝛼, 𝛽, 𝜙, 𝜓)𝑘 ‖≤ 𝜎.

We first note that the matrices 𝐼 − 𝛼𝜙𝐿
𝑙
and 𝐼 − 𝛽𝜓𝑈

𝑙
are

𝐻-matrices for 𝑙 = 1, 2, . . . , 𝑠. Thus by Lemma 3 we have the
following inequalities:


(𝐼 − 𝛼𝜙𝐿

𝑙
)
−1

≤ ⟨𝐼 − 𝛼𝜙𝐿
𝑙
⟩
−1

= (𝐼 − 𝛼𝜙
𝐿 𝑙
)
−1

,


(𝐼 − 𝛽𝜓𝑈

𝑙
)
−1

≤ ⟨𝐼 − 𝛽𝜓𝑈
𝑙
⟩
−1

= (𝐼 − 𝛽𝜓
𝑈𝑙
)
−1

.

(15)

From this relation, it follows that

𝐻(𝛽, 𝜓)𝑙
𝐻(𝛼, 𝜙)

𝑙

 =

(𝐼 − 𝛽𝜓𝑈

𝑙
)
−1

× [𝐼 − 𝜓 + (1 − 𝛽)𝜓𝑈
𝑙
+ 𝜓𝐿
𝑙
]

× (𝐼 − 𝛼𝜙𝐿
𝑙
)
−1

× [𝐼 − 𝜙 + (1 − 𝛼) 𝜙𝐿
𝑙
+ 𝜙𝑈
𝑙
]
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≤ ⟨𝐼 − 𝛽𝜓𝑈
𝑙
⟩
−1

×
𝐼 − 𝜓 + (1 − 𝛽)𝜓𝑈𝑙 + 𝜓𝐿 𝑙



× ⟨𝐼 − 𝛼𝜙𝐿
𝑙
⟩
−1

×
𝐼 − 𝜙 + (1 − 𝛼) 𝜙𝐿 𝑙 + 𝜙𝑈𝑙



≤ (𝐼 − 𝛽𝜓
𝑈𝑙
)
−1

× [
𝐼 − 𝜓

 +
1 − 𝛽

 𝜓
𝑈𝑙
 + 𝜓

𝐿 𝑙
]

× (𝐼 − 𝛼𝜙
𝐿 𝑙
)
−1

× [
𝐼 − 𝜙

 + |1 − 𝛼| 𝜙
𝐿 𝑙
 + 𝜙

𝑈𝑙
] .

(16)

Case 1. Let 0 < 𝛽
𝑖
≤ 1, 0 < 𝛾

𝑖
≤ 1, 𝑖 = 1, 2, . . . , 𝑛. Then

𝐼 − 𝜓
 +
1 − 𝛽

 𝜓
𝑈𝑙
 + 𝜓

𝐿 𝑙


= 𝐼 − 𝜓 + 𝜓
𝑈𝑙
 − 𝛽𝜓

𝑈𝑙
 + 𝜓

𝐿 𝑙
 .

𝐼 − 𝜙
 + |1 − 𝛼| 𝜙

𝐿 𝑙
 + 𝜙

𝑈𝑙


= 𝐼 − 𝜙 + 𝜙
𝐿 𝑙
 − 𝛼𝜙

𝐿 𝑙
 + 𝜙

𝑈𝑙
 .

(17)

Define

𝑀
1

𝑙
(𝛽, 𝜓) = 𝐼 − 𝛽𝜓

𝑈𝑙
 , 𝑀

2

𝑙
(𝛼, 𝜙) = 𝐼 − 𝛼𝜙

𝐿 𝑙
 ,

𝑁
1

𝑙
(𝛽, 𝜓) =

𝐼 − 𝜓
 + (1 − 𝛽)𝜓

𝑈𝑙
 + 𝜓

𝐿 𝑙
 ,

𝑁
2

𝑙
(𝛼, 𝜙) =

𝐼 − 𝜙
 + (1 − 𝛼) 𝜙

𝐿 𝑙
 + 𝜙

𝑈𝑙
 .

(18)

So, for 𝑙 = 1, 2, . . . , 𝑠, we have the following relations

𝑀
1

𝑙
(𝛽, 𝜓) − 𝑁

1

𝑙
(𝛽, 𝜓) = 𝜓 − 𝜓

𝑈𝑙
 − 𝜓

𝐿 𝑙


= 𝜓 (𝐼 − |𝐵|) .

𝑀
2

𝑙
(𝛼, 𝜙) − 𝑁

2

𝑙
(𝛼, 𝜙) = 𝜙 − 𝜙

𝐿 𝑙
 − 𝜙

𝑈𝑙


= 𝜙 (𝐼 − |𝐵|) .

(19)

Since for 𝑙 = 1, 2, . . . , 𝑠,𝑀1
𝑙
(𝛽, 𝜓) and𝑀2

𝑙
(𝛼, 𝜙) are both

𝑀-matrices and 𝑁1
𝑙
(𝛽, 𝜓) ≥ 0, 𝑁2

𝑙
(𝛼, 𝜙) ≥ 0, the splittings

𝑀
1

𝑙
(𝛽, 𝜓)−𝑁

1

𝑙
(𝛽, 𝜓) and𝑀2

𝑙
(𝛼, 𝜙)−𝑁

2

𝑙
(𝛼, 𝜙) are𝑀-splittings

of𝜓(𝐼−|𝐵|) and𝜙(𝐼−|𝐵|), respectively, which are𝑀-matrices.
So, from Lemma 4 we may complete the proving courses,
which are listed subsequently.

Case 2. Let 1 < 𝛽
𝑖
< 2/(1+𝜌), 1 < 𝛾

𝑖
< 2/(1+𝜌), 𝑖 = 1, 2, . . . , 𝑛.

Assume that 𝛽max = max
1≤𝑖≤𝑛

{𝛽
𝑖
}, 𝛾max = max

1≤𝑖≤𝑛
{𝛾
𝑖
}.

Then we have

𝐼 − 𝜓
 + (1 − 𝛽)𝜓

𝑈𝑙
 + 𝜓

𝐿 𝑙


≤ (𝛾max − 1) 𝐼 + (1 − 𝛽) 𝛾max
𝑈𝑙
 + 𝛾max

𝐿 𝑙
 ,

𝐼 − 𝜙
 + (1 − 𝛼) 𝜙

𝐿 𝑙
 + 𝜙

𝑈𝑙


≤ (𝛽max − 1) 𝐼 + (1 − 𝛼) 𝛽max
𝐿 𝑙
 + 𝛽max

𝑈𝑙
 ,

(𝐼 − 𝛽𝜓
𝑈𝑙
)
−1

≤ (𝐼 − 𝛽𝛾max
𝑈𝑙
)
−1

,

(𝐼 − 𝛼𝜙
𝐿 𝑙
)
−1

≤ (𝐼 − 𝛼𝛽max
𝐿 𝑙
)
−1

.

(20)
Similar to Case 1, we define
𝑀
3

𝑙
(𝛽, 𝛾max) = 𝐼 − 𝛽𝛾max

𝑈𝑙
 ,

𝑀
4

𝑙
(𝛼, 𝛽max) = 𝐼 − 𝛼𝛽max

𝐿 𝑙
 ,

𝑁
3

𝑙
(𝛽, 𝛾max) = (𝛾max − 1) 𝐼 + (1 − 𝛽) 𝛾max

𝑈𝑙
 + 𝛾max

𝐿 𝑙
 ,

𝑁
4

𝑙
(𝛼, 𝛽max) = (𝛽max − 1) 𝐼 + (1 − 𝛼) 𝛽max

𝐿 𝑙
 + 𝛽max

𝑈𝑙
 .

(21)

Then
𝑀
3

𝑙
(𝛽, 𝛾max) − 𝑁

3

𝑙
(𝛽, 𝛾max) = (2 − 𝛽) 𝐼 − 𝛽 |𝐵| ,

𝑀
4

𝑙
(𝛼, 𝛽max) − 𝑁

4

𝑙
(𝛼, 𝛽max) = (2 − 𝛼) 𝐼 − 𝛼 |𝐵| .

(22)

It is clear, (2 − 𝛽)𝐼 − 𝛽|𝐵| and (2 − 𝛼)𝐼 − 𝛼|𝐵| are both
𝑀-matrices. Since, for 𝑙 = 1, 2, . . . , 𝑠,𝑀1

𝑙
(𝛽, 𝜓) and𝑀2

𝑙
(𝛼, 𝜙)

are𝑀-matrices,𝑁1
𝑙
(𝛽, 𝜓) ≥ 0 and𝑁2

𝑙
(𝛼, 𝜙) ≥ 0, the splittings

𝑀
1

𝑙
(𝛽, 𝜓)−𝑁

1

𝑙
(𝛽, 𝜓) and𝑀2

𝑙
(𝛼, 𝜙)−𝑁

2

𝑙
(𝛼, 𝜙) are𝑀-splittings

of thematrices (2−𝛽)𝐼−𝛽|𝐵| and (2−𝛼)𝐼−𝛼|𝐵|, respectively.
Thus, for Cases 1 and 2, from Lemma 4, we have

𝑃
−1

1
(𝑀
1

𝑙
)
−1

(𝛽, 𝜓)𝑁
1

𝑙
(𝛽, 𝜓) 𝑃

1

∞
< 1, 𝑙 = 1, 2, . . . , 𝑠,


𝑃
−1

2
(𝑀
2

𝑙
)
−1

(𝛼, 𝜙)𝑁
2

𝑙
(𝛼, 𝜙) 𝑃

2

∞
< 1, 𝑙 = 1, 2, . . . , 𝑠,

(23)
So
𝑃
−1

1

(𝐻GUSAOR)𝑘
 𝑃1𝑒

=

𝑠

∑

𝑙=1

𝐸
𝑙
{𝑃
−1

1
𝐻(𝛽, 𝜓)

𝑙
𝐻(𝛼, 𝜙)

𝑙
𝑃
1
}
𝜇𝑙,𝑘

𝑒

≤

𝑠

∑

𝑙=1

𝐸
𝑙
{𝑃
−1

1
(𝑀
1

𝑙
)
−1

(𝛽, 𝜓)𝑁
1

𝑙
(𝛽, 𝜓) (𝑀

2

𝑙
)
−1

× (𝛼, 𝜙)𝑁
2

𝑙
(𝛼, 𝜙) 𝑃

1
}

𝜇𝑙,𝑘

𝑒

=

𝑠

∑

𝑙=1

𝐸
𝑙
{𝑃
−1

1
(𝑀
1

𝑙
)
−1

(𝛽, 𝜓)𝑁
1

𝑙
(𝛽, 𝜓)

× 𝑃
1
𝑃
−1

1
𝑃
2
𝑃
−1

2
(𝑀
2

𝑙
)
−1

× (𝛼, 𝜙)𝑁
2

𝑙
(𝛼, 𝜙) 𝑃

2
𝑃
−1

2
𝑃
1
}

𝜇𝑙,𝑘

𝑒

= max
1≤𝑙≤𝑠

{

𝑃
−1

1
(𝑀
1

𝑙
)
−1

(𝛽, 𝜓)𝑁
1

𝑙
(𝛽, 𝜓) 𝑃

1

∞

×

𝑃
−1

2
(𝑀
2

𝑙
)
−1

(𝛼, 𝜙)𝑁
2

𝑙
(𝛼, 𝜙) 𝑃

2

∞
} 𝑒.

(24)
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which implies

𝑃
−1

1
(𝐻GUSAOR)𝑘𝑃1

∞

≤ max
1≤𝑙≤𝑠

{

𝑃
−1

1
(𝑀
1

𝑙
)
−1

(𝛽, 𝜓)𝑁
1

𝑙
(𝛽, 𝜓) 𝑃

1

∞

×

𝑃
−1

2
(𝑀
2

𝑙
)
−1

(𝛼, 𝜙)𝑁
2

𝑙
(𝛼, 𝜙) 𝑃

2

∞
}

< 1,

(𝐻GUSAOR)𝑘
 𝑃1𝑒

= 𝑃
1
(𝑃
−1

1

𝐻GUSAOR(𝛼, 𝛽, 𝜙, 𝜓)𝑘
 𝑃1) 𝑒

≤ 𝑃
1


𝑃
−1

1
𝐻GUSAOR(𝛼, 𝛽, 𝜙, 𝜓)𝑘𝑃1

∞
𝑒

≤ max
1≤𝑙≤𝑠

{

𝑃
−1

1
(𝑀
1

𝑙
)
−1

(𝛽, 𝜓)𝑁
1

𝑙
(𝛽, 𝜓) 𝑃

1

∞

×

𝑃
−1

2
(𝑀
2

𝑙
)
−1

(𝛼, 𝜙)𝑁
2

𝑙
(𝛼, 𝜙) 𝑃

2

∞
} 𝑃
1
𝑒.

(25)

If we define

𝜎 = max
1≤𝑙≤𝑠

{

𝑃
−1

1
(𝑀
1

𝑙
)
−1

(𝛽, 𝜓)𝑁
1

𝑙
(𝛽, 𝜓) 𝑃

1

∞

×

𝑃
−1

2
(𝑀
2

𝑙
)
−1

(𝛼, 𝜙)𝑁
2

𝑙
(𝛼, 𝜙) 𝑃

2

∞
} .

(26)

Then we have
(𝐻GUSAOR)𝑘

 ≤ 𝜎 < 1. (27)

According to Algorithm 7, we can also get the following
result.

Theorem 12. Let𝐴 ∈ 𝑅𝑛×𝑛 be an𝐻-matrix and (𝐼−𝐿
𝑙
, 𝑈
𝑙
, 𝐸
𝑙
),

𝑙 = 1, 2, . . . , 𝑠, a multisplitting of 𝐴. Assume that for 𝑙 =
1, 2, . . . , 𝑠, we have the following.

(1) 𝐿
𝑙
are the strictly lower triangular matrices and 𝑈

𝑙
are

the matrices such that the equalities 𝐴 = 𝐼 − 𝐿
𝑙
− 𝑈
𝑙

hold.
(2) ⟨𝐴⟩ = |𝐼|−|𝐿

𝑙
|−|𝑈
𝑙
| = |𝐼|−|𝐵|, where |𝐵| = |𝐿

𝑙
|+|𝑈
𝑙
|.

(3) 𝑃 is diagonal matrix defined in Lemma 3 and
𝑀
1

𝑙
(𝛽, 𝜓), 𝑁

1

𝑙
(𝛽, 𝜓), 𝑀

2

𝑙
(𝛼, 𝜙), and 𝑁

2

𝑙
(𝛼, 𝜙) in

Theorem 11.
Then the sequence {𝑥

(𝑘)

} generated by Algorithm 7 con-
verges for any initial 𝑥(0) if and only if (𝛼, 𝛽, 𝛽

𝑖
, 𝛾
𝑖
, 𝜔),

𝑖 = 1, 2, . . . , 𝑛 ∈ 𝑊
2
, with 𝜌 = (|𝐵|) and 𝜃 =

max
1≤𝑙≤𝑠

{‖𝑃
−1

1
(𝑀
1

𝑙
)
−1

(𝛽, 𝜓)𝑁
1

𝑙
(𝛽, 𝜓)𝑃

1
‖
∞
‖𝑃
−1

2
(𝑀
2

𝑙
)
−1

(𝛼, 𝜙)𝑁
2

𝑙
(𝛼, 𝜙)𝑃

2
‖
∞
}, where

𝑊
2
= { (𝛼, 𝛽, 𝛽

𝑖
, 𝛾
𝑖
, 𝜔) ∈ 𝑅

5

: 0 ≤ 𝛼, 𝛽 ≤ 1, 0 < 𝛽
𝑖
,

𝛾
𝑖
<

2

1 + 𝜌
, 0 < 𝜔 <

2

1 + 𝜃
, 𝑖 = 1, 2, . . . , 𝑛.} .

(28)

Proof. Define the iteration matrix in Algorithm 7

(𝐻GUSAOR)𝑘 = 𝜔(𝐻GUSAOR)𝑘 + (1 − 𝜔) 𝐼, (29)

where

(𝐻GUSAOR)𝑘 =
𝑠

∑

𝑙=1

𝐸
𝑙
{𝐻(𝛽, 𝜓)

𝑙
𝐻(𝛼, 𝜙)

𝑙
}
𝜇𝑙,𝑘
.

𝐻(𝛼, 𝜙)
𝑙
= (𝐼 − 𝛼𝜙𝐿

𝑙
)
−1

[𝐼 − 𝜙 + (1 − 𝛼) 𝜙𝐿
𝑙
+ 𝜙𝑈
𝑙
] ,

𝐻(𝛽, 𝜓)
𝑙
= (𝐼 − 𝛽𝜓𝑈

𝑙
)
−1

[𝐼 − 𝜓 + (1 − 𝛽)𝜓𝑈
𝑙
+ 𝜓𝐿
𝑙
] .

(30)

Obviously, similar to Theorem 11 we only need to find a
constant 𝜎 with 0 ≤ 𝜎 < 1, which is independent of 𝑘, such
that 𝐾 = ‖𝑃

−1

1
𝐻
𝐺𝑈𝑆𝐴𝑂𝑅

(𝛼, 𝛽, 𝜙, 𝜓, 𝜔)
𝑘
𝑃
1
‖
∞
≤ 𝜎. From the

proof of Theorem 11, we can get

𝐾 ≤ 𝜔

𝑃
−1

1
(𝐻GUSAOR)𝑘𝑃1

∞
+ |1 − 𝜔|

≤ 𝜔max
1≤𝑙≤𝑠

{

𝑃
−1

1
(𝑀
1

𝑙
)
−1

(𝛽, 𝜓)𝑁
1

𝑙
(𝛽, 𝜓) 𝑃

1

∞

×

𝑃
−1

2
(𝑀
2

𝑙
)
−1

(𝛼, 𝜙)𝑁
2

𝑙
(𝛼, 𝜙) 𝑃

2

∞
}

+ |1 − 𝜔|

= 𝜔𝜃 + |1 − 𝜔| .

(31)

Now let 𝜎 denote the last item in above inequalities. Clearly,
if 0 < 𝛽

𝑖
< 2/(1 + 𝜌), 0 < 𝛾

𝑖
< 2/(1 + 𝜌), 0 < 𝜔 < 2/(1 + 𝜃),

then

(𝐻GUSAOR)𝑘
 ≤ 𝜎 < 1. (32)

Using the proving process of Theorems 11 and 12 and [13,
Theorem 2.8] we have the following convergence result about
Algorithm 9.

Theorem 13. Let𝐴 ∈ 𝑅𝑛×𝑛 be an𝐻-matrix and (𝐼−𝐿
𝑙
, 𝑈
𝑙
, 𝐸
𝑙
),

𝑙 = 1, 2, . . . , 𝑠, a multisplitting of 𝐴. Assume that for 𝑙 =
1, 2, . . . , 𝑠, we have the following.

(1) 𝐿
𝑙
are the strictly lower triangular matrices and 𝑈

𝑙
are

the matrices such that the equalities 𝐴 = 𝐼 − 𝐿
𝑙
− 𝑈
𝑙

hold.
(2) ⟨𝐴⟩ = |𝐼|−|𝐿

𝑙
|−|𝑈
𝑙
| = |𝐼|−|𝐵|, where |𝐵| = |𝐿

𝑙
|+|𝑈
𝑙
|.

(3) 𝑃 is diagonal matrix defined in Lemma 3 and
𝑀
1

𝑙
(𝛽, 𝜓), 𝑁

1

𝑙
(𝛽, 𝜓), 𝑀

2

𝑙
(𝛼, 𝜙) and 𝑁

2

𝑙
(𝛼, 𝜙) in

Theorem 11.
(4) The index sequence {𝑃

𝑖
} is admissible and regulated.

Then the sequence {𝑥
(𝑘)

} generated by Algorithm 9
converges for any initial 𝑥(0) if and only if (𝛼, 𝛽, 𝛽

𝑖
, 𝛾
𝑖
, 𝜔),

𝑖 = 1, 2, . . . 𝑛 ∈ 𝑊
3
, with 𝜌 = (|𝐵|) and
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𝜃 = max
1≤𝑙≤𝑠

{‖𝑃
−1

1
(𝑀
1

𝑙
)
−1

(𝛽, 𝜓)𝑁
1

𝑙
(𝛽, 𝜓)𝑃

1
‖
∞
‖𝑃
−1

2
(𝑀
2

𝑙
)
−1

(𝛼, 𝜙)𝑁
2

𝑙
(𝛼, 𝜙)𝑃

2
‖
∞
}, where

𝑊
3
= { (𝛼, 𝛽, 𝛽

𝑖
, 𝛾
𝑖
, 𝜔) ∈ 𝑅

5

: 0 ≤ 𝛼, 𝛽 ≤ 1, 0 < 𝛽
𝑖
,

𝛾
𝑖
<

2

1 + 𝜌
, 0 < 𝜔 <

2

1 + 𝜃
, 𝑖 = 1, 2, . . . , 𝑛.} .

(33)

Remark 14. It is known that an 𝑀-matrix or a symmetric
positive definite 𝐿-matrix is also 𝐻-matrix. Therefore, the
convergence results in Theorems 11, 12, and 13 are valid.

Remark 15. Since a strictly or an irreducible diagonally dom-
inant matrix is also satisfying the condition of Theorems 11,
12, and 13, ourmethods are also valid for these kinds ofmatri-
ces. Furthermore, for strictly or irreducible diagonally dom-
inant matrices, ‖𝐵‖

∞
can take the place of 𝜌 in Theorems 11,

12, and 13.

4. Applied Convergence of
Relaxed Chaotic Methods

In Theorems 12 and 13 of this paper, we find that 𝜃 is difficult
to compute when carrying out numerical experiments. So
for irreducible diagonally dominant matrices, we also have
the following applied results of convergence according to
Algorithms 7 and 9, respectively.

Theorem 16. Let 𝐴 ∈ 𝑅
𝑛×𝑛 be an irreducible diagonally

dominant matrix and (𝐼 − 𝐿
𝑙
, 𝑈
𝑙
, 𝐸
𝑙
), 𝑙 = 1, 2, . . . , 𝑠, a

multisplitting of 𝐴. Assume that for 𝑙 = 1, 2, . . . , 𝑠, we have the
following.

(1) 𝐿
𝑙
are the strictly lower triangular matrices and 𝑈

𝑙
are

the matrices such that the equalities 𝐴 = 𝐼 − 𝐿
𝑙
− 𝑈
𝑙

hold.

(2) ⟨𝐴⟩ = |𝐼|−|𝐿
𝑙
|−|𝑈
𝑙
| = |𝐼|−|𝐵|, where |𝐵| = |𝐿

𝑙
|+|𝑈
𝑙
|.

(3) 𝑃 is diagonal matrix defined in Lemma 3 and
𝑀
1

𝑙
(𝛽, 𝜓), 𝑁

1

𝑙
(𝛽, 𝜓), 𝑀

2

𝑙
(𝛼, 𝜙), and 𝑁

2

𝑙
(𝛼, 𝜙) in

Theorem 11.

Then the sequence {𝑥(𝑘)} generated by Algorithm 7 converges
for any initial 𝑥(0) if and only if (𝛼, 𝛽, 𝛽

𝑖
, 𝛾
𝑖
, 𝜔), 𝑖 = 1, 2, . . . , 𝑛 ∈

𝑊
4
, with 𝜃 = max

1≤𝑙≤𝑛
{(|1−𝛾

𝑖
|+𝛾
𝑖
‖𝐵‖
∞
)}max

1≤𝑙≤𝑛
{(|1−𝛽

𝑖
|+

𝛽
𝑖
‖𝐵‖
∞
)}, where

𝑊
4
= { (𝛼, 𝛽, 𝛽

𝑖
, 𝛾
𝑖
, 𝜔) ∈ 𝑅

5

: 0 ≤ 𝛼, 𝛽 ≤ 1, 0 < 𝛽
𝑖
,

𝛾
𝑖
<

2

1 + ‖𝐵‖
∞

, 0 < 𝜔 <
2

1 + 𝜃
} .

(34)

Proof. We only prove |(𝐻GUSAOR)𝑘|𝑥 < 𝜃


𝑥 (𝑘 = 1, 2, . . . , 0 ≤

𝜃


≤ 1). Let us define the iteration matrix in Algorithm 7

(𝐻GUSAOR)𝑘 = 𝜔(𝐻GUSAOR)𝑘 + (1 − 𝜔) 𝐼. (35)

From the proving process of Theorem 11, we may define

𝑇
1
= (𝐼 − 𝛽𝜓

𝑈𝑙
)
−1

[
𝐼 − 𝜓

 + (1 − 𝛽)𝜓
𝑈𝑙
 + 𝜓

𝐿 𝑙
] ,

𝑇
2
= (𝐼 − 𝛼𝜙

𝐿 𝑙
)
−1

[
𝐼 − 𝜙

 + (1 − 𝛼) 𝜙
𝐿 𝑙
 + 𝜙

𝑈𝑙
] .

(36)

At first, we need to prove 𝜌(𝑇
1
) < 1. Similarly, we may also

prove 𝜌(𝑇
2
) < 1. Assume that

0 ≤ 𝛼, 𝛽 ≤ 1,

0 < 𝛽
𝑖
, 𝛾

𝑖
<

2

1 + 𝜌
.

(37)

With (36), we know that 𝑇
1
is nonnegative, so according to

[24, Theorem 2.7], there exists an eigenvector 𝑥 ≥ 0, 𝑥 ̸= 0,
such that 𝑇

1
𝑥 = 𝜌(𝑇

1
)𝑥 hold; that is,

[
𝐼 − 𝜓

 + (1 − 𝛽)𝜓
𝑈𝑙
 + 𝜓

𝐿 𝑙
] 𝑥 = 𝜌 (𝑇1) (𝐼 − 𝛽𝜓

𝑈𝑙
) 𝑥.

(38)

Multiplying by 𝜓−1, it holds that

[𝜌 (𝑇
1
) 𝜓
−1

−

𝐼 − 𝜓
−1

] 𝑥 = {[1 − 𝛽 + 𝛽𝜌 (𝑇

1
)]
𝑈𝑙
 +
𝐿 𝑙
} 𝑥.

(39)

As [1 − 𝛽 + 𝛽𝜌(𝑇
1
)]|𝑈
𝑙
| + |𝐿

𝑙
| ≥ 0, it follows by [5, Theorem

11] that

min
1≤𝑙≤𝑛

{𝛾
−1

𝑖
𝜌 (𝑇
1
) −


1 − 𝛾
−1

𝑖


}

≤ 𝜌 ([1 − 𝛽 + 𝛽𝜌 (𝑇
1
)]
𝑈𝑙
 +
𝐿 𝑙
) .

(40)

From the proof of [3, Theorem 3.1], we have 𝜌(𝑇
1
) < 1,

0 ≤ 1 − 𝛽 + 𝛽𝜌(𝑇
1
) < 1. Since the matrices 𝐴, 𝐵, and

[1 − 𝛽 + 𝛽𝜌(𝑇
1
)]|𝑈
𝑙
| + |𝐿

𝑙
| are irreducible, by [24, Theorem

2.1], it follows that

𝜌 ([1 − 𝛽 + 𝛽𝜌 (𝑇
1
)]
𝑈𝑙
 +
𝐿 𝑙
) < 𝜌 (

𝐿 𝑙
 +
𝑈𝑙
)

= 𝜌 (|𝐵|) ≤ ‖𝐵‖
∞
.

(41)

With (40) and (41) and𝑀 being irreducible diagonally dom-
inant by rows, we have

𝜌 (𝑇
1
) < max
1≤𝑙≤𝑛

{
1 − 𝛾𝑖

 + 𝛾𝑖‖𝐵‖∞} . (42)

Notice that if 𝛾
𝑖
≤ 1, we may obtain

1 − 𝛾𝑖
 + 𝛾𝑖‖𝐵‖∞ = 1 − 𝛾𝑖 + 𝛾𝑖‖𝐵‖∞ < 1. (43)

While if 1 < 𝛾
𝑖
< 2/(1 + ‖𝐵‖

∞
), we also have

1 − 𝛾𝑖
 + 𝛾𝑖‖𝐵‖∞ = −1 + 𝛾𝑖 + 𝛾𝑖‖𝐵‖∞

= 𝛾
𝑖
(1 + ‖𝐵‖

∞
) − 1

<
2

1 + ‖𝐵‖
∞

(1 + ‖𝐵‖
∞
) − 1

= 1,

(44)
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From (42), (43), and (44), we can get

𝜌 (𝑇
1
) < max
1≤𝑙≤𝑛

{
1 − 𝛾𝑖

 + 𝛾𝑖‖𝐵‖∞} < 1,

𝜌 (𝑇
2
) < max
1≤𝑙≤𝑛

{
1 − 𝛽𝑖

 + 𝛽𝑖‖𝐵‖∞} < 1.

(45)

FromTheorem 11, we have

(𝐻GUSAOR)𝑘 ≤
(𝐻GUSAOR)𝑘



=



𝑠

∑

𝑙=1

𝐻(𝛽, 𝜓)
𝑙
𝐻(𝛼, 𝜙)

𝑙



≤

𝑠

∑

𝑙=1

𝐻(𝛽, 𝜓)𝑙


𝐻(𝛼, 𝜙)𝑙



≤

𝑠

∑

𝑙=1

𝑇
1
𝑇
2
.

(46)

From (35) and the above proof, we have

(𝐻GUSAOR)𝑘𝑥

≤ 𝜔
(𝐻GUSAOR)𝑘

 𝑥 + |1 − 𝜔| 𝑥

≤ 𝜔



𝑠

∑

𝑙=1

𝐸
𝑙
𝐻(𝛽, 𝜓)

𝑙
𝐻(𝛼, 𝜙)

𝑙



𝑥 + |1 − 𝜔| 𝑥

≤ 𝜔

𝑠

∑

𝑙=1

𝐸
𝑙

𝐻(𝛽, 𝜓)𝑙


𝐻(𝛼, 𝜙)𝑙

 𝑥 + |1 − 𝜔| 𝑥

≤

𝑠

∑

𝑙=1

𝐸
𝑙
𝑇
1
𝑇
2
𝑥 + |1 − 𝜔| 𝑥

= 𝜌 (𝑇
2
) 𝜔

𝑠

∑

𝑙=1

𝐸
𝑙
𝑇
1
𝑥 + |1 − 𝜔| 𝑥

= 𝜔𝜌 (𝑇
1
) 𝜌 (𝑇
2
)

𝑠

∑

𝑙=1

𝐸
𝑙
𝑥 + |1 − 𝜔| 𝑥

= 𝜔𝜌 (𝑇
1
) 𝜌 (𝑇
2
) 𝑥 + |1 − 𝜔| 𝑥

< 𝜔max
1≤𝑙≤𝑛

{
1 − 𝛾𝑖

 + 𝛾𝑖‖𝐵‖∞}

×max
1≤𝑙≤𝑛

{
1 − 𝛽𝑖

 + 𝛽𝑖‖𝐵‖∞} 𝑥 + |1 − 𝜔| 𝑥

= (𝜔𝜃


+ |1 − 𝜔|) 𝑥

= 𝜃


𝑥,

(47)

where 𝜃 = max
1≤𝑙≤𝑛

{|1 − 𝛾
𝑖
| + 𝛾
𝑖
‖𝐵‖
∞
}max
1≤𝑙≤𝑛

{|1 − 𝛽
𝑖
| +

𝛽
𝑖
‖𝐵‖
∞
}, 0 < 𝜔 < 2/(1 + 𝜃), 𝜃 = 𝜔𝜃 + |1 − 𝜔| < 1.

Remark 17. Obviously, convergence results ofTheorem 16 are
convenient for carrying out numerical experiments. Using
the proving process of Theorems 11 and 16 and [13, Theorem
2.8], we can get the following result about Algorithm 9.

Theorem 18. Let 𝐴 ∈ 𝑅
𝑛×𝑛 be an irreducible diagonally

dominant matrix and (𝐼 − 𝐿
𝑙
, 𝑈
𝑙
, 𝐸
𝑙
), 𝑙 = 1, 2, . . . , 𝑠, a

multisplitting of 𝐴. Assume that for 𝑙 = 1, 2, . . . , 𝑠, we have the
following.

(1) 𝐿
𝑙
are the strictly lower triangular matrices and 𝑈

𝑙
are

the matrices such that the equalities 𝐴 = 𝐼 − 𝐿
𝑙
− 𝑈
𝑙

hold.
(2) ⟨𝐴⟩ = |𝐼|−|𝐿

𝑙
|−|𝑈
𝑙
| = |𝐼|−|𝐵|, where |𝐵| = |𝐿

𝑙
|+|𝑈
𝑙
|.

(3) 𝑃 is diagonal matrix defined in Lemma 3 and
𝑀
1

𝑙
(𝛽, 𝜓), 𝑁

1

𝑙
(𝛽, 𝜓), 𝑀

2

𝑙
(𝛼, 𝜙), and 𝑁

2

𝑙
(𝛼, 𝜙) in

Theorem 11.
(4) The index sequence {𝑃

𝑖
} is admissible and regulated.

Then the sequence {𝑥(𝑘)} generated by Algorithm 9 converges
for any initial 𝑥(0) if and only if (𝛼, 𝛽, 𝛽

𝑖
, 𝛾
𝑖
, 𝜔), 𝑖 = 1, 2, . . . , 𝑛 ∈

𝑊
5
, with 𝜃 = max

1≤𝑙≤𝑛
{(|1−𝛾

𝑖
|+𝛾
𝑖
‖𝐵‖
∞
)}max

1≤𝑙≤𝑛
{(|1−𝛽

𝑖
|+

𝛽
𝑖
‖𝐵‖
∞
)}, where

𝑊
5
= { (𝛼, 𝛽, 𝛽

𝑖
, 𝛾
𝑖
, 𝜔) ∈ 𝑅

5

: 0 ≤ 𝛼, 𝛽 ≤ 1, 0 < 𝛽
𝑖
,

𝛾
𝑖
<

2

1 + ‖𝐵‖
∞

, 0 < 𝜔 <
2

1 + 𝜃
} .

(48)

Remark 19. As a special case, for the relaxed matrix multi-
splitting chaotic GSSOR-style methods, we have the corre-
sponding convergence results, where 𝛼 = 1, 𝛽 = 1, 𝜙 =

diag(𝛽
1
, 𝛽
2
, . . . , 𝛽

𝑛
), 𝜓 = diag(𝛾

1
, 𝛾
2
, . . . , 𝛾

𝑛
) with 𝛽

𝑖
≥ 0,

𝛾
𝑖
≥ 0 (𝑖 = 1, 2, . . . , 𝑛) and 𝜔 real parameters.

5. Numerical Examples

Example 1. By using difference discretization of partial differ-
ential equation, we can obtain the corresponding coefficient
matrix of the linear system (𝑛 = 6), which is as follows:

𝐴 =

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

1
−1

4
0 0 0 0

1 1
3

4
0 0 0

0
1

3
1
−1

3
0 0

0 0
3

4
1 1 0

0 0 0
1

4
1
−1

4

0 0 0 0 1 1

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

, 𝑏 =

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

3

4

11

4

3

11

4

1

2

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

. (49)

Now, we will apply the results of Theorem 16 according
to Algorithm 7. From Algorithm 7, we can get the iterative
matrix

𝐻 = 𝜔

𝑠

∑

𝑙=1

𝐸
𝑙
[𝐻(𝛽, 𝜓)

𝑙
𝐻(𝛼, 𝜙)

𝑙
] + (1 − 𝜔) . (50)

Here, we assume that 𝑠 = 3, 𝜇
𝑙,𝑘
≡ 1. By direct calculations

with Matlab 7.1, we have

‖𝐵‖
∞
= 1.75,

2

1 + ‖𝐵‖
∞

= 0.7273. (51)
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Table 1: Convergence results of Theorems 16 and 18.

(𝛼, 𝛽, 𝛽
𝑖
, 𝛾
𝑖
, 𝜔)

2

1 + ‖𝐵‖
∞

2

1 + 𝜃
𝜌(𝐻)

(0.2, 0.8, 0.6, 0.5, 1.1) 0.7273 1.3793 0.5711
(0.3, 0.8, 0.7, 0.5, 1.1) 0.7273 1.3115 0.6133
(0.4, 0.7, 0.6, 0.5, 0.8) 0.7273 1.3793 0.8365
(0.6, 0.5, 0.4, 0.6, 0.9) 0.7273 1.3793 0.69393
(0.8, 0.2, 0.3, 0.7, 1.1) 0.7273 1.3115 0.6053
(0.9, 0.1, 0.25, 0.65, 1.1) 0.7273 1.3445 0.7154

In Table 1, we show that convenience results of Section 4 are
convenience for carrying out numerical experiments, where
𝜌(𝐻) denote the spectral radius of iterative matrix𝐻:

𝐸
1
= diag (1, 1, 0, 0, 0, 0) , 𝐸

2
= diag (0, 0, 1, 1, 0, 0) ,

𝐸
3
= diag (0, 0, 0, 0, 1, 1) .

𝐿
1
=

[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

0 0 0 0 0 0

1

2
0 0 0 0 0

0
1

3
0 0 0 0

0 0
3

20
0 0 0

0 0 0
1

4
0 0

0 0 0 0 −0.4 0

]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

,

𝐿
2
=

[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

0 0 0 0 0 0

−
3

4
0 0 0 0 0

0
1

6
0 0 0 0

0 0
7

20
0 0 0

0 0 0
1

8
0 0

0 0 0 0 0.2 0

]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

,

𝐿
3
=

[
[
[
[
[
[
[
[
[

[

0 0 0 0 0 0

0.3 0 0 0 0 0

0 0.5 0 0 0 0

0 0 −0.3 0 0 0

0 0 0
3

40
0 0

0 0 0 0 0.4 0

]
]
]
]
]
]
]
]
]

]

,

𝑈
𝑙
= 𝐼 − 𝐿

𝑙
− 𝐴, 𝑙 = 1, 2, 3.

(52)

Remark 20. Obviously, 𝜃 of Theorems 16 and 18 is applied
and easily calculated when carrying out numerical experi-
ments.

Example 2. Consider a matrix 𝐴 ∈ 𝑅𝑛×𝑛 of the form

𝐴 =

[
[
[
[
[
[
[
[

[

1 0 0 ⋅ ⋅ ⋅ 0 −]
−] 1 0 ⋅ ⋅ ⋅ 0 0

0 −] 1 ⋅ ⋅ ⋅ 0 0

...
... d

...
...

...
0 0 0 ⋅ ⋅ ⋅ 1 0

0 0 0 ⋅ ⋅ ⋅ −] 1

]
]
]
]
]
]
]
]

]

=

[
[
[
[
[
[
[
[

[

1 0 0 ⋅ ⋅ ⋅ 0 0

0 1 0 ⋅ ⋅ ⋅ 0 0

0 0 1 ⋅ ⋅ ⋅ 0 0

...
... d

...
...

...
0 0 0 ⋅ ⋅ ⋅ 1 0

0 0 0 ⋅ ⋅ ⋅ 0 1

]
]
]
]
]
]
]
]

]

−

[
[
[
[
[
[
[
[

[

0 0 0 ⋅ ⋅ ⋅ 0 ]
] 0 0 ⋅ ⋅ ⋅ 0 0

0 ] 0 ⋅ ⋅ ⋅ 0 0

...
... d

...
...

...
0 0 0 ⋅ ⋅ ⋅ 0 0

0 0 0 ⋅ ⋅ ⋅ ] 0

]
]
]
]
]
]
]
]

]

,

(53)

where 𝜌(|𝐷|−1|𝐵|) = ], ] is a real number, satisfying |]| < 1.

In Theorem 11, let 0 ≤ 𝛼, 𝛽 ≤ 1, 0 < 𝛽
𝑖
, 𝛾
𝑖
< 2/(1 + ]), 𝑖 =

1, 2, . . . , 𝑛; then Algorithm 5 converges for any initial vector
𝑥
(0). In Theorems 12 and 13, let 0 ≤ 𝛼, 𝛽 ≤ 1, 0 < 𝛽

𝑖
, 𝛾
𝑖
<

2/(1 + ]), 0 < 𝜔 < 2/(1 + 𝜃), 𝑖 = 1, 2, . . . , 𝑛; then Algorithms
7 and 9 converge for any initial vector 𝑥(0). In Theorems 16
and 18, let 0 ≤ 𝛼, 𝛽 ≤ 1, 0 < 𝛽

𝑖
, 𝛾
𝑖
< 2/(1 + ]), 0 < 𝜔 <

2/(1 + 𝜃


), 𝑖 = 1, 2, . . . , 𝑛; then Algorithms 7 and 9 converge
for any initial vector 𝑥(0), where 𝜃 = max

1≤𝑙≤𝑛
{(|1 − 𝛾

𝑖
| +

]𝛾
𝑖
)}max

1≤𝑙≤𝑛
{(|1 − 𝛽

𝑖
| + ]𝛽

𝑖
)}.

If we choose ] = 1/5, in Theorem 11, let 0 ≤ 𝛼, 𝛽 ≤ 1,
0 < 𝛽

𝑖
, 𝛾
𝑖
< 5/3, 𝑖 = 1, 2, . . . , 𝑛; then Algorithm 5 converges

for any initial vector 𝑥(0). In Theorems 12 and 13, let 0 ≤ 𝛼,
𝛽 ≤ 1, 0 < 𝛽

𝑖
, 𝛾
𝑖
< 5/3, 0 < 𝜔 < 2/(1 + 𝜃), 𝑖 = 1, 2, . . . , 𝑛;

then Algorithms 7 and 9 converge for any initial vector 𝑥(0).
In Theorems 16 and 18, let 0 ≤ 𝛼, 𝛽 ≤ 1, 0 < 𝛽

𝑖
, 𝛾
𝑖
< 5/3,

0 < 𝜔 < 2/(1 + 𝜃


), 𝑖 = 1, 2, . . . , 𝑛; then Algorithms 7 and 9
converge for any initial vector 𝑥(0), where 𝜃 = max

1≤𝑙≤𝑛
{(|1−

𝛾
𝑖
| + (1/5)𝛾

𝑖
)}max

1≤𝑙≤𝑛
{(|1 − 𝛽

𝑖
| + (1/5)𝛽

𝑖
)}.

6. Conclusions

In this paper, we consider relaxed matrix parallel multi-
splitting chaotic GUSAOR-style methods for solving linear
systems of algebraic equations 𝐴𝑥 = 𝑏, in which the
coefficient 𝐴 is an 𝐻-matrix or an irreducible diagonally
dominant matrices, and analyze the convergence of our
methods, which use more relaxed factors and are the gen-
eralization of [11, 13, 14]. The parameters can be adjusted
suitably so that the convergence property of method can be
substantially improved. Furthermore, we further study some
applied convergence results of methods to be convenient for
carrying out numerical experiments. Finally, we give some
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applied examples, which show that our convergence results
are applied and easily calculatedwhen carrying out numerical
experiments.

Particularly, one may discuss how to choose the set of
relaxed parameters in order to really accelerate the conver-
gence of the considered method. Furthermore, The optimal
choice of this set of relaxed parameters is valuably studied.
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