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Circulantmatrices have become important tools in solving integrable system, Hamiltonian structure, and integral equations. In this
paper, we prove that Gaussian Fibonacci circulant type matrices are invertible matrices for 𝑛 > 2 and give the explicit determinants
and the inverse matrices. Furthermore, the upper bounds for the spread on Gaussian Fibonacci circulant and left circulant matrices
are presented, respectively.

1. Introduction

Circulant matrices have been used in solving integrable sys-
tem [1], Hamiltonian structure [2, 3], and integral equations
[4–8]. By using the KdV and Boussinesq systems, the circu-
lant forward shift matrix, and the antisymmetric circulant
matrix, Weiss in [1] constructed a cosymplectic form 𝑀𝜉

and presents the factorization of the BLP equation by the
periodic fixed points of its Bäcklund transformations. In [2],
Kupershmidt and Wilson by Proposition 8.1 [2] showed that
a “first” Hamiltonian structure for their modified equations,
formed from circulant operators 𝑃 [2], does not exist, since
the relevant Hamiltonians𝐻LP [2] do not survive the special-
ization. However, the Hamiltonians 𝐻𝑃 [2] do survive; then
they verified that a “second” Hamiltonian structure exists. In
[3], Kisisel solved the problem on the Hamiltonian structure
of discrete KP equations by the properties of circulant
matrices. Chan et al. considered solving potential equations
by the boundary integral equation approach. The equations
derived are Fredholm integral equations of the first kind and
are known to be ill-conditioned. They proposed to solve the
equations by the preconditioned conjugate gradient method
with circulant integral operators as preconditioners in [4]. By
minimizing the problem ‖𝑊mn − 𝐴mn‖𝐹 [5] obtained from
the preconditioners of type block circulant with circulant
blocks and in the case that the coefficient matrix of 𝐶−1𝐴 is
positive definite, Maleknejad and Rabbani used 𝐶𝐺 method
for solving system of the 𝐶−1𝐴𝑥 = 𝐶−1𝑏 in [5]. Gohberg et al.

stated that finite sections of a Wiener-Hopf integral operator
can be approximated by circulant integral operators within a
sum of a small and a finite rank operator in [6]. They gave
two constructions of such circulant operators which can be
used to accelerate convergence of theCGalgorithm as applied
to finite sections of a Wiener-Hopf equation. Cai developed
a fast and direct Fourier spectral method for solving the
Hilbert type singular integral equation. When the direct
Fourier spectral method is used to solve (1.1) in [7], Cai
observed that the matrix representation of operator 𝐴 under
the Fourier basis is a quasicirculantmatrix. Abramyan proved
the solvability of the system of (5) [8] for all 𝑛 ∈ 𝑁, beginning
with some 𝑛0 via that any circulant matrix is a normal matrix
and its spectral norm is equal to the maximal modulus of its
eigenvalues.

Circulant type matrices have been put on the firm basis
with thework in [9–13] and so on.There are discussions about
the convergence in probability and in distribution of the
spectral normof circulant typematrices in [14]. Furthermore,
the 𝑔-circulant matrices are focused on by many researchers;
for more details please refer to [15–17] and the references
therein.

Recently, some authors gave the explicit determinant and
inverse of the circulant and skew-circulant involving famous
numbers. Cambini presented an explicit form of the inverse
of a particular circulant matrix in [18]. Jiang et al. [19]
considered circulant type matrices with the 𝑘-Fibonacci and
𝑘-Lucas numbers and presented the explicit determinant and

Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2014, Article ID 592782, 10 pages
http://dx.doi.org/10.1155/2014/592782

http://dx.doi.org/10.1155/2014/592782


2 Abstract and Applied Analysis

inverse matrix by constructing the transformation matrices.
In [20], Jiang andHong presented exact determinants of some
special circulant matrices involving four kinds of famous
numbers. Bozkurt and Tam gave determinants and inverses
of circulant matrices with Jacobsthal and Jacobsthal-Lucas
numbers in [21]. In [22], authors studied the nonsingularity
of the skew circulant type matrices and presented explicit
determinants and inverse matrices of these special matrices.
Furthermore, four kinds of norms and bounds for the spread
of these matrices are given separately. Shen et al. considered
circulant matrices with Fibonacci and Lucas numbers and
presented their explicit determinants and inverses in [23].
Jiang and Li [24] discussed the nonsingularity of the circulant
type matrix and gave the explicit determinant and inverse
matrices.

The Gaussian Fibonacci sequence [25, 26] is defined by
the following recurrence relations:

𝐺𝑛+1 = 𝐺𝑛 + 𝐺𝑛−1, 𝑛 ≥ 1, (1)

with the initial condition 𝐺0 = 𝑖, 𝐺1 = 1. 𝐺𝑛 = 𝐹𝑛 + 𝑖𝐹𝑛−1,
where 𝐹𝑛 is the 𝑛th Fibonacci number, 𝑖 = √−1.

The {𝐺𝑛} is given by the formula

𝐺𝑛 =
(1 − 𝑖𝛽) 𝛼

𝑛
+ (𝑖𝛼 − 1) 𝛽

𝑛

𝛼 − 𝛽

=

𝛼
𝑛
− 𝛽
𝑛
+ (𝛼
𝑛−1

− 𝛽
𝑛−1
) 𝑖

𝛼 − 𝛽

,

(2)

where 𝛼 and 𝛽 are the roots of the characteristic equation 𝑥2−
𝑥 − 1 = 0.

In this paper, circulant type matrices include the circu-
lant, left circulant, and 𝑔-circulant matrices. Let 𝑟 be a non-
negative integer. We define a Gaussian Fibonacci circulant
matrix which is an 𝑛 × 𝑛 complex matrix with the following
form:

Circ (𝐺𝑟+1, 𝐺𝑟+2, . . . , 𝐺𝑟+𝑛) =
[

[

[

[

[

𝐺𝑟+1 𝐺𝑟+2 ⋅ ⋅ ⋅ 𝐺𝑟+𝑛

𝐺𝑟+𝑛 𝐺𝑟+1 ⋅ ⋅ ⋅ 𝐺𝑟+𝑛−1
...

...
...

𝐺𝑟+2 𝐺𝑟+3 ⋅ ⋅ ⋅ 𝐺𝑟+1

]

]

]

]

]

.

(3)

Besides, a Gaussian Fibonacci left circulant matrix is
given by

LCirc (𝐺𝑟+1, 𝐺𝑟+2, . . . , 𝐺𝑟+𝑛) =
[

[

[

[

[

𝐺𝑟+1 𝐺𝑟+2 ⋅ ⋅ ⋅ 𝐺𝑟+𝑛

𝐺𝑟+2 𝐺𝑟+3 ⋅ ⋅ ⋅ 𝐺𝑟+1
...

...
...

𝐺𝑟+𝑛 𝐺𝑟+1 ⋅ ⋅ ⋅ 𝐺𝑟+𝑛−1

]

]

]

]

]

,

(4)

where each row is a cyclic shift of the row above to the left.
A Gaussian Fibonacci 𝑔-circulant matrix is an 𝑛 × 𝑛

complex matrix with the following form:

𝐴𝑔,𝑟,𝑛 =(

𝐺𝑟+1 𝐺𝑟+2 ⋅ ⋅ ⋅ 𝐺𝑟+𝑛

𝐺𝑛+𝑟−𝑔+1 𝐺𝑛+𝑟−𝑔+2 ⋅ ⋅ ⋅ 𝐺𝑛+𝑟−𝑔

𝐺𝑛+𝑟−2𝑔+1 𝐺𝑛+𝑟−2𝑔+2 ⋅ ⋅ ⋅ 𝐺𝑛+𝑟−2𝑔

...
... d

...
𝐺𝑟+𝑔+1 𝐺𝑟+𝑔+2 ⋅ ⋅ ⋅ 𝐺𝑟+𝑔

), (5)

where 𝑔 is a nonnegative integer and each of the subscripts is
understood to be reduced modulo 𝑛.

The first row of 𝐴𝑔,𝑛 is (𝐺𝑟+1, 𝐺𝑟+2, . . . , 𝐺𝑟+𝑛) and its (𝑗 +
1)th row is obtained by giving its 𝑗th row a right circular shift
by 𝑔 positions (equivalently, 𝑔 mod 𝑛 positions). Note that
𝑔 = 1 or 𝑔 = 𝑛 + 1 yields the Gaussian Fibonacci circulant
matrix. If 𝑔 = n − 1, then we obtain the Gaussian Fibonacci
left circulant matrix.

2. Determinant, Inverse, and Spread of
Gaussian Fibonacci Circulant Matrices

In this section, let 𝐴𝑟,𝑛 = Circ(𝐺𝑟+1, . . . , 𝐺𝑟+𝑛) be a Gaussian
Fibonacci circulant matrix. First, we give the determinant
equation of the matrix 𝐴𝑟,𝑛. Afterwards, we prove that 𝐴𝑟,𝑛
is an invertible matrix for 𝑛 > 2, and then we find the inverse
of the matrix 𝐴𝑟,𝑛. Obviously, when 𝑛 = 2, 𝑟 ̸= 0, or 𝑛 = 1,
𝐴𝑟,𝑛 is also an invertible matrix.

Theorem 1. Let 𝐴𝑟,𝑛 = Circ (𝐺𝑟+1, . . . , 𝐺𝑟+𝑛) be a Gaussian
Fibonacci circulant matrix. Then we have

det𝐴𝑟,𝑛 = 𝐺𝑟+1 ⋅ [ (𝐺𝑟+1 −
𝐺𝑟+2

𝐺𝑟+1

𝐺𝑟+𝑛)

+

𝑛−2

∑

𝑘=1

(𝐺𝑟+𝑘+2 −
𝐺𝑟+2

𝐺𝑟+1

𝐺𝑟+𝑘+1)

× (

𝐺𝑟+𝑛 − 𝐺𝑟

𝐺𝑟+1 − 𝐺𝑟+𝑛+1

)

𝑛−(𝑘+1)

]

× (𝐺𝑟+1 − 𝐺𝑟+𝑛+1)
𝑛−2
,

(6)

where 𝐺𝑟+𝑛 is the (𝑟 + 𝑛)th Gaussian Fibonacci number.

Proof. In the case 𝑛 > 1, let

Δ =

(

(

(

(

(

(

(

(

(

1

−

𝐺𝑟+2

𝐺𝑟+1

1

−1 1 −1

0 0 1 −1 −1

... c c c
0 1 c c
0 1 −1 c 0

0 1 −1 −1

)

)

)

)

)

)

)

)

)

,

Θ1 =

(

(

(

(

(

(

(

(

(

(

1 0 0 ⋅ ⋅ ⋅ 0 0

0 (

𝐺𝑟+𝑛 − 𝐺𝑟

𝐺𝑟+1 − 𝐺𝑟+𝑛+1

)

𝑛−2

0 ⋅ ⋅ ⋅ 0 1

0 (

𝐺𝑟+𝑛 − 𝐺𝑟

𝐺𝑟+1 − 𝐺𝑟+𝑛+1

)

𝑛−3

0 ⋅ ⋅ ⋅ 1 0

...
...

... d
...

...

0

𝐺𝑟+𝑛 − 𝐺𝑟

𝐺𝑟+1 − 𝐺𝑟+𝑛+1

1 ⋅ ⋅ ⋅ 0 0

0 1 0 ⋅ ⋅ ⋅ 0 0

)

)

)

)

)

)

)

)

)

)

(7)
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be two 𝑛 × 𝑛matrices; then we have

Δ𝐴𝑟,𝑛Θ1 =

(

(

(

(

(

𝐺𝑟+1 𝑓
󸀠
𝑟,𝑛 𝐺𝑟+𝑛−1 ⋅ ⋅ ⋅ 𝐺𝑟+3 𝐺𝑟+2

0 𝑓𝑟,𝑛 𝑎𝑛 ⋅ ⋅ ⋅ 𝑎4 𝑎3

0 0 𝑏 0 0

0 0 𝑐 0 0

...
... d

0 0 0 𝑏 0

0 0 0 𝑐 𝑏

)

)

)

)

)

, (8)

where

𝑓
󸀠
𝑟,𝑛 =

𝑛−1

∑

𝑘=1

𝐺𝑟+𝑘+1(
𝐺𝑟+𝑛 − 𝐺𝑟

𝐺𝑟+1 − 𝐺𝑟+𝑛+1

)

𝑛−(𝑘+1)

,

𝑓𝑟,𝑛 = (𝐺𝑟+1 −
𝐺𝑟+2

𝐺𝑟+1

𝐺𝑟+𝑛)

+

𝑛−2

∑

𝑘=1

(𝐺𝑟+𝑘+2 −
𝐺𝑟+2

𝐺𝑟+1

𝐺𝑟+𝑘+1)

× (

𝐺𝑟+𝑛 − 𝐺𝑟

𝐺𝑟+1 − 𝐺𝑟+𝑛+1

)

𝑛−(𝑘+1)

,

𝑎𝑛 = 𝐺𝑟+𝑛 −
𝐺𝑟+2

𝐺𝑟+1

𝐺𝑟+𝑛−1,

𝑎4 = 𝐺𝑟+4 −
𝐺𝑟+2

𝐺𝑟+1

𝐺𝑟+3,

𝑎3 = 𝐺𝑟+3 −
𝐺𝑟+2

𝐺𝑟+1

𝐺𝑟+2,

𝑏 = 𝐺𝑟+1 − 𝐺𝑟+𝑛+1, 𝑐 = 𝐺𝑟 − 𝐺𝑟+𝑛.

(9)

We obtain

detΔ det𝐴𝑟,𝑛 detΘ1

= 𝐺𝑟+1𝑓𝑟,𝑛(𝐺𝑟+1 − 𝐺𝑟+𝑛+1)
𝑛−2

= 𝐺𝑟+1 ⋅ [ (𝐺𝑟+1 −
𝐺𝑟+2

𝐺𝑟+1

𝐺𝑟+𝑛)

+

𝑛−2

∑

𝑘=1

(𝐺𝑟+𝑘+2 −
𝐺𝑟+2

𝐺𝑟+1

𝐺𝑟+𝑘+1)

× (

𝐺𝑟+𝑛 − 𝐺𝑟

𝐺𝑟+1 − 𝐺𝑟+𝑛+1

)

𝑛−(𝑘+1)

]

× (𝐺𝑟+1 − 𝐺𝑟+𝑛+1)
𝑛−2
,

(10)

while

detΔ = (−1)(𝑛−1)(𝑛−2)/2,

detΘ1 = (−1)
(𝑛−1)(𝑛−2)/2

.

(11)

We have

det𝐴𝑟,𝑛 = 𝐺𝑟+1 ⋅ [ (𝐺𝑟+1 −
𝐺𝑟+2

𝐺𝑟+1

𝐺𝑟+𝑛)

+

𝑛−2

∑

𝑘=1

(𝐺𝑟+𝑘+2 −
𝐺𝑟+2

𝐺𝑟+1

𝐺𝑟+𝑘+1)

× (

𝐺𝑟+𝑛 − 𝐺𝑟

𝐺𝑟+1 − 𝐺𝑟+𝑛+1

)

𝑛−(𝑘+1)

]

× (𝐺𝑟+1 − 𝐺𝑟+𝑛+1)
𝑛−2
.

(12)

Theorem 2. Let 𝐴𝑟,𝑛 = Circ (𝐺𝑟+1, . . . , 𝐺𝑟+𝑛) be a Gaussian
Fibonacci circulant matrix. If 𝑛 > 2, then 𝐴𝑟,𝑛 is an invertible
matrix.

Proof. We discuss the singularity of the matrix 𝐴𝑟,𝑛. When
𝑛 = 3 in Theorem 1, we have det𝐴𝑟,𝑛 = (𝐺𝑟+1 + 𝐺𝑟+2 +

𝐺𝑟+3)(𝐺
2
𝑟+1 +𝐺𝑟𝐺𝑟+2) ̸= 0; hence𝐴𝑟,𝑛 is invertible. In the case

𝑛 > 3, since𝐺𝑟+𝑛 = ((1−𝑖𝛽)𝛼
𝑟+𝑛
+(𝑖𝛼−1)𝛽

𝑟+𝑛
)/(𝛼−𝛽), where

𝛼 + 𝛽 = 1, 𝛼𝛽 = −1, let 𝜀 = exp(2𝜋i/𝑛); we can get that the
eigenvalues of 𝐴𝑟,𝑛

𝑓 (𝜀
𝑘
) =

𝑛

∑

𝑗=1

𝐺𝑟+𝑗(𝜀
𝑘
)

𝑗−1

=

1

𝛼 − 𝛽

𝑛

∑

𝑗=1

[(1 − 𝑖𝛽) 𝛼
𝑟+𝑗
+ (𝑖𝛼 − 1) 𝛽

𝑟+𝑗
] (𝜀
𝑘
)

𝑗−1

=

1

𝛼 − 𝛽

[

(1 − 𝑖𝛽) (1 − 𝛼
𝑛
) 𝛼
𝑟+1

1 − 𝛼𝜀
𝑘

+

(𝑖𝛼 − 1) (1 − 𝛽
𝑛
) 𝛽
𝑟+1

1 − 𝛽𝜀
𝑘

]

=

1

𝛼 − 𝛽

[

𝛼
𝑟+1
− 𝛽
𝑟+1
+ (𝛼
𝑟
− 𝛽
𝑟
) 𝑖

1 − 𝜀
𝑘
− 𝜀
2𝑘

−

𝛼
𝑟+𝑛+1

− 𝛽
𝑟+𝑛+1

+ (𝛼
𝑟+𝑛
− 𝛽
𝑟+𝑛
) 𝑖

1 − 𝜀
𝑘
− 𝜀
2𝑘

+

𝛼
𝑟
− 𝛽
𝑟
+ (𝛼
𝑟−1
− 𝛽
𝑟−1
) 𝑖

1 − 𝜀
𝑘
− 𝜀
2𝑘

𝜀
𝑘

−

𝛼
𝑟+𝑛
− 𝛽
𝑟+𝑛
+ (𝛼
𝑟+𝑛−1

− 𝛽
𝑟+𝑛−1

) 𝑖

1 − 𝜀
𝑘
− 𝜀
2𝑘

𝜀
𝑘
]

=

𝐺𝑟+1 − 𝐺𝑟+𝑛+1 + (𝐺𝑟 − 𝐺𝑟+𝑛) 𝜀
𝑘

1 − 𝜀
𝑘
− 𝜀
2𝑘

,

(𝑘 = 1, 2, . . . , 𝑛 − 1) .

(13)
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Since 𝐺𝑛 = 𝐹𝑛 + 𝑖𝐹𝑛−1, 𝑛 ≥ 1, let 𝑟 ̸= 0, 𝜀
𝑘
= cos 𝜃 + 𝑖 sin 𝜃,

where 𝜃 = 2𝑘𝜋/𝑛 and 0 < 𝜃 < 2𝜋. Then

𝑥 = 𝐺𝑟+1 − 𝐺𝑟+𝑛+1 + (𝐺𝑟 − 𝐺𝑟+𝑛) 𝜀
𝑘

= [𝐹𝑟+1 − 𝐹𝑟+𝑛+1 + (𝐹𝑟 − 𝐹𝑟+𝑛) cos 𝜃

+ (𝐹𝑟+𝑛−1 − 𝐹𝑟−1) sin 𝜃]

+ [𝐹𝑟 − 𝐹𝑟+𝑛 + (𝐹𝑟 − 𝐹𝑟+𝑛) sin 𝜃

+ (𝐹𝑟−1 − 𝐹𝑟+𝑛−1) cos 𝜃] 𝑖.

(14)

We assume that Re(𝑥) = 𝐹𝑟+1 − 𝐹𝑟+𝑛+1 + (𝐹𝑟 − 𝐹𝑟+𝑛) cos 𝜃 +
(𝐹𝑟+𝑛−1 −𝐹𝑟−1) sin 𝜃 and Im(𝑥) = 𝐹𝑟 −𝐹𝑟+𝑛 +(𝐹𝑟 −𝐹𝑟+𝑛) sin 𝜃+
(𝐹𝑟−1 − 𝐹𝑟+𝑛−1) cos 𝜃.

Now, we prove that Re(𝑥) ̸= 0 or Im(𝑥) ̸= 0 for 1 − 𝜀𝑘 −
𝜀
2𝑘

̸= 0. For the Fibonacci sequence {𝐹𝑛}, when 𝑛 > 1, 𝐹𝑛 is
an increasing sequence and |𝐹𝑟+1 − 𝐹𝑟+𝑛+1| ≥ |𝐹𝑟 − 𝐹𝑟+𝑛| ≥

|𝐹𝑟−1 − 𝐹𝑟+𝑛−1|.

If sin 𝜃 > 0, cos 𝜃 > 0, Im (𝑥) < 0;

If sin 𝜃 < 0, cos 𝜃 < 0, Re (𝑥) < 0;

If sin 𝜃 > 0, cos 𝜃 < 0, Im (𝑥) < 0;

If sin 𝜃 < 0, cos 𝜃 > 0, Re (𝑥) < 0.

(15)

It is verified that when sin 𝜃 = 0 or cos 𝜃 = 0, 𝑥 ̸= 0. When
𝑟 = 0, the arguments for𝐺𝑟+1 −𝐺𝑟+𝑛+1 + (𝐺𝑟 −𝐺𝑟+𝑛)𝜀

𝑘
̸= 0 are

similar.
Hence 𝐺𝑟+1 − 𝐺𝑟+𝑛+1 + (𝐺𝑟 − 𝐺𝑟+𝑛)𝜀

𝑘
̸= 0 for any 𝜀𝑘 (𝑘 =

1, 2, . . . , 𝑛 − 1); that is, 𝑓(𝜀𝑘) ̸= 0, (𝑘 = 1, 2, . . . , 𝑛 − 1), while
𝑓(1) = −𝐺𝑟+1 + 𝐺𝑟+𝑛+1 − (𝐺𝑟 − 𝐺𝑟+𝑛) = 𝐺𝑟+𝑛+2 − 𝐺𝑟+2 ̸= 0. By
Lemma 1 in [19], the proof is completed.

Lemma 3. Let the matrix 𝐵 = [𝑏𝑖,𝑗]
𝑛−2
𝑖,𝑗=1 be of the form

𝑏𝑖,𝑗 =

{
{

{
{

{

𝐺𝑟+1 − 𝐺𝑟+𝑛+1, 𝑖 = 𝑗,

𝐺𝑟 − 𝐺𝑟+𝑛, 𝑖 = 𝑗 + 1,

0, otherwise;
(16)

then the inverse 𝐵−1 = [𝑏󸀠𝑖,𝑗]
𝑛−2
𝑖,𝑗=1 of the matrix 𝐵 is equal to

𝑏
󸀠
𝑖,𝑗 =

{
{

{
{

{

(𝐺𝑟+𝑛 − 𝐺𝑟)
𝑖−𝑗

(𝐺𝑟+1 − 𝐺𝑟+𝑛+1)
𝑖−𝑗+1

, 𝑖 ≥ 𝑗,

0, 𝑖 < 𝑗.

(17)

Proof. Let 𝑐𝑖,𝑗 = ∑
𝑛−2
𝑘=1 𝑏𝑖,𝑘𝑏

󸀠
𝑘,𝑗. Obviously, 𝑐𝑖,𝑗 = 0 for 𝑖 < 𝑗. In

the case 𝑖 = 𝑗, we obtain

𝑐𝑖,𝑖 = 𝑏𝑖,𝑖𝑏
󸀠
𝑖,𝑖 = (𝐺𝑟+1 − 𝐺𝑟+𝑛+1) ⋅

1

𝐺𝑟+1 − 𝐺𝑟+𝑛+1

= 1. (18)

For 𝑖 ≥ 𝑗 + 1, we have

𝑐𝑖,𝑗 =

𝑛−2

∑

𝑘=1

𝑏𝑖,𝑘𝑏
󸀠
𝑘,𝑗

= 𝑏𝑖,𝑖−1𝑏
󸀠
𝑖−1,𝑗 + 𝑏𝑖,𝑖𝑏

󸀠
𝑖,𝑗

= (𝐺𝑟 − 𝐺𝑟+𝑛) ⋅
(𝐺𝑟+𝑛 − 𝐺𝑟)

𝑖−𝑗−1

(𝐺𝑟+1 − 𝐺𝑟+𝑛+1)
𝑖−𝑗

+ (𝐺𝑟+1 − 𝐺𝑟+𝑛+1) ⋅
(𝐺𝑟+𝑛 − 𝐺𝑟)

𝑖−𝑗

(𝐺𝑟+1 − 𝐺𝑟+𝑛+1)
𝑖−𝑗+1

= 0.

(19)

Hence, we verify 𝐵𝐵−1 = 𝐼𝑛−2, where 𝐼𝑛−2 is an (𝑛 − 2) ×
(𝑛 − 2) identity matrix. Similarly, we can verify 𝐵−1𝐵 = 𝐼𝑛−2.
Thus, the proof is completed.

Theorem 4. Let 𝐴𝑟,𝑛 = Circ (𝐺𝑟+1, . . . , 𝐺𝑟+𝑛) (𝑛 > 2) be a
Gaussian Fibonacci circulant matrix. Then we have
𝐴
−1
𝑟,𝑛

=

1

𝑓𝑟,𝑛

× Circ (1 +
𝑛−2

∑

𝑖=1

(𝐺𝑟+𝑛+2−𝑖 − ℎ𝐺𝑟+𝑛+1−𝑖) (𝐺𝑟+𝑛 − 𝐺𝑟)
𝑖−1

(𝐺𝑟+1 − 𝐺𝑟+𝑛+1)
𝑖

,

− ℎ

+

𝑛−2

∑

𝑖=1

(𝐺r+𝑛+1−𝑖 − ℎ𝐺𝑟+𝑛−𝑖) (𝐺𝑟+𝑛 − 𝐺𝑟)
𝑖−1

(𝐺𝑟+1 − 𝐺𝑟+𝑛+1)
𝑖

,

−

𝐺𝑟+3 − ℎ𝐺𝑟+2

𝐺𝑟+1 − 𝐺𝑟+𝑛+1

,

−

(𝐺𝑟+3 − ℎ𝐺𝑟+2) (𝐺𝑟+𝑛 − 𝐺𝑟)

(𝐺𝑟+1 − 𝐺𝑟+𝑛+1)
2

,

−

(𝐺𝑟+3 − ℎ𝐺𝑟+2) (𝐺𝑟+𝑛 − 𝐺𝑟)
2

(𝐺𝑟+1 − 𝐺𝑟+𝑛+1)
3

, . . . ,

−

(𝐺𝑟+3 − ℎ𝐺𝑟+2) (𝐺𝑟+𝑛 − 𝐺𝑟)
𝑛−3

(𝐺𝑟+1 − 𝐺𝑟+𝑛+1)
𝑛−2

) ,

(20)

where

ℎ =

𝐺𝑟+2

𝐺𝑟+1

, (21)

𝑓𝑟,𝑛 = (𝐺𝑟+1 −
𝐺𝑟+2

𝐺𝑟+1

𝐺𝑟+𝑛)

+

𝑛−2

∑

𝑘=1

(𝐺𝑟+𝑘+2 −
𝐺𝑟+2

𝐺𝑟+1

𝐺𝑟+𝑘+1)

× (

𝐺𝑟+𝑛 − 𝐺𝑟

𝐺𝑟+1 − 𝐺𝑟+𝑛+1

)

𝑛−(𝑘+1)

.

(22)
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Proof. Let

Θ2 =

(

(

(

(

(

1 −

𝑓
󸀠
𝑟,𝑛

𝐺𝑟+1

𝑥3 𝑥4 ⋅ ⋅ ⋅ 𝑥𝑛

0 1 𝑦3 𝑦4 ⋅ ⋅ ⋅ 𝑦𝑛

0 0 1 0 ⋅ ⋅ ⋅ 0

0 0 0 1 ⋅ ⋅ ⋅ 0

...
...

...
... d

...
0 0 0 0 ⋅ ⋅ ⋅ 1

)

)

)

)

)

, (23)

where

𝑥𝑖 =
𝑓
󸀠
𝑟,𝑛

𝑓𝑟,𝑛

𝐺𝑟+𝑛+3−𝑖 − (𝐺𝑟+2/𝐺𝑟+1) 𝐺𝑟+𝑛+2−𝑖

𝐺𝑟+1

−

𝐺𝑟+𝑛+2−𝑖

𝐺𝑟+1

,

(𝑖 = 3, 4, . . . , 𝑛) ,

𝑦𝑖 = −
𝐺𝑟+𝑛+3−𝑖 − (𝐺𝑟+2/𝐺𝑟+1) 𝐺𝑟+𝑛+2−𝑖

𝑓𝑟,𝑛

, (𝑖 = 3, 4, . . . , 𝑛) ,

𝑓
󸀠
𝑟,𝑛 =

𝑛−1

∑

𝑘=1

𝐺𝑟+𝑘+1(
𝐺𝑟+𝑛 − 𝐺𝑟

𝐺𝑟+1 − 𝐺𝑟+𝑛+1

)

𝑛−(𝑘+1)

,

𝑓𝑟,𝑛 = (𝐺𝑟+1 −
𝐺𝑟+2

𝐺𝑟+1

𝐺𝑟+𝑛)

+

𝑛−2

∑

𝑘=1

(𝐺𝑟+𝑘+2 −
𝐺𝑟+2

𝐺𝑟+1

𝐺𝑟+𝑘+1)

× (

𝐺𝑟+𝑛 − 𝐺𝑟

𝐺𝑟+1 − 𝐺𝑟+𝑛+1

)

𝑛−(𝑘+1)

.

(24)

We have

Δ𝐴𝑟,𝑛Θ1Θ2 = Λ ⊕ 𝐵, (25)

where Λ = diag(𝐺𝑟+1, 𝑓𝑟,𝑛) is a diagonal matrix and Λ ⊕ 𝐵 is
the direct sum of Λ and 𝐵. If we denote Θ = Θ1Θ2, then we
obtain

𝐴
−1
𝑟,𝑛 = Θ (Λ

−1
⊕ 𝐵
−1
) Δ. (26)

Since the last row elements of the matrix Θ are
0, 1, 𝑦3, 𝑦4, . . . , 𝑦𝑛−1, 𝑦𝑛. By Lemma 3, if 𝐴−1𝑟,𝑛 = Circ(𝑢1,
𝑢2, . . . , 𝑢𝑛), then its last row elements are given by the
following:

𝑢2 = −

1

𝑓𝑟,𝑛

𝐺𝑟+2

𝐺𝑟+1

+

1

𝑓𝑟,𝑛

𝐶
(𝑛−2)
𝑛 ,

𝑢3 = −

1

𝑓𝑟,𝑛

𝐶
(1)
𝑛 ,

𝑢4 = −

1

𝑓𝑟,𝑛

𝐶
(2)
𝑛 +

1

𝑓𝑟,𝑛

𝐶
(1)
𝑛 ,

𝑢5 = −

1

𝑓𝑟,𝑛

𝐶
(3)
𝑛 +

1

𝑓𝑟,𝑛

𝐶
(2)
𝑛 +

1

𝑓𝑟,𝑛

𝐶
(1)
𝑛 ,

...

𝑢𝑛 = −

1

𝑓𝑟,𝑛

𝐶
(𝑛−2)
𝑛 +

1

𝑓r,𝑛
𝐶
(𝑛−3)
𝑛 +

1

𝑓𝑟,𝑛

𝐶
(𝑛−4)
𝑛 ,

𝑢1 =
1

𝑓𝑟,𝑛

+

1

𝑓𝑟,𝑛

𝐶
(𝑛−2)
𝑛 +

1

𝑓𝑟,𝑛

𝐶
(𝑛−3)
𝑛 .

(27)
Let

𝐶
(𝑗)
𝑛 =

𝑗

∑

𝑖=1

(𝐺𝑟+3+𝑗−𝑖 − (𝐺𝑟+2/𝐺𝑟+1) 𝐺𝑟+2+𝑗−𝑖) (𝐺𝑟+𝑛 − 𝐺𝑟)
𝑖−1

(𝐺𝑟+1 − 𝐺𝑟+𝑛+1)
𝑖

=

𝑗

∑

𝑖=1

𝛿𝑗,𝑟

(𝜇2,𝑟)
𝑖
(𝜇1,𝑟)
𝑖−1
, (𝑗 = 1, 2, . . . , 𝑛 − 2) ,

(28)

we have
𝐶
(2)
𝑛 − 𝐶

(1)
𝑛

=

2

∑

𝑖=1

𝛿2,𝑟(𝜇1,𝑟)
𝑖−1

(𝜇2,𝑟)
𝑖

−

𝛿1,𝑟

𝜇2,𝑟

=

𝐺𝑟+3 − (𝐺𝑟+2/𝐺𝑟+1) 𝐺𝑟+2

(𝐺𝑟+1 − 𝐺𝑟+𝑛+1)
2

(𝐺𝑟+𝑛 − 𝐺𝑟)

=

𝛿1,𝑟

(𝜇2,𝑟)
2
𝜇1,𝑟,

𝐶
(𝑛−2)
𝑛 + 𝐶

(𝑛−3)
𝑛

=

𝑛−2

∑

𝑖=1

𝛿𝑛−2,𝑟(𝜇1,𝑟)
𝑖−1

(𝜇2,𝑟)
𝑖

+

𝑛−3

∑

𝑖=1

𝛿𝑛−3,𝑟(𝜇1,𝑟)
𝑖−1

(𝜇2,𝑟)
𝑖

=

𝑛−3

∑

𝑖=1

(𝐺𝑟+𝑛+2−𝑖 − (𝐺𝑟+2/𝐺𝑟+1) 𝐺𝑟+𝑛+1−𝑖) (𝜇1,𝑟)
𝑖−1

(𝜇2,𝑟)
𝑖

+

𝛿1,𝑟(𝜇1,𝑟)
𝑛−3

(𝜇2,𝑟)
𝑛−2

=

𝑛−2

∑

𝑖=1

(𝐺𝑟+𝑛+2−𝑖 − (𝐺𝑟+2/𝐺𝑟+1) 𝐺𝑟+𝑛+1−𝑖) (𝜇1,𝑟)
𝑖−1

(𝜇2,𝑟)
𝑖

,

𝐶
(𝑗+2)
𝑛 − 𝐶

(𝑗+1)
𝑛 − 𝐶

(𝑗)
𝑛

=

𝑗+2

∑

𝑖=1

𝛿𝑗+2,𝑟(𝜇1,𝑟)
𝑖−1

(𝜇2,𝑟)
𝑖

−

𝑗+1

∑

𝑖=1

𝛿𝑗+1,𝑟(𝜇1,𝑟)
𝑖−1

(𝜇2,𝑟)
𝑖

−

𝑗

∑

𝑖=1

𝛿𝑗,𝑟(𝜇1,𝑟)
𝑖−1

(𝜇2,𝑟)
𝑖

=

(𝐺𝑟+4 − (𝐺𝑟+2/𝐺𝑟+1) 𝐺𝑟+3) (𝜇1,𝑟)
𝑗

(𝜇2,𝑟)
𝑗+1

+

(𝐺𝑟+3 − (𝐺𝑟+2/𝐺𝑟+1) 𝐺𝑟+2) (𝜇1,𝑟)
𝑗+1

(𝜇2,𝑟)
𝑗+2
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−

(𝐺𝑟+3 − (𝐺𝑟+2/𝐺𝑟+1) 𝐺𝑟+2) (𝜇1,𝑟)
𝑗

(𝜇2,𝑟)
𝑗+1

=

(𝐺𝑟+3 − (𝐺𝑟+2/𝐺𝑟+1) 𝐺𝑟+2) (𝜇1,𝑟)
𝑗+1

(𝜇2,𝑟)
𝑗+2

(𝑗 = 1, 2, . . . , 𝑛 − 4) .

(29)

We can get

𝐴
−1
𝑟,𝑛

= Circ(
1 + 𝐶
(𝑛−2)
𝑛 + 𝐶

(𝑛−3)
𝑛

𝑓𝑟,𝑛

,

𝐶
(𝑛−2)
𝑛 − (𝐺𝑟+2/𝐺𝑟+1)

𝑓𝑟,𝑛

, −

𝐶
(1)
𝑛

𝑓𝑟,𝑛

, −

C(2)𝑛 − 𝐶
(1)
𝑛

𝑓𝑟,𝑛

,

−

𝐶
(3)
𝑛 − 𝐶

(2)
𝑛 − 𝐶

(1)
𝑛

𝑓𝑟,𝑛

, . . . ,

−

𝐶
(𝑛−2)
𝑛 − 𝐶

(𝑛−3)
𝑛 − 𝐶

(𝑛−4)
𝑛

𝑓𝑟,𝑛

)

=

1

𝑓𝑟,𝑛

× Circ(1

+

𝑛−2

∑

𝑖=1

(𝐺𝑟+𝑛+2−𝑖 − (𝐺𝑟+2/𝐺𝑟+1) 𝐺𝑟+𝑛+1−𝑖) (𝜇1,𝑟)
𝑖−1

(𝜇2,𝑟)
𝑖

,

−

𝐺𝑟+2

𝐺𝑟+1

+

𝑛−2

∑

𝑖=1

𝛿𝑛−2,𝑟(𝜇1,𝑟)
𝑖−1

(𝜇2,𝑟)
𝑖

, −

𝛿1,𝑟

𝜇2,𝑟

,

−

𝛿1,𝑟

(𝜇2,𝑟)
2
𝜇1,𝑟, −

𝛿1,𝑟

(𝜇2,𝑟)
3
(𝜇1,𝑟)
2
, . . . ,

−

𝛿1,𝑟

(𝜇2,𝑟)
𝑛−2
(𝜇1,𝑟)
𝑛−3
)

=

1

𝑓𝑟,𝑛

× Circ(1

+

𝑛−2

∑

𝑖=1

(𝐺𝑟+𝑛+2−𝑖 − ℎ𝐺𝑟+𝑛+1−𝑖) (𝐺𝑟+𝑛 − 𝐺𝑟)
𝑖−1

(𝐺𝑟+1 − 𝐺𝑟+𝑛+1)
𝑖

,

− ℎ

+

𝑛−2

∑

𝑖=1

(𝐺𝑟+𝑛+1−𝑖 − ℎ𝐺𝑟+𝑛−𝑖) (𝐺𝑟+𝑛 − 𝐺𝑟)
𝑖−1

(𝐺𝑟+1 − 𝐺𝑟+𝑛+1)
𝑖

,

−

𝐺𝑟+3 − ℎ𝐺𝑟+2

𝐺𝑟+1 − 𝐺𝑟+𝑛+1

,

−

(𝐺𝑟+3 − ℎ𝐺𝑟+2) (𝐺𝑟+𝑛 − 𝐺𝑟)

(𝐺𝑟+1 − 𝐺𝑟+𝑛+1)
2

,

−

(𝐺𝑟+3 − ℎ𝐺𝑟+2) (𝐺𝑟+𝑛 − 𝐺𝑟)
2

(𝐺𝑟+1 − 𝐺𝑟+𝑛+1)
3

, . . . ,

−

(𝐺𝑟+3 − ℎ𝐺𝑟+2) (𝐺𝑟+𝑛 − 𝐺𝑟)
𝑛−3

(𝐺𝑟+1 − 𝐺𝑟+𝑛+1)
𝑛−2

) ,

(30)

where

ℎ =

𝐺𝑟+2

𝐺r+1
,

𝑓𝑟,𝑛 = (𝐺𝑟+1 −
𝐺𝑟+2

𝐺𝑟+1

𝐺𝑟+𝑛)

+

𝑛−2

∑

𝑘=1

(𝐺𝑟+𝑘+2 −
𝐺𝑟+2

𝐺𝑟+1

𝐺𝑟+𝑘+1)

× (

𝐺𝑟+𝑛 − 𝐺𝑟

𝐺𝑟+1 − 𝐺𝑟+𝑛+1

)

𝑛−(𝑘+1)

.

(31)

Lemma 5 (see [23]). Let {𝐹𝑛} be the Fibonacci sequence, we
can have

(i) ∑𝑛𝑗=1 𝐹𝑟+𝑗 = 𝐹𝑟+𝑛+2 − 𝐹𝑟+2,

(ii) ∑𝑛𝑗=1 𝐹
2
𝑟+𝑗 = 𝐹𝑟+𝑛𝐹𝑟+𝑛+1 − 𝐹𝑟𝐹𝑟+1.

Lemma 6. Let {𝐺𝑛} be the Gaussian Fibonacci sequence, we
can have

(i) ∑𝑛𝑗=1 𝐺𝑟+𝑗 = 𝐺𝑟+𝑛+2 − 𝐺𝑟+2,

(ii) ∑𝑛𝑗=1 𝐺
2
𝑟+𝑗 = 𝐺𝑟+𝑛𝐺𝑟+𝑛+1 − 𝐺𝑟𝐺𝑟+1.

Proof. By Lemma 5, we can obtain
𝑛

∑

𝑗=1

𝐺𝑟+𝑗 = 𝐺𝑟+1 + 𝐺𝑟+2 + ⋅ ⋅ ⋅ + 𝐺𝑟+𝑛

= (𝐹𝑟+1 + 𝑖𝐹𝑟) + (𝐹𝑟+2 + 𝑖𝐹𝑟+1) + ⋅ ⋅ ⋅

+ (𝐹𝑟+𝑛 + 𝑖𝐹𝑟+𝑛−1)

=

𝑛

∑

𝑗=1

𝐹𝑟+𝑗 + 𝑖(

𝑛

∑

𝑗=1

𝐹𝑟+𝑗 + 𝐹𝑟 − 𝐹𝑟+𝑛)

= (𝐹𝑟+𝑛+2 − 𝐹𝑟+2) + 𝑖 (𝐹𝑟+𝑛+1 − 𝐹𝑟+1)

= (𝐹𝑟+𝑛+2 + 𝑖𝐹𝑟+𝑛+1) − (𝐹𝑟+2 + 𝑖𝐹𝑟+1)

= 𝐺𝑟+𝑛+2 − 𝐺𝑟+2.

(32)
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According to 𝐺𝑛+1 = 𝐺𝑛 + 𝐺𝑛−1, 𝑛 ≥ 1, we have
𝑛

∑

𝑗=1

𝐺
2
𝑟+𝑗 = 𝐺

2
𝑟+1 + 𝐺

2
𝑟+2 + 𝐺

2
𝑟+3 + ⋅ ⋅ ⋅ + 𝐺

2
𝑟+𝑛

= 𝐺𝑟+1 (𝐺𝑟+2 − 𝐺𝑟) + 𝐺𝑟+2 (𝐺𝑟+3 − 𝐺𝑟+1)

+ 𝐺𝑟+3 (𝐺𝑟+4 − 𝐺𝑟+2) + ⋅ ⋅ ⋅

+ 𝐺𝑟+𝑛 (𝐺𝑟+𝑛+1 − 𝐺𝑟+𝑛−1)

= 𝐺𝑟+𝑛𝐺𝑟+𝑛+1 − 𝐺𝑟𝐺𝑟+1.

(33)

Theorem 7. Let 𝐴𝑟,𝑛 = Circ (𝐺𝑟+1, . . . , 𝐺𝑟+𝑛) be a Gaussian
Fibonacci circulant matrix; then

𝑠 (𝐴𝑟,𝑛) ≤ (2𝑛 [𝐹𝑟+𝑛 (𝐹𝑟+𝑛+1 + 𝐹𝑟+𝑛−1) − 𝐹𝑟+1 (𝐹𝑟 + 𝐹𝑟+2)])
1/2
,

(34)
where 𝐹𝑟+𝑛 is the (𝑟 + 𝑛)th Fibonacci number and 𝑠(𝐴𝑟,𝑛) is the
spread (see [13]) of 𝐴𝑟,𝑛.

Proof. From Definition 4 in [13] and Lemma 5, we acquire
󵄩
󵄩
󵄩
󵄩
𝐴𝑟,𝑛

󵄩
󵄩
󵄩
󵄩𝐹

= (𝑛 (
󵄨
󵄨
󵄨
󵄨
𝐺𝑟+1

󵄨
󵄨
󵄨
󵄨

2
+
󵄨
󵄨
󵄨
󵄨
𝐺𝑟+2

󵄨
󵄨
󵄨
󵄨

2
+ ⋅ ⋅ ⋅ +

󵄨
󵄨
󵄨
󵄨
𝐺𝑟+𝑛

󵄨
󵄨
󵄨
󵄨

2
))

1/2

= (

𝑛

(𝛼 − 𝛽)
2
[(𝛼
𝑟+1
− 𝛽
𝑟+1
)

2
+ (𝛼
𝑟
− 𝛽
𝑟
)
2

+ (𝛼
𝑟+2
− 𝛽
𝑟+2
)

2
+ (𝛼
𝑟+1
− 𝛽
𝑟+1
)

2
+ ⋅ ⋅ ⋅

+ (𝛼
𝑟+𝑛
− 𝛽
𝑟+𝑛
)

2
+ (𝛼
𝑟+𝑛−1

− 𝛽
𝑟+𝑛−1

)

2
])

1/2

= (

𝑛

(𝛼 − 𝛽)
2
[

[

2

𝑛

∑

𝑗=1

(𝛼
𝑟+𝑗
− 𝛽
𝑟+𝑗
)

2
− 2(𝛼

𝑟+𝑛
− 𝛽
𝑟+𝑛
)

2

+ (𝛼
𝑟
− 𝛽
𝑟
)
2
+ (𝛼
𝑟+𝑛
− 𝛽
𝑟+𝑛
)

2
]

]

)

1/2

= (2𝑛 (𝐹𝑟+𝑛𝐹𝑟+𝑛+1 − 𝐹𝑟𝐹𝑟+1) + 𝑛 (𝐹
2
𝑟 − 𝐹
2
𝑟+𝑛))
1/2
.

(35)
From the elements in 𝐴𝑟,𝑛, we get 𝑎𝑖𝑖 = 𝐺𝑟+1, so tr𝐴𝑟,𝑛 =

𝑛𝐺𝑟+1 = 𝑛(𝐹𝑟+1 + 𝑖𝐹𝑟); then

2
󵄩
󵄩
󵄩
󵄩
𝐴𝑟,𝑛

󵄩
󵄩
󵄩
󵄩

2

𝐹
−

2

𝑛

󵄨
󵄨
󵄨
󵄨
tr𝐴𝑟,𝑛

󵄨
󵄨
󵄨
󵄨

2

= 4𝑛 (𝐹𝑟+𝑛𝐹𝑟+𝑛+1 − 𝐹𝑟𝐹𝑟+1)

+ 2𝑛 (𝐹
2
𝑟 − 𝐹
2
𝑟+𝑛) − 2𝑛 (𝐹

2
𝑟+1 + 𝐹

2
𝑟 )

= 4𝑛 (𝐹𝑟+𝑛𝐹𝑟+𝑛+1 − 𝐹𝑟𝐹𝑟+1) − 2𝑛 (𝐹
2
𝑟+1 + 𝐹

2
𝑟+𝑛)

= 2𝑛 [𝐹𝑟+𝑛 (𝐹𝑟+𝑛+1 + 𝐹𝑟+𝑛−1) − 𝐹𝑟+1 (𝐹𝑟 + 𝐹𝑟+2)] .

(36)

By (16) in [13], we have

𝑠 (𝐴𝑟,𝑛) ≤ (2𝑛 [𝐹𝑟+𝑛 (𝐹𝑟+𝑛+1 + 𝐹𝑟+𝑛−1) − 𝐹𝑟+1 (𝐹𝑟 + 𝐹𝑟+2)])
1/2
,

(37)

where 𝐹𝑟+𝑛 is the (𝑟 + 𝑛)th Fibonacci number and 𝛼 = (1 +
√5)/2, 𝛽 = (1 − √5)/2.

3. Determinant, Inverse, and Spread of
Gaussian Fibonacci Left Circulant Matrices

In this section, let 𝐴󸀠𝑟,𝑛 = LCirc(𝐺𝑟+1, 𝐺𝑟+2, . . . , 𝐺𝑟+𝑛) be
a Gaussian Fibonacci left circulant matrices. By using the
obtained conclusions, we give a determinant formula for the
matrix 𝐴󸀠𝑟,𝑛 and prove that 𝐴󸀠𝑟,𝑛 is an invertible matrix for
𝑛 > 2 for any positive integer 𝑛. The inverse and the upper
bound for spread of the matrix 𝐴󸀠𝑟,𝑛 are also presented.

According to Lemma 2 in [19] and Theorems 1, 2, and 4,
we can obtain the following theorems.

Theorem 8. Let 𝐴󸀠𝑟,𝑛 = LCirc (𝐺𝑟+1, . . . , 𝐺𝑟+𝑛) be a Gaussian
Fibonacci left circulant matrix; then we have

det𝐴󸀠𝑟,𝑛 = (−1)
(𝑛−1)(𝑛−2)/2

⋅ 𝐺𝑟+1

⋅ [(𝐺𝑟+1 −
𝐺𝑟+2

𝐺𝑟+1

𝐺𝑟+𝑛)

+

𝑛−2

∑

𝑘=1

(𝐺𝑟+𝑘+2 −
𝐺𝑟+2

𝐺𝑟+1

𝐺𝑟+𝑘+1)

× (

𝐺𝑟+𝑛 − 𝐺𝑟

𝐺𝑟+1 − 𝐺𝑟+𝑛+1

)

𝑛−(𝑘+1)

]

× (𝐺𝑟+1 − G𝑟+𝑛+1)
𝑛−2
,

(38)

where 𝐺𝑟+𝑛 is the (𝑟 + 𝑛)th Gaussian Fibonacci number.

Theorem 9. Let 𝐴󸀠𝑟,𝑛 = LCirc (𝐺𝑟+1, . . . , 𝐺𝑟+𝑛) be a Gaussian
Fibonacci left circulant matrix; if 𝑛 > 2, then 𝐴󸀠𝑟,𝑛 is an
invertible matrix.

Theorem 10. Let 𝐴󸀠𝑟,𝑛 = LCirc (𝐺𝑟+1, . . . , 𝐺𝑟+𝑛) (𝑛 > 2) be a
Gaussian Fibonacci left circulant matrix; then we have

𝐴
󸀠−1
𝑟,𝑛

=

1

𝑓𝑟,𝑛

× LCirc (1 +
𝑛−2

∑

𝑖=1

(𝐺𝑟+𝑛+2−𝑖 − ℎ𝐺𝑟+𝑛+1−𝑖) (𝐺𝑟+𝑛 − 𝐺𝑟)
𝑖−1

(𝐺𝑟+1 − 𝐺𝑟+𝑛+1)
𝑖

,

−

(𝐺𝑟+3 − ℎ𝐺𝑟+2) (𝐺𝑟+𝑛 − 𝐺𝑟)
𝑛−3

(𝐺𝑟+1 − 𝐺𝑟+𝑛+1)
𝑛−2

, . . . ,

−

(𝐺𝑟+3 − ℎ𝐺𝑟+2) (𝐺𝑟+𝑛 − 𝐺𝑟)
2

(𝐺𝑟+1 − 𝐺𝑟+𝑛+1)
3

,
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−

(𝐺𝑟+3 − ℎ𝐺𝑟+2) (𝐺𝑟+𝑛 − 𝐺𝑟)

(𝐺𝑟+1 − 𝐺𝑟+𝑛+1)
2

,

−

𝐺𝑟+3 − ℎ𝐺𝑟+2

𝐺𝑟+1 − 𝐺𝑟+𝑛+1

,

− ℎ

+

𝑛−2

∑

𝑖=1

(𝐺𝑟+𝑛+1−𝑖 − ℎ𝐺𝑟+𝑛−𝑖) (𝐺𝑟+𝑛 − 𝐺𝑟)
𝑖−1

(𝐺𝑟+1 − 𝐺𝑟+𝑛+1)
𝑖

) ,

(39)

where

ℎ =

𝐺𝑟+2

𝐺𝑟+1

,

𝑓𝑟,𝑛 = (𝐺𝑟+1 −
𝐺𝑟+2

𝐺𝑟+1

𝐺𝑟+𝑛)

+

𝑛−2

∑

𝑘=1

(𝐺𝑟+𝑘+2 −
𝐺𝑟+2

𝐺𝑟+1

𝐺𝑟+𝑘+1)

× (

𝐺𝑟+𝑛 − 𝐺𝑟

𝐺𝑟+1 − 𝐺𝑟+𝑛+1

)

𝑛−(𝑘+1)

.

(40)

Theorem 11. Let 𝐴󸀠𝑟,n = LCirc (𝐺𝑟+1, . . . , 𝐺𝑟+𝑛) (𝑛 > 2)

be a Gaussian Fibonacci left circulant matrix; then the upper
bounds for the spread of 𝐴󸀠𝑟,n are

𝑠 (𝐴
󸀠
𝑟,n) ≤ (2𝑛 [𝐹𝑟+𝑛 (𝐹𝑟+𝑛+1 + 𝐹𝑟+𝑛−1) − 𝐹𝑟 (𝐹𝑟+1 + 𝐹𝑟−1)]

−

2

𝑛

[(𝐹𝑟+𝑛+2 − 𝐹𝑟+2)
2
+ (𝐹𝑟+𝑛+1 − 𝐹𝑟+1)

2
])

1/2

,

(𝑛 is odd) ,

𝑠 (𝐴
󸀠
𝑟,𝑛) ≤ (2𝑛 [𝐹𝑟+𝑛 (𝐹𝑟+𝑛+1 + 𝐹𝑟+𝑛−1) − 𝐹𝑟 (𝐹𝑟+1 + 𝐹𝑟−1)]

−

8

𝑛

[(𝐹𝑟+𝑛 − 𝐹𝑟)
2
+ (𝐹𝑟+𝑛−1 − 𝐹𝑟−1)

2
])

1/2

,

(𝑛 is even) .
(41)

Proof. From the elements in 𝐴󸀠𝑟,𝑛 and Lemma 6, if 𝑛 is odd,
the trace of 𝐴󸀠𝑟,𝑛 is tr𝐴

󸀠
𝑟,𝑛 = ∑

𝑛
𝑗=1 𝐺𝑟+𝑗 = 𝐺𝑟+𝑛+2 − 𝐺𝑟+2; if 𝑛 is

even,

tr𝐴󸀠𝑟,𝑛 = 2 (𝐺𝑟+1 + 𝐺𝑟+3 + 𝐺𝑟+5 + ⋅ ⋅ ⋅ + 𝐺𝑟+𝑛−1)

= 2
[

[

𝐺𝑟+1 +

𝑛

∑

𝑗=4

(𝐺𝑟+𝑗−3 + 𝐺𝑟+𝑗−2)
]

]

= 2 (𝐺𝑟+𝑛 − 𝐺𝑟) .

(42)

Since 𝐺𝑛 = 𝐹𝑛 + 𝑖𝐹𝑛−1 and

󵄩
󵄩
󵄩
󵄩
󵄩
𝐴
󸀠
𝑟,𝑛

󵄩
󵄩
󵄩
󵄩
󵄩𝐹
= (2𝑛 (𝐹𝑟+𝑛𝐹𝑟+𝑛+1 − 𝐹𝑟𝐹𝑟+1) + 𝑛 (𝐹

2
𝑟 − 𝐹
2
𝑟+𝑛))
1/2

= (𝑛 [𝐹𝑟+𝑛 (𝐹𝑟+𝑛+1 + 𝐹𝑟+𝑛−1) − 𝐹𝑟 (𝐹𝑟+1 + 𝐹𝑟−1)])
1/2
,

(43)

by (16) in [13], we can get the upper bounds for 𝐴󸀠𝑟,𝑛 as the
above easily.

4. Determinant, Inverse of Gaussian Fibonacci
𝑔-Circulant Matrices

In this section, let 𝐴𝑔,𝑟,𝑛 = 𝑔-Circ(𝐺𝑟+1, . . . , 𝐺𝑟+𝑛) be
a Gaussian Fibonacci 𝑔-circulant matrices. A determinant
formula for the matrix 𝐴𝑔,𝑟,𝑛 and the inverse 𝐴𝑔,𝑟,𝑛 for 𝑛 > 2
when (𝑛, 𝑔) = 1 are obtained as follows.

From Lemmas 3 and 4 in [19] and Theorems 1, 2, and 4,
we deduce the following results.

Theorem 12. Let 𝐴𝑔,𝑟,𝑛 = 𝑔- Circ (𝐺𝑟+1, . . . , 𝐺𝑟+𝑛) be a
Gaussian Fibonacci 𝑔-circulant matrix; then we have

det𝐴𝑔,𝑟,𝑛 = detQ𝑔 ⋅ 𝐺𝑟+1

⋅ [ (𝐺𝑟+1 −
𝐺𝑟+2

𝐺𝑟+1

𝐺𝑟+𝑛)

+

𝑛−2

∑

𝑘=1

(𝐺𝑟+𝑘+2 −
𝐺𝑟+2

𝐺𝑟+1

𝐺𝑟+𝑘+1)

× (

𝐺𝑟+𝑛 − 𝐺𝑟

𝐺𝑟+1 − 𝐺𝑟+𝑛+1

)

𝑛−(𝑘+1)

]

× (𝐺𝑟+1 − 𝐺𝑟+𝑛+1)
𝑛−2
,

(44)

where 𝐺𝑟+𝑛 is the (𝑟 + 𝑛)th Gaussian Fibonacci number.

Theorem 13. Let 𝐴𝑔,𝑟,𝑛 = 𝑔- Circ (𝐺𝑟+1, . . . , 𝐺𝑟+𝑛) be a
Gaussian Fibonacci 𝑔-circulant matrix and (𝑔, 𝑛) = 1; if 𝑛 > 2,
then 𝐴𝑔,𝑟,𝑛 is an invertible matrix.

Theorem 14. Let 𝐴𝑔,𝑟,𝑛 = 𝑔- Circ (𝐺𝑟+1, . . . , 𝐺𝑟+𝑛) (𝑛 > 2) be
a Gaussian Fibonacci 𝑔-circulant matrix and (𝑔, 𝑛) = 1; then

𝐴
−1
𝑔,𝑟,𝑛

= [

1

𝑓𝑟,𝑛

× Circ (1 +
𝑛−2

∑

𝑖=1

(𝐺𝑟+𝑛+2−𝑖 − ℎ𝐺𝑟+𝑛+1−𝑖) (𝐺𝑟+𝑛 − 𝐺𝑟)
𝑖−1

(𝐺𝑟+1 − 𝐺𝑟+𝑛+1)
𝑖

,

− ℎ

+

𝑛−2

∑

𝑖=1

(𝐺𝑟+𝑛+1−𝑖 − ℎ𝐺𝑟+𝑛−𝑖) (𝐺𝑟+𝑛 − 𝐺𝑟)
𝑖−1

(𝐺𝑟+1 − 𝐺𝑟+𝑛+1)
𝑖

,
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−

𝐺𝑟+3 − ℎ𝐺𝑟+2

𝐺𝑟+1 − 𝐺𝑟+𝑛+1

,

−

(𝐺𝑟+3 − ℎ𝐺𝑟+2) (𝐺𝑟+𝑛 − 𝐺𝑟)

(𝐺𝑟+1 − 𝐺𝑟+𝑛+1)
2

,

−

(𝐺𝑟+3 − ℎ𝐺𝑟+2) (𝐺𝑟+𝑛 − 𝐺𝑟)
2

(𝐺𝑟+1 − 𝐺𝑟+𝑛+1)
3

, . . . ,

−

(𝐺𝑟+3 − ℎ𝐺𝑟+2) (𝐺𝑟+𝑛 − 𝐺𝑟)
𝑛−3

(𝐺𝑟+1 − 𝐺𝑟+𝑛+1)
𝑛−2

)]Q
𝑇
𝑔 ,

(45)

where

ℎ =

𝐺𝑟+2

𝐺𝑟+1

,

𝑓𝑟,𝑛 = (𝐺𝑟+1 −
𝐺𝑟+2

𝐺𝑟+1

𝐺𝑟+𝑛)

+

𝑛−2

∑

𝑘=1

(𝐺𝑟+𝑘+2 −
𝐺𝑟+2

𝐺𝑟+1

𝐺𝑟+𝑘+1)

× (

𝐺𝑟+𝑛 − 𝐺𝑟

𝐺𝑟+1 − 𝐺𝑟+𝑛+1

)

𝑛−(𝑘+1)

.

(46)

5. Conclusion

In this paper, the explicit determinants and the inverse
matrices of Gaussian Fibonacci circulant type matrices are
presented. Furthermore, we give the upper bounds for the
spread on Gaussian Fibonacci circulant and left circulant
matrices, respectively.The reasonwhywe focus our attentions
on circulant type matrices is to explore the application of it in
the related field. On the basis of existing application situation
[1–8], we will develop solving integrable system, Hamiltonian
structure, and integral equations.
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