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This paper is concerned with pth moment input-to-state stability (p-ISS) and stochastic input-to-state stability (SISS) of impulsive
stochastic systemswith time delays. Razumikhin-type theorems ensuring p-ISS/SISS are established for thementioned systemswith
external input affecting both the continuous and the discrete dynamics. It is shown that when the impulse-free delayed stochastic
dynamics are p-ISS/SISS but the impulses are destabilizing, the p-ISS/SISS property of the impulsive stochastic systems can be
preserved if the length of the impulsive interval is large enough. In particular, if the impulse-free delayed stochastic dynamics
are p-ISS/SISS and the discrete dynamics are marginally stable for the zero input, the impulsive stochastic system is p-ISS/SISS
regardless of how often or how seldom the impulses occur. To overcome the difficulties caused by the coexistence of time delays,
impulses, and stochastic effects, Razumikhin techniques and piecewise continuous Lyapunov functions as well as stochastic analysis
techniques are involved together. An example is provided to illustrate the effectiveness and advantages of our results.

1. Introduction

In practice, the performance of a real control system is affect-
ed more or less by uncertainties such as unmodeled dynam-
ics, parameter perturbations, exogenous disturbances, and
measurement errors [1]. To describe how solutions behave
robustly to external inputs or disturbances, the concept of
input-to-state stability (ISS) has been proven useful and
effective in this regard. ISS was originally proposed by Sontag
[2] for continuous-time systems. In view of its importance in
the analysis and synthesis of nonlinear control systems [3–
5], ISS and its variants such as local ISS, integral ISS, and
exponential-weighted ISS have been investigated quite inten-
sively and extended to different types of dynamical systems,
for instance, discrete-time systems [6, 7], switched systems
[1, 8–11], network control systems [12], neural networks [13–
15], and so forth.

As it is well known, impulsive effect is likely to exist
in a wide variety of evolutionary processes in which states
are changed abruptly at certain moments of time in the
fields such as medicine and biology, economics, electronics,

and telecommunications [16]. Recently, Hespanha initiated
the study of ISS for impulsive systems [17]. It was proved
therein that impulsive systems possessing an exponential ISS-
Lyapunov function are uniformly ISS over a certain class of
impulse time sequences. Since time delay phenomena are
often encountered in real world systems and the existence
of time delay is a significant cause of instability and deteri-
orative performance, [18] investigated the ISS property for
nonlinear impulsive systems with time delays by using Razu-
mikhin techniques. And [19] was also concerned with ISS
of impulsive systems with time delays, where ISS theorems
different from those in [18] were established by adopting both
Razumikhin techniques and Lyapunov-Krosovskii functional
method.

In addition to the time delays and impulse effects,
stochastic perturbations are always unavoidable in real sys-
tems (see [20–23] and references therein). Impulsive stochas-
tic delayed systems incorporate impulses effects, stochastic
perturbations, and time delays in one system simultaneously.
During the last decade, there has been extensive interest in
the study of force-free delayed impulsive stochastic systems;
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we refer to [24–28] and references therein. However, the
corresponding theory for impulsive stochastic systems with
external inputs has been relatively less developed.

The present paper aims to generalize the ISS results
for deterministic delayed impulsive systems to stochastic
settings. The pth moment input-to-state stability (p-ISS)
and stochastic input-to-state stability (SISS) properties for
impulsive stochastic delayed systems with external input
affecting both the continuous dynamics and the impulses are
investigated and Razumikhin-type theorems guaranteeing
the p-ISS/SISS are established. The results indicate that when
the delayed continuous stochastic dynamics are p-ISS/SISS
and the discrete dynamics are destabilizing, the p-ISS/SISS
properties of the original impulsive stochastic systems can be
maintained if the length of impulsive interval is large enough.
In particular, if the impulse-free delayed stochastic dynamics
are p-ISS/SISS and the discrete dynamics are marginally
stable for the zero input, the impulsive stochastic system is p-
ISS/SISS regardless of how often or how seldom the impulses
occur. As a byproduct, the criteria on pth moment global
asymptotic stability (p-GAS) and global asymptotical stability
in probability (GASiP) are also derived. The initial idea of
this paper came from the works for deterministic impulsive
delayed systems [18] and impulse-free stochastic systems [1,
29], but its extension to impulsive stochastic delayed systems
will be much more challenging due to the simultaneous
existence of time delays, impulses, and stochastic effects.

The rest of this paper is organized as follows. In Section 2,
some basic notations and definitions used throughout the
paper are introduced. In Section 3, criteria ensuring uni-
form p-ISS/SISS/p-GAS/GASiP are established and applied
to linear impulsive stochastic delayed systems. Section 4
provides a numerical example to illustrate the effectiveness
and advantages of our results. Finally, Section 5 includes a
summary and a discussion of some extensions of the paper.

2. Preliminaries

Throughout this paper, unless otherwise specified, we will
employ the following notations. Let (Ω,F, {F

𝑡
}
𝑡⩾0
,P) be a

complete probability space with a filtration {F
𝑡
}
𝑡⩾0

satisfying
the usual conditions (i.e., it is right continuous and F

0

contains all P-null sets) and let E[⋅] be the expectation
operator with respect to the given probability measure P.
Let 𝑤(𝑡) = (𝑤

1
(𝑡), . . . , 𝑤

𝑑
(𝑡))

T be a 𝑑-dimensional Brownian
motion defined on the probability space. R = (−∞, +∞),
R
+

= [0, +∞), N = {1, 2, 3, . . .}, R𝑛 denotes the 𝑛-
dimensional real space equippedwith the Euclidean norm |⋅|,
and R𝑛×𝑚 denotes the 𝑛 × 𝑚-dimensional real matrix space.

Let 𝜏 ⩾ 0 and 𝑃𝐶([−𝜏, 0];R𝑛) = {𝜑 : [−𝜏, 0] → R𝑛 | 𝜑(𝑡)

is continuous for all but at most a finite number of points ̄𝑡,
at which 𝜑( ̄𝑡+), 𝜑( ̄𝑡−) exist and 𝜑( ̄𝑡+) = 𝜑( ̄𝑡)}, where 𝜑( ̄𝑡+)
and 𝜑( ̄𝑡−) denote the right-hand and left-hand limits of 𝜑(𝑡)
at ̄𝑡, respectively. We equip the linear space 𝑃𝐶([−𝜏, 0];R𝑛)
with the norm ‖𝜑‖ defined by ‖𝜑‖ = sup{|𝜑(𝜃)| : −𝜏 ⩽ 𝜃 ⩽

0}. Let 𝑃𝐶𝑏F
𝑡

([−𝜏, 0];R𝑛) be the family of all F
𝑡
-measurable

and bounded 𝑃𝐶([−𝜏, 0];R𝑛)-valued random variables 𝜉 =

{𝜉(𝜃) : −𝜏 ⩽ 𝜃 ⩽ 0}.

A function 𝛼 : R
+
→ R
+
is said to be of class K if it is

continuous and strictly increasing and satisfies 𝛼(0) = 0; it is
of classK

∞
if in addition 𝛼(𝑠) → ∞ as 𝑠 → ∞. Note that if

𝛼 is of classK
∞
, then the inverse function 𝛼−1 is well defined

and is also of class K
∞
. VK
∞

and 𝑐K
∞

are the subsets of
K
∞

functions that are convex and concave, respectively. A
function 𝛽 : R

+
× R
+

→ R
+
is said to be of class KL if

𝛽(⋅, 𝑡) ∈ K for each fixed 𝑡 ⩾ 0 and 𝛽(𝑟, 𝑡) decreases to 0 as
𝑡 → ∞ for each fixed 𝑟 ⩾ 0. The composition of two func-
tions 𝜙 : 𝐴 → 𝐵 and 𝜓 : 𝐵 → 𝐶 is denoted by 𝜓 ∘ 𝜙 : 𝐴 →

𝐶.
If 𝐴 is a vector or a matrix, its transpose is denoted by

𝐴T. If 𝑃 is a square matrix, 𝑃 > 0 (𝑃 ⩽ 0) means that
𝑃 is a symmetric positive definite (negative semidefinite)
matrix. 𝜆(⋅) and 𝜆(⋅) represent the minimum and maximum
eigenvalues of the corresponding matrix, respectively, and
𝐼 stands for the identity matrix. The symbol ∗ is used in
symmetric matrices to denote the entries which can be
inferred by symmetry. Unless explicitly stated, allmatrices are
assumed to have real entries and compatible dimensions.

We consider the following impulsive stochastic nonlinear
system with external inputs:

d𝑥 = 𝑓 (𝑡, 𝑥
𝑡
, 𝑢
𝑐
(𝑡)) d𝑡 + 𝑔 (𝑡, 𝑥

𝑡
, 𝑢
𝑐
(𝑡)) d𝑤 (𝑡) ,

𝑡 ̸= 𝑡
𝑘
, 𝑡 ⩾ 𝑡

0
,

𝑥 (𝑡
𝑘
) = 𝐼
𝑘
(𝑡
𝑘
, 𝑥 (𝑡
−

𝑘
) , 𝑢
𝑑
(𝑡
−

𝑘
)) , 𝑘 ∈ N,

(1)

with initial data 𝑥
𝑡
0

= {𝑥(𝑡
0
+ 𝜃) : −𝜏 ⩽ 𝜃 ⩽ 0} = 𝜉 ∈

P𝐶𝑏F
𝑡0

([−𝜏, 0];R𝑛), where 𝑥 ∈ R𝑛 and 𝑥
𝑡
= {𝑥(𝑡 + 𝜃) :

−𝜏 ⩽ 𝜃 ⩽ 0} is regarded as a 𝑃𝐶([−𝜏, 0];R𝑛)-valued random
variable; 𝑢

𝑐
∈ L𝑚1
∞

is locally essentially bounded external
input and 𝑢

𝑑
∈ L𝑚2
∞

is the impulsive disturbance input;L𝑚
∞

denotes the set of all locally essentially bounded function
𝑢 : R
+
→ R𝑚 with norm ‖𝑢‖

∞
= ess sup

𝑡⩾𝑡
0

|𝑢(𝑡)|; ‖𝑢‖
[𝑎,𝑏]

=

ess sup
𝑡∈[𝑎,𝑏]

|𝑢(𝑡)|; both 𝑓 : [𝑡
0
,∞)×R𝑛 ×R𝑚1 → R𝑛 and 𝑔 :

[𝑡
0
,∞) × R𝑛 × R𝑚1 → R𝑛×𝑑 are uniformly locally Lipschitz

with respect to 𝑥 and 𝑢; 𝐼
𝑘
: [𝑡
0
,∞) × R𝑛 × R𝑚2 → R𝑛

represents the impulsive perturbation of 𝑥 at 𝑡
𝑘
and satisfies

|𝐼
𝑘
(𝑡
𝑘
, 𝑥, 𝑢)| < ∞; {𝑡

𝑘
}
𝑘∈N is a strictly increasing sequence of

impulse times. We useSmin(𝛽) andSall to denote the class of
impulsive time sequences that satisfy inf

𝑘∈N{𝑡𝑘−𝑡𝑘−1} ⩾ 𝛽 and
the set containing all impulse time sequences, respectively.

Moreover, we assume that 𝑓(𝑡, 0, 0) = 𝑔(𝑡, 0, 0) = 𝐼
𝑘
(𝑡, 0,

0) ≡ 0 for all 𝑡 ⩾ 𝑡
0
, 𝑘 ∈ N; then system (1) admits a

trivial solution 𝑥(𝑡) ≡ 0. The input pair (𝑢
𝑐
, 𝑢
𝑑
) is said to be

admissible, denoted by (𝑢
𝑐
, 𝑢
𝑑
) ∈ U, if 𝑢

𝑐
∈ L𝑚1
∞
, 𝑢
𝑑
∈ L𝑚2
∞

guarantee the the existence of a unique solution to system (1).
On the foundation of the ISS concepts for impulse-free

stochastic systems [1, 29, 30] and those for deterministic
impulsive systems [18], we proposed the following definitions
for impulsive stochastic delayed systems (1).

Definition 1. For a prescribed sequence {𝑡
𝑘
}
𝑘∈N, system (1) is

said to be 𝑝th (𝑝 > 0) moment input-to-state stable (ISS)
if there exist functions 𝛽 ∈ KL, 𝛼, 𝛾

𝑐
, 𝛾
𝑑
∈ K
∞

such that,
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for every initial condition 𝜉 ∈ 𝑃𝐶𝑏F
𝑡0

and every input pair
(𝑢
𝑐
, 𝑢
𝑑
) ∈ U,

𝛼 (E|𝑥 (𝑡)|
𝑝
) ⩽ 𝛽 (E

󵄩󵄩󵄩󵄩𝜉
󵄩󵄩󵄩󵄩
𝑝

, 𝑡 − 𝑡
0
) + 𝛾
𝑐
(
󵄩󵄩󵄩󵄩𝑢𝑐

󵄩󵄩󵄩󵄩[𝑡
0
,𝑡]
)

+ 𝛾
𝑑
( max
𝑡
𝑘
∈(𝑡
0
,𝑡]

{
󵄨󵄨󵄨󵄨𝑢𝑑 (𝑡
−

𝑘
)
󵄨󵄨󵄨󵄨}) , 𝑡 ⩾ 𝑡

0
.

(2)

Definition 2. For a given sequence {𝑡
𝑘
}
𝑘∈N, system (1) is said

to be stochastic input-to-state stable (SISS), if, for any 𝜀 > 0,
there exist functions 𝛽 ∈ KL and 𝛼, 𝛾

𝑐
, 𝛾
𝑑
∈ K
∞
, such that,

for every initial condition 𝜉 ∈ 𝑃𝐶𝑏F
𝑡0

and every input pair
(𝑢
𝑐
, 𝑢
𝑑
) ∈ U,

𝑃{𝛼 (|𝑥 (𝑡)|) < 𝛽 (
󵄩󵄩󵄩󵄩𝜉
󵄩󵄩󵄩󵄩 , 𝑡 − 𝑡0) + 𝛾𝑐 (

󵄩󵄩󵄩󵄩𝑢𝑐
󵄩󵄩󵄩󵄩[𝑡
0
,𝑡]
)

+𝛾
𝑑
( max
𝑡
𝑘
∈(𝑡0 ,𝑡]

{
󵄨󵄨󵄨󵄨𝑢𝑑 (𝑡
−

𝑘
)
󵄨󵄨󵄨󵄨})} > 1 − 𝜀, 𝑡 ⩾ 𝑡

0
.

(3)

Remark 3. Redefining 𝛽 and 𝛾
𝑐
, 𝛾
𝑑
, one can assume that 𝛼 in

(2) or (3) is the identity: if 𝛼(𝑟) ⩽ 𝛽(𝑠, 𝑡) + 𝛾
𝑐
(𝜐) + 𝛾

𝑑
(]) holds,

then also 𝑟 ⩽ 𝛼−1(𝛽(𝑠, 𝑡) + 𝛾
𝑐
(𝜐) + 𝛾

𝑑
(])) ⩽ 𝛼−1(3𝛽(𝑠, 𝑡)) +

𝛼−1(3𝛾
𝑐
(𝜐))+𝛼−1(3𝛾

𝑑
(])). We know by Lemma 4.2 in [31] that

𝛼−1(3𝛽(⋅, ⋅)) ∈ KL and 𝛼−1(3𝛾
𝑐
(⋅)), 𝛼−1(3𝛾

𝑑
(⋅)) ∈ K

∞
. So

estimates of the same type as (2) and (3) but with no “𝛼” are
obtained.

In the following, we will define p-GAS and GASiP in the
form of KL function, which present very close analogy to
p-ISS and SISS, respectively.

Definition 4. For a prescribed sequence {𝑡
𝑘
}
𝑘∈N, system (1)

with input 𝑢
𝑐
≡ 0, 𝑢

𝑑
≡ 0 is said to be 𝑝th (𝑝 > 0) moment

globally asymptotically stable (GAS) if there exists a function
𝛽 ∈ KL such that, for every initial condition 𝜉 ∈ 𝑃𝐶𝑏F

𝑡0

,

E|𝑥(𝑡)|
𝑝
⩽ 𝛽 (E

󵄩󵄩󵄩󵄩𝜉
󵄩󵄩󵄩󵄩
𝑝

, 𝑡 − 𝑡
0
) , 𝑡 ⩾ 𝑡

0
. (4)

Definition 5. For a given sequence {𝑡
𝑘
}
𝑘∈N, system (1) with

input 𝑢
𝑐
≡ 0, 𝑢

𝑑
≡ 0 is said to be globally asymptotically

stable in probability (GASiP), if, for any 𝜀 > 0, there exists
a function 𝛽 ∈ KL, such that, for every initial condition
𝜉 ∈ 𝑃𝐶𝑏F

𝑡0

,

𝑃 {|𝑥 (𝑡)| < 𝛽 (
󵄩󵄩󵄩󵄩𝜉
󵄩󵄩󵄩󵄩 , 𝑡 − 𝑡0)} > 1 − 𝜀, 𝑡 ⩾ 𝑡

0
. (5)

Remark 6. By the vanishing of 𝛾
𝑐
(𝑠) and 𝛾

𝑑
(𝑠) at 𝑠 = 0,

(2) and (3) will degenerate to (4) and (5), respectively, when
𝑢 ≡ 0, which means that p-ISS/SISS of system (1) implies p-
GAS/GASiP of the corresponding unforced system.

System (1) is said to be uniformly p-ISS or uniformly SISS
over a given class of admissible impulsive time sequencesS if
(2) or (3) holds for every sequence in S with functions 𝛼, 𝛽,
𝛾
𝑐
, and 𝛾

𝑑
independent of the choice of the sequence. Uniform

p-GAS and uniform GASiP can be defined similarly.

Definition 7 (see [24]). A function𝑉 : R
+
×R𝑛 → R

+
is said

to be of class V
0
if the following hold true.

(i) 𝑉 is continuous on each of the sets [𝑡
𝑘−1

, 𝑡
𝑘
) × R𝑛

and for each 𝑥, 𝑦 ∈ R𝑛, 𝑡 ∈ [𝑡
𝑘−1

, 𝑡
𝑘
), 𝑘 ∈ N, and

lim
(𝑡,𝑦)→ (𝑡

−

𝑘
,𝑥)
𝑉(𝑡, 𝑦) = 𝑉(𝑡−

𝑘
, 𝑥) exists.

(ii) 𝑉(𝑡, 𝑥) is once continuously differentiable in 𝑡 and
twice in 𝑥 in each of the sets (𝑡

𝑘−1
, 𝑡
𝑘
) ×R𝑛, 𝑘 ∈ N.

If 𝑉 ∈ V
0
, define an operator L𝑉 [24] with respect to

system (1) by

L𝑉 (𝑡, 𝜑, 𝑢) = 𝑉
𝑡
(𝑡, 𝜑 (0)) + 𝑉

𝑥
(𝑡, 𝑥) 𝑓 (𝑡, 𝜑, 𝑢)

+
1

2
trace [𝑔T (𝑡, 𝜑, 𝑢)𝑉

𝑥𝑥
(𝑡, 𝑥) 𝑔 (𝑡, 𝜑, 𝑢)] ,

(6)

where

𝑉
𝑡
(𝑡, 𝑥) =

𝜕𝑉 (𝑡, 𝑥)

𝜕𝑡
,

𝑉
𝑥
(𝑡, 𝑥) = (

𝜕𝑉 (𝑡, 𝑥)

𝜕𝑥
1

, . . . ,
𝜕𝑉 (𝑡, 𝑥)

𝜕𝑥
𝑛

) ,

𝑉
𝑥𝑥
(𝑡, 𝑥) = (

𝜕
2𝑉 (𝑡, 𝑥)

𝜕𝑥
𝑖
𝜕𝑥
𝑗

)

𝑛×𝑛

.

(7)

3. Main Results

In this section, we will develop Lyapunov-Razumikhinmeth-
ods and establish some criteria which provide sufficient
conditions for the p-ISS and SISS properties of impulsive
stochastic delayed systems (1).

Theorem8. Assume that there exist functions𝑉 ∈ V
0
, 𝜒
1
, 𝜒
2
∈

K
∞
, 𝛼
1
∈ 𝑐K

∞
, 𝛼
2
∈ VK

∞
and scalars 𝑞 > 1, 𝑐 > 0, 𝜇 ∈

[1, 𝑞) such that

(i) 𝛼
1
(|𝑥|
𝑝
) ⩽ 𝑉(𝑡, 𝑥) ⩽ 𝛼

2
(|𝑥|
𝑝
);

(ii) EL𝑉(𝑡, 𝜑) ⩽ −𝑐E𝑉(𝑡, 𝜑(0)) + 𝜒
1
(|𝑢
𝑐
(𝑡)|), for all 𝑡 ⩾

𝑡
0
, 𝑡 ̸= 𝑡
𝑘
and 𝜑 ∈ 𝑃𝐶F

𝑡

([−𝜏, 0];R𝑛) whenever E𝑉(𝑡 +
𝜃, 𝜑(𝜃)) ⩽ 𝑞E𝑉(𝑡, 𝜑(0));

(iii) E𝑉(𝑡
𝑘
, 𝐼
𝑘
(𝑡−
𝑘
, 𝑥, 𝑢
𝑑
)) ⩽ 𝜇E𝑉(𝑡

𝑘
, 𝑥) + 𝜒

2
(|𝑢
𝑑
|).

Then for any given 𝜌 > 0 satisfying 𝜇e−𝑐𝜌 < 1, system (1)
is uniformly p-ISS over Smin(𝜌). In particular, when 𝜇 = 1,
system (1) is uniformly p-ISS over S

𝑎𝑙𝑙
.

Proof. Since 𝜇e−𝑐𝜌 < 1, then 0 < 1 + e−𝑐𝜌 − 1/𝜇 < 1 and there
exists 𝑐󸀠 > 0 such that 𝑐max{𝜇e−𝑐𝜌, 1 + e−𝑐𝜌 − 1/𝜇} < 𝑐󸀠 < 𝑐.
We choose 𝜆 ∈ (0, 𝑐󸀠) such that (𝑞/𝜇)e−𝜆𝜏 > 1, 𝜇e−(𝑐−𝜆)𝜌 ⩽ 1,
𝜆 ⩽ 𝑐 − 𝜇(𝑐 − 𝑐

󸀠
). Let {𝑡

𝑘
}
𝑘∈N be any impulsive time sequence

belonging toSmin(𝜌). For simplicity, we write𝑉(𝑡, 𝑥) = 𝑉(𝑡).
Define

𝐽 (𝑡) = e𝜆(𝑡−𝑡0) [E𝑉 (𝑡) − 𝐽
0
(𝑡)] , 𝑡 ⩾ 𝑡

0
− 𝜏, (8)
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where 𝐽
0
(𝑡) = (1/(𝑐 − 𝑐󸀠))𝜒

1
(‖𝑢
𝑐
‖
[𝑡
0
,𝑡]
) +

∑
𝑡
𝑘
∈(𝑡
0
,𝑡]
e−𝜆(𝑡−𝑡𝑘)𝜒

2
(|𝑢
𝑑
(𝑡−
𝑘
)|) for 𝑡 ⩾ 𝑡

0
and 𝐽

0
(𝑡) = 0 for

𝑡 ∈ [𝑡
0
− 𝜏, 𝑡
0
]. We claim that

𝐽 (𝑡) ⩽ 𝛼
2
(E
󵄩󵄩󵄩󵄩𝜉
󵄩󵄩󵄩󵄩
𝑝

) , 𝑡 ⩾ 𝑡
0
. (9)

We first prove that (9) holds for 𝑡 ∈ [𝑡
0
, 𝑡
1
). By condition (i)

and Jensen’s inequality, it is easy to see that

𝐽 (𝑡) = E𝑉 (𝑡) e𝜆(𝑡−𝑡0)

⩽ 𝛼
2
(E|𝑥 (𝑡)|

𝑝
)

⩽ 𝛼
2
(E
󵄩󵄩󵄩󵄩𝜉
󵄩󵄩󵄩󵄩
𝑝

) , 𝑡 ∈ [𝑡
0
− 𝜏, 𝑡
0
] .

(10)

If (9) is not true for 𝑡 ∈ [𝑡
0
, 𝑡
1
), there must exist some 𝑡 ∈

[𝑡
0
, 𝑡
1
) such that 𝐽(𝑡) > 𝛼

2
(E‖𝜉‖
𝑝
). Let 𝑡∗ = inf{𝑡 ∈ [𝑡

0
, 𝑡
1
) :

𝐽(𝑡) > 𝛼
2
(E‖𝜉‖
𝑝
)}. Then by the right continuity of 𝐽(𝑡) in 𝑡 ∈

[𝑡
0
, 𝑡
1
) and noticing (10), we have 𝑡∗ ⩾ 𝑡

0
and

𝐽 (𝑡
∗
) = 𝛼
2
(E
󵄩󵄩󵄩󵄩𝜉
󵄩󵄩󵄩󵄩
𝑝

) , 𝐽 (𝑡) ⩽ 𝛼
2
(E
󵄩󵄩󵄩󵄩𝜉
󵄩󵄩󵄩󵄩
𝑝

) ,

𝑡 ∈ [𝑡
0
− 𝜏, 𝑡
∗
) , 𝐷

+
𝐽 (𝑡
∗
) > 0.

(11)

Because 𝐽(𝑡∗) ⩾ 𝐽(𝑡∗ + 𝑠), 𝑠 ∈ [−𝜏, 0] implies

E𝑉 (𝑡
∗
) ⩾ e𝜆𝑠E𝑉 (𝑡

∗
+ 𝑠) − e𝜆𝑠𝐽

0
(𝑡
∗
+ 𝑠) + 𝐽

0
(𝑡
∗
)

⩾ e−𝜆𝜏E𝑉 (𝑡
∗
+ 𝑠) >

𝜇

𝑞
E𝑉 (𝑡
∗
+ 𝑠)

⩾
1

𝑞
E𝑉 (𝑡
∗
+ 𝑠) , 𝑠 ∈ [−𝜏, 0] ,

(12)

it follows from condition (ii) that

EL𝑉 (𝑡
∗
) ⩽ −𝑐E𝑉 (𝑡

∗
) + 𝜒
1
(
󵄨󵄨󵄨󵄨𝑢𝑐 (𝑡
∗
)
󵄨󵄨󵄨󵄨) . (13)

For 𝜌 > 0 sufficiently small satisfying 𝑡∗ + 𝜌 < 𝑡
1
, by the Itô

formula, we have

E𝑉 (𝑡
∗
+ 𝜌) − E𝑉 (𝑡

∗
) = ∫
𝑡
∗
+𝜌

𝑡
∗

EL𝑉 (𝑠, 𝑥
𝑠
) d𝑠 (14)

which yields

lim sup
𝜌→0

+

E𝑉 (𝑡∗ + 𝜌) − E𝑉 (𝑡∗)

𝜌
= lim sup
𝜌→0

+

1

𝜌
∫
𝑡
∗
+𝜌

𝑡
∗

EL𝑉 (𝑠) d𝑠;

(15)

that is,

𝐷
+
E𝑉 (𝑡
∗
) = EL𝑉 (𝑡

∗
) ⩽ −𝑐E𝑉 (𝑡

∗
) + 𝜒
1
(
󵄨󵄨󵄨󵄨𝑢𝑐 (𝑡
∗
)
󵄨󵄨󵄨󵄨) ,

(16)

where𝐷+E𝑉(𝑡) ≜ lim sup
𝜌→0

+[E𝑉(𝑡+𝜌)−E𝑉(𝑡)]/𝜌. On the
other hand, 𝐽(𝑡∗) = 𝛼

2
(E‖𝜉‖
𝑝
) ⩾ 0 implies

E𝑉 (𝑡
∗
) ⩾ 𝐽
0
(𝑡
∗
) . (17)

Therefore, from (16) and (17), and noticing 𝐽
0
(𝑡) = (1/(𝑐 −

𝑐󸀠))𝜒
1
(‖𝑢
𝑐
‖
[𝑡
0
,𝑡]
) and𝐷+𝐽

0
(𝑡) ⩾ 0 for 𝑡 ∈ [𝑡

0
, 𝑡
1
), we have

𝐷
+
𝐽 (𝑡
∗
) = e𝜆(𝑡

∗
−𝑡
0
)
[𝐷
+
E𝑉 (𝑡
∗
) + 𝜆E𝑉 (𝑡

∗
)

− 𝜆𝐽
0
(𝑡
∗
) − 𝐷
+
𝐽
0
(𝑡
∗
)]

⩽ e𝜆(𝑡
∗
−𝑡
0
)
[− (𝑐 − 𝜆)E𝑉 (𝑡

∗
) + 𝜒
1
(
󵄨󵄨󵄨󵄨𝑢𝑐 (𝑡
∗
)
󵄨󵄨󵄨󵄨)

−𝜆𝐽
0
(𝑡
∗
)]

⩽ e𝜆(𝑡
∗
−𝑡
0
)
[−𝑐𝐽
0
(𝑡
∗
) + 𝜒
1
(
󵄨󵄨󵄨󵄨𝑢𝑐 (𝑡
∗
)
󵄨󵄨󵄨󵄨)]

⩽
−𝑐󸀠

𝑐 − 𝑐󸀠
e𝜆(𝑡
∗
−𝑡
0
)
𝜒
1
(
󵄩󵄩󵄩󵄩𝑢𝑐

󵄩󵄩󵄩󵄩[𝑡
0
,𝑡
∗
]
) < 0,

(18)

which contradicts 𝐷+𝐽(𝑡∗) > 0. Therefore, (9) holds for 𝑡 ∈
[𝑡
0
− 𝜏, 𝑡
1
).

Suppose that (9) holds for 𝑡 ∈ [𝑡
0
− 𝜏, 𝑡
𝑚
), where 𝑚 ⩾ 1,

𝑚 ∈ N. We will prove that (9) holds for 𝑡 ∈ [𝑡
𝑚
, 𝑡
𝑚+1

). To this
end, we claim that

𝐽
1
(𝑡
−

𝑚
) ⩽ 𝛼
2
(E
󵄩󵄩󵄩󵄩𝜉
󵄩󵄩󵄩󵄩
𝑝

) , (19)

where 𝐽
1
(𝑡) = e𝜆(𝑡−𝑡0)[𝜇E𝑉(𝑡) − 𝐽

0
(𝑡)]. If not, then 𝐽

1
(𝑡−
𝑚
) >

𝛼
2
(E‖𝜉‖
𝑝
). We consider the following two cases.

Case 1. 𝐽
1
(𝑡) > 𝛼

2
(E‖𝜉‖
𝑝
) for all 𝑡 ∈ [𝑡

𝑚−1
, 𝑡
𝑚
). It is easy to

see that 𝐽
1
(𝑡) > 𝛼

2
(E‖𝜉‖
𝑝
) ⩾ 𝐽(𝑡 + 𝜃) for 𝑡 ∈ [𝑡

𝑚−1
, 𝑡
𝑚
) and

𝜃 ∈ [−𝜏, 0]. It follows that

E𝑉 (𝑡 + 𝜃) < e−𝜆𝜃 [𝜇E𝑉 (𝑡) − 𝐽
0
(𝑡)] + 𝐽

0
(𝑡 + 𝜃)

⩽ e𝜆𝜏𝜇E𝑉 (𝑡) − e−𝜆𝜃𝐽
0
(𝑡) + 𝐽

0
(𝑡 + 𝜃)

< 𝑞E𝑉 (𝑡) , 𝑡 ∈ [𝑡
𝑚−1

, 𝑡
𝑚
) , 𝜃 ∈ [−𝜏, 0] .

(20)

The last inequality comes from the fact that (𝑞/𝜇)e−𝜆𝜏 > 1,
and

𝐽
0
(𝑡 + 𝜃) =

1

𝑐 − 𝑐󸀠
𝜒
1
(
󵄩󵄩󵄩󵄩𝑢𝑐

󵄩󵄩󵄩󵄩[𝑡
0
,𝑡+𝜃]

)

+ ∑

𝑡
𝑘
∈(𝑡0 ,𝑡+𝜃]

e−𝜆(𝑡+𝜃−𝑡𝑘)𝜒
2
(
󵄨󵄨󵄨󵄨𝑢𝑑 (𝑡
−

𝑘
)
󵄨󵄨󵄨󵄨)

⩽
e−𝜆𝜃

𝑐 − 𝑐󸀠
𝜒
1
(
󵄩󵄩󵄩󵄩𝑢𝑐

󵄩󵄩󵄩󵄩[𝑡
0
,𝑡]
)

+ ∑

𝑡
𝑘
∈(𝑡0 ,𝑡]

e−𝜆(𝑡+𝜃−𝑡𝑘)𝜒
2
(
󵄨󵄨󵄨󵄨𝑢𝑑 (𝑡
−

𝑘
)
󵄨󵄨󵄨󵄨)

= e−𝜆𝜃𝐽
0
(𝑡) .

(21)

By condition (ii), (20) indicates that

EL𝑉 (𝑡) ⩽ −𝑐E𝑉 (𝑡) + 𝜒
1
(
󵄨󵄨󵄨󵄨𝑢𝑐 (𝑡)

󵄨󵄨󵄨󵄨) , 𝑡 ∈ [𝑡
𝑚−1

, 𝑡
𝑚
) . (22)
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By Itô’s formula, we have

e𝑐𝑡𝑚E𝑉 (𝑡
−

𝑚
) = e𝑐𝑡𝑚−1E𝑉 (𝑡

𝑚−1
)

+ ∫
𝑡
𝑚

𝑡
𝑚−1

e𝑐𝑠 [𝑐E𝑉 (𝑠) + EL𝑉 (𝑠)] d𝑠

⩽ e𝑐𝑡𝑚−1E𝑉 (𝑡
𝑚−1

)

+ ∫
𝑡
𝑚

𝑡
𝑚−1

e𝑐𝑠𝜒
1
(
󵄨󵄨󵄨󵄨𝑢𝑐 (𝑠)

󵄨󵄨󵄨󵄨) d𝑠

⩽ e𝑐𝑡𝑚−1E𝑉 (𝑡
𝑚−1

)

+
1

𝑐
e𝑐𝑡𝑚𝜒
1
(
󵄩󵄩󵄩󵄩𝑢𝑐

󵄩󵄩󵄩󵄩[𝑡
0
,𝑡
𝑚
)
) ;

(23)

thus,

E𝑉 (𝑡
−

𝑚
) ⩽ e−𝑐(𝑡𝑚−𝑡𝑚−1)E𝑉 (𝑡

𝑚−1
) +

1

𝑐
𝜒
1
(
󵄩󵄩󵄩󵄩𝑢𝑐

󵄩󵄩󵄩󵄩[𝑡
0
,𝑡
𝑚
)
) . (24)

On the other hand, 𝐽(𝑡
𝑚−1

) ⩽ 𝛼
2
(E‖𝜉‖
𝑝
) implies

E𝑉 (𝑡
𝑚−1

) ⩽ e−𝜆(𝑡𝑚−1−𝑡0)𝛼
2
(E
󵄩󵄩󵄩󵄩𝜉
󵄩󵄩󵄩󵄩
𝑝

) + 𝐽
0
(𝑡
𝑚−1

)

⩽ e−𝜆(𝑡𝑚−1−𝑡0)𝛼
2
(E
󵄩󵄩󵄩󵄩𝜉
󵄩󵄩󵄩󵄩
𝑝

)

+
1

𝑐 − 𝑐󸀠
𝜒
1
(
󵄩󵄩󵄩󵄩𝑢𝑐

󵄩󵄩󵄩󵄩[𝑡
0
,𝑡
𝑚−1
]
)

+

𝑚−1

∑
𝑘=1

e−𝜆(𝑡𝑚−1−𝑡𝑘)𝜒
2
(
󵄨󵄨󵄨󵄨𝑢𝑑 (𝑡
−

𝑘
)
󵄨󵄨󵄨󵄨) .

(25)

Substituting (25) into (24) and noticing the fact that inf{𝑡
𝑘
−

𝑡
𝑘−1

} ⩾ 𝜌, we have

E𝑉 (𝑡
−

𝑚
) ⩽ e−𝑐(𝑡𝑚−𝑡𝑚−1)−𝜆(𝑡𝑚−1−𝑡0)𝛼

2
(
󵄩󵄩󵄩󵄩𝜉
󵄩󵄩󵄩󵄩
𝑝

)

+ (
1

𝑐
+

e−𝑐𝜌

𝑐 − 𝑐󸀠
)𝜒
1
(
󵄩󵄩󵄩󵄩𝑢𝑐

󵄩󵄩󵄩󵄩[𝑡
0
,𝑡
𝑚
)
)

+ e−𝑐(𝑡𝑚−𝑡𝑚−1)
𝑚−1

∑
𝑘=1

e−𝜆(𝑡𝑚−1−𝑡𝑘)𝜒
2
(
󵄨󵄨󵄨󵄨𝑢𝑑 (𝑡
−

𝑘
)
󵄨󵄨󵄨󵄨) .

(26)

Substituting (26) into 𝐽
1
(𝑡−
𝑚
) yields

𝐽
1
(𝑡
−

𝑚
) = e𝜆(𝑡𝑚−𝑡0) [𝜇E𝑉 (𝑡

−

𝑚
) − 𝐽
0
(𝑡
−

𝑚
)]

⩽ 𝜇e𝜆(𝑡𝑚−𝑡0) [e−𝑐(𝑡𝑚−𝑡𝑚−1)−𝜆(𝑡𝑚−1−𝑡0)𝛼
2
(E
󵄩󵄩󵄩󵄩𝜉
󵄩󵄩󵄩󵄩
𝑝

)

+ (
e−𝑐𝜌

𝑐 − 𝑐󸀠
+
1

𝑐
)𝜒
1
(
󵄩󵄩󵄩󵄩𝑢𝑐

󵄩󵄩󵄩󵄩[𝑡
0
,𝑡
𝑚
)
)

+ e−𝑐(𝑡𝑚−𝑡𝑚−1)
𝑚−1

∑
𝑘=1

e−𝜆(𝑡𝑚−1−𝑡𝑘)

×𝜒
2
(
󵄨󵄨󵄨󵄨𝑢𝑑 (𝑡
−

𝑘
)
󵄨󵄨󵄨󵄨) ]

− e𝜆(𝑡𝑚−𝑡0) [ 1

𝑐 − 𝑐󸀠
𝜒
1
(
󵄩󵄩󵄩󵄩𝑢𝑐

󵄩󵄩󵄩󵄩[𝑡
0
,𝑡
𝑚
)
)

+

𝑚−1

∑
𝑘=1

e−𝜆(𝑡𝑚−𝑡𝑘)𝜒
2
(
󵄨󵄨󵄨󵄨𝑢𝑑 (𝑡
−

𝑘
)
󵄨󵄨󵄨󵄨)]

⩽ 𝜇e−(𝑐−𝜆)𝜌𝛼
2
(E
󵄩󵄩󵄩󵄩𝜉
󵄩󵄩󵄩󵄩
𝑝

)

+ e𝜆(𝑡𝑚−𝑡0) [𝜇( e−𝑐𝜌

𝑐 − 𝑐󸀠
+
1

𝑐
) −

1

𝑐 − 𝑐󸀠
] 𝜒
1
(
󵄩󵄩󵄩󵄩𝑢𝑐

󵄩󵄩󵄩󵄩[𝑡
0
,𝑡
𝑚
)
)

+ (𝜇e−(𝑐−𝜆)𝜌 − 1)
𝑚−1

∑
𝑘=1

e𝜆(𝑡𝑘−𝑡0)𝜒
2
(
󵄨󵄨󵄨󵄨𝑢𝑑 (𝑡
−

𝑘
)
󵄨󵄨󵄨󵄨)

⩽ 𝛼
2
(E
󵄩󵄩󵄩󵄩𝜉
󵄩󵄩󵄩󵄩
𝑝

) .

(27)

The last inequality holds because 𝜇e−(𝑐−𝜆)𝜌 ⩽ 1 and
𝜇(((e−𝑐𝜌)/(𝑐 − 𝑐󸀠)) + (1/𝑐)) − (1/(𝑐 − 𝑐󸀠)) ⩽ 0. This is a
contradiction.

Case 2. There exists some 𝑡 ∈ [𝑡
𝑚−1

, 𝑡
𝑚
) such that 𝐽

1
(𝑡) ⩽

𝛼
2
(E‖𝜉‖
𝑝
). Set 𝑡󸀠 = sup{𝑡 ∈ [𝑡

𝑚−1
, 𝑡
𝑚
) : 𝐽
1
(𝑡) ⩽ 𝛼

2
(E‖𝜉‖
𝑝
)}.

Then 𝐽
1
(𝑡󸀠) = 𝛼

2
(E‖𝜉‖
𝑝
) and 𝐽

1
(𝑡) > 𝛼

2
(E‖𝜉‖
𝑝
) for 𝑡 ∈ (𝑡󸀠, 𝑡

𝑚
).

Thus, for 𝑡 ∈ [𝑡󸀠, 𝑡
𝑚
), 𝐽
1
(𝑡) ⩾ 𝛼

2
(E‖𝜉‖
𝑝
) ⩾ 𝐽(𝑡 + 𝜃) for

𝜃 ∈ [−𝜏, 0]. This implies that (20) holds for 𝜃 ∈ [−𝜏, 0],
𝑡 ∈ [𝑡
󸀠, 𝑡
𝑚
). Thus, by condition (ii),

𝐷
+
E𝑉 (𝑡) = EL𝑉 (𝑡) ⩽ −𝑐E𝑉 (𝑡) + 𝜒

1
(
󵄨󵄨󵄨󵄨𝑢𝑐 (𝑡)

󵄨󵄨󵄨󵄨) ,

𝑡 ∈ [𝑡
󸀠
, 𝑡
𝑚
) .

(28)

Hence, noticing the fact that 𝐽
0
(𝑡) ⩾ 0, 𝐷+𝐽

0
(𝑡) ⩾ 0 for 𝑡 ∈

[𝑡󸀠, 𝑡
𝑚
), we have

𝐷
+
𝐽
1
(𝑡) = e𝜆(𝑡−𝑡0) [𝜆𝜇E𝑉 (𝑡) − 𝜆𝐽

0
(𝑡) + 𝜇𝐷

+
E𝑉 (𝑡)

− 𝐷
+
𝐽
0
(𝑡)]

⩽ e𝜆(𝑡−𝑡0) [−𝜇 (𝑐 − 𝜆)E𝑉 (𝑡) − 𝜆𝐽
0
(𝑡)

+𝜇𝜒
1
(
󵄨󵄨󵄨󵄨𝑢𝑐 (𝑡)

󵄨󵄨󵄨󵄨) − 𝐷
+
𝐽
0
(𝑡)]

⩽ 𝜇e𝜆(𝑡−𝑡0) [− (𝑐 − 𝜆)E𝑉 (𝑡) + 𝜒
1
(
󵄨󵄨󵄨󵄨𝑢𝑐 (𝑡)

󵄨󵄨󵄨󵄨)] ,

𝑡 ∈ [𝑡
󸀠
, 𝑡
𝑚
) .

(29)

Because 𝐽
1
(𝑡) ⩾ 𝛼

2
(E‖𝜉‖
𝑝
) > 0 for 𝑡 ∈ [𝑡󸀠, 𝑡

𝑚
), there holds

E𝑉(𝑡) > (1/𝜇)𝐽
0
(𝑡) > (1/𝜇(𝑐− 𝑐󸀠))𝜒

1
(‖𝑢
𝑐
‖
[𝑡
0
,𝑡]
) for 𝑡 ∈ [𝑡󸀠, 𝑡

𝑚
).

Substituting this inequality with (29), and recalling the choice
of 𝜆, it follows that

𝐷
+
𝐽
1
(𝑡) ⩽ −e𝜆(𝑡−𝑡0) ( 𝑐 − 𝜆

𝑐 − 𝑐󸀠
− 𝜇)𝜒

1
(
󵄩󵄩󵄩󵄩𝑢𝑐

󵄩󵄩󵄩󵄩∞) ⩽ 0, (30)

which yields the following contradiction: 𝛼
2
(E‖𝜉‖
𝑝
) <

𝐽
1
(𝑡−
𝑚
) ⩽ 𝐽
1
(𝑡󸀠) = 𝛼

2
(E‖𝜉‖
𝑝
).

Therefore, we have 𝐽
1
(𝑡−
𝑚
) ⩽ 𝛼

2
(E‖𝜉‖
𝑝
). Using condition

(iii), we obtain that 𝐽(𝑡
𝑚
) ⩽ 𝐽
1
(𝑡−
𝑚
) ⩽ 𝛼

2
(E‖𝜉‖
𝑝
). Repeating



6 Abstract and Applied Analysis

the argument used in the proof of 𝐽(𝑡) ⩽ 𝛼
2
(E‖𝜉‖
𝑝
) for 𝑡 ∈

[𝑡
0
, 𝑡
1
), we can get 𝐽(𝑡) ⩽ 𝛼

2
(E‖𝜉‖
𝑝
) for 𝑡 ∈ [𝑡

𝑚
, 𝑡
𝑚+1

). By the
mathematical induction, we know that (9) holds for all 𝑡 ⩾ 𝑡

0
.

For any given 𝑡 ∈ [𝑡
𝑚
, 𝑡
𝑚+1

), one can get

∑
𝑡
𝑘
∈(𝑡
0
,𝑡]

e−𝜆(𝑡−𝑡𝑘)𝜒
2
(
󵄨󵄨󵄨󵄨𝑢𝑑 (𝑡
−

𝑘
)
󵄨󵄨󵄨󵄨)

⩽
1

1 − e−𝜆𝜌
𝜒
2
( max
𝑡
𝑘
∈(𝑡0,𝑡]

{
󵄨󵄨󵄨󵄨𝑢𝑑 (𝑡
−

𝑘
)
󵄨󵄨󵄨󵄨}) .

(31)

It follows from (9), (31), and the definition of 𝐽(𝑡) that

E𝑉 (𝑡) ⩽ e−𝜆(𝑡−𝑡0)𝛼
2
(E
󵄩󵄩󵄩󵄩𝜉
󵄩󵄩󵄩󵄩
𝑝

) +
1

𝑐 − 𝑐󸀠
𝜒
1
(
󵄩󵄩󵄩󵄩𝑢𝑐

󵄩󵄩󵄩󵄩∞)

+
1

1 − e−𝜆𝜌
𝜒
2
( max
𝑡
𝑘
∈(𝑡0,𝑡]

{
󵄨󵄨󵄨󵄨𝑢𝑑 (𝑡
−

𝑘
)
󵄨󵄨󵄨󵄨}) .

(32)

By casualty,

E𝑉 (𝑡) ⩽ e−𝜆(𝑡−𝑡0)𝛼
2
(E
󵄩󵄩󵄩󵄩𝜉
󵄩󵄩󵄩󵄩
𝑝

) +
1

𝑐 − 𝑐󸀠
𝜒
1
(
󵄩󵄩󵄩󵄩𝑢𝑐

󵄩󵄩󵄩󵄩[𝑡
0
,𝑡]
)

+
1

1 − e−𝜆𝜌
𝜒
2
( max
𝑡
𝑘
∈(𝑡0,𝑡]

{
󵄨󵄨󵄨󵄨𝑢𝑑 (𝑡
−

𝑘
)
󵄨󵄨󵄨󵄨}) .

(33)

Then by condition (i) and Jensen’s inequality, the required
assertion (2) holds with 𝛽(𝑟, 𝑠) = e−𝜆𝑠𝛼

2
(𝑟), 𝛾
𝑐
(𝑟) = (1/(𝑐 −

𝑐󸀠))𝜒
1
(𝑟) and 𝛾

𝑑
(𝑟) = (1/(1 − e−𝜆𝜌))𝜒

2
(𝑟). By Lemma 4.2 in

[31], it is easy to see that 𝛽 ∈ KL, 𝛾
𝑐
, 𝛾
𝑑
∈ K
∞
. As 𝛽, 𝛾

𝑐
, 𝛾
𝑑

are independent of the particular choice of the impulse time
sequence, system (1) is uniformly p-ISS over Smin(𝜌).

For the special case 𝜇 = 1, 𝜇e−𝑐𝜌 < 1 holds for any 𝜌 > 0,
so system (1) is uniformly p-ISS over Smin(𝜌) for any 𝜌 > 0.
In other words, system (1) is uniformly p-ISS over Sall. The
proof is complete.

Remark 9. When 𝜇 > 1, condition (iii) implies that the
impulses may be destabilizing. So, in order to maintain the
p-ISS property of system (1), the impulse interval is required
to be large enough to reduce the effect of the impulses. When
𝜇 = 1, the discrete dynamics aremarginally stable for the zero
input. In this case, the p-ISS of system (1) is not affected by the
impulses.

Withminormodification to the conditions ofTheorem 8,
a criterion on SISS can be obtained as follows.

Theorem 10. Assume that conditions (ii) and (iii) of
Theorem 8 hold, while condition (i) is replaced by

(𝑖∗) 𝛼
1
(|𝑥|) ⩽ 𝑉(𝑡, 𝑥) ⩽ 𝛼

2
(|𝑥|),

where 𝛼
1
, 𝛼
2
∈ K
∞
. Then, for any given 𝜌 > 0 satisfying

𝜇e−𝑐𝜌 < 1, system (1) is uniformly SISS over Smin(𝜌). In
particular, when 𝜇 = 1, system (1) is uniformly SISS over S

𝑎𝑙𝑙
.

Proof. By condition (i∗), (10) can be replaced by

𝐽 (𝑡) = E𝑉 (𝑡) e𝜆(𝑡−𝑡0) ⩽ E𝛼
2
(|𝑥 (𝑡)|) ⩽ E𝛼

2
(
󵄩󵄩󵄩󵄩𝜉
󵄩󵄩󵄩󵄩) ,

𝑡 ∈ [𝑡
0
− 𝜏, 𝑡
0
] .

(34)

Then, following the same lines of the proof ofTheorem 8, it is
easy to see that

E𝑉 (𝑡) ⩽ e−𝜆(𝑡−𝑡0)E𝛼
2
(
󵄩󵄩󵄩󵄩𝜉
󵄩󵄩󵄩󵄩) +

1

𝑐 − 𝑐󸀠
𝜒
1
(
󵄩󵄩󵄩󵄩𝑢𝑐

󵄩󵄩󵄩󵄩[𝑡
0
,𝑡]
)

+
1

1 − e−𝜆𝜌
𝜒
2
( max
𝑡
𝑘
∈(𝑡
0
,𝑡]

{
󵄨󵄨󵄨󵄨𝑢𝑑 (𝑡
−

𝑘
)
󵄨󵄨󵄨󵄨})

(35)

holds for all 𝑡 ⩾ 𝑡
0
. Consequently, by Chebyshev’s inequality,

it follows that

𝑃{𝑉 (𝑡) − e−𝜆(𝑡−𝑡0)𝛼
2
(
󵄩󵄩󵄩󵄩𝜉
󵄩󵄩󵄩󵄩)

⩾ 𝛿(
1

𝑐 − 𝑐󸀠
𝜒
1
(
󵄩󵄩󵄩󵄩𝑢𝑐

󵄩󵄩󵄩󵄩[𝑡
0
,𝑡]
)

+
1

1 − e−𝜆𝜌
𝜒
2
( max
𝑡
𝑘
∈(𝑡0 ,𝑡]

{
󵄨󵄨󵄨󵄨𝑢𝑑 (𝑡
−

𝑘
)
󵄨󵄨󵄨󵄨}))}

⩽ E𝑉 (𝑡) − E𝛼
2
(
󵄩󵄩󵄩󵄩𝜉
󵄩󵄩󵄩󵄩) e
−𝜆(𝑡−𝑡

0
)

× (𝛿(
1

𝑐 − 𝑐󸀠
𝜒
1
(
󵄩󵄩󵄩󵄩𝑢𝑐

󵄩󵄩󵄩󵄩[𝑡
0
,𝑡]
)

+
1

1 − e−𝜆𝜌
𝜒
2
( max
𝑡
𝑘
∈(𝑡0 ,𝑡]

{
󵄨󵄨󵄨󵄨𝑢𝑑 (𝑡
−

𝑘
)
󵄨󵄨󵄨󵄨})))

−1

⩽ 𝜀,

(36)

where 𝜀 can be made arbitrarily small by an appropriate
choice of 𝛿 ∈ K

∞
. That is,

𝑃{𝑉 (𝑡) < e−𝜆(𝑡−𝑡0)𝛼
2
(
󵄩󵄩󵄩󵄩𝜉
󵄩󵄩󵄩󵄩)

+ 𝛿(
1

𝑐 − 𝑐󸀠
𝜒
1
(
󵄩󵄩󵄩󵄩𝑢𝑐

󵄩󵄩󵄩󵄩[𝑡
0
,𝑡]
)

+
1

1 − e−𝜆𝜌
𝜒
2
( max
𝑡
𝑘
∈(𝑡0 ,𝑡]

{
󵄨󵄨󵄨󵄨𝑢𝑑 (𝑡
−

𝑘
)
󵄨󵄨󵄨󵄨}))}

> 1 − 𝜀,

(37)

which yields

𝑃{𝑉 (𝑡) < 𝛽 (
󵄩󵄩󵄩󵄩𝜉
󵄩󵄩󵄩󵄩 , 𝑡 − 𝑡0) + 𝛾𝑐 (

󵄩󵄩󵄩󵄩𝑢𝑐
󵄩󵄩󵄩󵄩[𝑡
0
,𝑡]
)

+ 𝛾
𝑑
( max
𝑡
𝑘
∈(𝑡0,𝑡]

{
󵄨󵄨󵄨󵄨𝑢𝑑 (𝑡
−

𝑘
)
󵄨󵄨󵄨󵄨})} > 1 − 𝜀,

(38)

where 𝛽(𝑟, 𝑠) = e−𝜆𝑠𝛼
2
(𝑟), 𝛾
𝑐
(𝑟) = 𝛿((2/(𝑐− 𝑐󸀠))𝜒

1
(𝑟)), 𝛾

𝑑
(𝑟) =

𝛿((2/(1 − e−𝜆𝜌))𝜒
2
(𝑟)). By condition (i∗), we know that (3)

holds. Therefore, system (1) is uniformly SISS over Smin(𝜌)
and the proof is complete.

In view ofDefinitions 1–5, it is easy to obtain the following
criteria on p-GAS and GASiP according to Theorems 8 and
10.
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Corollary 11. Assume that there exist functions 𝑉 ∈ V
0
, 𝛼
1
∈

𝑐K
∞
, 𝛼
2
∈ VK

∞
and scalars 𝑞 > 1, 𝑐 > 0, 𝜇 ∈ [1, 𝑞) such

that

(i) 𝛼
1
(|𝑥|𝑝) ⩽ 𝑉(𝑡, 𝑥) ⩽ 𝛼

2
(|𝑥|𝑝);

(ii) EL𝑉(𝑡, 𝜑) ⩽ −𝑐E𝑉(𝑡, 𝜑(0)), for all 𝑡 ⩾ 𝑡
0
, 𝑡 ̸= 𝑡
𝑘
and

𝜑 ∈ 𝑃𝐶F
𝑡

([−𝜏, 0];R𝑛) whenever E𝑉(𝑡 + 𝜃, 𝜑(𝜃)) ⩽

𝑞E𝑉(𝑡, 𝜑(0));

(iii) E𝑉(𝑡
𝑘
, 𝐼
𝑘
(𝑡−
𝑘
, 𝑥, 𝑢
𝑑
)) ⩽ 𝜇E𝑉(𝑡

𝑘
, 𝑥).

Then, for any given 𝜌 > 0 satisfying 𝜇e−𝑐𝜌, system (1) is
uniformly p-GAS over Smin(𝜌). In particular, when 𝜇 = 1,
system (1) is uniformly p-GAS over S

𝑎𝑙𝑙
.

Corollary 12. Assume that conditions (ii) and (iii) of
Corollary 11 hold, while condition (i) is replaced by

(𝑖∗) 𝛼
1
(|𝑥|) ⩽ 𝑉(𝑡, 𝑥) ⩽ 𝛼

2
(|𝑥|),

where 𝛼
1
, 𝛼
2
∈ K
∞
. Then, for any given 𝜌 > 0 satisfying

𝜇e−𝑐𝜌 < 1, system (1) is uniformly GASiP over Smin(𝜌). In
particular, when 𝜇 = 1, system (1) is uniformly GASiP over
S
𝑎𝑙𝑙
.

Now let us apply the obtained results to the linear impul-
sive stochastic delayed system with the following form:

d𝑥 = (𝐴𝑥 (𝑡) + 𝐴
1
𝑥
𝜏
+ 𝐵𝑢
𝑐
(𝑡)) d𝑡

+ (𝐶𝑥 (𝑡) + 𝐶
1
𝑥
𝜏
+ 𝐷𝑢
𝑐
(𝑡)) d𝑤, 𝑡 ̸= 𝑡

𝑘
,

𝑥 (𝑡
𝑘
) = 𝐸𝑥 (𝑡

−

𝑘
) + 𝐹𝑢

𝑑
(𝑡
−

𝑘
) , 𝑘 ∈ N,

(39)

on 𝑡 ⩾ 𝑡
0
with initial data 𝑥

𝑡
0

= 𝜉, where 𝑥 ∈ R𝑛 and 𝑢
𝑐
∈

L𝑚1
∞
, 𝑢
𝑑
∈ L𝑚2
∞

are system state and inputs, respectively; 𝑥
𝜏

is short for 𝑥(𝑡 − 𝜏); 𝐴, 𝐴
1
, 𝐵, 𝐶, 𝐶

1
, 𝐷, 𝐸, 𝐹 are constant

matrices with appropriate dimensions.

Corollary 13. Assume that there exist a matrix 𝑃 > 0 and
constants 𝜆

1
< 0, 𝜆

2
> 0, 𝜆

3
> 0, 𝜆

4
> 1, 𝜆

5
> 0 satisfying

𝜆
4
e(𝜆1+𝜆2𝑝)𝜌 < 1 such that the following matrix inequalities

hold:

[

[

𝐴T𝑃 + 𝑃𝐴 + 𝐶T𝑃𝐶 − 𝜆
1
𝑃 𝑃𝐴

1
+ 𝐶T𝑃𝐶

1
𝑃𝐵 + 𝐶T𝑃𝐷

∗ 𝐶T
1
𝑃𝐶
1
− 𝜆
2
𝑃 𝐶T

1
𝑃𝐷

∗ ∗ 𝐷T𝑃𝐷 − 𝜆
3
𝐼

]

]

⩽ 0,

[
𝐸T𝑃𝐸 − 𝜆

4
𝑃 𝐸T𝑃𝐹

∗ 𝐹T𝑃𝐹 − 𝜆
5
𝐼
] ⩽ 0.

(40)

Then system (39) is uniformly ISS inmean square and uniform-
ly SISS over Smin(𝜌).

Proof. We choose the candidate ISS-Lyapunov function
𝑉(𝑡, 𝑥) = 𝑥T𝑃𝑥. By using (40), and in view of the fact that

𝜆min(𝑃)|𝑥|
2 ⩽ 𝑥T𝑃𝑥 ⩽ 𝜆max(𝑃)|𝑥|

2, we can obtain by simple
calculation that

L𝑉 (𝑡, 𝑥, 𝑢)

= (

𝑥

𝑥
𝜏

𝑢
𝑐

)

T

× (

𝐴T𝑃 + 𝑃𝐴 + 𝐶T𝑃𝐶 𝑃𝐴
1
+ 𝐶T𝑃𝐶

1
𝑃𝐵 + 𝐶T𝑃𝐷

∗ 𝐶T
1
𝑃𝐶
1

𝐶T
1
𝑃𝐷

∗ ∗ 𝐷T𝑃𝐷

)

× (

𝑥

𝑥
𝜏

𝑢
𝑐

)

⩽ 𝜆
1
𝑥
T
𝑃𝑥 + 𝜆

2
𝑥
T
𝜏
𝑃𝑥
𝜏
+ 𝜆
3
𝑢
T
𝑐
𝑢
𝑐
.

(41)

So, whenever E𝑉(𝑡 + 𝜃) ⩽ 𝑞E𝑉(𝑡), we have

EL𝑉 (𝑡, 𝑥, 𝑢) ⩽ (𝜆
1
+ 𝜆
2
𝑞)E𝑉 (𝑡, 𝑥) + 𝜆

3

󵄨󵄨󵄨󵄨𝑢𝑐
󵄨󵄨󵄨󵄨
2

. (42)

On the other hand,

𝑉 (𝑡
𝑘
, 𝑥 (𝑡
𝑘
)) = (

𝑥

𝑢
𝑑

)

T
(
𝐸T𝑃𝐸 𝐸T𝑃𝐹

∗ 𝐹T𝑃𝐹
)(

𝑥

𝑢
𝑑

)

⩽ 𝜆
4
𝑥
T
𝑃𝑥 + 𝜆

5
𝑢
T
𝑑
𝑢
𝑑
.

(43)

So,

E𝑉 (𝑡
𝑘
, 𝑥 (𝑡
𝑘
)) ⩽ 𝜆

4
E𝑉 (𝑡
−

𝑘
) + 𝜆
5

󵄨󵄨󵄨󵄨𝑢𝑑
󵄨󵄨󵄨󵄨
2

. (44)

It is obvious that all conditions of Theorem 8 are satisfied,
with 𝑐 = −(𝜆

1
+ 𝜆
2
𝑝) and 𝜇 = 𝜆

4
. Therefore, we conclude

byTheorems 8 and 10 that system (39) is uniformly p-ISS and
uniformly SISS over Smin(𝜌).

Remark 14. It is noted that (40) are not linear with the
combined variables (𝑃, 𝜆

1
, 𝜆
2
, 𝜆
4
), and, therefore, they are

not linear matrix inequalities (LMIs). This makes the com-
putation difficult but also flexible. We can first assign 𝜆

1
, 𝜆
2
,

and 𝜆
4
and then solve LMIs (40) by using the Matlab LMI

Toolbox.

4. Illustrative Example

In this section, to illustrate the validity of our results, we give
the following linear numerical example. We point out that,
due to the effect of the input 𝑢, the state 𝑥(𝑡)will not converge
to zero but will remain bounded (in the sense of mean square
or in probability), which is consistent with the definition of
p-ISS/SISS.
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Figure 1:Themean square of the solution with external input (2000
samples).

Example 1. Consider system (39) with the following parame-
ters:

𝐴 = diag (−3, −2.5) , 𝐴
1
= [

0.3 0.1

0.1 0.2
] , 𝐵 = [

0.1

0.1
] ,

𝐶 = [
0.2 0.4

0.3 0.1
] , 𝐶

1
= [

−0.2 0.1

0 0.3
] , 𝐷 = [

0.1

0.1
] ,

𝐸 = [
1.1 0.2

−0.3 1.2
] , 𝐹 = [

0.2

0.5
] .

(45)

Setting 𝜆
1
= −3.8, 𝜆

2
= 0.2, 𝜆

4
= 1.4, and solving LMIs

(40) by using the Matlab LMI Toolbox, then

𝑃 = [
395.5597 −72.7854

395.5597 269.6470
] , 𝜆

3
= 0.9546,

𝜆
5
= 3.5515

(46)

is a group of feasible solutions. Choosing 𝑝 = 1.41 > 𝜇 =

𝜆
4
= 1.4, 𝜌 = 0.1, it is easy to check that all the conditions

of Corollary 13 are satisfied, which means that the system is
uniform ISS in mean square and uniform SISS for arbitrary
sequence of impulse times satisfying inf{𝑡

𝑘
− 𝑡
𝑘−1

} ⩾ 0.1. The
sample path and themean square of the solution are displayed
in Figures 1 and 2, respectively, where 𝜏 = 0.5, initial data
𝜉(𝜃) = [1 −1]

T for 𝜃 ∈ [−0.5, 0], and impulse interval 𝑡
𝑘
−

𝑡
𝑘−1

= 0.1 and external inputs 𝑢
𝑐
(𝑡) = 𝑢

𝑑
(𝑡) = sin 𝑡.

As p-ISS/SISS implies p-GAS/GASiP of the correspond-
ing unforced system, we conclude that the system with 𝑢

𝑐
=

𝑢
𝑑

≡ 0 is uniform GAS in mean square and GASiP for
arbitrary sequence of impulse times satisfying inf{𝑡

𝑘
−𝑡
𝑘−1

} ⩾

0.1. The simulations of the unforced system are shown in
Figures 3 and 4.
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Figure 2: The state trajectory of the system with external input
(single sample).
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Figure 3: The mean square of the solution without external input
(2000 samples).

5. Conclusions

This paper has investigated the p-ISS/SISS of impulsive
stochastic systems with external inputs. By combining
stochastic analysis techniques, piecewise continuous Lya-
punov functions, and Razumikhin techniques, sufficient
conditions for uniform p-ISS/SISS over a given class of
impulse times sequences have been established. As a byprod-
uct, the criteria on p-GAS/GASiP are also derived. For
future research, interesting topics may include establishing
p-ISS/SISS theorems with stabilizing impulses, as well as
p-ISS/SISS analysis by exploring new techniques such as
Lyapunov-Krosovskii functional method.
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Figure 4: The state trajectory of the system without external input
(single sample).
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