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A partial synchronization problem in an oscillator network is considered. The concept on a principal quasi-submatrix
corresponding to the topology of a cluster is proposed for the first time to study partial synchronization. It is shown that partial
synchronization can be realized under the condition depending on the principal quasi-submatrix, but not distinctly depending on
the intercluster couplings. Obviously, the dimension of any principal quasi-submatrix is usually far less than the one of the network
topology matrix. Therefore, our criterion provides us a novel index of partial synchronizability, which reduces the network size
when the network is composed of a great mount of nodes. Numerical simulations are carried out to confirm the validity of the
method.

1. Introduction

Since the pioneering work of Pecora andCarroll [1], extensive
researches on chaos synchronization have been carried out
due to their potential applications in various disciplines such
as physics, engineering, and biology [2–5]. For example,
wireless sensor networks are widely researched due to the
important applications in the real scenarios. One of the
biggest challenges in investigating wireless sensor networks is
how to obtain higher synchronization accuracy withminimal
overhead [6]. And many other network-induced phenomena
have also been discussed extensively in engineering [7].

Up to date, there have been many synchronization
types being proposed and discussed, including complete
synchronization [8, 9], partial synchronization [10], and inner
and outer synchronization [11]. Generally speaking, there
exists an intimate relationship between the phenomena of
synchronization and invariant manifolds of coupled systems
[9–12]. Thus, when we carry out researches on partial syn-
chronization of coupled systems, it is always supposed that
the corresponding full or partial synchronization manifolds

are invariant manifolds.The established tools for the stability
of invariant synchronization manifolds mainly consist of
local linearization method and Lyapunov function method.
One of the prominent results of the former is the master
stability function method [9]. The method has obtained
two significant factors determining the local stability of the
synchronous state, that is, the maximum Lyapunov exponent
of the node dynamics and the eigenvalues of the topology
matrix. One of the prominent results of the latter is the study
of the global attractiveness of the synchronization manifold.
A crucial requirement for the method is the condition of the
node dynamics satisfying 𝑓 ∈ QUAD(Δ, 𝑃,Ω) [10]. In some
sense, the condition means that the system can synchronize
when the coupling is made sufficiently large. Recently, some
new conditions have been obtained for synchronization of
networks without Lipschitz condition or QUAD condition
[12].

The type of synchronization concerned in this paper is
partial synchronization. It means that the coupled oscillators
split into subgroups called clusters, and all the oscillators in
the same cluster behave in the same fashion. Many relative
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studies have been carried out [13–18]. By using pinning
control strategy, partial synchronization of coupled stochas-
tic delayed neural networks was discussed in [14]. Similar
control strategy is also proposed to select controlled com-
munities by analyzing the information of each community
such as in-degrees and out-degrees [15]. Afterwards, some
simple intermittent pinning controls and centralized adaptive
intermittent controls are proposed [16]. However, a suitable
control lawmust be presented in order to use pinning control
strategy. Some other researches focused on partial synchro-
nization induced by the coupling configuration. An arbitrar-
ily selected partial synchronizationmanifold was constructed
for a network with cooperative and competitive couplings
[17]. Recently, a sufficient and necessary condition for partial
synchronization manifolds being invariant manifolds was
obtained in networks coupled linearly and symmetrically
[10]. More significantly, some sufficient conditions for the
global attractiveness of the partial synchronization manifold
were derived by decomposing the whole space into a direct
sum of the synchronization manifold and the transverse
space. The results are meaningful and interesting. Based
on the method in [10], partial synchronization bifurcations
[19] were analyzed for a globally coupled network with a
parameter, which topology is not complex. Nevertheless, all
the eigenvalues of the topology matrix are essential for that
method, which needs a large quantity of computation when
the network size is very large.

In this paper, a novel criterion on partial synchro-
nization is proposed through the analysis of principal
quasi-submatrices corresponding to the clusters. Previous
researches have obtained several criteria on partial synchro-
nization [10]. However, these criteria depend heavily on the
topology matrix of the whole network. For many complex
networks in real world, it is tedious to obtain the eigenvalues
and eigenvectors of the topologymatrix of thewhole network.
Therefore, this paper aims to propose a novel criterion, which
is not distinctly dependent on the intercluster couplings and
the topology matrix of the whole network. Instead, it is suffi-
cient for partial synchronization to verify that the conditions
on the intracluster couplings are satisfied. Therefore, it will
be advantageous to discuss partial synchronization in the
complex network with a large number of nodes because the
dimension of any principal quasi-submatrix is usually far
less than the one of the network topology matrix. At first,
the tedious work of solving the eigenvectors corresponding
to the second-largest eigenvalue is avoided. Secondly, partial
synchronization is studied by the inner topologies of the
individual clusters. Obviously, the network size reduction
provides convenience for the study of partial synchronization
in networks with great mounts of oscillators. In order to
confirm its effectiveness, some numerical simulations are
carried out to study partial synchronization in a star-global
network. The numerical simulations are in good agreement
with the theoretical analysis.

The present paper is built up as follows. Some con-
cerned concepts and a lemma for the invariance of the
partial synchronizationmanifold are introduced in Section 2.
Principal quasi-submatrices corresponding to the clusters
are proposed, and our main results are then established

in Section 3. Numerical examples are presented to confirm
the effectiveness of the results in Section 4. Finally, a brief
discussion of the obtained results is given in Section 5.

2. Preliminaries

In this section, we introduce some basic concepts of invariant
synchronization manifolds and a related lemma, which are
required throughout the paper.

In past years, many studies [9, 10, 12] of synchronization
phenomena focused on oscillator networks coupled linearly
and symmetrically. The system can be described by the
following ordinary differential equations:

𝑥̇
𝑖
= 𝑓 (𝑥

𝑖
, 𝑡) + 𝜀

𝑚

∑
𝑗=1

𝑎
𝑖𝑗
Γ𝑥
𝑗
, 𝑖 = 1, . . . , 𝑚, (1)

where 𝑥
𝑖
= (𝑥1
𝑖
, . . . , 𝑥𝑛

𝑖
)⊤ is the 𝑛-dimensional state variable

of the 𝑖th oscillator, 𝑚 > 1 is the network size, 𝑡 ∈ [0, +∞) is
a continuous time, 𝑓 : 𝑅𝑛 × [0, +∞) → 𝑅𝑛 is a continuous
map, 𝜀 > 0 is the coupling strength, and Γ = diag{𝛾

1
, . . . ,

𝛾
𝑛
} is a nonnegative matrix determining the interaction of

variables. The coupling weight matrix 𝐴 = (𝑎
𝑖𝑗
)
𝑚×𝑚

is
assumed to satisfy that 𝑎

𝑖𝑗
= 𝑎
𝑗𝑖
≥ 0, for 𝑖 ̸= 𝑗, and ∑

𝑚

𝑗=1
𝑎
𝑖𝑗
=

𝑠 for 𝑖 = 1, . . . , 𝑚.
In order to study partial synchronization of the system

(1), the set of nodes {1, . . . , 𝑚} is divided into 𝑑 nonempty
subsets (clusters). Let 𝐺 = {𝐺1, . . . , 𝐺𝑑} be the partition,
and denote 𝐾 = (𝐾

1
, 𝐾
2
, . . . , 𝐾

𝑑
), where 𝐾

𝑘
≥ 1 is the

cardinal number of the cluster 𝐺𝑘, 𝑘 = 1, . . . , 𝑑. Without
loss of generality, suppose that 𝐺1 = {1, . . . , 𝐾

1
}, . . . , 𝐺𝑑 =

{∑
𝑑−1

𝑝=1
𝐾
𝑝
+ 1, . . . , 𝑚}. Based on the partition 𝐺, we rewrite

the coupling matrix 𝐴 as a block matrix,

𝐴 =
[
[
[

[

𝐴
11

𝐴
12

⋅ ⋅ ⋅ 𝐴
1𝑑

𝐴
21

𝐴
22

⋅ ⋅ ⋅ 𝐴
2𝑑

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
𝐴
𝑑1

𝐴
𝑑2

⋅ ⋅ ⋅ 𝐴
𝑑𝑑

]
]
]

]

, (2)

where 𝐴
𝑘𝑙
∈ 𝑅𝐾𝑘×𝐾𝑙 , 𝑘, 𝑙 = 1, . . . , 𝑑.

We will discuss sufficient conditions for the 𝐾
𝑘
nodes in

the cluster 𝐺𝑘 to synchronize with each other, 𝑘 = 1, . . . , 𝑑.
Before that, the concepts of partial synchronizationmanifolds
and transverse spaces introduced in the following [10]:

M
𝐾
= {(𝑥⊤

1
, . . . , 𝑥⊤

𝑚
)
⊤

| (𝑥⊤
∑
𝑘−1

𝑝=0
𝐾𝑝+1

, . . . , 𝑥⊤
∑
𝑘

𝑝=0
𝐾𝑝
)
⊤

∈ M
𝑘

𝐾
,

𝑘 = 1, . . . , 𝑑} ,

(3)

where𝐾
0
= 0,

M
𝑘

𝐾
= {(𝑥⊤

∑
𝑘−1

𝑝=0
𝐾𝑝+1

, . . . , 𝑥⊤
∑
𝑘

𝑝=0
𝐾𝑝
)
⊤

∈ 𝑅𝑛𝐾𝑘 | 𝑥
∑
𝑘−1

𝑝=0
𝐾𝑝+1

= ⋅ ⋅ ⋅ = 𝑥
∑
𝑘

𝑝=0
𝐾𝑝
} ,

(4)
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are called a partial synchronization manifold. We also call

L
𝐾
= {(𝑥⊤

1
, . . . , 𝑥⊤

𝑚
)
⊤

| (𝑥⊤
∑
𝑘−1

𝑝=0
𝐾𝑝+1

, . . . , 𝑥⊤
∑
𝑘

𝑝=0
𝐾𝑝
)
⊤

∈ L
𝑘

𝐾
,

𝑘 = 1, . . . , 𝑑} ,

(5)

where

L
𝑘

𝐾
= {(𝑥⊤

∑
𝑘−1

𝑝=0
𝐾𝑝+1

, . . . , 𝑥⊤
∑
𝑘

𝑝=0
𝐾𝑝
)
⊤

∈ 𝑅𝑛𝐾𝑘 |
𝐾𝑘

∑
𝑖=1

𝑥
∑
𝑘−1

𝑝=0
𝐾𝑝+𝑖

= 0} ,

(6)

a transverse space for M
𝐾
.

In case 𝑛 = 1, the four sets mentioned above are
denoted by 𝑀

𝐾
, 𝑀𝑘
𝐾
, 𝐿
𝐾
, and 𝐿𝑘

𝐾
, respectively. In case 𝑑 =

1, the synchronization manifold M
𝐾
is called a full syn-

chronization manifold. For simplicity, we denote the full
synchronization manifold M

𝐾
by M, and the corresponding

transverse space L
𝐾
by L. Sometimes, the manifold M

𝐾
is

also denoted by M
𝐾
(𝐺) to emphasize its partition 𝐺.

Definition 1. The synchronization manifold M
𝐾

is said to
be globally attractive for the system (1), or the system (1)
is said to realize partial synchronization with the partition
𝐺 = {𝐺1, 𝐺2, . . . , 𝐺𝑑} if, for any initial condition (𝑥⊤

1
(0),

𝑥⊤
2
(0), . . . , 𝑥⊤

𝑚
(0))⊤ ∈ 𝑅𝑚𝑛,

lim
𝑡→+∞

𝑑

∑
𝑘=1

∑
𝑖∈𝐺
𝑘

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑥
𝑖 (𝑡) − 𝑥

∑
𝑘−1

𝑝=0
𝐾𝑝+1

(𝑡)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩
= 0, (7)

where ‖ ⋅ ‖ denotes 2-norm of vectors. In case of 𝑑 = 1, the
system (1) is said to realize full synchronization, if the full
synchronization manifoldM is globally attractive.

Synchronization manifolds are always supposed to be
invariant in order to discuss the attractiveness. Therefore, it
is necessary to recall the definition of an invariant manifold
[20] for the ordinary differential equations,

𝑥̇ = 𝑋 (𝑥, 𝑡) , 𝑥 ∈ 𝑅𝑁, 𝑋 : 𝑅𝑁 × [0, +∞) 󳨀→ 𝑅𝑁. (8)

Denote M as the manifold of codimension 𝑝 defined by a
vector equation 𝐻(𝑥) = 0, 𝐻 = (ℎ

1
, ℎ
2
, . . . , ℎ

𝑝
), 1 ≤ 𝑝 ≤

𝑁 − 1.M is called an invariant manifold of the system (8) if

(grad𝐻 ⋅ 𝑋) |
𝐻=0

≡ 0, (9)

which implies that the vector field (8) is tangent to M. For
more details of the existence of invariant manifolds, one can
refer to the papers by Golubitsky and coworkers [21, 22]. The
following lemma gives a sufficient and necessary condition
for a partial synchronization manifold being an invariant
manifold.

Lemma 2 (see [10]). Let 𝐾 = (𝐾
1
, 𝐾
2
, . . . , 𝐾

𝑑
). The synchro-

nization manifold M
𝐾
is an invariant manifold of the system

(1) if and only if the coupling matrix 𝐴 has the form (2) with
every 𝐴

𝑖𝑗
being equal row sum.

Remark 3. Based on Lemma 2, we can find all invariant
synchronizationmanifolds for a given couplingmatrix. As we
know, each diagonal block reveals the intracluster informa-
tion communication, and each nondiagonal block represents
the information communication among different clusters. By
the condition that every 𝐴

𝑖𝑗
is equal row sum, we mean that

every node in the same cluster receive an equal amount of
information communication from every other cluster.

3. Main Results

Noticing the sufficient and necessary condition in Lemma 2,
we assume that every submatrix 𝐴

𝑘𝑙
∈ 𝑅𝐾𝑘×𝐾𝑙 is an equal row

sum matrix with row sum 𝑠
𝑘𝑙
, 𝑘, 𝑙 = 1, . . . , 𝑑. Since 𝐴𝑠 is an

equal row sum matrix, that is, ∑𝑚
𝑗=1

𝑎
𝑖𝑗
= ∑
𝑑

𝑘=1
𝑠
𝑖̂𝑘
= 𝑠, where

the denotation 𝑖̂ represents 𝑘 , for all 𝑖 ∈ 𝐺𝑘, we define the
matrices 𝐴

𝑘𝑘
= (𝑎
𝑖𝑗
)
𝐾𝑘×𝐾𝑘

as

𝐴
𝑘𝑘

= 𝐴
𝑘𝑘
+ (𝑠 − 𝑠

𝑘𝑘
) 𝐸
𝐾𝑘

= 𝐴
𝑘𝑘
+
𝑑

∑
𝑙=1,𝑙 ̸= 𝑘

𝑠
𝑘𝑙
𝐸
𝐾𝑘
, (10)

where 𝐸
𝐾𝑘

∈ 𝑅𝐾𝑘×𝐾k is the identity matrix, 𝑘 = 1, . . . , 𝑑. It is
easy to conclude from (10) that ∑

𝑗∈𝐺
𝑖̂ 𝑎𝑖𝑗 = 𝑠 and

𝑎
𝑖𝑗
=

{{{
{{{
{

𝑎
𝑖𝑗
, 𝑖 ̸= 𝑗;

𝑎
𝑖𝑗
+
𝑑

∑

𝑙=1,𝑙 ̸= 𝑖̂

𝑠
𝑖̂𝑙
, 𝑖 = 𝑗.

(11)

Noticing that 𝐴
𝑘𝑘

is a principal submatrix of 𝐴, we call the
matrix 𝐴

𝑘𝑘
a principal quasi-submatrix corresponding to the

cluster 𝐺𝑘, 𝑘 = 1, . . . , 𝑑.
Now, we are now in a position to carry out the following

theorem with the help of Lyapunov function method.

Theorem 4. Let 𝐾 = (𝐾
1
, 𝐾
2
, . . . , 𝐾

𝑑
), 𝑃 = diag(𝑝

1
, . . . , 𝑝

𝑛
)

be a positive-definite diagonal matrix, and let Δ =
diag(𝛿

1
, . . . , 𝛿

𝑛
) be a diagonal matrix. Suppose 𝛿

𝑗
≤ 0 if

𝑗 ∉ 𝐽, where 𝐽 = {𝑗 : 1 ≤ 𝑗 ≤ 𝑛, 𝛾
𝑗

̸= 0}. Then under the
following three conditions.

(i) Every submatrix 𝐴
𝑘𝑙
in the block matrix (2) has equal

row sum 𝑠
𝑘𝑙
, and every principal submatrix 𝐴

𝑘𝑘
is

irreducible.
(ii) There exists a constant 𝜖 > 0 such that, for any𝑢, V ∈ 𝑅𝑛

and all 𝑡 ≥ 0,

(𝑢 − V)⊤𝑃 {[𝑓 (𝑢, 𝑡) − 𝑓 (V, 𝑡)] − Δ (𝑢 − V)}

≤ −𝜖(𝑢 − V)⊤ (𝑢 − V) .
(12)

(iii) For all 𝑗 = 1, . . . , 𝑛, 𝑘 = 1, . . . , 𝑑, the matrices 𝜀𝛾
𝑗
𝐴
𝑘𝑘
+

𝛿
𝑗
𝐸
𝐾𝑘

are negative semidefinite in the transverse space
𝐿𝑘
𝐾
, that is,

𝑧⊤ (𝜀𝛾
𝑗
𝐴
𝑘𝑘
+ 𝛿
𝑗
𝐸
𝐾𝑘
) 𝑧 ≤ 0, 𝑧 ∈ 𝐿𝑘

𝐾
, (13)



4 Abstract and Applied Analysis

or, in particular,

𝜀𝛾
𝑗
𝜆(2)
𝑘

+ 𝛿
𝑗
≤ 0, (14)

where 𝜆(2)
𝑘

is the second-largest eigenvalue of 𝐴
𝑘𝑘
.

The synchronization manifold M
𝐾
is globally attractive for

the system (1).

For convenience of the proof, the following notations are
introduced.

𝑥
𝑘 (𝑡) =

1

𝐾
𝑘

∑
𝑖∈𝐺
𝑘

𝑥
𝑖 (𝑡) , 𝑥 (𝑡) = [𝑥⊤

1̂
(𝑡) , . . . , 𝑥

⊤

𝑚̂
(𝑡)]
⊤

,

𝛿𝑥
𝑖 (𝑡) = 𝑥

𝑖 (𝑡) − 𝑥
𝑖̂
(𝑡) ,

𝛿𝑥 (𝑡) = [𝛿𝑥⊤
1
(𝑡) , . . . , 𝛿𝑥

⊤

𝑚
(𝑡)]
⊤

,

𝛿𝑥𝑠
𝑘
(𝑡) = [𝛿𝑥𝑠

∑
𝑘−1

𝑝=0
𝐾𝑝+1

(𝑡) , . . . , 𝛿𝑥
𝑠

∑
𝑘

𝑝=0
𝐾𝑝

(𝑡)]
⊤

,

𝛿𝑥
𝑘 (𝑡) = [𝛿𝑥1⊤

𝑘
(𝑡) , . . . , 𝑥

𝑛⊤

𝑘
(𝑡)]
⊤

,

(15)

where 𝑘 = 1, . . . , 𝑑, 𝑖 = 1, . . . , 𝑚, 𝑠 = 1, . . . , 𝑛.
Then any vector 𝑥 = (𝑥⊤

1
, . . . , 𝑥⊤

𝑚
)⊤ ∈ 𝑅𝑚𝑛 can be

decomposed into

𝑥 = 𝑥 ⊕ 𝛿𝑥, 𝑥 ∈ M
𝐾
, 𝛿𝑥 ∈ L

𝐾
. (16)

Therefore, the attractiveness of the invariant synchronization
manifoldM

𝐾
is equivalent to 𝛿𝑥 → 0when 𝑡 → +∞; that is,

the dynamical flow in the transverse subspace L
𝐾
converges

to zero.

Proof. Noticing the condition (i), one gets
𝑚

∑
𝑗=1

𝑎
𝑖𝑗
Γ𝑥
𝑗 (𝑡) =

𝑑

∑
𝑙=1

∑
𝑗∈𝐺
𝑙

𝑎
𝑖𝑗
Γ [𝛿𝑥
𝑗 (𝑡) + 𝑥

𝑙 (𝑡)]

=
𝑚

∑
𝑙=1

𝑎
𝑖𝑗
Γ𝛿𝑥
𝑗 (𝑡) +

𝑑

∑
𝑙=1

𝑠
𝑖̂𝑙
Γ𝑥
𝑙 (𝑡) .

(17)

Therefore,

𝑑𝛿𝑥
𝑖 (𝑡)

𝑑𝑡
=
𝑑𝑥
𝑖 (𝑡)

𝑑𝑡
−

1

𝐾
𝑖̂

∑

𝑝∈𝐺
𝑖̂

𝑑𝑥
𝑝 (𝑡)

𝑑𝑡

= 𝑓 (𝑥
𝑖 (𝑡) , 𝑡) − 𝑓 (𝑥

𝑖̂
(𝑡) , 𝑡) + 𝜀

𝑚

∑
𝑗=1

𝑎
𝑖𝑗
Γ𝛿𝑥
𝑗 (𝑡) + 𝐽

𝑖
,

(18)

where

𝐽
𝑖
= 𝑓 (𝑥

𝑖̂
(𝑡) , 𝑡) −

1

𝐾
𝑖̂

∑

𝑝∈𝐺
𝑖̂

[𝑓 (𝑥
𝑝 (𝑡) , 𝑡) + 𝜀

𝑚

∑
𝑞=1

𝑎
𝑝𝑞
Γ𝑥
𝑞 (𝑡)]

+ 𝜀
𝑑

∑
𝑙=1

𝑠
𝑖̂𝑙
Γ𝑥
𝑙 (𝑡) .

(19)

In order to utilize the QUAD(Δ, 𝑃, 𝑅𝑛) condition, a
Lyapunov function is defined as follows:

𝑉 (𝛿𝑥 (𝑡)) =
1

2

𝑚

∑
𝑗=1

𝛿𝑥⊤
𝑖
(𝑡) 𝑃𝛿𝑥𝑖 (𝑡) . (20)

One can conclude from ∑
𝑖∈𝐺
𝑘 𝛿𝑥𝑖(𝑡) = 0 that

𝑚

∑
𝑖=1

𝛿𝑥⊤
𝑖
(𝑡) 𝑃𝐽
𝑖
=
𝑑

∑
𝑘=1

[

[

∑
𝑖∈𝐺
𝑘

𝛿𝑥⊤
𝑖
(𝑡)]

]

𝑃𝐽
𝑖
= 0, (21)

and then,

𝑑𝑉 (𝛿𝑥
𝑖 (𝑡))

𝑑𝑡

=
𝑚

∑
𝑖=1

𝛿𝑥⊤
𝑖
(𝑡) 𝑃[

[

𝑓 (𝑥
𝑖 (𝑡) , 𝑡) − 𝑓 (𝑥

𝑖̂
(𝑡) , 𝑡) + 𝜀

𝑚

∑
𝑗=1

𝑎
𝑖𝑗
Γ𝛿𝑥
𝑗 (𝑡)]

]

≤ −𝜖
𝑚

∑
𝑖=1

𝛿𝑥⊤
𝑖
(𝑡) 𝛿𝑥𝑖 (𝑡)

+
𝑚

∑
𝑖=1

𝛿𝑥⊤
𝑖
(𝑡) 𝑃[

[

𝜀
𝑚

∑
𝑗=1

𝑎
𝑖𝑗
Γ𝛿𝑥
𝑗 (𝑡) + Δ𝛿𝑥

𝑖 (𝑡)]

]

.

(22)

Denote the second term in the right hand of (22) as 𝑆 for
convenience; then,

𝑆 =
𝑑

∑
𝑘=1

∑
𝑖∈𝐺
𝑘

𝛿𝑥⊤
𝑖
(𝑡) 𝑃[

[

𝜀
𝑑

∑
𝑙=1

∑
𝑗∈𝐺
𝑙

𝑎
𝑖𝑗
Γ𝛿𝑥
𝑗 (𝑡) + Δ𝛿𝑥

𝑖 (𝑡)]

]

=
𝑑

∑
𝑘=1

∑
𝑖∈𝐺
𝑘

𝛿𝑥⊤
𝑖
(𝑡) 𝑃[

[

𝜀 ∑
𝑗∈𝐺
𝑘

𝑎
𝑖𝑗
Γ𝛿𝑥
𝑗 (𝑡) + Δ𝛿𝑥

𝑖 (𝑡)

+ 𝜀
𝑑

∑
𝑙=1,𝑙 ̸= 𝑘

∑
𝑗∈𝐺
𝑙

𝑎
𝑖𝑗
Γ𝛿𝑥
𝑗 (𝑡)]

]

.

(23)

Since 𝑖, 𝑗 ∈ 𝐺𝑘 holds for the first term in the right hand above,
replacing 𝑎

𝑖𝑗
with 𝑎

𝑖𝑗
according to (11) gives rise to that

𝑆 =
𝑑

∑
𝑘=1

∑
𝑖∈𝐺
𝑘

𝛿𝑥⊤
𝑖
(𝑡) 𝑃[

[

𝜀 ∑
𝑗∈𝐺
𝑘

𝑎
𝑖𝑗
Γ𝛿𝑥
𝑗 (𝑡) + Δ𝛿𝑥

𝑖 (𝑡)]

]

+ 𝜀
𝑑

∑
𝑘=1

∑
𝑖∈𝐺
𝑘

𝛿𝑥⊤
𝑖
(𝑡) 𝑃

𝑑

∑

𝑙=1,𝑙 ̸= 𝑖̂

[

[

−𝑠
𝑖̂𝑙
Γ𝛿𝑥
𝑖 (𝑡) + ∑

𝑗∈𝐺
𝑙

𝑎
𝑖𝑗
Γ𝛿𝑥
𝑗 (𝑡)]

]

= 𝑆
1
+ 𝑆
2
.

(24)
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As a result of the condition (13), one obtains that

𝑆
1
=
𝑑

∑
𝑘=1

∑
𝑖∈𝐺
𝑘

𝛿𝑥⊤
𝑖
(𝑡) 𝑃[

[

𝜀 ∑
𝑗∈𝐺
𝑘

𝑎
𝑖𝑗
Γ𝛿𝑥
𝑗 (𝑡) + Δ𝛿𝑥

𝑖 (𝑡)]

]

=
𝑑

∑
𝑘=1

𝑛

∑
𝑠=1

𝑝
𝑠
𝛿𝑥𝑠⊤
𝑘
(𝑡) (𝜀𝛾𝑠𝐴𝑘𝑘 + 𝛿

𝑠
𝐸
𝐾𝑘
) 𝛿𝑥𝑠
𝑘
(𝑡) ≤ 0.

(25)

Since 𝑠
𝑖̂𝑙
= ∑
𝑗∈𝐺
𝑙 𝑎𝑖𝑗, the sum 𝑆

2
can be decomposed into

𝑆
2
= 𝜀
𝑑

∑
𝑘=1

∑
𝑖∈𝐺
𝑘

𝛿𝑥⊤
𝑖
(𝑡) 𝑃

𝑑

∑
𝑙=1,𝑙 ̸= 𝑘

∑
𝑗∈𝐺
𝑙

𝑎
𝑖𝑗
Γ (𝛿𝑥
𝑗 (𝑡) − 𝛿𝑥

𝑖 (𝑡))

= 𝜀
𝑑−1

∑
𝑘=1

𝑑

∑
𝑙=𝑘+1

∑
𝑖∈𝐺
𝑘

∑
𝑗∈𝐺
𝑙

𝑎
𝑖𝑗
𝛿𝑥⊤
𝑖
(𝑡) 𝑃Γ (𝛿𝑥𝑗 (𝑡) − 𝛿𝑥

𝑖 (𝑡))

+ 𝜀
𝑑−1

∑
𝑙=1

𝑑

∑
𝑘=𝑙+1

∑
𝑖∈𝐺
𝑘

∑
𝑗∈𝐺
𝑙

𝑎
𝑖𝑗
𝛿𝑥⊤
𝑖
(𝑡) 𝑃Γ (𝛿𝑥𝑗 (𝑡) − 𝛿𝑥

𝑖 (𝑡)) .

(26)

Renaming in the second term 𝑘 by 𝑙, 𝑖 by 𝑗, and vice versa
[23] and utilizing the symmetry of 𝑎

𝑖𝑗
, or 𝐴⊤

𝑙𝑘
= 𝐴
𝑘𝑙
, one gets

𝑆
2
= 𝜀
𝑑−1

∑
𝑘=1

𝑑

∑
𝑙=𝑘+1

∑
𝑖∈𝐺
𝑘

∑
𝑗∈𝐺
𝑙

𝑎
𝑖𝑗
𝛿𝑥⊤
𝑖
(𝑡) 𝑃Γ (𝛿𝑥𝑗 (𝑡) − 𝛿𝑥

𝑖 (𝑡))

+ 𝜀
𝑑−1

∑
𝑘=1

𝑑

∑
𝑙=𝑘+1

∑
𝑗∈𝐺
𝑙

∑
𝑖∈𝐺
𝑘

𝑎
𝑗𝑖
𝛿𝑥⊤
𝑗
(𝑡) 𝑃Γ (𝛿𝑥𝑖 (𝑡) − 𝛿𝑥

𝑗 (𝑡))

= −𝜀
𝑑−1

∑
𝑘=1

d
∑
𝑙=𝑘+1

∑
𝑖∈𝐺
𝑘

∑
𝑗∈𝐺
𝑙

𝑎
𝑖𝑗
(𝛿𝑥
𝑗 (𝑡) − 𝛿𝑥

𝑖 (𝑡))
⊤

𝑃Γ

× (𝛿𝑥
𝑗 (𝑡) − 𝛿𝑥

𝑖 (𝑡))

≤ 0.

(27)

Therefore, one obtains that 𝑆 ≤ 0 and

𝑑𝑉 (𝛿𝑥
𝑖 (𝑡))

𝑑𝑡
≤ −𝜖
𝑚

∑
𝑖=1

𝛿𝑥⊤
𝑖
(𝑡) 𝛿𝑥𝑖 (𝑡) ≤ −2𝜖

𝑉 (𝛿𝑥
𝑖 (𝑡))

max
𝑖
𝑝
𝑖

, (28)

which implies that the partial synchronization manifold M
𝐾

is globally attractive for the system (1).
The remainder of the proof is to show that condition (14)

is also sufficient for 𝑆
1
≤ 0.

It is well known that a symmetric matrix 𝐴
𝑘𝑘

has the
decomposition 𝐴

𝑘𝑘
= 𝑈
𝑘
Λ
𝑘
𝑈⊤
𝑘
, where Λ

𝑘
= diag{𝜆(1)

𝑘
, . . . ,

𝜆
(𝐾𝑘)

𝑘
} is a real diagonal matrix and 𝑈

𝑘
∈ 𝑅𝐾𝑘×𝐾𝑘 is an unitary

matrix, that is, 𝑈
𝑘
𝑈⊤
𝑘
= 𝐸
𝐾𝑘
.The diagonal elements ofΛ

𝑘
are

the eigenvalues of 𝐴
𝑘𝑘

satisfying 𝑠 = 𝜆(1)
𝑘

> 𝜆(2)
𝑘

≥ ⋅ ⋅ ⋅ ≥ 𝜆
(𝐾𝑘)

𝑘
.

The 𝑖th column of𝑈
𝑘
is the eigenvector of𝐴

𝑘𝑘
corresponding

to the eigenvalue 𝜆(𝑖)
𝑘
, 𝑖 = 1, . . . , 𝐾

𝑘
. By changes of variables

𝛿𝑥𝑠
𝑘
(𝑡) = 𝑈𝜂𝑠

𝑘
(𝑡), the quadratic form (25) can be diagonalized

as follows:

𝑆
1
=
𝑑

∑
𝑘=1

𝑛

∑
𝑠=1

𝑝
𝑠
𝛿𝑥𝑠⊤
𝑘
(𝑡) (𝜀𝛾𝑠𝐴𝑘𝑘 + 𝛿

𝑠
𝐸
𝐾𝑘
) 𝛿𝑥𝑠
𝑘
(𝑡)

=
𝑑

∑
𝑘=1

𝑛

∑
𝑠=1

𝑝
𝑠
𝜂𝑠⊤
𝑘
(𝑡) (𝜀𝛾𝑠Λ 𝑘 + 𝛿

𝑠
𝐸
𝐾𝑘
) 𝜂𝑠
𝑘
(𝑡) .

(29)

Noticing that the first column of 𝑈
𝑘
is [1, . . . , 1]⊤, one can

conclude from ∑
𝑖∈𝐺
𝑘 𝛿𝑥𝑖(𝑡) = 0 and 𝜂𝑠

𝑘
(𝑡) = 𝑈⊤𝛿𝑥𝑠

𝑘
(𝑡) that

𝜂1
𝑘
(𝑡) = 0. Therefore, condition (14) is sufficient for 𝑆

1
≤ 0.

The proof is completed.

Compared with the previous results [10], the conditions
inTheorem 4 are not dependent on the intercluster couplings,
which are eliminated in the proof through a set of mathemat-
ical skills in inequalities (25) and (27). The obtained results
greatly reduce the network sizes theoretically. However,
another question arises naturally: how to implement the
proposed condition in reality? The following remarks might
answer these questions.

Remark 5. In case that the network size is not very large
and the coupling matrix is given, it is easy to verify all the
conditions inTheorem 4. In case that the network consists of
great mounts of oscillators, it should still be full of challenges
to implement though our result reduces the network size
greatly. And it might be hard to implement.

In order to make clear the implications of Theorem 4,
several remarks on the conditions are given as follows.

Remark 6. (1) Many chaotic oscillators have been proved to
satisfy condition (ii), such as Chua circuits [24] and standard
Hopfield neural networks [25]. However, many other systems
are not the case such as a lattice of 𝑥-coupled Rössler systems,
in which the stability of synchronization regime is lost with
the increasing of coupling [26].

(2) Providing that the trajectories of the uncoupled
systems 𝑥

𝑖
= 𝑓(𝑥

𝑖
, 𝑡), 𝑖 = 1, . . . , 𝑚 are eventually dissipative,

that is, the trajectories will be in the absorbing domain B
eventually, it has been proved that each trajectory of the
coupled system (1) is also eventually dissipative and will be
in the absorbing domain B × ⋅ ⋅ ⋅ ×B⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑚

[17] eventually.There-

fore, condition (ii) holds when the time 𝑡 is large enough. For
example, the uncoupled Lorenz system

𝑢̇ = 𝜎 (V − 𝑢) , 𝜎 = 10,

V̇ = 𝑟𝑢 − V − 𝑢𝑤, 𝑟 = 28,

𝑤̇ = −𝑏𝑤 + 𝑢V, 𝑏 =
8

3
,

(30)

is eventually dissipative, where

B = {(𝑢)
2 + (V)2 + (𝑤 − 𝜎 − 𝑟)

2 <
𝑏2(𝜎 + 𝑟)2

4 (𝑏 − 1)
= 𝐵} . (31)
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It has been proved that 𝑥-coupled [27] or 𝑦-coupled Lorenz
systems [28] satisfy condition (ii) when the time 𝑡 is large
enough.

(3) If there exists a 𝑘
0
∈ {1, 2, . . . , 𝑑} such that 𝐾

𝑘0
= 1,

which implies that the subset 𝐺𝑘0 contains only one element,
which does not synchronize with any other node. Without
loss of generality, suppose that 𝐾

𝑘
= 1 for 𝑘 > 𝑑. In this

case, the corresponding principal quasi-submatrix 𝐴
𝑘𝑘

= 𝑠
and the constant 𝑠 can be regarded as the single eigenvalue
of 𝐴
𝑘𝑘

since 𝐴
𝑘𝑘
V⃗ = 𝑠V⃗ for any V⃗ ∈ 𝑅. Therefore, the second-

largest eigenvalue 𝜆(2)
𝑘

does not exist. But notice the defini-
tion of partial synchronization in Section 2, synchronization
in the cluster 𝐺𝑘 always occurs, and conditions (13) and (14)
should be regarded to hold for any 𝜀 > 0, 𝑘 > 𝑑.

(4) Since 𝐴
𝑘𝑘

is irreducible and diffusive, the largest
eigenvalue of 𝐴

𝑘𝑘
is zero, which is simple. Therefore, the

largest eigenvalue of 𝐴
𝑘𝑘

is 𝑠, and it is simple also. In case 𝑠 =

0, it can be seen that 𝜆(2)
𝑘

< 0 and condition (14) is equivalent
to

𝜀 ≥
max
𝑗∈𝐽

{0, 𝛿
𝑗
/𝛾
𝑗
}

min
1≤𝑘≤𝑑

󵄨󵄨󵄨󵄨󵄨𝜆
(2)

𝑘

󵄨󵄨󵄨󵄨󵄨

. (32)

Condition (14) provides us a novel index of partial synchro-
nizability.

4. Numerical Examples

Consider the system (1) with 2𝑚 𝑦-coupled Lorenz systems

𝑥̇
𝑖
= 𝑓 (𝑥

𝑖
, 𝑡) + 𝜀

2𝑚

∑
𝑗=1

𝑎
𝑖𝑗 (𝜃) Γ𝑥𝑗, 𝑖 = 1, . . . , 2𝑚, (33)

where 𝑓(𝑥
𝑖
, 𝑡), 𝑥
𝑖

= (𝑢
𝑖
, V
𝑖
, 𝑤
𝑖
)⊤ defined by the system

(30), Γ = diag(0, 1, 0). Let 𝑃 = diag(𝐵/2(𝑏 − 𝜖)𝜎 + 𝜖/𝜎, 1, 1),
and Δ = diag(0, 2𝑏−𝜖−1+[𝐵−2(𝑏−𝜖)(𝜎−𝜖)]2/2𝐵(𝑏−𝜖), 0),
and the 𝑓 in (27) has been proved to satisfy condition (ii)
when the time 𝑡 is large enough. Through translating time,
the network system (27) satisfies condition (ii) inTheorem 4.

4.1. A Star-Global Network. Design the following topology
matrix of the system (33) as

𝐴 (𝜃) = [
𝐴
11
(𝜃) 𝜃𝐸

𝑚

𝜃𝐸
𝑚

𝐴
22
(𝜃)

]
2𝑚×2𝑚

, (34)

where 𝜃 ≥ 0 is the coupling weight parameter of couplings
between the two clusters, and the identity matrix 𝐸

𝑚
implies

that the 𝑖th (1 ≤ 𝑖 ≤ 𝑚) oscillator in the first cluster is
coupled with the (𝑚+ 𝑖)th oscillator in the second cluster. As

1

32

4

5

6 7

8

Figure 1: Topology structure of a star-global network composed
of 8 oscillators.The solid lines represent the inner couplings of each
clusters; the dashed lines represent the outer couplings between
different clusters.

a special case, the submatrices 𝐴
11
(𝜃) and 𝐴

22
(𝜃) are taken

as follows:

𝐴
11 (𝜃) =

[
[
[

[

1 − 𝑚 − 𝜃 1 ⋅ ⋅ ⋅ 1
1 1 − 𝑚 − 𝜃 ⋅ ⋅ ⋅ 1

⋅ ⋅ ⋅ ⋅ ⋅ ⋅
1 1 ⋅ ⋅ ⋅ 1 − 𝑚 − 𝜃

]
]
]

]

,

𝐴
22 (𝜃) =

[
[
[

[

1 − 𝑚 − 𝜃 1 1 ⋅ ⋅ ⋅ 1
1 −1 − 𝜃 0 ⋅ ⋅ ⋅ 0

⋅ ⋅ ⋅ ⋅ ⋅ ⋅
1 0 0 ⋅ ⋅ ⋅ −1 − 𝜃

]
]
]

]

.

(35)

Obviously, 𝐴
11
(𝜃) and 𝐴

22
(𝜃) are the topology matrices of

a globally coupled network and a star-coupled network,
respectively. Therefore, we call the network a star-global
(coupled) network.

4.2. Numerical Simulations. As an example, the topology
structure of a star-global network with 𝑚 = 4 is shown
in Figure 1. Due to the specific topological structure of the
network, the following partitions satisfy condition (𝑖),

𝐺
1
= {1, 2, 3, 4, 5, 6, 7, 8} ,

𝐺
2
= {1, 2, 3, 4; 5, 6, 7, 8} ,

𝐺
3
= {1, 5; 2, 3, 4, 6, 7, 8} .

(36)

Remark 7. According to the criterion in the previous
researches [10], we should firstly find the eigenvalues and the
corresponding eigenvectors of the 8 × 8 matrix 𝐴(𝜃). As we
know, it should be of a vast amount of calculations. However,
based onTheorem 4, it is enough for partial synchronization
with the partition𝐺

2
(𝐺
3
) if we can find the eigenvalues of two

4 × 4 matrices (four 2 × 2 matrices). Obviously, Theorem 4
reduces the calculations greatly.

The principal quasi-submatrices corresponding to the
clusters in the partitions𝐺

1
or 𝐺
2
, are𝐴(𝜃) or𝐴

11
(𝜃)|
𝜃=0

and
𝐴
22
(𝜃)|
𝜃=0

, respectively. And denote the ones in the partition
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(0.5, 𝛿)

G2

G3(0.8, 0.625𝛿)

(2, 𝛿)

G1 :𝜀

𝜀

≥ 𝛿/min

𝜃

𝛿/(2𝜃)

𝛿

𝛿

/|𝜆
−
(𝜃)| 𝛿/|𝜆

󳰀−
(𝜃)|

(2𝜃, |𝜆− (𝜃)|)

Figure 2: Threshold of the coupling strength 𝜀 and the coupling
weight 𝜃 for partial synchronization with different partitions.

𝐺
3
as 𝐴
11
(𝜃) and 𝐴

22
(𝜃). Further analysis gives rise to the

eigenvalues sets of the quasi-submatrices,

𝜎 (𝐴 (𝜃)) = {0, −4, −2𝜃, −4 − 2𝜃, 𝜆±, 𝜆±} ,

𝜎 (𝐴
11 (𝜃) |𝜃=0) = {0, −4, −4, −4} ,

𝜎 (𝐴
22 (𝜃) |𝜃=0) = {0, −1, −1, −4} ,

𝜎 (𝐴
11 (𝜃)) = {0, −2𝜃} ,

𝜎 (𝐴
22 (𝜃)) = {0, −2𝜃, 𝜆󸀠±, 𝜆󸀠±} ,

(37)

where 𝜆± = −(2𝜃 + 5 ± √9 + 4𝜃2)/2, 𝜆󸀠± = −(2𝜃 +
3 ± √9 + 4𝜃2)/2. Therefore, partial synchronization with the
partition 𝐺

2
occurs if 𝜀 ≥ 𝛿; partial synchronization with the

partition 𝐺
3
occurs if 𝜀 ≥ 𝛿/|𝜆󸀠−(𝜃)|; and full synchronization

with the partition 𝐺
1
occurs if 𝜀 ≥ max{𝛿/2𝜃, 𝛿/|𝜆−(𝜃)|}.

These are seen much more clearly in Figure 2.
By fixing 𝜃 ∈ (0, 0.5] and increasing 𝜀 gradually, partial

synchronizationwith the partition 𝐺
2
will firstly occur; then,

the one with 𝐺
3
and full synchronization occurs at the same

time. Figure 2 also implies that the threshold for partial
synchronization with the partition 𝐺

3
is sufficient for full

synchronization.
In order to validate the effectiveness of Figure 2 numer-

ically, the following average cluster errors of the system
(33) are defined to measure partial synchronization with
partitions 𝐺

1
, 𝐺
2
, and 𝐺

3
, respectively,

𝑒
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=
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8

8
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)
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2
=
1

8

4

∑
𝑖=1

󵄩󵄩󵄩󵄩𝑥𝑖 (𝑡0) − 𝑥
1
(𝑡
0
)
󵄩󵄩󵄩󵄩 +

1

8

8

∑
𝑖=5

󵄩󵄩󵄩󵄩𝑥𝑖 (𝑡0) − 𝑥
5
(𝑡
0
)
󵄩󵄩󵄩󵄩 ,

𝑒
3
=

1

8

󵄩󵄩󵄩󵄩𝑥5 (𝑡0) − 𝑥
1
(𝑡
0
)
󵄩󵄩󵄩󵄩

+
1

8

8

∑
𝑖=2,𝑖 ̸= 5

󵄩󵄩󵄩󵄩𝑥𝑖 (𝑡0) − 𝑥
2
(𝑡
0
)
󵄩󵄩󵄩󵄩 .

(38)

1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

Cl
us

te
r e

rr
or

s

𝜀 →

e1(t0)

e2(t0)

e3(t0)

(a) 𝜃 = 0.2

0.5 1 1.5 2 2.5
0

2

4

6

8

10

Cl
us

te
r e

rr
or

s

𝜀 →

e1(t0)

e2(t0)

e3(t0)

(b) 𝜃 = 5

Figure 3: Dependence of the average cluster errors on the coupling
strength 𝜀 for the system (33) with the topology matrix (34).
The errors 𝑒

1
(𝑡
0
), 𝑒
2
(𝑡
0
), and 𝑒

3
(𝑡
0
) measure the attractiveness of

the manifolds M
𝐾
(𝐺
1
),M
𝐾
(𝐺
2
), and M

𝐾
(𝐺
3
), respectively.

Choose the initial conditions (𝑢
𝑖
(0), V
𝑖
(0), and 𝑤

𝑖
(0))

randomly on [−1, 1] × [−1, 1] × [−1, 1], and pick 𝑡
0
= 500.

Fix the coupling weight 𝜃 at 0.2, and 5; the dependence of the
cluster errors on 𝜀 is shown, respectively, in Figure 3. As can
be seen, there is a good agreement between Figures 3 and 2.

5. Conclusions

In summary, this paper introduced a novel index of partial
synchronizability of a network. It is shown that partial
synchronization can be ensured by the conditions merely
on the quasi-submatrices corresponding to the clusters. If a
network is composed of a great mount of nodes, the enor-
mous amount of calculation can be reduced by replacing the
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couplingmatrixwith several quasi-submatrices. Numerically,
different types of partial synchronization occur in a star-
global network when the coupling strength is increased,
the order of which is forecasted accurately by our result. It
should be a meaningful and effective method to study partial
synchronization with different partitions.

In the past decades, the networked control systems have
attracted much attention due to their applications cover-
ing a wide range of industries. And the network-induced
phenomena under consideration in engineering have been
discussed widely, including missing measurements [29], fad-
ing measurements [30], and probabilistic sensor delays [31].
Therefore, the obtained approach for partial synchronization
in this paper might be applicable to the complex networks
with networked induced phenomena. The related studies
should be one of the future research topics.
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