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We prove a strong convergence theorem for a common fixed point of a finite family of right Bregman strongly nonexpansive
mappings in the framework of real reflexive Banach spaces. Furthermore, we apply our method to approximate a common zero of a
finite family of maximal monotone mappings and a solution of a finite family of convex feasibility problems in reflexive real Banach
spaces. Our theorems complement some recent results that have been proved for this important class of nonlinear mappings.

1. Introduction

In this paper, without other specifications, let 𝐸 be a real
reflexive Banach space and 𝐸∗ as its dual, let R be the set of
real numbers, and let 𝐶 be a nonempty, closed, and convex
subset 𝐸. Let 𝑓 : 𝐸 → (−∞,∞] be a proper convex and
lower semicontinuous function. Denote the domain of 𝑓 by
dom𝑓; that is, dom𝑓 = {𝑥 ∈ 𝐸 : 𝑓(𝑥) < ∞}. The Fenchel
conjugate of 𝑓 is the function 𝑓∗ : 𝐸∗ → (−∞, +∞] defined
by 𝑓∗(𝑦) = sup{⟨𝑦, 𝑥⟩ − 𝑓(𝑥) : 𝑥 ∈ 𝐸}. 𝑓 is called cofinite if
dom𝑓

∗

= 𝐸
∗. For any 𝑥 ∈ int(dom𝑓) and 𝑦 ∈ 𝐸, the right-

hand derivative of 𝑓 at 𝑥 in the direction of 𝑦 is defined by
𝑓
0

(𝑥, 𝑦) := lim
𝑡→0
+(𝑓(𝑥 + 𝑡𝑦) − 𝑓(𝑥))/𝑡.

The function 𝑓 is called Gâteaux differentiable at 𝑥 if
lim
𝑡→0
+(𝑓(𝑥 + 𝑡𝑦) − 𝑓(𝑥))/𝑡 exists for any 𝑦. In this case,

𝑓
0

(𝑥, 𝑦) coincides with ∇𝑓(𝑥), the value of the gradient ∇𝑓
of 𝑓 at 𝑥. The function 𝑓 is called Gâteaux differentiable
if it is Gâteaux differentiable for any 𝑥 ∈ int(dom𝑓). The
function 𝑓 is said to be Fréchet differentiable at 𝑥 if this limit
is attained uniformly in ‖𝑦‖ = 1 and 𝑓 is said to be uniformly
Fréchet differentiable on a subset 𝐶 of 𝐸 if the limit is attained
uniformly for 𝑥 ∈ 𝐶 and ‖𝑦‖ = 1.

The function 𝑓 is said to be bounded if it maps bounded
subsets of 𝐸 into bounded sets. We note that if 𝑓 : 𝐸 →

R is uniformly Fréchet differentiable and bounded, then
∇𝑓 is uniformly continuous on bounded subsets of 𝐸 from

the strong topology of 𝐸 to the strong topology of 𝐸∗
(Proposition 2.1, [1]) and𝑓∗ is uniformly Fréchet on bounded
subsets of𝐸∗ (see [2]) and hence∇𝑓∗ is uniformly continuous
on bounded subsets of 𝐸∗ from the strong topology of 𝐸∗ to
the strong topology of 𝐸.

Let 𝑓 : 𝐸 → (−∞, +∞] be a Gâteaux differentiable
function.The function𝐷

𝑓
: dom𝑓× int(dom𝑓) → [0, +∞)

defined by

𝐷
𝑓
(𝑥, 𝑦) := 𝑓 (𝑥) − 𝑓 (𝑦) − ⟨∇𝑓 (𝑦) , 𝑥 − 𝑦⟩ (1)

is called the Bregman distance with respect to 𝑓 [3].
A Bregman projection [4] of 𝑥 ∈ int(dom𝑓) onto the

nonempty closed and convex set 𝐶 ⊂ int(dom𝑓) is the
unique vector 𝑃𝑓

𝐶
(𝑥) ∈ 𝐶 satisfying

𝐷
𝑓
(𝑃
𝑓

𝐶
(𝑥) , 𝑥) = inf {𝐷

𝑓
(𝑦, 𝑥) : 𝑦 ∈ 𝐶} . (2)

Remark 1. If 𝐸 is a smooth and strictly convex Banach space
and 𝑓(𝑥) = ‖𝑥‖2 for all 𝑥 ∈ 𝐸, then we have that ∇𝑓(𝑥) = 2𝐽𝑥
for all 𝑥 ∈ 𝐸, where 𝐽 is the normalized duality mapping from
𝐸 into 2𝐸

∗

, and hence

(i) 𝐷
𝑓
(𝑥, 𝑦) reduces to 𝜙(𝑥, 𝑦) = ‖𝑥‖

2

− 2⟨𝑥, 𝐽𝑦⟩ + ‖𝑦‖
2,

for all 𝑥, 𝑦 ∈ 𝐸, which is the Lyapunov function
introduced by Alber [5] and
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(ii) 𝑃𝑓
𝐶
(𝑥) reduces to the generalized projection Π

𝐶
(𝑥)

(see, e.g., [5]) which is defined by

𝜙 (Π
𝐶
(𝑥) , 𝑥) = min

𝑦∈𝐶
𝜙 (𝑦, 𝑥) . (3)

If 𝐸 = 𝐻, a Hilbert space, 𝐽 is the identity mapping and
hence the Bregman distance becomes 𝐷

𝑓
(𝑥, 𝑦) = ‖𝑥 − 𝑦‖

2,
for 𝑥, 𝑦 ∈ 𝐻, and the Bregman projection 𝑃𝑓

𝐶
(𝑥) reduces to

the metric projection of𝐻 onto 𝐶, 𝑃
𝐶
(𝑥).

Let 𝑇 : 𝐶 → 𝐶 be a nonlinear mapping. Denote by
𝐹(𝑇) = {𝑥 ∈ 𝐶 : 𝑇𝑥 = 𝑥} the set of fixed points of
𝑇. A mapping 𝑇 is said to be nonexpansive if ‖𝑇𝑥 − 𝑇𝑦‖ ≤

‖𝑥 − 𝑦‖, for all 𝑥, 𝑦 ∈ 𝐶, and 𝑇 is called quasinonexpansive
if ‖𝑇𝑥 − 𝑝‖ ≤ ‖𝑥 − 𝑝‖, for all 𝑥 ∈ 𝐶 and 𝑝 ∈ 𝐹(𝑇). A point
𝑝 ∈ 𝐶 is called an asymptotic fixed point of 𝑇 (see [6]) if 𝐶
contains a sequence {𝑥

𝑛
} which converges weakly to 𝑝 such

that lim
𝑛→∞

‖𝑥
𝑛
− 𝑇𝑥
𝑛
‖ = 0. We denote by 𝐹(𝑇) the set of

asymptotic fixed points of 𝑇.
A mapping 𝑇 : 𝐶 → int(dom𝑓) is called

(i) left quasi-Bregman nonexpansive [7] if 𝐹(𝑇) ̸= 0 and

𝐷
𝑓
(𝑝, 𝑇𝑥) ≤ 𝐷

𝑓
(𝑝, 𝑥) , ∀𝑥 ∈ 𝐶, 𝑝 ∈ 𝐹 (𝑇) ; (4)

(ii) left Bregman relatively nonexpansive [7] if 𝐹(𝑇) ̸= 0

and

𝐷
𝑓
(𝑝, 𝑇𝑥) ≤ 𝐷

𝑓
(𝑝, 𝑥) ,

∀𝑥 ∈ 𝐶, 𝑝 ∈ 𝐹 (𝑇) , 𝐹 (𝑇) = 𝐹 (𝑇) ;

(5)

(iii) left Bregman strongly nonexpansive (see [8, 9]), with
respect to nonempty 𝐹(𝑇), if

𝐷
𝑓
(𝑝, 𝑇𝑥) ≤ 𝐷

𝑓
(𝑝, 𝑥) , ∀𝑥 ∈ 𝐶, 𝑝 ∈ 𝐹 (𝑇) ; (6)

and, if, whenever {𝑥
𝑛
} ⊂ 𝐶 is bounded, 𝑝 ∈ 𝐹(𝑇) and

lim
𝑛→∞

(𝐷
𝑓
(𝑝, 𝑥
𝑛
) − 𝐷
𝑓
(𝑝, 𝑇𝑥

𝑛
)) = 0, (7)

it follows that

lim
𝑛→∞

𝐷
𝑓
(𝑇𝑥
𝑛
, 𝑥
𝑛
) = 0; (8)

(iv) left Bregman firmly nonexpansive [10] if 𝐹(𝑇) ̸= 0 and
for all 𝑥, 𝑦 ∈ 𝐶,

⟨∇𝑓 (𝑇𝑥) − ∇𝑓 (𝑇𝑦) , 𝑇𝑥 − 𝑇𝑦⟩

≤ ⟨∇𝑓 (𝑥) − ∇𝑓 (𝑦) , 𝑇𝑥 − 𝑇𝑦⟩ ,

(9)

or, equivalently,

𝐷
𝑓
(𝑇𝑥, 𝑇𝑦) + 𝐷

𝑓
(𝑇𝑦, 𝑇𝑥) + 𝐷

𝑓
(𝑇𝑥, 𝑥) + 𝐷

𝑓
(𝑇𝑦, 𝑦)

≤ 𝐷
𝑓
(𝑇𝑥, 𝑦) + 𝐷

𝑓
(𝑇𝑦, 𝑥) .

(10)

If 𝑇 is left Bregman firmly nonexpansive and 𝑓 is Legendre
function which is bounded, uniformly Fréchet differentiable,
and totally convex on bounded subsets of 𝐸, then it is known
in [10] that 𝐹(𝑇) = 𝐹(𝑇) and 𝐹(𝑇) is closed and convex (see
[10]). It follows that every left Bregman firmly nonexpansive
mapping is Bregman strongly nonexpansive with respect to a
nonempty set 𝐹(𝑇) = 𝐹(𝑇).

Existence and approximation of fixed points of nonex-
pansive and quasinonexpansive mappings have been inten-
sively studied for almost fifty years or so by various authors
(see e.g., [11–24] and the references therein) inHilbert spaces.
But most of the methods failed to give the same conclusion
in Banach spaces more general than Hilbert spaces. One of
the reasons is that a nonexpansive mapping in Hilbert spaces
may not be nonexpansive in Banach spaces (e.g., the resolvent
𝑅
𝐴
= (𝐼 + 𝐴)

−1 of a maximal monotone mapping 𝐴 : 𝐻 →

2
𝐻 and themetric projection𝑃

𝐾
onto a nonempty, closed, and

convex subset 𝐶 of𝐻).
To overcome this problem, researchers use the distance

function𝐷
𝑓
(⋅, ⋅) introduced by Bregman [4] instead of norm

which opened a growing area of research in designing and
analyzing iterative techniques for solving variational inequal-
ities, approximating equilibria, computing fixed points of
nonlinear mappings, and approximating solutions of convex
feasibility problems (see, e.g., [4, 25–28] and the references
therein).

In [29], Reich and Sabach proposed the following algo-
rithm for finding a common fixed point of finitely many
left Bregman firmly nonexpansive self-mappings 𝑇

𝑖
(𝑖 =

1, 2, . . . , 𝑁) on 𝐸 satisfying ∩𝑁
𝑖=1
𝐹(𝑇
𝑖
) ̸= 0. For 𝑥

1
∈ 𝐸 let the

sequence {𝑥
𝑛
} be defined by

𝑄
𝑖

0
= 𝐸,

𝑦
𝑖

𝑛
= 𝑇
𝑖
(𝑥
𝑛
+ 𝑒
𝑖

𝑛
) ,

𝑄
𝑖

𝑛+1
= {𝑧 ∈ 𝑄

𝑖

𝑛
: ⟨∇𝑓 (𝑥

𝑛
+ 𝑒
𝑖

𝑛
) − ∇𝑓 (𝑦

𝑖

𝑛
) , 𝑧 − 𝑦

𝑖

𝑛
⟩ ≤ 0} ,

𝑄
𝑛
=

𝑁

⋂

𝑖=1

𝑄
𝑖

𝑛
,

𝑥
𝑛+1

= 𝑃
𝑓

𝑄
𝑛+1

(𝑥
0
) , ∀𝑛 ≥ 1.

(11)

They proved that, under some suitable conditions, the
sequence {𝑥

𝑛
} generated by (11) converges strongly to a point

in ∩𝑁
𝑖=1
𝐹(𝑇
𝑖
) and applied it to the solution of convex feasibility

and equilibrium problems.
Very recently, by using Bregman projection, Reich and

Sabach [9] proposed an algorithm for finding a commonfixed
point of finitely many left Bregman strongly nonexpansive
mappings 𝑇

𝑖
: 𝐶 → 𝐶 (𝑖 = 1, 2, . . . , 𝑁) satisfying

∩
𝑁

𝑖=1
𝐹(𝑇
𝑖
) ̸= 0 in a reflexive Banach space 𝐸 as follows:

𝑥
0
∈ 𝐸, chosen arbitrarily,

𝑦
𝑖

𝑛
= 𝑇
𝑖
(𝑥
𝑛
+ 𝑒
𝑖

𝑛
) ,

𝐶
𝑖

𝑛
= {𝑧 ∈ 𝐸 : 𝐷

𝑓
(𝑧, 𝑦
𝑖

𝑛
) ≤ 𝐷

𝑓
(𝑧, 𝑥
𝑛
+ 𝑒
𝑖

𝑛
)} ,
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𝐶
𝑛
=

𝑁

⋂

𝑖=1

𝐶
𝑖

𝑛
,

𝑄
𝑖

𝑛
= {𝑧 ∈ 𝐸 : ⟨∇𝑓 (𝑥

0
) − ∇𝑓 (𝑥

𝑛
) , 𝑧 − 𝑥

𝑛
⟩ ≤ 0} ,

𝑥
𝑛+1

= 𝑃
𝑓

𝐶
𝑛
∩𝑄
𝑛

(𝑥
0
) , ∀𝑛 ≥ 0.

(12)

Under some suitable conditions, they proved that the
sequence {𝑥

𝑛
} generated by (12) converges strongly to a point

in ∩𝑁
𝑖=1
𝐹(𝑇
𝑖
) and applied it to the solution of convex feasibility

and equilibrium problems.
The above results naturally bring us to the following: a

natural question arises whether we can establish analogous
results for right Bregman strongly nonexpansive mappings or
not.

A mapping 𝑇 : 𝐶 → int(dom𝑓) is called

(i) right quasi-Bregman nonexpansive [30] if𝐹(𝑇) ̸= 0 and

𝐷
𝑓
(𝑇𝑥, 𝑝) ≤ 𝐷

𝑓
(𝑥, 𝑝) , ∀𝑥 ∈ 𝐶, 𝑝 ∈ 𝐹 (𝑇) ; (13)

(ii) right Bregman relatively nonexpansive [30] if 𝐹(𝑇) ̸= 0

and

𝐷
𝑓
(𝑇𝑥, 𝑝) ≤ 𝐷

𝑓
(𝑥, 𝑝) ,

∀𝑥 ∈ 𝐶, 𝑝 ∈ 𝐹 (𝑇) , 𝐹 (𝑇) = 𝐹 (𝑇) ;

(14)

(iii) right Bregman strongly nonexpansive (see [8, 9]), with
respect to nonempty 𝐹(𝑇), if

𝐷
𝑓
(𝑇𝑥, 𝑝) ≤ 𝐷

𝑓
(𝑥, 𝑝) , ∀𝑥 ∈ 𝐶, 𝑝 ∈ 𝐹 (𝑇) ; (15)

and if, whenever {𝑥
𝑛
} ⊂ 𝐶 is bounded, 𝑝 ∈ 𝐹(𝑇) and

lim
𝑛→∞

(𝐷
𝑓
(𝑥
𝑛
, 𝑝) − 𝐷

𝑓
(𝑇𝑥
𝑛
, 𝑝)) = 0, (16)

it follows that

lim
𝑛→∞

𝐷
𝑓
(𝑥
𝑛
, 𝑇𝑥
𝑛
) = 0; (17)

(iv) right Bregman firmly nonexpansive [10] if𝐹(𝑇) ̸= 0 and
for all 𝑥, 𝑦 ∈ 𝐶,

⟨∇𝑓 (𝑇𝑥) − ∇𝑓 (𝑇𝑦) , 𝑇𝑥 − 𝑇𝑦⟩

≤ ⟨∇𝑓 (𝑇𝑥) − ∇𝑓 (𝑇𝑦) , 𝑥 − 𝑦⟩ ,

(18)

or, equivalently,

𝐷
𝑓
(𝑇𝑥, 𝑇𝑦) + 𝐷

𝑓
(𝑇𝑦, 𝑇𝑥) + 𝐷

𝑓
(𝑥, 𝑇𝑥) + 𝐷

𝑓
(𝑦, 𝑇𝑦)

≤ 𝐷
𝑓
(𝑥, 𝑇𝑦) + 𝐷

𝑓
(𝑦, 𝑇𝑥) .

(19)

Remark 2. It is shown in [10] that if 𝑇 is right Bregman
firmly nonexpansive, then 𝐹(𝑇) = 𝐹(𝑇) and hence it is right
Bregman relatively nonexpansive mapping provided that the
Legendre function 𝑓 is uniformly Fréchet differentiable and
bounded on bounded sets of 𝐸.

The class of right Bregmanfirmly nonexpansivemappings
associated with the Bregman distance induced by a convex
function was introduced and studied by Martin-Marques et
al. [30]. Examples of right Bregman firmly nonexpansive
mappings are given in [30]. If 𝐶 is a nonempty and closed
subset of int(dom𝑓), where 𝑓 is a Legendre and Fréchet
differentiable function, and 𝑇 : 𝐶 → int(dom𝑓) is a
right Bregman strongly nonexpansive mapping, it is proved
that 𝐹(𝑇) is closed (see [30]). In addition, they have shown
that this class of mappings is closed under composition
and convex combination and proved weak convergence of
the Picard iterative method to a fixed point of a mapping
under suitable conditions (see [31]).However, Picard iteration
process has only weak convergence.

In this paper, it is our purpose to introduce an iterative
scheme which converges strongly to a common fixed point
of a finite family of right Bregman strongly nonexpan-
sive mappings. As a consequence, we use our results to
approximate a common zero of a finite family of maximal
monotone mappings and a solution of a finite family of
convex feasibility problems in reflexive real Banach spaces.
Our results complements the recent results due to Reich and
Sabach [9], Suantai et al. [32], and Zhang and Cheng [33]
in the sense that our scheme is applicable for right Bregman
strongly nonexpansive self-mappings on 𝐶 ⊆ 𝐸.

2. Preliminaries

Let 𝑓 : 𝐸 → (−∞, +∞] be a convex and Gâteaux
differentiable function. The modulus of total convexity of 𝑓
at 𝑥 ∈ dom𝑓 is the function ]

𝑓
(𝑥, ⋅) : [0; +∞) → [0; +∞]

defined by

]
𝑓
(𝑥, 𝑡) := inf {𝐷

𝑓
(𝑦, 𝑥) : 𝑦 ∈ dom𝑓,

𝑦 − 𝑥
 = 𝑡} . (20)

The function 𝑓 is called totally convex at 𝑥 if ]
𝑓
(𝑥, 𝑡) > 0,

whenever 𝑡 > 0. The function 𝑓 is called totally convex if it is
totally convex at any point 𝑥 ∈ int(dom𝑓) and is said to be
totally convex on bounded sets if ]

𝑓
(𝐵, 𝑡) > 0 for any nonempty

bounded subset 𝐵 of 𝐸 and 𝑡 > 0, where the modulus of total
convexity of the function 𝑓 on the set 𝐵 is the function ]

𝑓
:

int(dom𝑓) × [0, +∞) → [0, +∞] defined by

]
𝑓
(𝐵, 𝑡) := inf {𝑉

𝑓
(𝑥, 𝑡) : 𝑥 ∈ 𝐵 ∩ dom𝑓} . (21)

We know that 𝑓 is totally convex on bounded sets if and only
if 𝑓 is uniformly convex on bounded sets (see [27], Theorem
2.10).

The function 𝑓 is called essentially smooth, if 𝜕𝑓 is both
locally bounded and single-valued on its domain and it is
called essentially strictly convex, if (𝜕𝑓)−1 is locally bounded
on its domain and 𝑓 is strictly convex on every convex subset
of dom 𝜕𝑓. 𝑓 is said to be Legendre, if it is both essentially
smooth and essentially strictly convex. Since𝐸 is reflexive, we
know that (𝜕𝑓)−1 = 𝜕𝑓

∗ (see [34]), 𝑓 is essentially smooth if
and only if𝑓∗ is essentially strictly convex (see [35],Theorem
5.4), and 𝑓 is Legendre if and only if 𝑓∗ is Legendre (see
[35], Corollary 5.5); if 𝑓 is Legendre, then ∇𝑓 is a bijection
satisfying ∇𝑓 = (∇𝑓

∗

) − 1, ran ∇𝑓 = dom∇𝑓
∗

= int dom𝑓
∗,
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and ran ∇𝑓∗ = dom𝑓 = int dom𝑓 (see [35], Theorem 5.10).
From now on, we assume that the convex function 𝑓 : 𝐸 →

(−∞, +∞] is Legendre.
If 𝐸 is a smooth and strictly convex Banach space, then

an important and interesting Legendre function is 𝑓(𝑥) :=
(1/𝑝)‖𝑥‖

𝑝

(1 < 𝑝 < ∞). In this case, the gradient ∇𝑓 of 𝑓
coincides with the generalized duality mapping of 𝐸; that is,
∇𝑓 = 𝐽

𝑝
(1 < 𝑝 < ∞). In particular, ∇𝑓 = 𝐼, the identity

mapping in Hilbert spaces.
In the sequel, we shall use the following lemmas.

Lemma 3 (see [31]). Let 𝑓 : 𝐸 → R be a bounded, uniformly
Fréchet differentiable, and totally convex on bounded subsets
of 𝐸. For each 𝑖 = 1, . . . , 𝑁, let 𝑇

𝑖
: 𝐾 ⊂ 𝐸 → 𝐾 be a

right Bregman strongly nonexpansive mapping with respect to
𝐹(𝑇
𝑖
) = 𝐹(𝑇

𝑖
), and let 𝑇 := 𝑇

𝑁
∘ 𝑇
𝑁−1

∘ ⋅ ⋅ ⋅ ∘ 𝑇
1
. If F :=

∩
𝑁

𝑖=1
𝐹(𝑇
𝑖
) is nonempty, then 𝑇 is also right Bregman strongly

nonexpansive and 𝐹(𝑇) = ∩𝑁
𝑖=1
𝐹(𝑇
𝑖
).

Lemma 4 (see [30]). Let 𝑓 : 𝐸 → R be a Fréchet
differentiable function. Let 𝐶 be a nonempty closed convex
subset of int(dom𝑓) and let 𝑇 : 𝐶 → int(dom𝑓) be a right
quasi-Bregman nonexpansive mapping. Then 𝐹(𝑇) is closed.

Lemma 5 (see [36]). The function 𝑓 : 𝐸 → (−∞, +∞) is
totally convex on bounded subsets of𝐸 if and only if for any two
sequences {𝑥

𝑛
} and {𝑦

𝑛
} in int(dom𝑓) and dom𝑓, respectively,

such that the first one is bounded and

lim
𝑛→∞

𝐷
𝑓
(𝑦
𝑛
, 𝑥
𝑛
) = 0 ⇒ lim

𝑛→∞

𝑦𝑛 − 𝑥𝑛
 = 0. (22)

Lemma 6 (see [27]). Let 𝐶 be a nonempty, closed, and convex
subset of 𝐸. Let 𝑓 : 𝐸 → R be a Gâteaux differentiable and
totally convex function and let 𝑥 ∈ 𝐸. Then

(i) 𝑧 = 𝑃
𝑓

𝐶
(𝑥) if and only if ⟨∇𝑓(𝑥) − ∇𝑓(𝑧), 𝑦 − 𝑧⟩ ≤

0, ∀𝑦 ∈ 𝐶;

(ii) 𝐷
𝑓
(𝑦, 𝑃
𝑓

𝐶
(𝑥)) + 𝐷

𝑓
(𝑃
𝑓

𝐶
(𝑥), 𝑥) ≤ 𝐷

𝑓
(𝑦, 𝑥), ∀𝑦 ∈ 𝐶.

Lemma 7 (see [37]). If 𝑓 : 𝐸 → (−∞, +∞] is a proper,
lower semicontinuous, and convex function, then 𝑓∗ : 𝐸∗ →
(−∞, +∞] is a proper, weak∗ lower semicontinuous and
convex function. Thus, for all 𝑧 ∈ 𝐸, we have

𝐷
𝑓
(𝑧, ∇𝑓

∗

(

𝑁

∑

𝑖=1

𝑡
𝑖
∇𝑓 (𝑥
𝑖
))) ≤

𝑁

∑

𝑖=1

𝑡
𝑖
𝐷
𝑓
(𝑧, 𝑥
𝑖
) . (23)

Lemma 8 (see [31]). Let 𝑓 : 𝐸 → R be admissible and totally
bounded at a point 𝑥 ∈ int(dom𝑓). Let {𝑥

𝑛
} ⊂ dom(𝑓). If

{𝐷
𝑓
(𝑥
𝑛
, 𝑥)} is bounded, then so is the sequence {𝑥

𝑛
}.

Let 𝑓 : 𝐸 → R be a Gâteaux differentiable function.
Following [3, 5], we make use of the function 𝑉

𝑓
: 𝐸 × 𝐸

∗

→

[0, +∞) associated with 𝑓, which is defined by
𝑉
𝑓
(𝑥, 𝑥
∗

) = 𝑓 (𝑥) − ⟨𝑥, 𝑥
∗

⟩ + 𝑓
∗

(𝑥
∗

) , ∀𝑥 ∈ 𝐸, 𝑥
∗

∈ 𝐸
∗

.

(24)

Then, 𝑉
𝑓
is nonnegative and

𝑉
𝑓
(𝑥, 𝑥
∗

) = 𝐷
𝑓
(𝑥, ∇𝑓

∗

(𝑥
∗

)) ∀𝑥 ∈ 𝐸, 𝑥
∗

∈ 𝐸
∗

. (25)

Moreover, by the subdifferential inequality,

𝑉
𝑓
(𝑥, 𝑥
∗

) + ⟨𝑦
∗

, ∇𝑓
∗

(𝑥
∗

) − 𝑥⟩ ≤ 𝑉
𝑓
(𝑥, 𝑥
∗

+ 𝑦
∗

) , (26)

for all 𝑥 ∈ 𝐸 and 𝑥∗, 𝑦∗ ∈ 𝐸∗ (see [38]).

Lemma9 (see [39]). Let {𝑎
𝑛
} be a sequence of nonnegative real

numbers satisfying the following relation:

𝑎
𝑛+1

≤ (1 − 𝛼
𝑛
) 𝑎
𝑛
+ 𝛼
𝑛
𝛿
𝑛
, 𝑛 ≥ 𝑛

0
, (27)

where {𝛼
𝑛
} ⊂ (0, 1) and {𝛿

𝑛
} ⊂ 𝑅 satisfying the following condi-

tions: lim
𝑛→∞

𝛼
𝑛
= 0, ∑

∞

𝑛=1
𝛼
𝑛
= ∞, and lim sup

𝑛→∞
𝛿
𝑛
≤ 0.

Then, lim
𝑛→∞

𝑎
𝑛
= 0.

Lemma 10 (see [40]). Let {𝑎
𝑛
} be sequences of real numbers

such that there exists a subsequence {𝑛
𝑖
} of {𝑛} such that 𝑎

𝑛
𝑖

<

𝑎
𝑛
𝑖
+1

for all 𝑖 ∈ N. Then there exists an increasing sequence
{𝑚
𝑘
} ⊂ N such that𝑚

𝑘
→ ∞ and the following properties are

satisfied by all (sufficiently large) numbers 𝑘 ∈ N:

𝑎
𝑚
𝑘

≤ 𝑎
𝑚
𝑘
+1
, 𝑎

𝑘
≤ 𝑎
𝑚
𝑘
+1
. (28)

In fact, 𝑚
𝑘
is the largest number 𝑛 in the set {1, 2, . . . , 𝑘} such

that the condition 𝑎
𝑛
≤ 𝑎
𝑛+1

holds.

3. Main Results

Theorem 11. Let 𝑓 : 𝐸 → R be a cofinite function which
is bounded, uniformly Fréchet differentiable and totally convex
on bounded subsets of 𝐸. Let 𝐶 be a nonempty, closed, and
convex subset of int(dom𝑓) and let 𝑇

𝑖
: 𝐶 → 𝐶, for

𝑖 = 1, 2, . . . , 𝑁, be a finite family of right Bregman strongly
nonexpansive mappings such that 𝐹(𝑇

𝑖
) = 𝐹(𝑇

𝑖
), for each

𝑖 ∈ {1, 2, . . . , 𝑁}. Assume that F := ∩
𝑁

𝑖=1
𝐹(𝑇
𝑖
) is nonempty.

For 𝑢, 𝑥
1
∈ 𝐶, let {𝑥

𝑛
} be a sequence generated by

𝑥
𝑛+1

= 𝛼
𝑛
𝑢 + (1 − 𝛼

𝑛
) 𝑇 (𝑥

𝑛
) , 𝑛 = 1, 2, . . . , (29)

where𝑇 = 𝑇
𝑁
∘𝑇
𝑁−1

∘⋅ ⋅ ⋅∘𝑇
1
, {𝛼
𝑛
} ⊂ (0, 1) satisfy lim

𝑛→∞
𝛼
𝑛
=

0 and∑∞
𝑛=1

𝛼
𝑛
= ∞. Then, {𝑥

𝑛
} converges strongly to a point 𝑝

inF.

Proof. Note that from Lemma 3 we have F = 𝐹(𝑇) =

∩
𝑁

𝑖=1
𝐹(𝑇
𝑖
) and 𝑇 is right Bregman strongly nonexpansive

mapping. Let 𝑝 ∈ F. Then, using (29), the convexity of 𝑓,
and property of 𝑇 we get that

𝐷
𝑓
(𝑥
𝑛+1

, 𝑝) = 𝐷
𝑓
(𝛼
𝑛
𝑢 + (1 − 𝛼

𝑛
) 𝑇𝑥
𝑛
, 𝑝)

≤ 𝛼
𝑛
𝐷
𝑓
(𝑢, 𝑝) + (1 − 𝛼

𝑛
)𝐷
𝑓
(𝑇𝑥
𝑛
, 𝑝)

≤ 𝛼
𝑛
𝐷
𝑓
(𝑢, 𝑝) + (1 − 𝛼

𝑛
)𝐷
𝑓
(𝑥
𝑛
, 𝑝) .

(30)

Thus, by induction we obtain that

𝐷
𝑓
(𝑥
𝑛+1

, 𝑝) ≤ max {𝐷
𝑓
(𝑢, 𝑝) , 𝐷

𝑓
(𝑥
1
, 𝑝)} ∀𝑛 ≥ 1, (31)

which implies that {𝐷
𝑓
(𝑥
𝑛
, 𝑝)} and hence 𝐷

𝑓
(𝑇𝑥
𝑛
, 𝑝) are

bounded.Thus, from Lemma 8 we get that {𝑥
𝑛
} and {𝑇𝑥

𝑛
} are
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bounded. Now, let 𝑦
𝑛
= ∇𝑓(𝑥

𝑛
). Then, iteration process (29)

becomes

𝑦
𝑛+1

= ∇𝑓 (𝛼
𝑛
∇𝑓
∗

(∇𝑓 (𝑢)) + (1 − 𝛼
𝑛
) ∇𝑓
∗

𝑇
∗

(𝑦
𝑛
)) ,

𝑛 = 1, 2, . . . ,

(32)

where 𝑇∗ := ∇𝑓𝑇∇𝑓
∗, a conjugate of 𝑇. Since ∇𝑓 and ∇𝑓∗

are uniformly continuous on bounded subsets of int(dom𝑓)

and int(dom𝑓
∗

), respectively, we get that {𝑦
𝑛
} and {𝑇

∗

𝑦
𝑛
}

are bounded and by Section 6 of Martin-Marquez et al. [31]
we have that 𝑇∗ is left Bergman strongly nonexpansive with
respect to ∇𝑓(𝐹(𝑇)). In addition, by Proposition 3.3 of [30]
we have that ∇𝑓(𝐹(𝑇)) = 𝐹(𝑇

∗

) = 𝐹(𝑇∗) := F is closed and
convex. Let 𝑝 = 𝑃

𝑓
∗

F
(∇𝑓(𝑢)). Now, from (32), (25), (26), and

Lemma 6 we obtain that

𝐷
𝑓
∗ (𝑝


, 𝑦
𝑛+1

)

= 𝐷
𝑓
∗ (𝑝


, ∇𝑓 (𝛼
𝑛
∇𝑓
∗

(∇𝑓 (𝑢)) + (1 − 𝛼
𝑛
) ∇𝑓
∗

(𝑇
∗

𝑦
𝑛
)))

= 𝑉
𝑓
∗ (𝑝


, 𝛼
𝑛
∇𝑓
∗

(∇𝑓 (𝑢)) + (1 − 𝛼
𝑛
) ∇𝑓
∗

(𝑇
∗

𝑦
𝑛
))

≤ 𝑉
𝑓
∗ (𝑝


, 𝛼
𝑛
∇𝑓
∗

(∇𝑓 (𝑢)) + (1 − 𝛼
𝑛
) ∇𝑓
∗

(𝑇
∗

𝑦
𝑛
)

− 𝛼
𝑛
(∇𝑓
∗

(∇𝑓 (𝑢)) − ∇𝑓
∗

(𝑝


)))

+ ⟨𝛼
𝑛
(∇𝑓
∗

(∇𝑓 (𝑢)) − ∇𝑓
∗

(𝑝


)) , 𝑦
𝑛+1

− 𝑝


⟩

= 𝑉
𝑓
∗ (𝑝


, 𝛼
𝑛
∇𝑓
∗

(𝑝


) + (1 − 𝛼
𝑛
) ∇𝑓
∗

(𝑇
∗

𝑦
𝑛
))

+ 𝛼
𝑛
⟨∇𝑓
∗

(∇𝑓 (𝑢)) − ∇𝑓
∗

(𝑝


) , 𝑦
𝑛+1

− 𝑝


⟩

≤ 𝛼
𝑛
𝑉
𝑓
∗ (𝑝


, ∇𝑓
∗

(𝑝


)) + (1 − 𝛼
𝑛
) 𝑉
𝑓
∗ (𝑝


, ∇𝑓
∗

(𝑇
∗

𝑦
𝑛
))

+ 𝛼
𝑛
⟨∇𝑓
∗

(∇𝑓 (𝑢)) − ∇𝑓
∗

(𝑝


) , 𝑦
𝑛+1

− 𝑝


⟩

= (1 − 𝛼
𝑛
)𝐷
𝑓
∗ (𝑝


, 𝑇
∗

𝑦
𝑛
) + 𝛼
𝑛
⟨∇𝑓
∗

(∇𝑓 (𝑢))

−∇𝑓
∗

(𝑝


) , 𝑦
𝑛+1

− 𝑝


⟩

≤ (1 − 𝛼
𝑛
)𝐷
𝑓
∗ (𝑝


, 𝑦
𝑛
) + 𝛼
𝑛
⟨∇𝑓
∗

(∇𝑓 (𝑢))

−∇𝑓
∗

(𝑝


) , 𝑦
𝑛+1

− 𝑝


⟩ .

(33)

Now, we consider two cases.

Case 1. Suppose that there exists 𝑛
0

∈ N such that
{𝐷
𝑓
∗(𝑝


, 𝑦
𝑛
)} is decreasing for all 𝑛 ≥ 𝑛

0
. Then, we get that

{𝐷
𝑓
∗(𝑝


, 𝑦
𝑛
)} is convergent and hence

𝐷
𝑓
∗ (𝑝


, 𝑦
𝑛
) − 𝐷
𝑓
∗ (𝑝


, 𝑦
𝑛+1

) → 0 as 𝑛 → ∞. (34)

In addition, from (32) and Lemma 7 we have that

𝐷
𝑓
(𝑝


, 𝑦
𝑛+1

)

= 𝐷
𝑓
∗ (𝑝


, ∇𝑓 (𝛼
𝑛
∇𝑓
∗

(∇𝑓 (𝑢)) + (1 − 𝛼
𝑛
) ∇𝑓
∗

(𝑇
∗

𝑦
𝑛
)))

≤ 𝛼
𝑛
𝐷
𝑓
∗ (𝑝


, ∇𝑓 (𝑢)) + (1 − 𝛼
𝑛
)𝐷
𝑓
∗ (𝑝


, 𝑇
∗

𝑦
𝑛
) .

(35)

Following from (35), (34), and the fact that 𝛼
𝑛
→ 0, as 𝑛 →

∞, we get that

𝐷
𝑓
∗ (𝑝


, 𝑦
𝑛
) − 𝐷
𝑓
∗ (𝑝


, 𝑇
∗

𝑦
𝑛
)

= 𝐷
𝑓
∗ (𝑝


, 𝑦
𝑛
) − 𝐷
𝑓
∗ (𝑝


, 𝑦
𝑛+1

)

+ 𝐷
𝑓
∗ (𝑝


, 𝑦
𝑛+1

) − 𝐷
𝑓
∗ (𝑝


, 𝑇
∗

𝑦
𝑛
)

≤ 𝐷
𝑓
∗ (𝑝


, 𝑦
𝑛
) − 𝐷
𝑓
∗ (𝑝


, 𝑦
𝑛+1

)

+ 𝛼
𝑛
(𝐷
𝑓
∗ (𝑝


, 𝑢) − 𝐷
𝑓
∗ (𝑝


, 𝑇
∗

𝑦
𝑛
)) → 0

as 𝑛 → ∞.

(36)

This with the fact that 𝑇∗ is left Bregman strongly nonexpan-
sive implies that

lim
𝑛→∞

𝐷
𝑓
∗ (𝑇
∗

𝑦
𝑛
, 𝑦
𝑛
) = 0. (37)

Then, by Lemma 5 we obtain that

lim
𝑛→∞

𝑇
∗

𝑦
𝑛
− 𝑦
𝑛

 = 0. (38)

Now, since 𝐸∗ is reflexive and {𝑦
𝑛+1

} is bounded, there exists
a subsequence {𝑦

𝑛
𝑘
+1
} of {𝑦

𝑛+1
} such that

𝑦
𝑛
𝑘
+1
⇀ 𝑦 ∈ 𝐸

∗

, (39)

lim sup
𝑛→∞

⟨∇𝑓
∗

(∇𝑓 (𝑢)) − ∇𝑓
∗

(𝑝


) , 𝑦
𝑛+1

− 𝑝


⟩

= lim sup
𝑘→∞

⟨∇𝑓
∗

(∇𝑓 (𝑢)) − ∇𝑓
∗

(𝑝


) , 𝑦
𝑛
𝑘
+1
− 𝑝


⟩ .

(40)

Thus, from (39), (38), the fact that𝑇∗ is left Bregman strongly
nonexpansive mapping with 𝐹(𝑇∗) = 𝐹(𝑇

∗

), and Lemma 6
we get that 𝑦 ∈ 𝐹(𝑇∗) = F and

lim sup
𝑛→∞

⟨∇𝑓
∗

(∇𝑓 (𝑢)) − ∇𝑓
∗

(𝑝


) , 𝑦
𝑛+1

− 𝑝


⟩

= lim sup
𝑘→∞

⟨∇𝑓
∗

(∇𝑓 (𝑢)) − ∇𝑓
∗

(𝑝


) , 𝑦
𝑛
𝑘
+1
− 𝑝


⟩

= ⟨∇𝑓
∗

(∇𝑓 (𝑢)) − ∇𝑓
∗

(𝑝


) , 𝑦 − 𝑝


⟩ ≤ 0.

(41)

Therefore, it follows from (33), (41), and Lemma 9 that
𝐷
𝑓
(𝑝


, 𝑦
𝑛
) → 0 as 𝑛 → ∞. Consequently, by Lemma 5

we obtain that 𝑦
𝑛

→ 𝑝


= 𝑃
𝑓
∗

F
(∇𝑓(𝑢)) and hence 𝑥

𝑛
=

∇𝑓
∗

(𝑦
𝑛
) → ∇𝑓

∗

(𝑝


) = 𝑝 ∈ F.

Case 2. Suppose that there exists a subsequence {𝑛
𝑖
} of {𝑛}

such that

𝐷
𝑓
∗ (𝑝


, 𝑦
𝑛
𝑖

) < 𝐷
𝑓
∗ (𝑝


, 𝑦
𝑛
𝑖
+1
) , (42)
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for all 𝑖 ∈ N. Then, by Lemma 10, there exist a nondecreasing
sequence {𝑚

𝑘
} ⊂ N such that𝑚

𝑘
→ ∞ and

𝐷
𝑓
∗ (𝑝


, 𝑦
𝑚
𝑘

) ≤ 𝐷
𝑓
∗ (𝑝


, 𝑦
𝑚
𝑘
+1
) ,

𝐷
𝑓
∗ (𝑝


, 𝑦
𝑘
) ≤ 𝐷

𝑓
∗ (𝑝


, 𝑦
𝑚
𝑘
+1
) ,

(43)

for all 𝑘 ∈ N. Thus, we get that

𝐷
𝑓
∗ (𝑝


, 𝑦
𝑚
𝑘

) − 𝐷
𝑓
∗ (𝑝


, 𝑇
∗

𝑦
𝑚
𝑘

)

≤ 𝐷
𝑓
∗ (𝑝


, 𝑦
𝑚
𝑘

) − 𝐷
𝑓
∗ (𝑝


, 𝑦
𝑚
𝑘
+1
)

+ 𝐷
𝑓
∗ (𝑝


, 𝑦
𝑚
𝑘
+1
) − 𝐷
𝑓
∗ (𝑝


, 𝑇
∗

𝑦
𝑚
𝑘

)

≤ 𝐷
𝑓
∗ (𝑝


, 𝑦
𝑚
𝑘

) − 𝐷
𝑓
∗ (𝑝


, 𝑦
𝑚
𝑘
+1
)

+ 𝛼
𝑚
𝑘

(𝐷
𝑓
∗ (𝑝


, ∇𝑓 (𝑢)) − 𝐷
𝑓
∗ (𝑝


, 𝑇
∗

𝑦
𝑚
𝑘

)) → 0.

(44)

This implies that 𝐷
𝑓
∗(𝑇
∗

𝑦
𝑛
𝑘

, 𝑦
𝑛
𝑘

) → 0 as 𝑘 → ∞. Now,
following the method in Case 1 we obtain that

lim sup
𝑘→∞

⟨∇𝑓
∗

(∇𝑓 (𝑢)) − ∇𝑓
∗

(𝑝


) , 𝑦
𝑚
𝑘
+1
− 𝑝


⟩ ≤ 0. (45)

Now, from (33) we have that

𝐷
𝑓
∗ (𝑝


, 𝑦
𝑚
𝑘
+1
)

≤ (1 − 𝛼
𝑚
𝑘

)𝐷
𝑓
∗ (𝑝


, 𝑦
𝑚
𝑘

)

+ 𝛼
𝑚
𝑘

⟨∇𝑓
∗

(∇𝑓 (𝑢)) − ∇𝑓
∗

(𝑝


) , 𝑦
𝑚
𝑘
+1
− 𝑝


⟩ .

(46)

But (43) and (46) imply that

𝛼
𝑚
𝑘

𝐷
𝑓
∗ (𝑝


, 𝑦
𝑚
𝑘

)

≤ 𝐷
𝑓
∗ (𝑝


, 𝑦
𝑚
𝑘

) − 𝐷
𝑓
∗ (𝑝


, 𝑦
𝑚
𝑘
+1
)

+ 𝛼
𝑚
𝑘

⟨∇𝑓
∗

(∇𝑓 (𝑢)) − ∇𝑓
∗

(𝑝


) , 𝑦
𝑚
𝑘
+1
− 𝑝


⟩

≤ 𝛼
𝑚
𝑘

⟨∇𝑓
∗

(∇𝑓 (𝑢)) − ∇𝑓
∗

(𝑝


) , 𝑦
𝑚
𝑘
+1
− 𝑝


⟩ ,

(47)

and noting that 𝛼
𝑚
𝑘

> 0, we get that

𝐷
𝑓
∗ (𝑝


, 𝑦
𝑚
𝑘

) ≤ ⟨∇𝑓
∗

(∇𝑓 (𝑢)) − ∇𝑓
∗

(𝑝


) , 𝑦
𝑚
𝑘
+1
− 𝑝


⟩ .

(48)

Thus, using (45) we get that 𝐷
𝑓
∗(𝑝


, 𝑦
𝑚
𝑘

) → 0 and hence
from (46) we have that 𝐷

𝑓
∗(𝑝


, 𝑦
𝑚
𝑘
+1
) → 0 as 𝑘 → ∞.

But 𝐷
𝑓
∗(𝑝


, 𝑦
𝑘
) ≤ 𝐷

𝑓
∗(𝑝


, 𝑦
𝑚
𝑘
+1
), for all 𝑘 ∈ N, implies

that 𝐷
𝑓
∗(𝑝


, 𝑦
𝑘
) → 0 and hence by Lemma 5 we obtain

that 𝑦
𝑘

→ 𝑝
 and 𝑥

𝑘
= ∇𝑓

∗

(𝑦
𝑘
) → 𝑝 = ∇𝑓

∗

(𝑝


) ∈

F. Therefore, from the above two cases, we can conclude
that {𝑥

𝑛
} converges strongly to 𝑝 ∈ F and the proof is

complete.

Remark 12. We note that the sequence {𝑥
𝑛
} in Theorem 11

converges strongly to a point 𝑝 ∈ F such that 𝑝 = ∇𝑓
∗

(𝑝


),
where 𝑝 = 𝑃F(∇𝑓(𝑢)).

If, in Theorem 11, we consider a single right Bregman
strongly nonexpansive mapping, we get the following corol-
lary.

Corollary 13. Let 𝐸 be a reflexive Banach space and let 𝑓 :

𝐸 → R be a cofinite function which is bounded, uniformly
Fréchet differentiable, and totally convex on bounded subsets
of 𝐸. Let 𝐶 be a nonempty, closed, and convex subset of
int(dom𝑓) and let 𝑇 : 𝐶 → 𝐶 be a right Bregman strongly
nonexpansive mapping such that 𝐹(𝑇) = 𝐹(𝑇) ̸= 0. For 𝑢, 𝑥

1
∈

𝐶 let {𝑥
𝑛
} be a sequence generated by

𝑥
𝑛+1

= 𝛼
𝑛
𝑢 + (1 − 𝛼

𝑛
) 𝑇𝑥
𝑛
, 𝑛 = 1, 2, . . . , (49)

where {𝛼
𝑛
} ⊂ (0, 1) satisfy lim

𝑛→∞
𝛼
𝑛
= 0 and ∑∞

𝑛=1
𝛼
𝑛
= ∞.

Then, {𝑥
𝑛
} converges strongly to some 𝑝 in 𝐹(𝑇).

If, in Theorem 11, we assume that each 𝑇
𝑖
, (𝑖 =

1, 2, . . . , 𝑁) is right Bregman firmly nonexpansive, then we
have that 𝑇 = 𝑇

𝑁
∘ 𝑇
𝑁−1

∘ ⋅ ⋅ ⋅ ∘ 𝑇
1
is right Bregman firmly

nonexpansive with 𝐹(𝑇) = 𝐹(𝑇) = ∩
𝑁

𝑖=1
𝐹(𝑇
𝑖
) (see [10]) and

hence it is right Bregman strongly nonexpansive mapping.
Thus, we have the following.

Corollary 14. Let 𝑓 : 𝐸 → R be a cofinite function which is
bounded, uniformly Fréchet differentiable, and totally convex
on bounded subsets of 𝐸. Let 𝐶 be a nonempty, closed, and
convex subset of int(dom𝑓) and let 𝑇

𝑖
: 𝐶 → 𝐶, for

𝑖 = 1, 2, . . . , 𝑁, be a finite family of right Bregman firmly
nonexpansive mappings with F := ∩

𝑁

𝑖=1
𝐹(𝑇
𝑖
) ̸= 0. For 𝑢, 𝑥

1
∈

𝐶 let {𝑥
𝑛
} be a sequence generated by

𝑥
𝑛+1

= 𝛼
𝑛
𝑢 + (1 − 𝛼

𝑛
) 𝑇𝑥
𝑛
, 𝑛 = 1, 2, . . . , (50)

where 𝑇 = 𝑇
𝑁
∘ 𝑇
𝑁−1

∘ ⋅ ⋅ ⋅ ∘ 𝑇
1
, {𝛼
𝑛
} ⊂ (0, 1) satisfying

lim
𝑛→∞

𝛼
𝑛
= 0 and ∑

∞

𝑛=1
𝛼
𝑛
= ∞. Then, {𝑥

𝑛
} converges

strongly to 𝑝 inF.

4. Applications

4.1. Zeroes of Maximal Mappings. Let 𝐴 : 𝐸 → 2
𝐸
∗

be a
maximalmonotonemapping. Recently,many authors studied
zero points of monotone mappings using different methods
(see e.g., [13, 25, 28, 30, 31, 38]). In this section we use
Halpern’s type scheme to find common zeros of a finite family
of maximal monotone set-valued mappings.

Definition 15 (see [31]). Let 𝑓 : 𝐸 → (−∞, +∞] be an
admissible function and let 𝐴 : 𝐸 → 2

𝐸
∗

be a set-valued
mapping such that int(dom𝑓) ∩ dom𝐴 ̸= 0. The conjugate
resolvent of 𝐴 with respect to 𝑓, or the conjugate ∇𝑓-
resolvent, is the operator CRes𝑓

𝐴
: 𝐸
∗

→ 2
𝐸
∗

defined by

CRes𝑓
𝐴
:= (𝐼 + 𝐴 ∘ ∇𝑓

∗

)
−1

. (51)
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Remark 16. If, in addition, 𝐴 is monotone and 𝑓int(dom𝑓)

is strictly convex, then it is shown in [31] that CRes𝑓
𝐴
is

right Bregman firmly nonexpansive and ∇𝑓
∗

(𝐹(CRes𝑓
𝐴
)) =

int(dom𝑓) ∩ 𝐴
−1

(0
∗

). Moreover, we know that if 𝑓 is
Legendre, bounded, and uniformly continuous on bounded
subsets of 𝐸, then, for every right Bregman firmly nonex-
pansive operator 𝑇, 𝐹(𝑇) = 𝐹(𝑇) (see [10]). Thus, under
these assumptions on 𝐴 and 𝑓, the operator CRes𝑓

𝐴
is right

Bregman strongly nonexpansive mapping.

We shall need the following lemma.

Lemma 17 (see [30]). Let 𝑓 : 𝐸 → R be a strictly convex,
cofinite, and admissible function, and let 𝐴 : 𝐸 → 2

𝐸
∗

be a
set-valued monotone mapping. Then 𝐴 is maximal monotone
if and only if dom(𝐶𝑅𝑒𝑠𝑓

𝐴
) = 𝐸
∗.

Theorem 18. Let 𝑓 : 𝐸 → R be a cofinite function such
that𝑓∗ is uniformly Fréchet differentiable and totally convex on
bounded subsets of 𝐸∗. Let 𝐴

𝑖
: 𝐸 → 2

𝐸
∗

, 𝑖 = 1, 2, . . . , 𝑁, be
maximal monotone mappings such thatF := ∩

𝑁

𝑖=1
𝐴
−1

𝑖
(0
∗

) ̸= 0.
For each 𝑤, 𝑧

1
∈ 𝐸
∗, consider the sequence {𝑧

𝑛
} generated

iteratively by

𝑧
𝑛+1

= 𝛼
𝑛
𝑤 + (1 − 𝛼

𝑛
) 𝑇 (𝑧
𝑛
) , 𝑛 = 1, 2, . . . , (52)

where 𝑇 = 𝐶𝑅𝑒𝑠
𝑓

𝐴
𝑁

∘ 𝐶𝑅𝑒𝑠
𝑓

𝑁−1
∘ ⋅ ⋅ ⋅ ∘ 𝐶𝑅𝑒𝑠

𝑓

𝐴
1

, {𝛼
𝑛
} ⊂ (0, 1)

satisfy lim
𝑛→∞

𝛼
𝑛
= 0, and∑∞

𝑛=1
𝛼
𝑛
= ∞.Then, {𝑧

𝑛
} converges

strongly to 𝑝 in 𝐹(𝑇) = ∩
𝑁

𝑖=1
𝐹(𝐶𝑅𝑒𝑠

𝑓

𝐴
𝑖

), and ∇𝑓∗(𝑝) = 𝑝 ∈

F.

Proof. From Lemma 17 we know that each 𝑇
𝑖
= CRes𝑓

𝐴
𝑖

, 𝑖 =

1, 2, . . . , 𝑁 is a mapping from 𝐸
∗ into itself, since

𝑁

⋂

𝑖=1

𝐹 (CRes𝑓
𝐴
𝑖

) =

𝑁

⋂

𝑖=1

∇𝑓 (𝐴
−1

𝑖
(0
∗

)) = ∇𝑓 (F) ̸= 0. (53)

Remark 16 guarantees that each 𝑇
𝑖
, 𝑖 = 1, 2, . . . , 𝑁 is right

Bregman strongly nonexpansive mapping with respect to
𝐹(𝑇
𝑖
) = 𝐹(𝑇

𝑖
). Now the result follows immediately from

Theorem 11 applied to 𝐸∗.

4.2. Convex Feasibility Problems. The convex feasibility prob-
lem (CFP) is finding an element 𝑥∗ ∈ ∩

𝑁

𝑖=1
𝐾
𝑖
, where 𝐾

𝑖
for

𝑖 = 1, 2, . . . , 𝑁, are nonempty, closed, and convex subsets of𝐸.
Let 𝐾 ⊂ int(dom𝑓). The right Bregman projection [30] onto
𝐾 is the operator 𝑃𝑓

𝐾
: int(dom𝑓) → 𝐾 defined by

𝑃
𝑓

𝐾
(𝑥) := arg lim

𝑦∈𝐾

{𝐷
𝑓
(𝑥, 𝑦)}

= {𝑧 ∈ 𝐾 : 𝐷
𝑓
(𝑥, 𝑧) ≤ 𝐷

𝑓
(𝑥, 𝑦) ∀𝑦 ∈ 𝐾} .

(54)

If 𝑓 : 𝐸 → R is Legendre and uniformly continu-
ous on bounded subsets of 𝐸 and 𝑓 is weakly sequen-
tially continuous, then the right Bregman projection 𝑃

𝑓

𝐾
𝑖

is right Bregman strongly nonexpansive mapping with
𝐹(𝑃
𝑓

𝐾
𝑖

) = 𝐹(𝑃
𝑓

𝐾
𝑖

) (see [30]). Therefore, if we take 𝑇
𝑖
= 𝑃
𝑓

𝐾
𝑖

for each 𝑖 ∈ {1, 2, . . . , 𝑁}, then we get an algorithm for
solving convex feasibility problems. More precisely, we have
the following result.

Theorem 19. Let 𝑓 : 𝐸 → R be a cofinite function which is
bounded, uniformly continuous, and totally convex on bounded
subsets of𝐸. Assume that∇𝑓 is weakly sequentially continuous.
Let𝐾
𝑖
, 𝑖 = 1, . . . , 𝑁 be𝑁 nonempty, closed, and convex subsets

of 𝐸 such that F := ∩
𝑁

𝑖=1
𝐾
𝑖
̸= 0. For each 𝑥

1
∈ 𝐾, let the

sequence {𝑥
𝑛
} be generated iteratively by

𝑥
𝑛+1

= 𝛼
𝑛
𝑢 + (1 − 𝛼

𝑛
) 𝑇 (𝑧
𝑛
) , 𝑛 = 1, 2, . . . , (55)

where 𝑇 = 𝑃
𝑓

𝐾
𝑁

∘ 𝑃
𝑓

𝐾
𝑁−1

∘ ⋅ ⋅ ⋅ ∘ 𝑃
𝑓

𝐾
1

, {𝛼
𝑛
} ⊂ (0, 1) satisfy

lim
𝑛→∞

𝛼
𝑛
= 0, and ∑

∞

𝑛=1
𝛼
𝑛
= ∞. Then, {𝑥

𝑛
} converges

strongly to 𝑝 inF.

Remark 20. Theorem 11 complements the results due toReich
and Sabach [9], Suantai et al. [32], and Zhang and Cheng
[33] in the sense that our scheme is applicable for right
Bregman strongly nonexpansive self-mappings on 𝐶, where
𝐶 is nonempty, closed, and convex subset of 𝐸.
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